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 2 

ABSTRACT 27 

Although microbial interactions underpin ocean ecosystem functions, they remain barely known. 28 

Different studies have analyzed microbial interactions using static association networks based on 29 

omics-data. However, microbial associations are dynamic and can change across physicochemical 30 

gradients and spatial scales, which needs to be considered to understand the ocean ecosystem better. 31 

We explored associations between archaea, bacteria, and picoeukaryotes along the water column from 32 

the surface to the deep ocean across the northern subtropical to the southern temperate ocean and the 33 

Mediterranean Sea by defining sample-specific subnetworks. Quantifying spatial association 34 

recurrence, we found the lowest fraction of global associations in the bathypelagic zone, while 35 

associations endemic of certain regions increased with depth. Overall, our results highlight the need to 36 

study the dynamic nature of plankton networks and our approach represents a step forward towards a 37 

better comprehension of the biogeography of microbial interactions across ocean regions and depth 38 

layers.  39 
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INTRODUCTION 40 

Microorganisms play fundamental roles in ecosystem functioning (DeLong, 2009; Krabberød et al., 41 

2017) and ocean biogeochemical cycling (Falkowski et al., 2008). The main processes shaping 42 

microbial community composition are selection, dispersal, and drift (Vellend, 2020). Selection exerted 43 

via environmental conditions and biotic interactions are essential in structuring the ocean microbiome 44 

(Logares et al., 2020), leading to heterogeneities reflecting those in the ocean environment, mainly in 45 

terms of temperature, light, pressure, nutrients and salinity. In particular, global-scale studies of the 46 

surface ocean reported strong associations between microbial community composition and diversity 47 

with temperature (Sunagawa et al., 2015; Ibarbalz et al., 2019; Salazar et al., 2019; Logares et al., 48 

2020). Marked changes in microbial communities with ocean depth have also been reported (Cram et 49 

al., 2015; Parada & Fuhrman, 2017; Mestre et al., 2018; Peoples et al., 2018; Xu et al., 2018; Giner et 50 

al., 2020), reflecting the steep vertical gradients in light, temperature, nutrients and pressure.  51 

Prokaryotes (bacteria and archaea) and unicellular eukaryotes are fundamentally different in 52 

terms of ecological roles, functional versatility, and evolutionary history (Massana & Logares, 2013) 53 

and are connected through biogeochemical and food web interaction networks (Layeghifard et al., 54 

2017; Seymour et al., 2017). Still, knowledge about these interactions remains limited despite their 55 

importance to understand better microbial life in the oceans (Krabberød et al., 2017; Bjorbækmo et 56 

al., 2019). Such interactions are very difficult to resolve experimentally, mainly because most 57 

microorganisms are hard to cultivate (Baldauf, 2008; Lewis et al., 2020) and synthetic laboratory 58 

communities are unlikely to mirror the complexity of wild communities. However, metabarcoding 59 

approaches to identify and quantify marine microbial taxa allow to infer association networks, where 60 

nodes represent microorganisms and edges potential interactions. 61 

Association networks provide a general overview of the microbial ecosystem aggregated over 62 

a given period of time (Steele et al., 2011; Chow et al., 2013, 2014; Cram et al., 2015; Needham et al., 63 

2017; Parada & Fuhrman, 2017) or through space (Lima-Mendez et al., 2015; Milici et al., 2016; 64 
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Chaffron et al., 2020). Previous work characterized potential marine microbial interactions, including 65 

associations within and across depths. For example, monthly sampling allowed investigating 66 

prokaryotic associations in the San Pedro Channel, off the coast of Los Angeles, California, covering 67 

the water column from the surface (5 m) to the seafloor (890 m) (Cram et al., 2015; Parada & Fuhrman, 68 

2017). Furthermore, a global spatial survey occurring within the TARA Oceans expedition, allowed 69 

to investigate planktonic associations between a range of organismal size fractions in the epipelagic 70 

zone, from pole to pole (Lima-Mendez et al., 2015; Chaffron et al., 2020). However, these studies did 71 

not include the bathypelagic realm, below 1000 m depth, which represents the largest microbial habitat 72 

in the biosphere (Arístegui et al., 2009). 73 

A single static network determined from spatially distributed samples over the global ocean 74 

captures global, regional and local associations. Also, given that global-ocean expeditions collect 75 

samples over several months, networks could include temporal associations, yet disentangling them 76 

from spatial associations is normally complicated and not considered. Global associations may 77 

constitute the core interactome, that is,  the set of microbial interactions essential for the functioning 78 

of the ocean ecosystem (Shade & Handelsman, 2012). Core associations may be detected by 79 

constructing a single network from numerous locations and identifying the most significant 80 

associations and strongest associations (Coutinho et al., 2015). On the other hand, regional and local 81 

associations may point to interactions occurring in specific spatial areas of different sizes due to 82 

particular taxa distributions resulting from environmental selection, dispersal limitation, specific 83 

ecological niches or biotic/abiotic filtering. The fraction of regional associations may be determined 84 

by excluding all samples belonging to one region and recomputing network inference with the reduced 85 

dataset (Lima-Mendez et al., 2015). Alternatively, regional networks can be built allowing to 86 

determine both, global and regional associations (Mandakovic et al., 2018) by investigating which 87 

edges networks have in common and which are unique. Such regional networks could contribute to 88 

understanding how the architecture of potential microbial interactions changes with environmental 89 
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heterogeneity, also helping to comprehend associations that are stable (i.e., two partners always 90 

together) or variable (one partner able to interact with multiple partners across locations). 91 

Regional networks, however, require a high number of samples per delineated zone, but these 92 

may not be available due to logistic or budgetary limitations. Recent approaches circumvent this 93 

limitation by deriving sample-specific subnetworks from a single static, i.e., all-sample network, which 94 

allows quantifying association recurrence over spatiotemporal scales (Chaffron et al., 2020; 95 

Deutschmann et al., 2021). Here, we adjusted this approach and used it to determine global and 96 

regional associations along vertical and horizontal ocean scales, which allowed us determining the 97 

biogeography of marine microbial associations. We analyzed associations between archaea, bacteria, 98 

and picoeukaryotes covering the water column, from surface to deep waters, in the Mediterranean Sea 99 

(hereafter MS) and five ocean basins: North and South Atlantic Ocean, North and South Pacific Ocean, 100 

and Indian Ocean (hereafter NAO, SAO, NPO, SPO, and IO). We estimated microbial taxa abundances 101 

using 397 globally distributed samples from the epipelagic to the bathypelagic zone in six ocean 102 

regions (Figure 1). We separated most epipelagic samples into surface and deep-chlorophyll maximum 103 

(DCM) samples. Next, we constructed a first global network comprising 5457 nodes and 31966 edges, 104 

30657 (95.9%) positive and 1309 (4.1%) negative. Then, we applied a filter strategy including the 105 

removal of environmentally-driven edges due to nutrients (4.9% NO3
−, 4.2% PO4

3−, 2.0% SiO2), 106 

temperature (1.9%), salinity (0.2%), and Fluorescence (0.01%) (Supplementary Table 1). Altogether, 107 

our sample-specific network-based exploration allowed us to determine core associations in the global 108 

ocean and specific regions, analyze changes in associations and network topology with depth and 109 

regions, and to investigate the vertical connectivity of planktonic associations. 110 

 111 

RESULTS 112 

From a global static network to sample-specific subnetworks 113 
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The resulting global static network contained 5448 nodes and 29118 edges, 28178 (96.8%) positive 114 

and 940 (3.2%) negative. It served as the underlying structure from which we generated 397 sample-115 

specific subnetworks following three criteria. First, we required that an edge must be present in the 116 

global static network. Second, an edge can only be present within a subnetwork if both microorganisms 117 

associated with the edge have a sequence abundance above zero in the corresponding sample. Third, 118 

microorganisms associated need to appear together (intersection) in more than 20% of the samples, in 119 

which one or both appear (union) for that specific region and depth. This third condition was robust 120 

since random subsets retained most associations compared with the associations obtained when using 121 

all samples (Supplementary Figure 1). In addition to these three conditions, a node is present in a 122 

subnetwork if it has at least one association partner. Consequently, each subnetwork is included in the 123 

global static network. 124 

 125 

Spatial recurrence 126 

We determined the spatial recurrence of each association using its prevalence computed as the fraction 127 

of subnetworks in which a given association was present across the 397 samples (Figure 2A) and 128 

within each region-depth-layer combination (Figure 2B). The global ocean surface layer (contributing 129 

with 40% of samples) had more associations compared to the other depths (Figure 2B). Remarkably, 130 

14971 of 18234 (82.1%) global ocean surface associations were absent from the MS. In turn, the 131 

number of surface associations was similar across ocean basins (Figure 2B). 132 

Considering the most prevalent associations (those found in over 70% of subnetworks), we 133 

found that major vertical taxonomic patterns were conserved across regions: the epipelagic layers 134 

(surface and DCM) and the two lower layers (meso- and bathypelagic zones) were more similar to 135 

each other, respectively (Figure 3). The fraction of associations including Alphaproteobacteria was 136 

moderate to high in all zones in contrast to Cyanobacteria appearing mainly, as expected, in the 137 

epipelagic zone (Figure 3). The fraction of Dinoflagellata associations was moderate to high in the 138 
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 7 

epipelagic zone and lower in the meso- and bathypelagic zones. While Dinoflagellata associations 139 

dominated most epipelagic layers, fewer were found in the MS and SAO surface and NAO DCM 140 

(Figure 3). Thaumarchaeota associations were moderate to high especially in the mesopelagic 141 

(dominant in the MS), moderate in the bathypelagic, and lower in the epipelagic zone (Figure 3). 142 

Another interesting pattern is the increase in associations including Gammaproteobacteria with depth 143 

being higher in the meso- and bathypelagic than in the epipelagic, especially in the SAO, SPO, NPO 144 

and IO. 145 

Highly prevalent associations present across all regions are candidates to represent putative 146 

core interactions in the global ocean, which are likely to perform processes crucial for ecosystem 147 

functioning. We defined global associations as those appearing in more than 70% of subnetworks in 148 

each region. While we found several (21-26) global associations in the epi- and mesopelagic zones, no 149 

global associations were identified in the bathypelagic zone (Table 1, Supplementary Figure 2). In 150 

addition, we resolved prevalent (>50%) and low-frequency (>20%) associations. These three types of 151 

associations are distinct by definition, i.e., a global association cannot be assigned to another type. The 152 

fraction of global, prevalent, and low-frequency associations was highest in the DCM layer and lowest 153 

in the bathypelagic zone (third and fifth column in Table 1, Supplementary Figure 2B, 2D). Given that 154 

the MS bathypelagic is warmer (median temperature of 13.78°C) than the global ocean bathypelagic 155 

(median temperature between 1.4°C in SPO and 4.41°C in NAO), we calculated these associations for 156 

the global ocean only. We found slightly to moderately more global, prevalent, and low-frequency 157 

associations in the global ocean when not considering the MS (fifth to seventh row in Table 1, 158 

Supplementary Figure 2E-H). 159 

Next, we determined regional associations within each depth layer. A regional association was 160 

defined as detected in at least one sample-specific subnetwork of one region and absent from all 161 

subnetworks of the other five regions. Results indicated an increasing proportion of regional 162 

associations with depth (Table 1, Figure 4A-B, Supplementary Figure 3). We found substantially more 163 
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associations in the DCM and mesopelagic layers of the MS than corresponding layers of the global 164 

ocean. This may reflect the different characteristics of these layers in the MS vs. the global ocean or 165 

the massive differences in spatial dimensions between the global ocean and the MS. More surface and 166 

bathypelagic regional associations corresponded to the MS and NAO than in other regions (Table 1). 167 

Most regional associations had low prevalence, i.e., they were present in a few sample-specific 168 

subnetworks within the region (Figure 4C). We found 235 prokaryotic highly prevalent (>70%) 169 

regional associations in contrast to 89 eukaryotic and 24 associations between domains 170 

(Supplementary Material 1). 171 

Previous studies have found a substantial vertical connectivity in the ocean microbiota, with 172 

surface microorganisms having an impact in deep sea counterparts (Mestre et al., 2018; Ruiz-González 173 

et al., 2020). Thus, here, we analyzed the vertical connectivity of microbial associations. Few 174 

associations appeared throughout the water column within a region: 327 prokaryotic, 119 eukaryotic, 175 

and 13 associations between domains (Supplementary Material 2). In general, most associations 176 

appearing in the meso- and bathypelagic did not appear in upper layers except for the MS and NAO 177 

where most and about half, respectively, of the bathypelagic associations already appeared in the 178 

mesopelagic (Figure 5). Specifically, 81.77 – 90.90% mesopelagic and 43.54-72.71% bathypelagic 179 

associations appeared for the first time in the five ocean basins (Supplementary Table 2). In the MS, 180 

71.24% mesopelagic and 22.44% bathypelagic associations appeared for the first time and 69.71% of 181 

bathypelagic associations already appeared in the mesopelagic (Supplementary Table 2). This points 182 

to specific microbial interactions occurring in the deep ocean that do not occur in upper layers. In 183 

addition, while most surface associations also appeared in the DCM in the MS, most surface 184 

associations disappeared with depth in the five ocean basins (Figure 5) suggesting that most surface 185 

ocean associations are not transferred to the deep sea, despite microbial sinking (Mestre et al., 2018). 186 

In fact, we observed that most deep ocean ASVs already appeared in the upper layers (Supplementary 187 

Figure 4), in agreement with previous work that has shown that a large proportion of deep sea microbial 188 
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taxa are also found in surface waters, and that their presence in the deep sea is related to sinking 189 

processes (Mestre et al., 2018). 190 

 191 

Comparing subnetworks 192 

Vertical and horizontal spatial variability is expected to affect network topology via biotic and abiotic 193 

variables as well as through dispersal processes (e.g., dispersal limitation). Yet, we have a limited 194 

understanding on how much marine microbial networks change due to these processes, thus analyzing 195 

the topology of subnetworks from specific ocean regions and depths is a first step to address this 196 

question. We compared the subnetworks of the six regions and depth layers using eight global network 197 

metrics (see Methods). We found that global network metrics change along the water column 198 

(Supplementary Figure 5). As a general trend, subnetworks from deeper zones were more clustered 199 

(transitivity) with higher average path length, stronger associations (average positive association 200 

scores) and lower assortativity (based on degree) compared to those in surface waters. Most DCM and 201 

bathypelagic subnetworks had the highest connectivity (edge density). Contrarily, in the MS, the 202 

surface subnetworks had the highest connectivity (Supplementary Figure 5). 203 

To avoid predefined groupings into regions and depth layers, we grouped similar subnetworks 204 

via a local network metric (see Methods) and identified 36 clusters of 5 to 28 subnetworks 205 

(Supplementary Table 3). We found 13 (36.1%) clusters that were dominated by surface subnetworks: 206 

six clusters (100% surface subnetworks) from three to five oceans but not MS and seven clusters with 207 

55-86% surface networks from two to five of the six ocean regions. In turn, 11 clusters were dominated 208 

by a deeper layer: two DCM (64-90%), five mesopelagic (62-83%) and four bathypelagic dominated 209 

clusters (60-69%). Nine of these 11 clusters combined different regions except for one mesopelagic 210 

and one bathypelagic dominated cluster representing exclusively the MS (Supplementary Table 3). 211 

Furthermore, we found 11 clusters containing exclusively or mainly MS subnetworks in contrast to 212 

only one cluster dominated by an ocean basin (NAO). 213 
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Next, we built a more comprehensive representation of network similarities between 214 

subnetworks via a minimal spanning tree (MST, see Methods) to underline the pervasive connectivity 215 

of associations across depth and environmental gradients. The depth layers, ocean regions, location of 216 

clusters, and environmental factors were projected onto the MST (Figure 6). Most surface subnetworks 217 

were centrally located, while subnetworks from other depths appeared in different MST areas. Most 218 

MS subnetworks were located in a specific branch of the MST, while the five oceans were mixed, 219 

indicating homogeneity within oceans but network-based differences between the oceans and the MS. 220 

However, subnetworks in the MST tended to connect to subnetworks from the same depth layer, cluster 221 

or similar environmental conditions. All in all, the above results suggest a strong influence of 222 

environmental gradients in shaping network topology and plankton associations, as previously 223 

observed in epipelagic communities at global scale (Chaffron et al., 2020). 224 

 225 

DISCUSSION 226 

In this work, we disentangled and analyzed global and regional microbial associations across the 227 

oceans’ vertical and horizontal dimensions. We found a low number of global associations indicating 228 

a potentially small global core interactome within each depth layer across six oceanic regions. Core 229 

microorganisms are often defined as those appearing in most or all samples from similar habitats 230 

(Shade & Handelsman, 2012). We previously identified a core microbiota in a coastal MS observatory 231 

based on both association patterns (Krabberød et al., 2021) and temporal recurrence of associations 232 

(Deutschmann et al., 2021). Both studies indicate more robust microbial connectivity, suggesting a 233 

broader core, in colder than in warmer seasons. In contrast, within each region, we found less highly 234 

prevalent associations in the bathypelagic zone of the global ocean (pointing to a smaller regional core) 235 

than in the upper layers, except from the NPO, having less highly prevalent associations in the meso- 236 

than in the bathypelagic. In agreement, we found more regional bathypelagic associations than in upper 237 

layers. Thus, associations may reflect the heterogeneity and isolation of the deep ocean regions due to 238 
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deep currents, water masses, or the topography of the seafloor that may prevent microbial dispersal. 239 

Moreover, the higher complexity of the deep ocean ecosystem may provide a higher number of 240 

ecological niches potentially resulting in more regional associations and agreeing with our 241 

observations. A high diversification of niches may be associated to the different quality and types 242 

(labile, recalcitrant, etc.) of organic matter reaching the deep ocean from the epipelagic zone (Arístegui 243 

et al., 2009), which is significantly different across oceanic regions (Hansell & Carlson, 1998). In an 244 

exploration of generalists versus specialist prokaryotic metagenome-assembled genomes (MAGs) in 245 

the arctic Ocean, most of the specialists were linked to mesopelagic samples indicating that their 246 

distribution was uneven across depth layers (Royo-Llonch et al., 2020). This is in agreement with 247 

putatively more niches in the deep ocean than in upper ocean layers leading to more specialist taxa and 248 

subsequently more regional associations. 249 

Vertical connectivity in the ocean microbiome is partially modulated by surface productivity 250 

through sinking particles (Mestre et al., 2018; Boeuf et al., 2019; Ruiz-González et al., 2020). An 251 

analysis of eight stations, distributed across the Atlantic, Pacific and Indian oceans (including 4 depths: 252 

Surface, DCM, meso- and bathypelagic), indicated that bathypelagic communities comprise both 253 

endemic taxa as well as surface-related taxa arriving via sinking particles (Mestre et al., 2018). Ruiz‐254 

González et al. (Ruiz-González et al., 2020) identified for both components (i.e. surface-related and 255 

deep-endemic) the dominating phylogenetic groups: while Thaumarchaeota, Deltaproteobacteria, 256 

OM190 (Planctomycetes) and Planctomycetacia (Planctomycetes) dominated the endemic 257 

bathypelagic communities, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria and 258 

Flavobacteriia (Bacteroidetes) dominated the surface-related taxa in the bathypelagic zone. We found 259 

association partners for each dominating phylogenetic group within each investigated type of 260 

association, i.e., highly prevalent, regional, global, prevalent, and low-frequency associations. While 261 

ASVs belonging to these taxonomic groups were present throughout the water column, specific 262 

associations were observed especially in the mesopelagic and bathypelagic zones, which suggests 263 
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specific associations between deep-sea endemic taxa. This is in agreement with a recent study that 264 

found a remarkable taxonomic novelty in the deep ocean after analyzing 58 microbial metagenomes 265 

from global samples, unveiling ~68% archaeal and ~58% bacterial novel species (Acinas et al., 2021). 266 

Less is known about associations found along the entire or a substantial fraction of the water 267 

column, suggesting consortia of associated microorganisms that sink together or that populate large 268 

vertical ranges of the water column. Associations present across all layers were few but may represent 269 

interacting taxa that populate the entire water column or that sink together. However, given that we 270 

targeted mainly picoplankton, we would not expect a considerable influence of sinking particles in the 271 

vertical distribution of associations in this study. Some associations observed in the deep ocean may 272 

correspond to consortia of taxa degrading sinking particles, or taxa that might have detached from 273 

sinking particles, i.e., dual life-style taxa as observed in (Sebastián, Sánchez, et al., 2021). 274 

Alternatively, microorganisms may have reached bathypelagic waters via fast-sinking processes, 275 

embedded in (larger) particles (Agusti et al., 2015). By following this observation, a previous study 276 

found that the abundances of microorganisms in deeper layers mirrored the changes in abundance of 277 

microorganisms in shallower layers, at a single sampling station, indicating that communities 278 

populating different ocean depths are not isolated from each other but linked, possibly through sinking 279 

particles or migrating organisms transporting nutrients through the water column (Cram et al., 2015). 280 

However, microbial co-occurrence alone does not suffice to infer microbial interactions, because 281 

different mechanisms, such as selection or dispersal, influence species as well as their interactions 282 

(Poisot et al., 2012).  Our results suggest that microorganisms can potentially change their interaction 283 

partners along vertical (and horizontal) scales and, to a lesser extent, maintain interactions along the 284 

water column. 285 

A study of global-ocean picoplanktonic eukaryotes through the water column (from the Epi- to 286 

the Bathypelagic zone) found the highest and lowest relative metabolic activity for most eukaryotes in 287 

the meso- and bathypelagic zones, respectively (Giner et al., 2020). Thus, we could hypothesize more 288 
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competition in the mesopelagic zone and more beneficial interactions in the bathypelagic zone. In our 289 

study, mesopelagic subnetworks displayed the lowest connectivity in most regions on average, and we 290 

found the strongest associations among both meso- and bathypelagic subnetworks. Moreover, we 291 

found the highest clustering (transitivity) in the meso- and bathypelagic zones (relatively colder 292 

waters) compared to the epipelagic zone (warmer waters). Similarly, a previous global-scale study 293 

(Chaffron et al., 2020) concentrating on the epipelagic zone and including polar waters, found higher 294 

edge density, association strength and clustering in polar (colder waters) compared to warmer waters. 295 

These results suggest that either microorganisms interact more in colder and darker environments or 296 

that their recurrence is higher due to a higher environmental selection exerted by low temperatures and 297 

no light. Alternatively, limited resources (primarily nutrients) in the surface versus deep ocean may 298 

prevent the establishment of specific microbial interactions. Furthermore, another explanation could 299 

be the higher diversity of ecological niches and, thus, a higher diversity of associations in the meso- 300 

and bathypelagic. 301 

Through quantifying regional associations, our results indicated distinct associations in the MS, 302 

where most regional associations were observed compared to the global ocean, as previously shown 303 

in an epipelagic network (Lima-Mendez et al., 2015). Furthermore, we found a substantial number of 304 

regional associations in the NAO compared to other ocean basins, contrasting with the NAO having 305 

the lowest number of regional associations in a previous epipelagic network (Lima-Mendez et al., 306 

2015). 307 

To conclude, our network-based exploration disentangles the spatial distribution of 308 

associations of the global ocean microbiome, from top to bottom layers, suggesting both global and 309 

regional interactions. Our analysis demonstrated the change of network topology across vertical (water 310 

column) and horizontal (different regions) dimensions of the ocean. Furthermore, our results indicate 311 

that associations have specific spatial distributions that are not just mirroring ASV distributions. 312 

 313 
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METHODS 314 

Dataset 315 

Samples originated from two expeditions, Malaspina-2010 (Duarte, 2015) and Hotmix (Martínez-316 

Pérez et al., 2017). The former was onboard the R/V Hespérides and most ocean basins were sampled 317 

between December 2010 and July 2011. Malaspina samples included i) MalaSurf, surface samples 318 

(Ruiz-González et al., 2019; Logares et al., 2020), ii) MalaVP, vertical profiles (Giner et al., 2020), 319 

and iii) MalaDeep, deep-sea samples, (Pernice et al., 2016; Salazar et al., 2016; Sanz-Sáez, 2021). For 320 

the Hotmix expedition, sampling took place onboard the R/V Sarmiento de Gamboa between 27th 321 

April and 29th May 2014 and represented a quasi-synoptic transect across the MS and the adjacent 322 

North-East of the NAO. See details in Table 2. 323 

DNA extractions are indicated in the papers associated with each dataset (Table 2). From the 324 

DNA extractions, the 16S and 18S rRNA genes were amplified and sequenced. PCR amplification and 325 

sequencing of MalaSurf, MalaVP (18S), and Hotmix (16S) are indicated in the papers associated with 326 

each dataset in Table 2. MalaVP (16S) and Hotmix (18S) were PCR-amplified and sequenced 327 

following the same approach as in (Logares et al., 2020). MalaDeep samples were obtained from 328 

(Pernice et al., 2016; Salazar et al., 2016) but re-sequenced in Genoscope (France) with different 329 

primers, as described below. MalaSurf, MalaVP and Hotmix datasets were sequenced at RTL 330 

Genomics (Texas, USA). 331 

We used the same amplification primers for all samples. For the 16S, we amplified the V4-V5 332 

hypervariable region using the primers 515F-Y and 926R (Parada et al., 2016). For the 18S, we 333 

amplified the V4 hypervariable region with the primers TAReukFWD1 and TAReukREV3 (Stoeck et 334 

al., 2010). See more details in (Logares et al., 2020). Amplicons were sequenced in Illumina MiSeq 335 

or HiSeq2500 platforms (2x250 or 2x300 bp reads). Operational Taxonomic Units were delineated as 336 

Amplicon Sequence Variants (ASVs) using DADA2 (Callahan et al., 2016), running each dataset 337 

separately before merging the results. ASVs were assigned taxonomy using SILVA (Quast et al., 338 
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2012), v132, for prokaryotes, and PR2 (Guillou et al., 2012), v4.11.1, for eukaryotes. ASVs 339 

corresponding to Plastids, Mitochondria, Metazoa, and Plantae, were removed. Only samples with at 340 

least 2000 reads were kept. The dataset contained several MalaDeep replicates, which we merged, and 341 

two filter sizes: given the cell sizes of prokaryotes versus microeukaryotes, we selected the smallest 342 

available filter size (0.2-0.8 µm) for prokaryotes and the larger one (0.8-20 µm) for microeukaryotes. 343 

The other three datasets used filter sizes of 0.2-3 µm. Additionally, we required that samples had 344 

eukaryotic and prokaryotic data, resulting in 397 samples for downstream analysis: 122 MalaSurf, 83 345 

MalaVP, 13 MalaDeep, and 179 Hotmix. We separated the samples into epipelagic, mesopelagic and 346 

bathypelagic zone (Figure 1). Furthermore, we separated most epipelagic samples into surface and 347 

deep-chlorophyll maximum (DCM) samples, but 18 MS and 4 NAO samples belonged to neither. We 348 

also considered environmental variables: Temperature (2 missing values = mv), salinity (2 mv), 349 

fluorescence (3 mv), and inorganic nutrients NO3
− (36 mv), PO4

3− (38 mv), and SiO2 (37 mv), which 350 

were measured as indicated elsewhere (Giner et al., 2020; Logares et al., 2020; Sebastián, Ortega-351 

Retuerta, et al., 2021). In specific samples, missing data on nutrient concentrations were estimated 352 

from the World Ocean Database (Boyer et al., 2013). 353 

 354 

Single static network 355 

We constructed the single static network in four steps. First, we prepared the data for network 356 

construction. We excluded rare microorganisms by keeping ASVs with a sequence abundance sum 357 

above 100 reads and appearing in at least 20 samples (>5%). The latter condition removes bigger 358 

eukaryotes only appearing in the 13 MalaDeep eukaryotic samples of a bigger size fraction. To control 359 

for data compositionality (Gloor et al., 2017), we applied a centered-log-ratio transformation 360 

separately to the prokaryotic and eukaryotic tables before merging them. 361 

Second, we inferred a (preliminary) network using FlashWeave (Tackmann et al., 2019), 362 

selecting the options “heterogeneous” and “sensitive”. FlashWeave was chosen as it can handle sparse 363 
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datasets like ours, taking zeros into account and avoiding spurious correlations between ASVs that 364 

share many zeros. 365 

Third, we aimed to remove environmentally-driven edges. FlashWeave could detect indirect 366 

edges and allows to supply additional metadata such as environmental variables, but currently does 367 

not support missing data. Thus, we applied EnDED (Deutschmann et al. 2020), combining the methods 368 

Interaction Information (with 0.05 significance threshold and 10000 iterations) and Data Processing 369 

Inequality as done previously via artificially-inserted edges to connect all microbial nodes to the six 370 

environmental parameters (Deutschmann et al., 2021). Although EnDED can handle missing 371 

environmental data when calculating intermediate values relating ASV and environmental factors, it 372 

would compute intermediate values for microbial edges using all samples. Thus, to avoid a possible 373 

bias and speed up the calculation process, we applied EnDED individually for each environmental 374 

factor, using only the samples containing values for the specific environmental factor. 375 

Fourth, we removed isolated nodes, i.e., nodes without any edge. The resulting network 376 

represented the single static network in our study. 377 

 378 

Sample-specific subnetwork 379 

We constructed 397 sample-specific subnetworks. Each subnetwork represented one sample and was 380 

derived from the single static network, i.e., a subnetwork contained nodes and edges present in the 381 

single static network but not vice versa. Consider sample 𝑠𝑅𝐿 with 𝑅 being the marine region, and 𝐿 382 

the sample’s depth layer. Let 𝑒 be an association between microorganisms 𝐴 and 𝐵. Then, association 383 

𝑒 is present in the sample-specific subnetwork 𝑁𝑠, if 384 

i. 𝑒 is an association in the single static network, 385 

ii. the microorganisms 𝐴 and 𝐵 are present within sample 𝑠, i.e., the abundances are above zero 386 

within that particular sample, and 387 

iii. the association has a region and depth specific Jaccard index, 𝐽𝑅𝐿, above 20% (see below). 388 
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In addition to these three conditions, a node is present in a sample-specific subnetwork when connected 389 

to at least one edge, i.e., we removed isolated nodes. 390 

Regarding the third condition, we determined 𝐽𝑅𝐿 for each association pair by computing within 391 

each region and depth layer, the fraction of samples two microorganisms appeared together 392 

(intersection) from the total samples at least one microorganism appears (union). Supplementary Table 393 

4 shows the number of edges using different thresholds. Given the heterogeneity of the dataset within 394 

regions and depth layers, we decided to use a low threshold, keeping edges with a Jaccard index above 395 

20% and removed edges below or equal to 20%. We tested robustness by randomly drawing a subset 396 

of samples from each region and depth combination. The subset contained between 10% and 90% of 397 

the original samples. We rounded up decimal numbers to avoid zero sample subsets, e.g., 10% of 7 398 

samples results in a subset of 1 sample. We excluded the DCM of the SPO because it contained only 399 

one sample. Next, we recomputed the Jaccard index for the random subset. Lastly, requiring J>20%, 400 

we evaluated robustness determining i) how many edges were kept in the random subsamples 401 

compared to all samples, and ii) how many edges were kept in the random subset that were also kept 402 

when all samples were used. We repeated the procedure for each region-depth combination 1000 times. 403 

 404 

Spatial recurrence 405 

To determine an association’s spatial recurrence, we calculated its prevalence as the fraction of 406 

subnetworks in which the association was present. We determined association prevalence across the 407 

397 samples and each region-layer combination. We mapped the scores onto the single static network, 408 

visualized in Gephi (Bastian et al., 2009), v.0.9.2, using the Fruchterman Reingold Layout 409 

(Fruchterman & Reingold, 1991) with a low gravity score of 0.5. We used the region-layer prevalence 410 

to determine global and regional associations. We considered an association to be global within a 411 

specific depth layer if its prevalence was above 70% in all regions. In turn, a regional association had 412 

an association prevalence above 0% within a particular region-layer (present, appearing in at least one 413 
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subnetwork) and 0% within other regions of the same layer (absent, appearing in no subnetwork). In 414 

addition, associations that are not global but appear in all regions over 50% are considered prevalent. 415 

Similarly, associations that are not global nor prevalent but appear in all regions over 20% are 416 

considered low-frequency. Thus, an association can be classified as i) global, ii) regional, iii) prevalent, 417 

iv) low-frequency, and v) “other”, i.e., associations that have not been classified into the previous 418 

categories. 419 

 420 

Global network metrics 421 

We considered the number of nodes and edges and six other global network metrics of which most 422 

were computed with functions of the igraph R-package (Csardi & Nepusz, 2006). Edge density 423 

indicating connectivity is computed through the number of actual edges divided by the number of 424 

possible edges. The average path length is the average length of all shortest paths between nodes in a 425 

network. Transitivity indicating how well a network is clustered is the probability that the nodes’ 426 

neighbors are connected. Assortativity measures if similar nodes tend to be connected, i.e., assortativity 427 

(degree) is positive if high degree nodes tend to connect to other high degree nodes and negative 428 

otherwise. Similarly, assortativity (Euk-Prok) is positive if eukaryotes tend to connect to other 429 

eukaryotes and prokaryotes tend to connect to other prokaryotes. Lastly, we computed the average 430 

positive association strength as the mean of all positive association scores provided by FlashWeave. 431 

 432 

Local network metric 433 

The previous global metrics disregard local structures’ complexity, and topological analyses should 434 

include local metrics (Espejo et al., 2020), e.g., graphlets (Pržulj et al., 2004). Here, we determined 435 

network-dissimilarity between each pair of sample-specific subnetworks as proposed in (Yaveroǧlu et 436 

al., 2014), comparing network topology without considering specific ASVs. The network-dissimilarity 437 
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is a distance measurement that is always positive: 0 if networks are identical and greater numbers 438 

indicate greater dissimilarity. 439 

Next, we constructed a Network Similarity Network (NSN), where each node is a subnetwork 440 

and each node connects with all other nodes, i.e., the NSN was a complete graph. We assigned the 441 

network-dissimilarity score as edge weight within the NSN. To simplify the NSN while preserving its 442 

main patterns, we determined the minimal spanning tree (MST) of the NSN. The MST had 397 nodes 443 

and 396 edges. The MST is a backbone, with no circular path, in which the edges are chosen so that 444 

the edge weights sum is minimal and all nodes are connected, i.e., a path exists between any two nodes. 445 

We determined the MST using the function mst in the igraph package in R (Prim, 1957; Csardi & 446 

Nepusz, 2006). 447 

Using the network-dissimilarity (distance) matrix, we determined clusters of similar 448 

subnetworks in python. First, we reduced the matrix to ten dimension using umap (McInnes et al., 449 

2018) with the following parameter settings: n_neighbors=3, min_dist=0, n_components=10, 450 

random_state=123, and metric=’precomputed’. Second, we clustered the subnetworks (represented via 451 

ten dimensions) with hdbscan (McInnes et al., 2017) setting the parameters to min_samples=3 and 452 

min_clusters=5. 453 

 454 

Reproducibility 455 

R-Markdowns for data analysis including commands to run FlashWeave and EnDED 456 

(environmentally-driven-edge-detection and computing Jaccard index) are publicly available: 457 

https://github.com/InaMariaDeutschmann/GlobalNetworkMalaspinaHotmix. While the networks are 458 

already available, the microbial sequence abundances (ASV table), taxonomic classifications, 459 

environmental data including nutrients will be publicly available after acceptance. The data are of 460 

course available upon request to reviewers. 461 

 462 
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FIGURES 707 

 708 

Figure 1: Sampling scheme. Location, number, and depth range of samples from the epipelagic zone 709 

including surface and DCM layer, the mesopelagic zone, and the bathypelagic zone from the global 710 

tropical and subtropical ocean and the Mediterranean Sea. 711 

 712 

Figure 2: Spatial recurrence. A) Association prevalence showing the fraction of subnetworks in which 713 

an association appeared considering all depth layers across the global tropical and subtropical ocean 714 

and the Mediterranean Sea. Associations that occurred more often (black) appeared in the middle of 715 

the single static network visualization. Most edges had a low prevalence (blue) <20%. B) The sample-716 

specific subnetworks of the four ocean layers (rows): surface (SRF), DCM, mesopelagic (MES), and 717 

bathypelagic (BAT), and the six regions (columns). The histograms show the association prevalence 718 

within each depth layer and region (excluding absent associations, i.e., 0% prevalence). The number 719 

of samples appears in the upper left corner, the number of edges with a prevalence >0% in the upper 720 

right corner, and the depth range in the lower right corner (in m below surface). Note that the 721 

prevalence goes up to 100% in B) vs. 66.5% in A). 722 

 723 

Figure 3: Highly prevalent associations for each region and depth layer. If an association appears in 724 

more than 70% of subnetworks it is classified as highly prevalent. The four ocean layers (rows) are 725 

surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT). The number of samples appears 726 

in the upper left corner, the number of edges in the upper right corner, and the depth range in the lower 727 

right corner (in m below surface). 728 

 729 

Figure 4: Classification of associations. An association can be classified into global (>70% 730 

prevalence, not considering the MS), prevalent (>50%, not considering the MS), low-frequency 731 

(>20%, not considering the MS), regional, and other. Regional associations are assigned to one of six 732 

ocean basins. The number A) and fraction B) of each type of association are shown for each depth 733 

layer: surface (SRF) and DCM (epipelagic), mesopelagic (MES) and bathypelagic (BAT). Color 734 

indicates the type of classification. The associations have been classified into the five types based on 735 

their prevalence in each region. The prevalence of associations is shown in C). For instance, global 736 

associations have a prevalence above 70% in each region (not considering the MS). Regional 737 

associations are present in one region (indicated with yellow with mainly low prevalence >0%) and 738 

absent in all other regions (0% prevalence not shown in graph). 739 

 740 
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Figure 5: Microbial associations across depth layers. For each region and taxonomic domain, we color 741 

associations based on when they first appeared: surface (S, yellow), DCM (D, orange), mesopelagic 742 

(M, red), and bathypelagic (B, black). Absent ASVs are grouped in the white box. Columns show 743 

associations between archaea (Arc), bacteria (Bac), and eukaryotes (Euk). 744 

 745 

Figure 6: Minimal Spanning Tree. Each subnetwork is a node in the MST and represents a sample. 746 

Nodes are colored according to A) the sample’s depth layer, B) the samples ocean region, C) the 747 

subnetworks cluster, and D) selected environmental factors. In C), the barplots indicate the different 748 

layers within each cluster colored as in A). 749 

750 
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TABLES 751 

 752 
Table 1: Number of classified associations per depth layer. The sum of classified associations (including Other) is the number of present 753 
associations. Absent associations appear in other layers but in no subnetwork of a given layer. Global, prevalent, and low-frequency 754 
associations have been computed with and without considering the MS. The proportion of regional associations increased with depth 755 
(gray row). 756 

Depth layer Epipelagic (Surface) Epipelagic (DCM) Mesopelagic Bathypelagic 

Global 26 (0.14%) 23 (0.31%) 21 (0.20%) - 

Prevalent 22 (0.12%) 47 (0.64%) 10 (0.10%) 7 (0.07%) 

Low-frequency 105 (0.58%) 160 (2.17%) 212 (2.05%) 51 (0.51%) 

Global (no MS) 86 (0.47%) 52 (0.70%) 28 (0.27%) 9 (0.09%) 

Prevalent (no MS) 207 (1.14%) 76 (1.03%) 27 (0.26%) 28 (0.28%) 

Low-frequency (no MS) 1361 (7.46%) 219  (2.97%) 342 (3.30%) 489 (4.84%) 

Regional 2014 (11.05%) 2290 (31.03%) 3420 (33.00%) 3669 (36.33%) 

MS 596 (3.27%) 1295 (17.55%) 2254 (21.75%) 1217 (12.05%) 

NAO 577 (3.16%) 306 (4.15%) 422 (4.07%) 1522 (15.07%) 

SAO 162 (0.89%) 304 (4.12%) 301 (2.90%) 143 (1.42%) 

SPO 152 (0.83%) 105 (1.42%) 40 (0.39%) 109 (1.08%) 

NPO 298 (1.63%) 133 (1.80%) 204 (1.97%) 516 (5.11%) 

IO 229 (1.26%) 147 (1.99%) 199 (1.92%) 162 (1.60%) 

Other* 16067 (88.12%) 4860 (65.85%) 6701 (64.66%) 6372 (63.10%) 

Other (no MS)* 14566 (79.88%) 4743 (64.27%) 6547 (62.17%) 55904 (58.46%) 

Present 18234 (100%) 7380 (100%) 10364 (100%) 10099 (100%) 

Absent 10884 21738 18754 19019 

*The number of unclassified (Other) associations is computed from present, regional, global, prevalent, and low-frequency associations. The last three 757 
classifications have been done with and without the MS, and subsequently the number of unclassified (other) associations varies. 758 
  759 
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Table 2: Dataset compilation. Our data was a compilation of different datasets. We required that each location had to provide data for 760 
both eukaryotes and prokaryotes, which resulted in 397 samples. This condition allowed only 13 MalaDeep samples. 761 

Dataset Samples 
used for 
analysis 

Stations Depth 
range 

(m) 

Water 
sampl

es 

Size 
Fraction 

(µm) 

16S 18S Reference ENA accession 
number 

Malaspina 
 

          

MalaSurf 122 120 3 122 0.2-3 122 124 (Ruiz-
González et 

al., 2019; 
Logares et 
al., 2020) 

PRJEB23913 [18S 
rRNA genes], 

PRJEB25224 [16S 
rRNA genes] 

 
MalaVP 83 13 3-4000 91 0.2-3 91 83 (Giner et al., 

2020) & This 
study 

PRJEB23771 [18S 
rRNA genes], 

PRJEB45015 [16S 
rRNA genes] 

 
MalaDeep 

(Prok) 
13 30 ~4000 60 0.2-0.8 41 - (Sanz-Sáez, 

2021) 
PRJEB45011 

MalaDeep 
(Euk) 

13 27 2400-
4000 

27 0.8-20 - 82 This study PRJEB45014 

Hotmix 179 29 3-4539 188 0.2-3 188 179 (Sebastián, 
Ortega-

Retuerta, et 
al., 2021) 

PRJEB44683 
[18S rRNA genes], 
PRJEB44474 [16S 

rRNA genes] 

16S and 18S refer to sequenced samples; Prok - prokaryotes; Euk - eukaryotes 762 
  763 
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SUPPLEMENTARY MATERIAL 764 

SUPPLEMENTARY FIGURES 765 

Supplementary Figure 1: Robustness of the third condition for generating sample-specific 766 

subnetworks for each region and depth with sufficient samples (DCM layer from the SPO was removed 767 

because it contained only one sample). Within each region and depth, the set of samples was randomly 768 

subsampled containing between 10% to 90% of the original set using all samples. The y-axis shows 769 

the fraction of edges that were kept in the subsampled set compared to the original set. We considered 770 

A) only the number of kept edges and B) which edges were kept. 771 

 772 

Supplementary Figure 2: Associations occurring in each region and depth layer. If an association 773 

appears in more than 20% of subnetworks in each region, it is classified as low-frequency, >50% 774 

prevalent, and >70% global. The number of samples appears in the upper left corner, the number of 775 

edges in the upper right corner, and the depth range in the lower right corner (in m below surface). We 776 

classified the associations considering all six regions (A-D) and considering the five ocean basins 777 

neglecting the MS (E-H). 778 

 779 

Supplementary Figure 3: Regional associations occurring in each region and depth layer. Within a 780 

particular depth layer, if an association appears in at least one subnetwork (present) in one region and 781 

in no subnetwork (absent) in other regions, it is classified as regional. The four ocean layers (rows) are 782 

surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT). The number of samples appears 783 

in the upper left corner, the number of edges in the upper right corner, and the depth range in the lower 784 

right corner (in m below surface). 785 

 786 

Supplementary Figure 4: ASVs across depth layers. For each region, we color ASVs based on the 787 

layer they first appeared: surface (S, yellow), DCM (D, orange), mesopelagic (M, red), and 788 

bathypelagic (B, black). Absent ASVs are grouped in box “a”. An ASV only appearing in the 789 

bathypelagic, is assigned to box “a” in above layers. That is, an ASV detected in the surface and present 790 

in the DCM but absent in lower layers, appears in the box (S) in the surface and DCM layer, but in 791 

box “a” in the meso- and bathypelagic layer. An ASV cannot be assigned to two layers. Note that most 792 

ASVs in the bathypelagic zone have been already detected in upper layers because most ASVs are 793 

assigned to the boxes “S”, “D”, and “M” instead of “B”. 794 

 795 

Supplementary Figure 5: Global network metrics grouped by region and depth layer. 796 

  797 
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SUPPLEMENTARY TABLES 798 

 799 
Supplementary Table 1: Number of environmentally-driven edges detected by EnDED. We removed environmentally-driven edges 800 
(indirect) from the preliminary network, which contained 31966 edges. Only edges that were not environmentally-driven by any 801 
environmental factor (not indirect) remained in the network. 802 

Environmental factor Number of samples indirect Not indirect 

Fluorescence 394 4 (0.01%) 31962 
NO3 361 1563 (4.9%) 30403 
PO4 359 1357 (4.2%) 30609 
Salinity 395 67 (0.2%) 31899 
SiO4 360 632 (2.0%) 31334 
Temperature 395 622 (1.9%) 31344 

All  2848 (8.9%) 
= 1779 removed by 1 
+ 751 removed by 2 
+ 308 removed by 3 
+ 10 removed by 4 

29118 (91.1%) 

 803 
 804 
Supplementary Table 2: Fraction of microbial associations across depth layers. For each region and layer (rows), we determined the 805 
constitution of associations (in percentage %) classifying them based on their first appearance (columns): surface, DCM, mesopelagic, 806 
and bathypelagic. We indicated the fractions above 40% in grey. 807 

Region Layer Surface DCM Mesopelagic Bathypelagic 

MS SRF 100.00    
 DCM 45.14 54.86   
 Mesopelagic 10.35 18.42 71.24  
 Bathypelagic 2.73 5.12 69.71  22.44 

NAO SRF 100.00    
 DCM 68.30 31.70   
 Mesopelagic 11.64 6.59 81.77  
 Bathypelagic 11.62 1.35 43.49 43.54 

SAO SRF 100.00    
 DCM 45.08 54.92   
 Mesopelagic 6.15 8.50 85.35   
 Bathypelagic 12.22 6.30 26.97 54.61 

SPO SRF 100.00    
 DCM 50.07 49.93   
 Mesopelagic 6.44 2.66 90.90  
 Bathypelagic 9.81 3.32 14.15 72.71 

NPO SRF 100.00    
 DCM 54.23 45.77   
 Mesopelagic 8.33 6.06 85.61  
 Bathypelagic 17.46 5.34 19.92 57.28 

IO SRF 100.00    
 DCM 39.23 60.77   
 Mesopelagic 5.92 7.87 86.21  
 Bathypelagic 11.00 3.84 29.61 55.56 

808 
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Supplementary Table 3 Subnetwork cluster. Clusters dominated, i.e. over 50%, by one layer or one region are indicated in grey. The last row shows unassigned subnetworks. 809 

cluster Dominated  Fraction of depth layers Number of regions (if no number if indicated, it is 1x) 

ID by Size Epipelagic Meso- Bathy- Epipelagic Meso- Bathy- 
   SRF EPI DCM pelagic pelagic pelagic EPI DCM MES BAT 

1 MS 5 20.00 20.00 20.00 20.00 20.00 SAO MS NAO MS MS 
2 MS 10 10.00 - 20.00 20.00 50.00 MS - 2xMS 2xMS 5xMS 
3 MS 8 12.50 - - 25.00 62.50 SRF - - 2xMS 5xMS 
4 MS, MES 8 - 12.50 - 75.00 12 - MS - 6xMS MS 
5 MS, MES 12 16.67 - - 66.67 16.67 IO, NAO - - 7xMS, NAO 2xNAO 
6  8 12.50 25.00 12.50 25.00 25.00 IO MS, NAO NPO MS, NAO 2xMS 
7 BAT 15 13.33 - - 26.67 60.00 IO, SPO - - IO, MS, SAO, SPO IO, MS, NAO, 2xNPO, 2xSAO, 

2xSPO 
8 DCM 10 10.00 - 90.00 - - NPO - 5xMS, NPO, 

3xSAO 
- - 

9 DCM 11 36.36 - 63.64 - - 2xNAO, NPO, SAO - 3xIO, 2xMS, NPO, 
SAO 

- - 

10  12 - - 8.33 50.00 41.67 - - NAO IO, MS, NAO, 2xNPO, 
SAO 

IO, 2xNAO, NPO, SAO 

11 MES 6 - - - 83.33 16.67 - - - IO, MS, NPO, 2xSAO IO 
12 NAO, MES 6 16.67 - - 83.33 - NAO - - 2xMS, 3xNAO - 
13 SRF 11 54.55 9.09 - 27.27 9.09 IO, MS, NPO, 3xSAO MS - 2xMS, NAO MS 
14 BAT 16 12.50 6.25 6.25 6.25 68.75 MS, NAO MS MS MS 5xNAO, 3xNPO, 2xSAO, SPO 
15 SRF 8 100.00 - - - - 3xIO, 4xNAO, NPO - - - - 
16 MS, SRF 7 71.43 14.29 - 14.29 - 4xMS, NPO MS - MS - 

17 MS 9 - 11.11 33.33 22.22 33.33 - MS MS, NAO, SPO 2xMS 3xMS 
18 MS, BAT 8 12.50 25.00 - - 62.50 IO 2xMS - - 3xMS, 2xNAO 
19 SRF 7 85.72 14.29 - - - 2xIO, NAO, NPO, 2xSAO MS - - - 
20 SRF 15 73.33 - 6.67 6.67 13.33 2xIO, 2xNAO, NPO, 5xSAO, SPO - MS IO IO, NPO 
21  8 25.00 - 12.50 25.00 37.50 IO, SPO - MS MS, SAO IO, 2xNAO 
22  17 23.53 - 5.88 35.29 35.29 3xSAO,  SPO - MS NAO, 2xNPO, SAO, 

2xSPO 
IO, MS, NAO, 3xSAO 

23 SRF 8 75.00 12.50 - 12.50 - IO, 2xMS, NAO, NPO, SPO MS - MS - 
24 MS, MES 13 15.38 7.69 - 61.54 15.38 2xMS MS - IO, 4xMS, 3xNAO NAO, NPO 
25  14 28.57 7.14 14.29 7.14 42.86 2xMS, 2xNAO MS 2xMS NAO MS, 3xNPO, 2xSAO 
26 SRF 7 85.72 14.29 - - - 2xIO-SRF, MS-EPI, 2xNAO-SRF, 

2xNPO-SRF 
2xIO-SRF, MS-EPI, 2xNAO-SRF, 

2xNPO-SRF 
- - - 

27 SRF 11 100.00 - - - - 2xIO, NAO, 4xNP, 4xSPO - - - - 
28 MS 11 9.09 27.27 - 36.36 27.27 MS 3xNAO - 4xMS 3xMS 
29  12 50.00 - 16.67 16.67 16.67 IO, MS, 3xNAO, SAO - MS, NAO 2xMS 2xMS 
30  6 50.00 - 16.67 16.67 16.67 IO, NAO, SPO - MS NPO IO-BAT 
31 MS 28 25.00 10.71 7.14 35.71 21.43 4xIO, 2xMS, SAO 3xMS 2xMS 6xMS, 2xNAO, 2xNPO IO, 2xMS, 3xNAO 
32 SRF 6 100.00 - - - - IO, 2xNA, NPO, 2xSAO - - - - 
33 SRF 6 100.00 - - - - NAO, 3xNPO, SAO, SPO - - - - 
34 SRF 14 100.00 - - - - IO, 4xNAO, 5xNPO, 2xSAO, 2xSPO - - - - 
35 SRF 13 69.23 7.69 - - 23.08 4xIO, 3xNAO, SAO, SPO MS - - 3xMS 
36 SRF 7 100.00 - - - - 3xIO, 3xNPO, SAO - - - - 

-  24 41.67 - 12.50 29.17 16.67 2xIO, MS, 2xNAO, 3xNPO, 2xSAO - MS, 2xNAO 2xIO, 4xMS, NPO MS, NAO, NPO, SAO 

MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific Ocean, IO – Indian Ocean, EPI – epipelagic layer, SRF – surface, DCM – Deep Chlorophyll Maximum, 810 
MES – mesopelagic layer, BAT – bathypelagic layer811 
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Supplementary Table 4 Number of edges within each region and depth layer before (J>0%) and after filtering edges with low Jaccard 812 
index measuring how often the association partners appeared together in the region and depth layer. The DCM layer in the South 813 
Pacific Ocean (SPO) contained only one subnetwork, which resulted in the edge prevalence being 100% for all edges. 814 

Region Layer Samples Depth (m) J>0% J>10% J>20% J>30% J>40% J>50% 

MS EPI - SRF 19 3 3710 3631 3263 2881 2375 1797 
 EPI 18 12-50 4763  4682 4196 3731 3064 2189 
 EPI - DCM 21 40-130 5545 5417 4736 4030 3062 2027 
 MES 52 200-1000 8756 8403 7336 6179 4629 3088 
 BAT 35 1100-3300 4497 4263 3694 3171 2506 1830 

NAO EPI - SRF 34 3 15862  15255 13478 11449 8487 5331 
 EPI 4 50 3027 3027 3027 2778 2529 2091 
 EPI - DCM 6 70-106 3865 3865 3738 3480 2973 2212 
 MES 14 200-800 6325 6289 5689 5109 4169 2978 
 BAT 20 1200-4539 7490 7419 6831 6206 5211 3857 

SAO EPI - SRF 26 3 13118 12768 11026 9269 6842 4353 
 EPI - DCM 4 80-130 4199 4199 4199 3941 3443 2468 
 MES 6 450-850 3937 3937 3740 3440 2687 1614 
 BAT 11 1290-4000 4143 4130 3886 3605 3049 2254 

NPO EPI - SRF 29 3 14376 13778 11919 9907 7323 4736 
 EPI - DCM 3 37-110 3100 3100 3100 3100 2568 1968 
 MES 9 200-780 4197 4197 3781 3343 2583 1625 
 BAT 12 2000-4000 5198 5185 4834 4510 4009 3372 

SPO EPI - SRF 14 3-5 12007 11927 10420 8990 6728 4480 
 EPI - DCM 1 65 1530 1530 1530 1530 1530 1530 
 MES 3 450-650 2066 2066 2066 2066 1756 1318 
 BAT 3 1500-4000 3159 3159 3159 3159 2906 2128 

IO EPI - SRF 35 3 14307 13646 11736 9602 6912 4396 
 EPI - DCM 3 86-130 3411 3411 3411 3411 2855 2310 
 MES 7 400-950 4654 4654 4344 3961 3083 2082 
 BAT 8 1065-4000 2928 2928 2790 2563 2101 1290 

MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific 815 
Ocean, IO – Indian Ocean, EPI – epipelagic layer, SRF – surface, DCM – Deep Chlorophyll Maximum, MES – mesopelagic layer, BAT 816 
– bathypelagic layer 817 
  818 
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SUPPLEMENTARY MATERIAL 819 

 820 

Supplementary Material 1: Highly prevalent (>70%) regional associations. For each association 821 

between two ASVs (first and second column) we list: region (third column), depth layer (fourth 822 

column), prevalence in that region and depth layer (fifth column), type: eukaryotic (Euk_Euk), 823 

prokaryotic (Prok_Prok), and association between domains (Euk_Prok) (sixth column), and the phyla 824 

(seventh and eight column). 825 

 826 

Supplementary Material 2: Associations appearing in all layers in at least one region. For each 827 

association between two ASVs (first and second column) we list: the classification in each layer (3-6 828 

column), overall prevalence (8. column), prevalence in each region and depth layer (9- 34. column), 829 

the number of regions in which the association appeared in all layers (AllLayers, 35. column), the 830 

number of layers an association appears in a region (36-41. column), type: eukaryotic (Euk_Euk), 831 

prokaryotic (Prok_Prok), and association between domains (Euk_Prok) (42. column), and the phyla 832 

(43-44. column). 833 
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