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The solution of complex problems by the collective action of simple agents in both biologically
evolved and synthetically engineered systems involves cooperative action. Understanding the re-
sulting emergent solutions requires integrating across the organismal behaviors of many individu-
als. Here we investigate an ecologically relevant collective task in black carpenter ants Camponotus
pennsylvanicus: escape from a soft, erodible confining corral. Individual ants show a transition from
individual exploratory excavation at random locations to spatially localized collective exploitative
excavation and escape from the corral. A minimal continuum theory that coarse-grains over individ-
ual actions and considers their integrated influence on the environment leads to the emergence of an
e↵ective phase space of behaviors in terms of excavation strength and cooperation intensity. To test
the theory over the range of predicted behaviors, we used custom-built robots (RAnts) that respond
to stimuli and show the emergence (and failure) of cooperative excavation and escape. Overall, our
approach shows how the cooperative completion of tasks can arise from relatively simple rules that
involve the interaction of simple agents with a dynamically changing environment that serves as an
enabler and modulator of behavior.

Collective behavior in societies leads to the emergence
of solutions to problems associated with brood care, for-
aging for food, protection from enemies and predation of
prey, building complex architectures, and the cooperative
resolution of physiological problems that are almost im-
possible to solve by individuals [1–6]. This benefits the
society at large, and although there is a cost of cheat-
ing by non-participators, cooperation overall is known
to play a critical role in the formation and sustenance of
the social entities [1]. Cooperative behavior is seen across
biological scales - from unicellular bacterium and slime
molds, to animal societies and human organizations [7, 8].
Understanding the fundamental principles of cooperation
and its breakdown [9, 10] links research in biology, math-
ematics, economics, policy-making and artificial intelli-
gence, and takes many forms - from concrete studies that
range from proximate genetic switches [11] for social be-
havior in ants to mechanisms underlying events like group
hunting in wolves [12], transferring food by ants [13]; to
cooperative brood care and division of labor in social
groups [5, 14]; to abstractions [1] associated with the ul-
timate causes of the evolution of eusociality [15].
Social insects, and ants in particular, lend themselves

to the study of cooperative problem solving, given their
super-organismic colony structure, documented coopera-
tive behavior, long evolutionary history and the relative
ease of working with them in laboratory settings [16–18].
Minimally, task completion requires the ability of indi-
viduals to respond to local stimuli with stereotypical re-
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sponses, communication between individuals that might
involve using the environment, and a means to sense task
execution and completion. For example, in the context
of building complex architectures by termites, the pres-
ence (or absence) of pheromones serve as stimuli that
communicate when and where, how to start (or stop)
building [19, 20], while in ventilation and mechanoad-
aptation in bees, temperature, airflow and mechanical
strain serve similar functions to provide collective solu-
tions to the regulation of temperature, carbon dioxide
or mechanical loads [3, 21, 22]. In all these cases, a
dynamic and malleable environment is used as a com-
munication channel, broadening the classical notion of
stigmergy to include signaling via chemical, mechanical
and fluidic means. But how individuals switch from lo-
cal uncoordinated behavior to collective cooperation that
translates to adaptable task execution in di↵erent social
systems remains a relatively unexplored question.

Here we study an ecologically relevant task in car-
penter ants Camponotus pennsylvanicus: escape from
a confined corral via excavation and tunneling, using a
combination of quantitative imaging in combination with
mathematical and computational models, and then syn-
thesize this behavior using custom-built robots that can
respond to each other and the environment. Our study
provides a phase diagram for the emergence of di↵erent
classes of collective behavior and task completion using
a set of local rules.

We start with ants drawn from a mature colony of
C. Pennsylvanicus that consist of a queen, the sole egg
layer, and the workers from three morphologically di↵er-
ent castes - major, media and minor [23]. Though all ants
perform di↵erent tasks like foraging, nest-keeping, brood
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FIG. 1. Collective dynamics of ant escape (a) Colony members of the black carpenter ant Camponotus pennsylvanicus are
confined to a porous boundary made out of Agarose. The boundary is represented by its radius R(�, t) (� - polar angle, t - time).
Bottom part shows the side-view schematic of the experimental set-up with the boundary made of agarose and background IR
light source used to image the ants in the dark. (b) Temporal progression of excavation experiments as 12 ants cooperatively
tunnel through the agarose confinement. The white line is the tracked location of the inner wall which grows in size as the
excavation progresses. (c) Confinement area A(t) as a function of time (scaled by escape time T ), normalized by initial circular
confinement with radius Ro. (d) Evolution of the orientation distribution of the ant density, Pa

�(�, t) obtained by averaging
along the radial direction. Ants start from an initially isotropic state and localize at an angle �b along the boundary. T here
is the escape time. (e) Dynamics of the radial distribution of ant density Pa

r (r, t) as a function of radial distance, r obtained
by averaging a sector of ⇡/6 around the excavation site. We see that the ant density front propagates through the corral to
escape. The density is plotted for the same times as in (d). (f) Evolution of the power spectrum |R̂(k, t)|2 of first five Fourier
modes capturing the number of tunnels formed during excavation R(�, t) =

P
k R̂(k, t)eik�. Inset shows the real part of the

Fourier coe�cient, <(R̂) at di↵erent time instants indicating that many modes are present in the boundary shape.

care to a varied degree, during excavation, major ants,
equipped with their large mandibles, generally take the
lead role in excavating, while media and minor ants trans-
port the debris outside their nest. Our experiments con-
sist of a dozen worker ants from the same colony that are
anesthetized (using CO2) and then brought into a confin-
ing corral made out of agarose flanked between two hard
plastic sheets, without visible light to mimic their natural
environment in a nest; infrared light was used to monitor
the experiment using video (see SI Fig. 1(a)). Once the
ants regain activity (due to the introduction of O2), they
stay still for a while before moving. Observations show
that they first exhibit wall-following followed by one of
the ants initiating an exploratory excavation at a ran-
dom location along the corral (ref SI Fig. S1). After an
initial exploratory phase the ants switch to an exploita-
tive strategy to excavate a tunnel at a specific location
and eventually breakthrough the corral (seen through the
sequence in Fig. 1(b)).

We quantify this transition from rotationally isotropic
exploration to localized excavation by considering the
density of ants %a(r,�, t) as a function of space and time
in the corral, using cylindrical coordinates (r,�). Over
time, the density becomes localized at a particular angle
and location along with corral where large-scale excava-
tion eventually leads to escape (see Video 3, SI Fig. S1

to get a coarse-grained view of the spatio-temporal evo-
lution of the ant density, obtained by averaging over in-
dividual ant movements). Simultaneously, we see a sig-
nature of collective excavation in an increase of the vol-
ume of excavated material, as shown in Fig. 1(c). Av-
eraging the density over radial positions, in Fig. 1(d)
we show the orientation distribution of the ant density
P

a
�(�, t) =

R
%a(r,�, t)dr is initially isotropic, and gradu-

ally starts to localize at a particular (arbitrary) value of
the angle as time increases.

Averaging the density over the localized region, in
Fig. 1(e) we show the radial distribution of the ant den-
sity P

a
r (r, t) =

R
%a(r,�, t)S(�)d� (where S(�) is a kernel

around the excavation site) that is initially uniform, and
gradually propagates inside the boundary of the corral
as time increases. Consistent with localization and con-
comitant excavation (Fig. 1(f) inset, SI Fig. S2(c)), we
see that the Fourier amplitudes of multiple modes com-
pete with each other initially before an elliptic mode (cor-
responding to a strongly localized state) is amplified as
excavation progresses (shown in Figs. 1(f), SI Fig. S2(b)).

All together, our quantitative observations show that
an initially isotropic and homogeneous distribution of
ants in the corral induces exploration of multiple poten-
tial tunneling paths that transitions into the exploitative
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FIG. 2. Cooperation via organism-environment-organism interaction (a) Schematic of the model showing the interaction
between the di↵erent spatio-temporal fields required to capture cooperative escape of ants: ant density, %a(x, t); concentration
of antennating field, c(x, t) capturing inter-ant communication; density of corral, %s(x, t) representing the soft corral which the
ants excavate. We capture the dynamics of excavation by ants close to the excavation site using the 1-dimensional version of
Eqns. 1-3 . (b, c) Temporal progression of the corral density, antennating field and the ant density showing successful escape
for high cooperation captured using the non-dimensional number, C (representing non-dimensional strength of cooperation
amongst ants) and faster excavation, captured using E. For reduced cooperation ants’ di↵usion dominates and only partial
tunnels are formed (see SI S3 for details). T here is the time of escape.

excavation of one specific location that eventually leads
to an escape route. To understand this transition, we
now turn to a minimal theoretical framework that coarse-
grains over the fast times and short length scales (of ant
motions and sizes). Our aim here is to show that an ef-
fective theory that does not dwell on the details of indi-
vidual agents (ants) or their interactions with each other
and the environment, but instead couples three slowly-
varying fields: the ant density, a pheromone/antennating
field that the ants use to communicate with each other,
and the corral, su�ces to explain our observations in
terms of a small number of e↵ective parameters.

We define these interacting spatio-temporal fields as
ant density %a(x, t), antennating field c(x, t) and cor-
ral density %s(x, t) shown schematically in Fig. 2(a). In
the absence of any external gradients, we assume that
ants move randomly, but this di↵usive movement is rec-
tified by pheromone gradients or reinforcing antennating
signals [16, 24–26], in addition to being self-propelled
with a velocity ua that is related to the local envi-
ronment. Though antennation and pheromone are two
di↵erent mechanisms of communication as the informa-
tion is carried with the animal in the former and is left
in the environment in the latter, their dynamics is ex-
pected to be same when the ants move slower than the
time scale associated with memory di↵usion or decay.
In turn, pheromone signals are laid down by ants at

a rate proportional to their density, and then degrade
and di↵use slowly. Finally, the ant collective excavates
the corral at a rate proportional to the di↵erence in the
pheromone concentration relative to a threshold value
(see SI sec. S2 SS1). Accounting for these e↵ects, we
arrive at the following dynamical equations for the evo-
lution of %a(x, t), c(x, t) and %s(x, t):

@t%a =� r · (ua%a)| {z }
Self-propulsive

advection

+ r · ( Dar%a| {z }
Di↵usive flux

� �%arc| {z }
Tactile feedback

),

(1)

@tc = Dcr
2
c| {z }

Di↵usion

+ k+%a| {z }
Production

� k�c|{z}
Decay

, (2)

@t%s =� ks%s{ ⇥ (c� c
⇤)| {z }

Antennating
field threshold

}⇥ { ⇥ (%a � %
⇤
a)| {z }

Ant density
threshold

}. (3)

Here the ant advection velocity is assumed to have the
form ua = vo(1 � %s/%o)p̂ where vo is the characteristic
velocity of ants, and p̂ is a unit vector pointing along
the ✓ direction, and the term (1 � %s/%o) reflects the
fact that excavating ants are slowed down by their la-
bor; Da is the di↵usivity of the ant, � is the strength of
antennating field following behavior; k+, k� are the rate
of production and decay of the antennating/pheromone
field, and Dc is the di↵usivity of the pheromone (see SI
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FIG. 3. Emergent escape dynamics in robotic ants (a) Robot Ant (RAnt) set-up. A mobile RAnt is placed in an arena
50cm in diameter surrounded by three layers of cylindrical boundary elements totalling 200 elements. The outermost layer is
prevented from being pushed out of the arena by a circular ring. A scalar concentration field (photormone field) is projected
onto a plane whose intensity can be measured by a RAnt. The position of each RAnt is tracked using a webcam. Each RAnt
can pick up and drop the discrete boundary elements using a retractable magnet. (b) Series of snapshots at di↵erent times
of the escape process for a cooperation parameter C = 1. (c) Flowchart of the RAnt programming. A base locomotion speed
vb is stored internally and the rate of change ⌦ of the heading is a function of the cooperation parameter C, the photormone
concentration c, and a stochastic process W (Brownian motion). A photormone threshold c⇤ determines whether an object is
grasped (with probability E) after it is detected by the distance sensor. (d) Orientation distribution of the RAnt density Pr

�(�, t)
as a function of the azimuthal position �. �b is the orientation of the escape tunnel. The density is plotted for di↵erent times.
(e) Radial distribution of the RAnt density Pr

r (r, t) within a sector of ⇡/2 centered around the position of the escape tunnel as
a function of distance from the center of the arena r. The density is plotted for the same times as in (d). (f) Confinement area
A(t) as a function of time, normalized by initial circular confinement with radius Ro for di↵erent cooperation parameter C. (g)
Normalized escape time T as a function of cooperation parameter C, averaged over 5 experiments per cooperation parameter.
Every experiment was run until the first RAnt escaped or the experiment duration exceeded 15 minutes.

sec. S3 SS3); ks is the rate of excavation of the corral
and %

⇤
a, c

⇤ are the threshold concentration of ant den-
sity and antennating field required to initiate excavation,
that serve to trigger simple switch-like behaviors via the
Heaviside function ⇥(x) (or its regularization via hyper-
bolic or Hill functions). In the absence of excavation dy-
namics, our framework reduces to the well known Keller-
Segel model for chemotaxis [26] (detailed in SI sec. S3).
Coupling this to the dynamics of excavation introduces
the all-important notion of functional collective behavior
linking active agents, communication channels (the an-
tennating and pheromone fields) and a dynamic, erodi-
ble corral that characterizes function in terms of progress
towards task completion.

Although our mdoel has a number of dimensionless pa-
rameters (see SI sec. S3 for a list and ranges), just two

are qualitatively important in capturing the ethology of
cooperative excavation: (i) the scaled cooperation pa-
rameter defined as C = �co/Da which determines the
relative strength of antennation (gradient-following) to
ant di↵usion, (ii) the scaled excavation rate, E = ksl/vo.
Here, l/vo is the characteristic time-scale of ant mo-
tion, with l ⇠ min[(Dc/k�)1/2, la], where la is the ant
size (see SI sec. S3 for details). Solving the governing
Eqns. 1-3 in a one-dimensional setting (ref SI sec. S3 SS4)
captures the two limits of the excavation behavior and
escape seen in experiments; for large excavation rate
E and cooperation parameter, C, we see successful es-
cape (shown in Fig. 2(b)), while decreasing the coop-
eration parameter leads to a failed strategy (shown in
Fig. 2(c)). All together, our phase-field model shows the
emergence of cooperativity without the need for a plan,
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optimization principle, or an internal representations of
the world, but via the environmentally-mediated commu-
nication between agents [27] that leads to task comple-
tion.
To go beyond our ability to explain the observations of

ant behavior using our theoretical framework, we need to
probe a larger range of the parameters and phase-space
spanned by C,E, than our experiments allowed us to. For
this, we turn to a robotic platform to synthesize collec-
tive functional behaviors that arise from simple behav-
ioral rules underlying individual programmable robots.
Our custom designed robot ants (RAnts) are inspired
by many earlier attempts to create artificial agents that
are mobile and follow simple rules [28–30], can respond
to virtual pheromone fields [31, 32] and are capable of
robotic excavation [33]. Our autonomous wheeled robots
can exhibit emergent embodied behavior [34, 35], and are
flexible enough to allow for a range of stigmergic interac-
tions with the environment [36, 37]. This is made possible
by having each RAnt equipped with an infrared distance
sensor to detect obstacles and other RAnts, a retractable
magnet that can pick up and drop wall elements with a
ferromagnetic ring (shown in Fig. 3(a)), and the ability
to measure a virtual pheromone field generated by a light
projected (from below) onto the surface of a transparent
arena they operate in (see Fig. 3(a, b)) [31, 32, 38, 39].
The intensity of this “photormone” field follows the an-
tennating field Eq. 2. This allows us to use a local form of
Eqns. 1-3 to define a robot’s behavior in terms of an exca-
vation rate E, a cooperation parameter C, and a thresh-
old concentration for tunneling c

⇤, encoded in terms of
the following behavioral rules: (i) follow gradient of pro-
jected photormone field; (ii) avoid obstacles and other
RAnts at higher photormone locations; (iii) pick up ob-
stacles from high photormone locations and drop them
at low concentration levels (see Fig. 3(c) and SI sec. S4
for more details).
Varying the parameter C 2 [0, 1] allows us to dial the

individual behavior from random motion (C = 0) to
tracking the photormone gradient (C = 1), while vary-
ing the non-dimensional excavation rate E by changing
the frequency at which the robots execute pick-and-drop
behavior with the boundary wall serves to mimic what
arises in ants as a function of their morphology and caste
(see SI sec. S2 SS1 for more details). For a specific value
of these parameters, we followed the collective behavior
of RAnts by averaging their position over several pick-
and-drop timescales to obtain the RAnt density field
%r(r,�, t), just as for ants.

When all the RAnts are programmed to have a co-
operation parameter C = 1, RAnts initially explore the
region without picking the boundary element until the
photormone concentration c ⇠ c

⇤, which happens once
a particular location has enough visits by other RAnts.
As for ants, we calculate the radially averaged RAnt
density P

r
�(�, t) =

R
%r(r,�, t)dr; Fig. 3(d) shows how

RAnt density localizes at a (random) value of the az-
imuthal angle. As excavation progresses, the RAnt den-

sity propagates radially outwards as a density front just
as in ants, shown in Fig. 3(e) in terms of the quantity
P

r
r (r, t) =

R
%r(r,�, t)d�. Concommitantly, as excava-

tion progresses, the corral area increases; interestingly
the scaled corral area A(t)/⇡R2

0 is independent of the co-
operation parameter C as shown in Fig. 3(f) (all RAnts
were programmed to have the same excavation rate).
However, cooperation does change the time for escape;
in Fig. 3(g) we show the average escape time (scaled by
the characteristic time it takes for a rant to traverse the
arena) and see that T/ts decreases with an increase in
the cooperation parameter C. RAnts escaped every time
for C > 0.5, but are unable to escape for low coopera-
tion parameters (within a 15 minute time window). Our
results show that it is the localized collective excavation
of RAnts mediated by photormone-induced cooperation
that is responsible for e�cient tunneling and escape; for
low values of the cooperation parameter, tunneling is de-
focused and global, and thus not as e↵ective (see Fig. S7).
When E ! 0 (vanishing probability for a successful pick
up) but strong cooperation (see Fig. 4 and SI sec. S3 SS3
for theoretical predictions), the RAnts get jammed be-
cause they follow the photormone field they generate but
are unable to tunnel through the boundary constriction.
On the other hand, when E is small and C is small, the
agents do not cooperate and their di↵usive behavior pre-
vents successful tunneling. The range of strategies can
be visualized in a two-dimensional phase space spanned
by the variables E and C shown in Fig. 4. Low values
of C and E lead to di↵usive (and non-functional) behav-
ior, while high values of these variables lead to successful
escape, with the other two quadrants corresponding to
jammed states (large C, small E) and partially tunneled
states (large E, small C). These last two states are also
observed as transients in ant collectives (see Video3).

More than half a century ago, Tinbergen laid down a
few basic principles for studying behavior [40] that focus
on its function, mechanism, development and evolution.
To this, we may add one more: synthesis. This nat-
urally requires an elucidation of the underlying math-
ematical, physical and engineering principles that pro-
vide minimal mechanisms and thus suggest pathways for
the development and evolution of complex behaviors, and
create their robotic mimics. In the current context, the
excavating behavior of individual ants serves to facilitate
the function of escape from confinement, but becomes vi-
able only through the collective action of a group. Our
observations show how the transition from an individu-
ally exploratory to an exploitative cooperative tunneling
strategy is mediated by the local chemical and mechan-
ical environment. A simple dynamical model explains
our observations and provides a minimal phase diagram
for a range of strategies. To test and generalize this, we
synthesized the observed behavior using robotic mimics
that follow a minimal set of behavioral rules that mould
the environment and are modulated by it. Our theoret-
ical and robotic framework relies on simple local rules
and a malleable environment that serves as both part of
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FIG. 4. Phases of cooperation Phase-diagram of cooperative
task execution with di↵erent phases seen in ants and RAnts.
In the robotic experiments we tune the Cooperation parame-
ter C and the Excavation rate E while in the ant experiments
we change the caste mixture. In the ant experiments we see
the jammed and di↵used phases transiently before the ants
relax to cooperative excavation.

the system memory as well as a computational platform
(using the spatio-temporal photormone field and the cor-

ral). It is also robust to failure of and stochasticity in
the behavior of individual agents, in the communication
channels or in the corral geometry, and instead considers
only coarse-grained variables, in sharp contrast to engi-
neering approaches that aim to control all agents and
optimize costs. Di↵erent strategies such as escape, jam-
ming and di↵usion then arise as a function of the relative
strength of the cooperation (representing the ability to
follow/remember gradients) and excavation parameters
(representing the ability to move material), as manifest
in a simple phase diagram, and the emergence of coopera-
tion arises due to the relatively slow decay of an environ-
mental signal (the pheromone/antennating/photormone
field), coupled to a threshold excavation rate. Our ap-
proach to functional and purposeful collective behavior
links many simple brains and bodies with a dynamic en-
vironment that modulates behavior, and is changed by it.
Since the ability to solve complex eco-physiological prob-
lems such as collective escape is directly correlated with
a selective advantage in an evolutionary setting, perhaps
collective behavior must always be studied in a functional
context.
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