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Abstract 

Impulse control is crucial for everyday functioning in modern society. People with borderline 

personality disorder (BPD) suffer from impulse control impairment. According to the theory 

of dual mechanisms of control, motor impulse control can be divided into proactive and 

reactive modes. Proactive inhibition is involved before an event that might require inhibitory 

control.  Reactive inhibition is initiated after the occurrence of an event that requires 

inhibitory control. Few studies have focused on proactive inhibition in relation to impaired 

impulse control, moreover electrophysiological evidence is scarce. Therefore, in the search 

for electrophysiological correlates of proactive and reactive inhibitions, we assessed event-

related potentials elicited during a modified emotionally neutral visual Go/NoGo task in 28 

clinically impulsive BPD patients and 35 healthy control (HC) subjects. In both groups, 

proactive inhibition was associated with enhanced late prestimulus activity and a suppressed 

poststimulus N2 component. In both groups, reactive inhibition was associated with enhanced 
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poststimulus N2 and P3 components. We found no electrophysiological differences between 

HC subjects and BPD patients and both groups performed similarly in the task. Hence, the 

clinically observed impulse control impairment in BPD might act through different 

mechanisms other than altered inhibitory control in an emotionally neutral task. 

 

 

 

1. Introduction 

Every day we face a multitude of decisions, which impact our lives to a lesser or greater 

degree. Should I choose a tasty but rather unhealthy meal, or instead opt for a healthier but 

less appetizing alternative? Do I really need to buy a new jacket, even if I have one like it 

already in my closet? Choosing the more immediately gratifying alternative, acting on the 

spur of the moment, is considered a sign of impulsive behavior. While most healthy 

individuals sometimes engage in impulsive behavior, extensive impulsivity is deleterious not 

only to one’s subjective well-being but also to the well-being of broader society. Clinically, 

impulsivity refers to the inability of an individual to inhibit undesired thoughts or behaviors. 

Impulsivity can be manifested in a broad range of pathological behaviors like substance 

abuse, gambling, dangerous sexual behavior, risky driving, binge eating, aggression, and self-

harm (Barteček et al., 2019; Reeves-Dudley, 2017; Cyders et al., 2009). Impulsive traits are 

characteristic of several neuropsychiatric diseases. For borderline personality disorder (BPD), 

impulsivity is a core defining feature.  

With a lifetime prevalence of 1.4 – 5.9% (Lenzenweger et al., 2007; Grant et al., 2008)  

and high levels of suicidal behavior (Pompili et al., 2005; Black et al., 2004), BPD is a severe 

and potentially life-threatening disorder. There is a long-established link between impulsivity 

levels and the occurrence of suicidal behavior in BPD (Brodsky et al., 1997; Links et al., 

1999; Soloff, 2000; Rihmer et al., 2010). Inhibitory mechanisms, responsible for preventing 

impulsive actions are thought to be impaired in BPD patients, leading to dangerous, 

unpredictable behavior.  

According to the dual mechanisms of cognitive control theory (Braver, 2012), 

inhibitory mechanisms can be divided into proactive and reactive modes. Proactive inhibition 

is involved prior to an event that might require inhibitory control. It is initiated for example by 

a warning sign informing a person to watch out for cars while crossing the road. It prepares 

for the motor inhibition that might be required later. Reactive inhibition, on the other hand, is 

an active inhibitory reaction driven by an external stimulus. It is present when a person 
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abruptly stops during a road crossing after having been startled by the loud noise of a car 

horn. While proactive inhibition is considered to be a top-down regulatory endogenous 

process, reactive inhibition is viewed as a bottom-up exogenous process (Liebrand et al., 

2017; Zandbelt, 2011).  

Several cognitive-motor tasks have been employed to study inhibitory mechanisms 

(Linhartová et al., 2021), most notably the Go/NoGo task. In this task, inhibition is usually 

assessed using behavioral indicators like accuracy or reaction time. Additionally, brain 

imaging techniques such as electroencephalography can be used to study electrophysiological 

correlates of task-related brain activity. Particularly, event-related potentials (ERPs) have 

been widely utilized to study mental activity during the Go/NoGo task. Two major ERP 

components traditionally associated with inhibition are the N2 and P3 (Kok et al., 2004).  

The N2, a negative-going wave emerging 200 – 300 ms after the stimulus onset, was 

suggested to reflect the top-down mechanisms responsible for inhibiting the tendency to 

respond (Kaiser et al., 2003). Nevertheless, this component was previously associated with 

conflict monitoring (Donkers and van Boxtel, 2004) and more recently interpreted as an index 

for early cognitive processes necessary in implementing inhibitory control rather than the 

actual inhibitory brake (Luijten et al., 2014). 

The P3 component, a positive-going wave emerging 260 – 450 ms after the stimulus 

onset (Sutton et al., 1965; Galdo-Alvarez et al., 2016), is arguably the strongest 

electrophysiological indicator of inhibition. A higher P3 amplitude (Nguyen et al., 2016; 

Wessel and Aron, 2015) and a shorter peak latency (Roche et al., 2005) were observed in 

successful compared to unsuccessful inhibitions during inhibition tasks, suggesting slower 

unfolding of inhibitory processes in unsuccessful inhibition. The P3 thus appears to reflect the 

processes closely related to inhibition of the motor system (Kenemans, 2015; Kok et al., 2004; 

Dimoska et al., 2006; Band and van Boxtel; 1999). Impaired inhibition in BPD patients was 

previously shown to be reflected in a reduced NoGo-P3 amplitude (Ruchsow et al., 2008). 

Albert et al. (2019) found lower frontocentral P3 in BPD subjects in both Go and NoGo trials 

during the Go/NoGo task.  

The classical Go/NoGo task does not allow, however, the distinction between 

proactive and reactive inhibitory processes. Recently, modified versions of the Go/NoGo task 

have been proposed to reveal ERP correlates of both proactive and reactive inhibitory 

processes in a healthy population. For example, Liebrand et al. (2017) used a cued version of 

the Go/NoGo task. In that study the authors associated proactive inhibition with an increased 

contingent negative variation (CNV) component in the cue period and an increased N1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.12.451610doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451610
http://creativecommons.org/licenses/by-nc-nd/4.0/


component in the poststimulus period. In order to study proactive inhibitory processes in 

healthy subjects, Albares et al. (2014), extended the classical version of the Go/Nogo task 

with a “certain” Go condition. The authors used a blind source separation technique and found 

a specific independent component originating in the supplementary motor area approximately 

170ms after the stimulus onset.  Its amplitude differed in conditions with and without 

uncertainty, i.e. conditions requiring and not requiring proactive inhibition. The authors 

associated this independent component with both automatic response activation and 

concurrent automatic inhibition.  

Only a few studies have focused on proactive inhibition in relation to impaired 

impulse control (Sharif-Razi et al., 2019; Van Hulst et al., 2018; Castro-Meneses et al., 2015), 

and none of them have investigated this relationship using an electrophysiological approach. 

Therefore, in the current study we aimed to assess ERP brain activity in clinically impulsive 

BPD patients using the modified Go/NoGo task (Albares et al. 2014). In the uncertain variant 

of this task, two different responses are required - either to press a button or to refrain from 

any motor action. In the certain task variant, motor action is required in response to every 

stimulus. Thus, we expected proactive inhibition to be involved in the uncertain but not in the 

certain task variant. Similarly, within the uncertain task variant, we expected reactive 

inhibition to occur only in the NoGo condition where no motor action was required. 

Contrary to the original study (Albares et al. 2014), we used global 

electrophysiological measures of ERP activity such as global field power and global map 

dissimilarity (Habermann et al., 2018), that allowed for direct comparison with the results of 

other ERP studies. In the current study, we searched for: (1) global electrophysiological 

correlates of proactive and reactive inhibitions; (2) the difference in behavioral and 

electrophysiological measures of proactive and reactive inhibitions between clinically 

impulsive BPD patients and healthy controls. 

 

2. Methods 

2.1 Subjects 

Data from 35 patients diagnosed with borderline personality disorder (BPD) and 40 healthy 

controls (HC) were collected. BPD patients were recruited from the Department of Psychiatry 

of the University Hospital Brno, Czech Republic, and through outpatient psychiatrists. HC 

patients were recruited via an internet advertisement and screened using the Mini international 

neuropsychiatric interview (Sheehan et al., 1998). Twelve subjects were excluded due to EEG 

artifacts, resulting in 28 BPD and 35 HC subjects used for the ERP analyses.  Both groups 
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were comparable in terms of age in years (BPD mean = 23.48 ± 4.85; HC mean = 23.88 ± 

7.06, t = -0.259, p = 0.796) and gender (4 males in both the BPD and HC groups). All subjects 

in both groups were right-handed. Self-reported impulsiveness was assessed using the UPPS-

P scale. The BPD group showed higher self-reported impulsivity on the UPPS-P scale (BPD 

mean ± SD = 159.72 ± 25.56, HC mean ± SD = 126.62 ±  22.99), t (48.54) = 5.13, p <0.001). 

  

2.2 Experimental Protocol 

The participants were seated in a dimly illuminated room, facing a computer screen while 

performing the modified Go/NoGo task. The white capital letters A and B were displayed in 

the center of a black screen as experimental stimuli. Each stimulus was preceded by a fixation 

cross that was displayed with a random duration of 2 to 6 s (Figure 1). The stimuli were 

displayed for 0.2 s, followed by a black screen that appeared for 2 seconds. Thus, the inter-

stimulus interval ranged from 4.2 s to 8.2 s. The fixation cross was either red, signaling the 

uncertain task variant, or green, signaling the certain task variant. In the uncertain task 

variant, either the letter A (Go stimulus) or B (NoGo stimulus) appeared with an equal 

probability. In the certain task variant, the letter A (Go stimulus) was always displayed. The 

red cross was twice as common as the green cross. This resulted in an equal number of the 

three experimental conditions: Go certain (the letter A following the green cross), Go 

uncertain (the letter A following the red cross), and NoGo (the letter B following the red 

cross) conditions.  

Before the experiment, all participants completed a short practice block to get 

acquainted with the task. The participants were instructed to press a button as quickly as 

possible on both the Go certain and Go uncertain stimuli, and to suppress this action when the 

NoGo stimulus appeared. All participants were presented with 72 stimuli of each type. The 

task was presented in three identical blocks, with breaks between the blocks being used for 

adjustment of electrode impedances.  

 

2.3 Data acquisition and pre-processing 

We used high-density electroencephalography (EEG) to evaluate the temporal and spatial 

distribution of ERPs as possible electrophysiological correlates of proactive and reactive 

inhibition. Data were recorded using the EGI 129 electrodes system (EGI GES 200; Electrical 

Geodesic Inc., OR, USA) referenced relative to a Cz electrode. The signal was digitized at a 

sampling rate of 1000 Hz; impedances were kept below 50 kΩ. Offline, the data were band-

pass filtered from 1 to 40 Hz. Independent component analysis as implemented in the EEGlab 
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(Delorme and Makeig, 2004) was applied to suppress the ballistocardiogram and oculomotor 

components. The EEG was then downsampled to 500 Hz and the previously identified biased 

channels were interpolated. The data were then re-referenced to the average reference.  

The remaining EEG artifacts were identified by visual inspection using SignalPlant 

(Plesinger et al., 2016) and discarded after epoching. Pressing the button in response to the 

NoGo stimulus or failing to press it in response to the Go stimulus were considered 

commission or omission errors, respectively (Table 1). Only the error-free and artifact-free 

trials were used for averaging. In each subject, the post-stimulus epochs from 0 to 2000 ms 

were averaged separately for each condition using the stimulus onset as a trigger. Similarly, 

the post-fixation-cross epochs from 0 to 2000ms were averaged separately for each task 

variant. 

 

2.4 ERP analysis 

Two global tests across all electrodes were used, one to test for global strength difference of 

the electric field and the other to test for differences in the topography of the potential 

distribution (Michel and Murray, 2012). This approach to EEG data analysis was successfully 

used in previous studies (Bailey et al. 2014; Berchio et al., 2017). The difference in map 

strength was assessed by calculating the Global Field Power (GFP), first introduced by 

Lehmann and Skrandies (1980). GFP reflects the degree of neuronal synchronization 

(Skrandies, 1990). It includes the differences between all possible electrode pairs and is 

equivalent to the topographical standard deviation of the potentials. The topographic ANOVA 

(TANOVA) was used to find differences in potential scalp distribution between groups and 

conditions. A TANOVA  calculates the topographic difference between two scalp maps 

(global map dissimilarity). The data for TANOVA analysis were normalized prior to analysis. 

The difference in normalized scalp maps is considered a qualitative effect whereas the 

difference in GFP is considered a quantitative effect (Habermann et al., 2018). GFP shows the 

magnitude of difference regardless of their source in the brain, whereas a TANOVA on 

normalized data shows whether the spatial distribution, location, and orientation differs 

between conditions. The epochs 0-2000ms were analyzed using 5000 permutations and an 

alpha level of 0.001 using Ragu software (Koenig et al., 2011). Additionally, only time-

windows longer than 10ms with a p-value below the alpha level were considered significant. 

We used the permutation analysis for the 2x2 design and posthoc tests to reveal the post-

stimulus difference in evoked activity between the Go certain and Go uncertain and between 

the Go uncertain and NoGo conditions and the two groups.  
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Similarly, the post-fixation cross differences in evoked activity were analyzed using a 

2x2 design and permutation posthoc test. The difference ERP waveforms were computed on 

an individual level by averaging across the trials followed by subtracting between the 

different conditions or different task variants. Subsequently, grand averages were constructed 

from the computed individual waveforms. 

 

2.5 Behavioral data analysis 

We tested for the difference in reaction times and the number of commission and omission 

errors using R statistical software (Team RC, 2020) and Jamovi (Şahin and Aybek, 2019). A 

two-way ANOVA was conducted to test for differences in reaction times. Non-parametric 

tests were conducted to compare error rates between groups and conditions. Additional tests 

were conducted between conditions for a statistically significant factor. 

 

3. Results 

3.1 Behavioral results 

The task performance was good in both groups. The mean accuracy across subjects exceeded 

80% and the mean reaction time was less than 400ms in all conditions both in the BPD and 

HC groups, (see Table 2). We observed lower accuracy in the BPD than the HC group in the 

Go uncertain condition, but not in the Go certain or NoGo conditions. In addition, both groups 

were significantly more accurate in the Go uncertain condition compared to the other two 

conditions (Fig. 2). The mean reaction time did not significantly differ between groups either 

in the Go uncertain condition or in the Go certain condition (Table 2). Longer reaction times 

were observed in the Go uncertain compared to the Go certain conditions in both groups (p < 

0.001 ) (Fig. 3).  

 

3.2 Evoked response results 

All conditions both in the patient and control groups elicited stimulus-locked P2, N2, and P3 

components within the reaction-time period (Figure 4); grand average waveforms in all 

electrodes are presented in Figure 5. Moreover, in both groups, we observed a fixation cross-

locked activity (Figure 6). The permutation analysis revealed a significant main effect of  

condition in both GFP and TANOVA metrics. No main effect of group was detected in any 

metric. Figures 7 and 8 show different waveforms for the conditions in each group. Figure 9 

shows different waveforms for the task variants in each group.  
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For the Go uncertain vs. Go certain condition comparison (Figure 7), both groups 

showed significant differences (p < 0.001), for both GFP and TANOVA measures, in the 

time-window of the N2 component (200 - 300 ms). In this time-window, both groups showed 

lower frontal negativity and lower occipital positivity in the Go uncertain condition. Besides, 

the N2 peaked later over the central areas in the Go uncertain compared to the Go certain 

condition (Figure 4). Furthermore, both groups showed significant differences in the 

TANOVA (p < 0.001), starting 453 ms after the stimulus onset for the healthy control group 

and 512 ms after the stimulus onset for the BPD group. No significant differences were 

observed in the time-windows of the P2 (140 - 250ms) and P3 (260 - 450ms) components. 

For the NoGo condition vs. Go uncertain condition comparison (Figure 8), both 

groups showed significant differences (p < 0.001) in the time-windows of several 

components. In the time-window of the P2 component (140 - 250 ms), both groups showed 

lower frontal positivity and lower occipital negativity in the NoGo condition. Significant 

differences were observed in the GFP and TANOVA measures for the BPD group and only in 

the TANOVA for the HC group. In the time-window of the N2  component (200 - 300 ms), 

both groups showed the same tendency in amplitude differences, i.e. higher frontal negativity 

and higher occipital positivity in the NoGo condition. Significant differences (p < 0.001) in 

the GFP and TANOVA measures were observed in the HC group but not in the BPD group. 

In the time-window of the P3 component (260 - 450 ms), both groups showed higher fronto-

central positivity in the NoGo condition. Significant differences (p < 0.001) in the GFP and 

TANOVA measures were observed in both groups. In the post-response period, we observed 

significant differences (p < 0.001) in the TANOVA both in the BPD (546 - 630 ms and 884 - 

910 ms post-stimulus) and HC (522 - 677 ms post-stimulus) groups. 

In both groups, lower activity in the late phase of the prestimulus period was observed 

in the uncertain compared to certain task variants (Figure 6). The permutation analysis on the 

GFP (Figure 9) revealed several intervals of significant differences within the 496 - 1930 ms 

and 438 - 2000 ms periods in the BPD and HC groups, respectively. In addition, the 

TANOVA revealed intervals of statistically significant differences within the 488 - 1933 ms 

and 228 - 634 ms periods in the BPD and HC groups, respectively. 

 

In summary, we found a lower N2 with different topography in the Go uncertain 

compared to Go certain condition in both groups. We found a lower P2 in the NoGo condition 

compared to Go uncertain condition in the BPD group and the same trend in amplitude 

differences in the HC group. Additionally, in both groups, we observed topographical 
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differences in the P2 component. We found a higher N2 with different topography in the 

NoGo condition compared to Go uncertain condition in the HC group.  The same trend in N2 

amplitude was observed in the BPD group. We found a higher P3 with different topography in 

the NoGo condition compared to Go uncertain condition in both groups. Finally, in both 

groups, lower activity in the uncertain compared to the certain task variant occurred 

predominantly later than 800 ms after the fixation cross presentation. 

 

4. Discussion 

Using high-density EEG we examined electrophysiological activity during a modified 

Go/NoGo task to search for correlates of proactive and reactive inhibitions in clinically 

impulsive BPD patients and in HC subjects. By contrasting the data within different task 

variants, conditions, and groups, the following key electrophysiological findings were 

revealed: 1) Lower GFP activity in the uncertain compared to certain task variant; 2) Lower 

N2 amplitude in the Go uncertain compared to Go certain condition; 3) Lower P2, higher N2, 

and higher P3 amplitudes in the NoGo condition compared to Go uncertain condition; 4) No 

electrophysiological difference between the BPD and HC groups. In addition to the 

electrophysiological findings, we observed longer reaction time in the Go uncertain compared 

to Go certain condition in both groups and lower accuracy in the Go uncertain condition in the 

BPD compared to HC group. 

The following crucial mental processes were expected to occur successively during the 

employed cognitive task. During the prestimulus period in the certain task variant, the subject 

first decided to move, waited for the stimulus to occur, and then performed the motor action. 

In the prestimulus period of the uncertain task variant, however, the subject was both 

preparing for and proactively inhibiting motor action. In the early phase of the poststimulus 

period in the uncertain task variant the subject continued to inhibit the motor action, until the 

stimulus detection, stimulus discrimination, and decision “what to do” was finished. 

Consequently, in the late phase, the subject either performed or reactively inhibited the motor 

action. With these assumptions regarding the course of mental operations during the task our 

findings could be interpreted in terms of proactive and reactive inhibitions as outlined in the 

following section. 

 

4.1 Proactive inhibition 

In the later phase of the prestimulus period of both groups, we found lower GFP activity in 

the uncertain compared to certain task variants. Angelini et al. (2016) argues that the 
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prestimulus activity is sensitive to cue-elicited motor priming that speeds up a subsequent 

motor response. The lower GFP activity observed here could therefore reflect reduced motor 

priming as a mechanism of proactive inhibition. Proactive inhibition was also suggested to be 

implemented via activation of the stopping network prior to the stimulus occurrence (Elchlepp 

et al., 2016). The authors argue that this activation is much weaker during proactive compared 

to reactive inhibition. The absence of an activity specific for the uncertain task variant in our 

study might be, therefore, explained by relatively weak involvement of the stopping network 

during the prestimulus period. 

In the poststimulus period of both groups, we found initially almost identical evoked 

activity in the Go certain and Go uncertain conditions, indicating similar visual target 

processing in both conditions. Starting around 200ms after the stimulus onset, we found 

differences in the N2 component between the two conditions in both groups. Specifically, we 

found lower activity in the N2 time-window in the Go uncertain condition compared to Go 

certain condition together with differences in scalp topographies. In addition, we observed a 

later N2 peak over the central areas in the Go uncertain condition in both groups. The N2 was 

previously associated with both reactive inhibition (Kaiser et al., 2003; Bokura et al., 2001; 

Baumeister et al., 2014) and conflict monitoring (Donkers and van Boxtel, 2004; 

Nieuwenhuis et al., 2003) in the Go/NoGo context. A more recent fMRI-EEG study suggests 

N2 is associated with premotor activity originating from the supplementary and cingulate 

motor areas (Russo et al., 2016). Building on these findings, Perri (2020) suggested decreased 

N2 in successful Go trials compared to NoGo commissions to reflect suppressed premotor 

activity associated with proactive inhibition. In this frame, we suggest that the differences 

observed here in the N2 component might be caused by the differences in the timing of the 

decision making. In the Go certain condition the decision “what to do” took its course as soon 

as the fixation cross significance was identified and had already been finished prior to the 

stimulus onset. That is why the motor response can be initiated right after the stimulus 

detection. In the Go uncertain condition, the motor response still needs to catch up due to 

further processing costs imposed by the proactive inhibition that lasts until the decision “what 

to do” has been made. The decreased N2 in the Go uncertain condition might reflect 

suppressed premotor and motor processes as a mechanism of proactive inhibition. This view 

is supported by the longer reaction time as well as a later peaking N2 over the central areas in 

the Go uncertain condition.  

To sum up, we propose the proactive inhibition in the modified Go/NoGo task is 

reflected in modulation of the late prestimulus activity and the poststimulus N2 activity. Our 
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findings are in line with the view that proactive inhibition might be implemented via the 

activation of the stopping network prior to the stimulus onset and via reduced motor priming. 

 

4.2 Reactive inhibition 

In the poststimulus period of both groups, we observed differences in the P2, N2, and P3 

components when comparing the NoGo to the Go uncertain condition. We found lower 

activity in the P2 component in the NoGo compared to the Go uncertain condition together 

with differences in scalp topographies. The P2 is an early wave occurring 150-220ms after the 

stimulus onset (Smith et al., 2004). Given its relatively short latency, we supposed that the P2 

could reflect processes related to stimulus detection and discrimination rather than processes 

related to reactive inhibition. Benikos et al. (2013) found the P2 to be sensitive to task 

difficulty. Specifically, the authors found the P2 amplitude to be inversely related to the task 

difficulty. This relationship was much stronger for the NoGo than the Go condition, leading to 

significant differences between NoGo and Go P2 in the medium and hard task variants. Thus, 

the lower NoGo P2 in our study might reflect at least moderate task difficulty. The P2 was 

previously associated with sensory gating during the Go/NoGo task (Steele et al. , 2014 ; 

Lijffijt et al., 2009) and was found to be correlated with alpha-inhibitory activity (Baijot et al., 

2017). The alpha inhibition theory (Jensen and Mazaheri, 2010) proposes that the activity 

within the 8-13Hz range reduces the processing capacity in a given cortical area. It acts as a 

sort of  “gating mechanism” for the optimal employment of sensory processing. Although the 

P2 is relatively rarely studied in the Go/NoGo context, this component seems to be highly 

relevant for visual attention and visual target processing. In line with other studies, we 

propose that the observed difference between Go uncertain and NoGo P2 amplitude might 

represent a visual gating mechanism, signifying increased processing demands in the NoGo 

condition.   

We found higher N2 and P3 activities in the NoGo condition compared to the Go 

uncertain condition. The N2 component was previously associated both with early cognitive 

processes necessary for implementing inhibitory control (Luijten et al., 2014) and with the 

actual process of reactive inhibition (Kaiser et al., 2003). Alternatively, N2 is interpreted as a 

correlate of conflict monitoring (Donkers and van Boxtel, 2004). In a Go/NoGo task, a 

conflict might arise when the less frequent NoGo stimulus occurs because the more frequent 

stimulus is expected. Since in our study, the stimulus occurrences in the uncertain task variant 

were equiprobable, we suppose no such conflict arose. Therefore, the observed differences in 

the N2  component could rather account for premotor activity in the Go uncertain condition 
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and/or for the processes related to reactive inhibition in the NoGo condition. Many previous 

studies have reported the P3 to be associated with reactive inhibition (Kenemans, 2015; Kok 

et al., 2004; Dimoska et al., 2006; Band and van Boxtel; 1999). Both of our groups had a 

strong P3 response to the NoGo stimuli. Our study thus supports the role of P3 in reactive 

inhibition.  

To sum up, we propose the reactive inhibition in the modified Go/NoGo task is 

reflected in a modulation of the N2 and P3 components. In addition, our findings support the 

view that the P2 component is related to early visual processing rather than reactive inhibition 

processes.  

 

4.3 Normal processing of emotionally neutral stimuli in borderline patients 

Previous studies (Albert et al., 2019; Ruchsow et al., 2008) have found attenuated event-

related activity in BPD patients compared to healthy subjects, particularly in the P3 

component. Even though the BPD patients in the current study reported higher impulsivity on 

the UPPS-P scale, we observed no electrophysiological between-group differences related to 

proactive or reactive inhibition.  

Recent studies suggest different processing of stressful stimuli in BPD compared to 

healthy subjects (Cackowski et al., 2014; Krause-Utz et al., 2016a). Hence, the 

electrophysiological activity in BPD patients might be modulated by stress. Our data provide 

evidence for the normal processing of emotionally neutral stimuli in BPD patients, suggesting 

that impulse control impairment in BPD might act through different mechanisms other than 

impaired proactive or reactive inhibition in neutral conditions. Similarly, we observed no 

relevant behavioral between-group differences. Both groups had similar response times and 

their accuracy exceeded 80%. Previous studies comparing BPD with healthy subjects found 

no differences (Völlm et al., 2004), as well as faster motor performance and higher error rates 

in BPD subjects (Hagenhoff et. al, 2013; Rentrop et al., 2008). We observed lower accuracy 

in BPD patients only in the Go uncertain condition but not in the Go certain or NoGo 

conditions. This might reflect problems related to attentional control, rather than proactive or 

reactive inhibition. 

 

4.4 Limitations 

The equal probability of the three conditions was used to eliminate the influence of the rarity 

of the stimuli. This might have led, however to a smaller electrophysiological response in the 
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NoGo condition (Wessel, 2018) and therefore to less detectable correlates of reactive 

inhibition.  

To find electrophysiological correlates of proactive and reactive inhibition we employed the 

previously used modification of the Go/NoGo task (Albares et al., 2014). This slow-paced and 

emotionally neutral task proved to be insensitive in detecting potentially existing 

electrophysiological differences between BPD and HC subjects. The Borderline profile, in 

general, is tied to problems in affective processing.  

Studies suggest that impulsivity in borderline personality disorder is impacted by 

stress (Cackowski et al. 2014; Krause-Utz et al., 2016b). Therefore, a stressful or emotionally 

demanding Go/NoGo task might be required to reveal differences in proactive and reactive 

inhibition processing between BPD and a healthy population.  

 

5. Conclusion 

In conclusion, the present study describes the possible electrophysiological correlates of 

proactive and reactive inhibitions during a modified Go/NoGo task.  

Our results suggest the proactive inhibition to be reflected in a modulation of the late 

prestimulus activity and suppression of the N2 component. Furthermore, we suggest that the 

reactive inhibition could be reflected in the enhancement of the N2 and P3 components. Our 

data provide evidence for the normal processing of emotionally neutral stimuli in BPD 

patients, suggesting that impulse control impairment in BPD might act through different 

mechanisms other than altered inhibitory control in an emotionally neutral environment. 
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