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Abstract

Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks
supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and
feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are
bidirectionally connected and the strength of these connections would likely aid the identification of regions
essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores
with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain
network. We applied the method to a whole-brain mouse connectome. We found that cores with strong
bidirectional connections consisted of regions presumably essential to consciousness (e.g., the isocortical and
thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g.,
cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we
applied other simple methods which ignored bidirectionality. These findings suggest that our method provides
a novel insight into the relation between bidirectional brain network structures and consciousness.

Introduction

Where in the brain consciousness resides has been one of the biggest questions in science. Although we have not
yet reached a conclusive answer, much empirical evidence has been accumulated in the course of searching for
the minimal mechanisms sufficient for conscious experience, called Neural Correlates of Consciousness (NCC)1.
Among the many problems that need to be solved in identifying NCC, we focus here on the problem of identifying
the minimally sufficient subnetworks in the brain which support conscious experience. In this study, we simply
refer to such subnetworks as “the locus of consciousness”. For example, it is commonly agreed that the retina
is not included in the locus of consciousness because it has been empirically shown that neural activities in the
retina do not directly correlate with what we perceive2. More importantly, a person who becomes retinally blind
in adulthood continues to have vivid visual dreams2. As another notable example, the cerebellum is also not
considered to be included in the locus of consciousness because lesions of the cerebellum do not much affect
conscious experience, even though it has far more neurons than the cerebral cortex and is densely connected to
the rest of the brain3,4. On the other hand, which cortical areas or subcortical areas are essential for consciousness
are still controversial (see Boly et al. (2017)5, Odegaard et al. (2017)6, and Melloni et al. (2021)7 for general
reviews, and Leopold (2012)8 for a review focusing on the primary visual cortex as an example).

In inferring the locus of consciousness in the brain, it is important to note suggestions that feed-forward
processing alone is insufficient for subjects to consciously perceive stimuli; rather, feedback is also necessary,
indicating the need for bidirectional (also called recurrent, reciprocal, or reentrant) processing9–17. The feed-
back component disappears not only during the loss of specific contents of consciousness in awake states, but
also during unconscious states, where conscious experiences are generally lost, such as general anesthesia10,18–20,
sleep21, and vegetative states22. The importance of bidirectional processing is suggested to be independent of
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sensory modality23 (vision10–12,15,16, somato-sensation9,13,14,17, audition24) and species (humans13,15,19,22, mon-
keys9–12,16,21, rodents14,17, birds25, and even flies20).

Given these findings, it appears reasonable that subnetworks in which brain areas are strongly bidirectionally
connected would be included in the locus of consciousness. In fact, many major theories of consciousness have
made similar predictions about the locus of consciousness in common, even though they differ in many other
respects26–37. Under this criterion, the retina, for example, is evidently excluded from the locus of consciousness
because it is connected to the other areas of the brain in a purely feed-forward manner. To examine the relation
between subnetworks with strong bidirectional connections and consciousness, it is important to first identify such
subnetworks and understand the bidirectional network structure of the brain. If we understand which subnetworks
are strongly bidirectionally connected and which are only weakly so connected, we can quantitatively discuss the
correspondence between these subnetworks and consciousness.

For this purpose, we propose a method for extracting subnetworks in which nodes are strongly connected in
a bidirectional manner. We call such subnetworks “complexes”; this term and concept originate from integrated
information theory, although the specific definition of complexes differs in the original theory31,33,38–41. To
be specific, in this study, we first define a “main” complex as a subnetwork that has the local maximum of
bidirectional connection strength. We evaluate the strength of bidirectional connections by a measure that takes
a large value when nodes are connected by strong bidirectional edges. To reveal the network structure, we also
define complexes as a weaker notion of a main complex. Complexes are less strongly bidirectionally connected
than a main complex and form a nested structure. That is, a main complex is included in another less strongly
connected complex; that complex is in turn included in yet another complex; and so on. In this hierarchical
organization, a main complex, intuitively speaking, is a central core where there is no weakly connected parts
and complexes are surrounding cores.

If we search for complexes by brute force, computation time grows exponentially with the number of nodes,
because we need to take account of all possible subnetworks. To reduce computation time, we can use an
algorithm proposed in our previous study41. This algorithm, called hierarchical partitioning for complex search
(HPC), enables the identification of complexes simply by hierarchically dividing the entire network. Because of
the simplicity of this algorithm, the computation time increases only polynomially with the number of nodes.
HPC allows us to find all complexes in a practical amount of time, even from large networks of thousands of
elements, without omissions or misidentifications.

As a step in investigating the relationship between bidirectionally connected subnetworks - complexes - and
consciousness, we applied the proposed method to a meso-scale, whole-brain mouse connectome42 and identified
the complexes. This connectome includes not only the cortical regions but also subcortical, brainstem and
cerebellar regions, and has high spatial resolution. These characteristics make it suitable for discussing the
relationship between brain regions and consciousness. We found that the extracted complexes with strong
bidirectional connections consist of the brain regions that are thought to be essential to consciousness. In
addition, to assess whether it is important to take account of the bidirectionality of connections, we examined
how the results are affected if the bidirectionality of connections is ignored. We found that the complexes do
not necessarily consist of the particular brain regions thought to be essential to consciousness, but rather of
various brain regions that do not directly contribute to consciousness. We also applied a widely used method
for extracting network cores, s-core decomposition, which does not consider bidirectionality. Interestingly, we
could not find such correspondence between the extracted cores and the brain regions presumably essential to
consciousness. In addition, we investigated the relationship between the complexes and the degree of nodes. We
found that the complexes with strong bidirectional connections do not necessarily consist of high-degree nodes.
This means that the core structures revealed by the complexes largely differ to the structures that are revealed by
degree-based methods that ignore bidirectionality. These results indicate that the identification of bidirectional
network structures will provide new insights into areas essential to consciousness.
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Figure 1: Schematic of extracting network cores complexes and main complexes. A complex is a subnetwork
that consists of stronger bidirectional connections than other subnetworks that include it. If we extract complexes from
the network on the left, we obtain the result on the right. There are two complexes. One is the subnetwork EFIJ , which
is colored orange. The other is the subnetwork BEFIJ , which is colored light blue. Comparing the two subnetworks,
EFIJ is more strongly bidirectionally connected than BEFIJ because the nodes EFIJ are all strongly connected to each
other while the node B is only weakly connected to the nodes EFIJ (i.e., there is only one edge in each direction, B
to EFIJ and EFIJ to B). The node set EFIJ turns out to be the most strongly connected complex in this network,
which we call the main complex. The entire network is not a complex. The strength of the bidirectional connections in the
entire network is zero because the entire network includes the nodes CDGH and A, which are connected in a completely
feed-forward manner. If we compare this network to the nervous system of the whole body of a mammal, we can consider
the bidirectionally connected nodes BEFIJ as the brain, the nodes CDGH upstream as sensory nerves such as the retina,
and the downstream node A as motor nerves.

Results

Network cores with strong bidirectional connections: Complexes

A simple example of a complex

In this study, we tried to extract the bidirectionally connected “cores” of the network, called “complexes”.
Before we introduce the definition of complexes, let us first intuitively explain the concept of complexes taking
the network shown in Fig. 1 as an example. In this example, the node A and the nodes CDGH are only
unidirectionally connected to BEFIJ , and therefore these nodes are not included in a complex. The node set
BEFIJ is a complex but only a weakly connected one, because the node B is only weakly connected to the
nodes EFIJ (i.e., there is only one edge in each direction, B to EFIJ and EFIJ to B). In contrast, the nodes
EFIJ are all strongly connected to each other, and the nodes EFIJ therefore constitute a strongly connected
complex. In this example, the node set EFIJ turns out to be the most strongly connected complex, which we
call the main complex. In general, complexes form a nested hierarchical structure, as do the node sets EFIJ
and BEFIJ . That is, a complex contains another complex that is smaller in size but more strongly connected.
The complex smallest in size is the most strongly connected, and thus the main complex.

We can consider this exemplar network as a toy network of the nervous system. For instance, we can consider
the bidirectionally connected nodes BEFIJ as the brain, the upstream nodes CDGH as sensory nerves such
as the retina (afferent nerves), and the downstream node A as motor nerves (efferent nerves). As we explain
above, the node A (motor nerves for example) and the nodes CDGH (the retina for example) are not included
in the complexes. If we assume that bidirectional processing is essential for consciousness, the motor nerves and
the retina would not be included in the locus of consciousness. In the mouse connectome network investigated
in this study, there are no nodes that are only unidirectionally connected to the rest of the network. Thus, we
cannot evidently exclude some of the nodes because of the lack of bidirectional connections. Rather, we need
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to quantitatively investigate the degree of the bidirectional connections and look at the hierarchical structure of
the complexes.

Figure 2: Strength of bidirectional connections. To measure the strength of bidirectional connections, we take the
minimum value of the sum of the weights of connections going from one part to the other and the sum in the opposite
direction. In the examples a–c, the strength of bidirectional connections between AB and CD is measured. a The connection
is completely unidirectional: there are connections from AB to CD but there are no connections in the opposite direction.
In this case, the strength of bidirectional connections is 0. b The connection from AB to CD is strong but that from CD
to AB is weak. In this case, the strength of bidirectional connections is low, which equals to 1. c The connections in both
directions are strong and the strength of bidirectional connections is high, which equals to 2.

Outline of complexes and related concepts

The mathematical definition of a “complex” is rather complicated. To get the gist of it, we first outline two
important concepts, namely strength of bidirectional connections and minimum cut, and then outline complexes.
Please see Methods for mathematically formal explanations.

Strength of bidirectional connections To define complexes, i.e. bidirectionally connected cores of a network,
we first need to have a measure that quantifies how strongly the two divided parts of a network are
bidirectionally connected. We propose a measure that is low when the connections in one direction are
weak even though those in the other direction are strong (Figs. 2a and 2b) and that is high when the
connections in both directions are strong (Fig. 2c). Specifically, we define the strength of bidirectional
connections as the minimum value of the sum of the weights of connections going from one part to the
other and the sum in the opposite direction (Eq. (6) in Methods). The strength of the bidirectional
connections defined this way is zero when the connections are completely unidirectional as in Fig. 2a, low
when the connections in one direction are weak as in Fig. 2b, and high when the connections are strong in
both directions as in Fig. 2c.

Minimum cut A complex is a network core whose parts are strongly connected to each other in a bidirectional
manner. In other words, a complex cannot be “cut” into two parts without losing many strong edges no
matter how it is cut. To measure such “inseparability” of a network, we consider the bi-partition of the
network for which the strength of bidirectional connections is minimum among those for all possible bi-
partitions, which we call a minimum cut (or a min-cut). We call the strength of bidirectional connections
for a min-cut the “min-cut weight” and represent it by wmc. As the value of a min-cut weight wmc gives
the lower bound of the strength of bidirectional connections for any possible bi-partitions of the network,
any part of the network is “bidirectionally” connected to its complement part with a strength greater than
or equal to wmc.
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Figure 3: Schematic of minimum cut. The minimum cut (min-cut) is the cut for which the strength of bidirectional
connections is minimum among all possible cuts. In this figure, we assume that all edge weights are 1. a A network consisting
of two mutually disconnected groups AB and CD. The min-cut partitions this network into the two parts AB and CD,
and its weight is zero (wmc = 0). On the other hand, if the network is cut into AC and BD, the strength of bidirectional
connections becomes nonzero. b A network where all the parts are strongly connected in a bidirectional manner. This
network cannot be separated without cutting many edges. The strength of bidirectional connections is therefore high, even
for its min-cut (wmc = 2).

If a network consists of disconnected parts as shown in Fig. 3a, the min-cut is the partition that cuts the
network into the two disconnected parts and wmc is 0. On the other hand, in a network where all the parts
are strongly connected and cannot be separated without many edges being cut as in Fig. 3b, wmc is large.
As illustrated in these examples, a larger min-cut weight wmc indicates a network that is more inseparable.

Complex Complexes and main complexes are defined using the min-cut weight wmc introduced above. A
main complex is a subnetwork that has “locally” maximal wmc. Local maximum means that wmc in a
main complex is larger than that in any other subnetwork containing it and any other smaller subnetwork
contained within it (both the left and right inequality in Fig. 4 hold). In general, a network can have multiple
main complexes. In addition to main complexes, the notion of complexes is also useful for revealing the
structure of a network. Briefly, a complex is a weaker notion of a main complex, i.e., a subnetwork such
that its wmc is greater than wmc of any other subnetwork containing it (only the right inequality in Fig. 4
holds). Complexes form a hierarchical structure: a main complex is included in a complex larger in size but
with smaller wmc, and the complex is included in yet another complex even larger in size but with smaller
wmc. Metaphorically speaking, if we consider a network as a mountain whose height is determined by the
min-cut weight wmc, a main complex tells us the peak of the mountain and the surrounding complexes tell
us the contour lines of the mountain, as illustrated in Fig. 1.
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Figure 4: Schematic of the definition of complexes and main complexes. The subnetwork {E,F, I, J} is a com-
plex because it has a greater min-cut weight wmc than any larger subnetworks that contain it, namely, {B,E, F, I, J},
{D,H,E, F, I, J}, {A,E, F,G,H, I, J}, and so on. In addition, the subnetwork {E,F, I, J} is a main complex because it
has a greater min-cut weight than not only the larger subnetworks but also any smaller subnetworks within it, namely,
{E, J}, {F, I}, {E,F, I}, and so on.

A schematic explanation of complexes is shown in Fig. 4. We consider a network, which is the same as that
in Fig. 1. For example, the subnetwork consisting of the four nodes {E,F, I, J} is a complex because its
min-cut weight wmc is greater than any larger subnetworks containing it ({B,E, F, I, J}, {D,E, F,H, I, J},
etc.). In addition, the subnetwork {E,F, I, J} is also a main complex because its wmc is greater than those
of not only larger subnetworks but also of any smaller subnetworks contained within it ({F, J}, {E,F, I},
etc.).

Extracting complexes

Fast and exact algorithm to search for complexes

If complexes are searched for by brute force, the computation time increases exponentially with the number of
nodes N . This is because it is necessary to compute the min-cut weight wmc for all of the O(2N ) subnetworks
and then compare these values. On the other hand, by using a fast and exact method we proposed in our
previous study, Hierarchical Partitioning for Complex Search (HPC)41, we need to compute wmc for only N − 1
subnetworks. As a result, the overall computation time increases only polynomially with N , and it is possible
to analyze networks with several thousands of nodes in a practical time (See Supplementary Fig. 1 for an actual
computation time evaluated by a simulation).

We illustrate how HPC works using the example shown in Fig. 5. In the following, for simplicity of notation,
we write a subnetwork consisting of a node set S simply as S. In HPC, a network is hierarchically partitioned by
min-cuts until it is decomposed into single nodes. First, the whole network V = {A,B,C,D,E, F,G} is divided
by its min-cut (indicated by a dashed line) into VL = {A,B,E, F} and VR = {C,D,G}. Then, VL is divided
into VLL and VLR, and VR into VRL and {G}. Finally, the whole network V is decomposed into seven single
nodes. After this process, we obtain the set of hierarchically partitioned subnetworks V, VL, VR, VLL, VLR, VRL.
We consider all the set of subnetworks V = {V, VL, VR, VLL, VLR, VRL}, excluding single nodes. We can then
mathematically prove that any complex in the network belongs to V. The proof is based on the mathematical
property “monotonicity” and its satisfaction by the strength of bidirectional connections (Eq. (6) in Methods).
Thus, we can consider V as the candidate complexes. We can select complexes from these V candidates without
omissions or misidentifications. See Methods for more details.

In this process, we need to evaluate wmc of only N − 1 (= 6) subnetworks, which are the subnetworks in V.
This number is much smaller than the number of subnetworks evaluated in the brute force method, 2N −N − 1
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Figure 5: Schematic of Hierarchical Partitioning for Complex search (HPC). In HPC, a network is hierarchically
partitioned by min-cuts until the network is decomposed into single nodes. In this example, the whole network V =
{A,B,C,D,E, F,G} is divided by its min-cut (indicated by a dashed line) into VL = {A,B,E, F} and VR = {C,D,G}.
Then, VL is divided into VLL and VLR, and VR into VRL and {G}. Finally, the whole network V is decomposed into
seven single nodes. In this process, we only need to evaluate the wmc of N − 1 (= 6) subnetworks. This number is much
smaller than the number of subnetworks evaluated in the brute force method, 2N − N − 1 (= 57), which is the number
of subnetworks consisting of more than one node. The subnetworks appearing in this hierarchical partitioning process are
candidate complexes. The bottom arrow indicates how we sort rows (columns) of the connection matrices in Figs. 6d and
6h and 7b and 7e (See Methods).

(= 57), which is the number of subnetworks consisting of more than one node.

Complexes in a network form a hierarchical structure

As we mention above, we can find complexes from among the candidate subnetworks (V) appearing in the
hierarchical partitioning process. Since the candidate subnetworks form a nested hierarchical structure, as we
can see in Fig. 5, complexes in a network consequently form a nested hierarchical structure as in Fig. 1. That is,
a complex contains another complex that is smaller in size but has a greater wmc. A complex that is locally the
smallest in size has a locally maximum wmc, which is a main complex. See Methods for mathematical details.

Please note that a nested hierarchical structure is not necessarily a single peak structure, but can have multiple
peaks (i.e. there can be multiple main complexes in a network). For example, in Supplementary Fig. 2, there
are two main complexes and the complexes form a nested hierarchical structure with the two main complexes as
peaks.

Demonstration of the proposed method in a toy example

In this subsection, we demonstrate with a simple example how we can understand the structure of a network
by extracting the complexes. We will also explain how to visualize the results, which will be used in showing
the results of the mouse connectome analysis in the next subsection. In addition, to show the significance of
considering bidirectionality, we illustrate using the same example how the results are affected if bidirectionality is
not considered. Finally, to highlight the characteristics of the proposed method, we compare it with a represen-
tative method for extracting network cores, s-core decomposition, which does not consider the bidirectionality
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of connections.

Understanding a network structure based on complexes

We consider the network shown in Figure 6a, which is the same as that in Fig. 1. We visualize the complexes
in this network in Fig. 6b. As mentioned in the description of Fig. 1, there are two complexes in this network.
One is the node set {E,F, I, J} (indicated by orange), and the other is the node set {B,E, F, I, J} (indicated
by light blue), and their min-cut weight wmc values are 2 and 1, respectively. The node set EFIJ is the main
complex. The whole network with non-zero wmc is always a complex because it is not contained in a larger
subnetwork. However, in this case, the min-cut weight wmc of the entire network is 0. Thus, the entire network
is not a complex because we do not call a network a complex when its wmc is 0, i.e., it is completely separable.
From this figure, we can see that the two complexes are nested. That is, the complex {E,F, I, J}, which has a
larger wmc, is contained in {B,E, F, I, J}, which has a smaller wmc.

We can also visualize complexes using connection matrices (Figs. 6c and 6d). In Fig. 6d, the rows and
columns of the connection matrix (Fig. 6c) are sorted according to the hierarchical structure of the complexes
(See Methods for a detailed description of the sorting process). In Fig. 6d, the color map indicates the min-cut
weight wmc of the complexes. Square areas correspond to the complexes and are superimposed in ascending
order of wmc. We can see that the colored square areas in the sorted connection matrix in Fig. 6d corresponds
to the colored areas in Fig. 6b.

By using the complexes and their wmc, we can also see how each node is distributed in complexes with
different strength (wmc). For example, node E is included in the strongest complex, i.e. the complex with the
highest wmc, and node B is included in the weaker complex, and so on. To quantify the strength of the complexes
that each node is included in, we use an index called “coreness”. We define the coreness of node v as kv if node v
is included in a complex with wmc = kv but not included in any complex with wmc > kv (Eq. (11) in Methods).
The coreness values correspond to the color of the nodes in Fig. 6b, and in the same way, to the color of the
diagonal elements in Fig. 6d. From this figure, we can see, for example, that nodes E, F , I, and J have the
largest value of coreness, which means that they are included in a complex with the largest value of wmc. On the
other hand, the nodes A, C, D, G, and H have a value of 0 for coreness, indicating that they are not included
in a complex with wmc > 0.

Effect of considering bidirectionality

To illustrate the significance of considering bidirectionality, we compare the complexes extracted when considering
bidirectionality with those extracted when ignoring bidirectionality. When we ignore bidirectionality, we quantify
the strength of connections by the sum of all the edge weights between two parts (divided by 2 for consistency
with the case when considering bidirectionality) as in Eq. (3) in Methods. Quantifying the strength of connections
with this simple measure is equivalent to quantifying the strength of bidirectional connections with the original
measure (Eq. (6) in Methods) after symmetrizing a network (i.e. taking the mean of the original connection
matrix W and its transpose W T ) to make it virtually undirected. See Methods for more details.

Figure 6e represents the same network as that in Fig. 6a but the direction of the connection is ignored.
The symmetrized connection matrix (W + WT)/2 is shown in Fig. 6g. Figures 6f and 6h show the results
of the extracted complexes in this undirected network. Unlike the case when bidirectionality is considered
(Figs. 6c and d), the main complex contains not only E,F ,I, and J but also C, D, G, and H. This is because the
nodes C, D, G, and H are strongly unidirectionally connected to other nodes but not bidirectionally connected.
Also, wmc for the entire network is nonzero but is zero in the original directed network. Reflecting the structure of
the complexes, the coreness values are highest for the nodes C, D, E, F , G, H, I, and J , and the coreness of every
node is nonzero (Fig. 6h). As can be seen in this example, if the bidirectionality of connections is ignored, i.e.,
only the summed strength of connections is considered, the structure of the complexes is substantially changed.

A representative existing method for extracting cores of a network is s-core decomposition43–46, which does
not consider the bidirectionality of connections (Supplementary Text 1). When s-core decomposition is applied
to the network in Fig. 6, the obtained s-cores are identical to the complexes when bidirectionality is ignored. In
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Figure 6: Complexes in a toy network. Bidirectionality is considered in a–d and ignored in e–h. a A toy network,
which is the same as the network in Fig. 1. b The structure of complexes. Each complex is indicated by a color representing
the min-cut weight wmc. c The connection matrix of the network in a. Edge weight is shown in grayscale: white, gray
and black indicate 0, 1 and 2, respectively. d The rows and columns of the connection matrix are sorted according to the
hierarchical structure of the complexes. The color map changing from blue to orange indicates the min-cut weight wmc of
the complexes. Square areas correspond to the complexes and they are superimposed in the ascending order of wmc. The
plot at the bottom shows coreness values. e The same network as in a except that the direction of connections are ignored,
which corresponds to ignoring bidirectionality of connections (see Methods). f–h The connection matrix, the complexes,
and the sorted connection matrix and the coreness as in b–d.

general, it can be mathematically proven that s-cores are identical to complexes when bidirectionality is ignored
under a certain condition (see Supplementary Text 1 for details). In this example, the condition holds, and
accordingly the extracted s-cores and the complexes are exactly the same.

Complexes in a mouse connectome

To demonstrate whether our method is able to extract meaningful bidirectionally connected cores in a brain
network, we applied it to a mouse connectome42 and extracted complexes. We consider this mouse connectome
to be highly suitable for this purpose because it includes not only the cortical regions but also subcortical,
brainstem, and cerebellar regions, and has high spatial resolution.

It consists of 213 brain regions in each hemisphere, giving 426 nodes in total. Each brain region is at a mid-
ontology level and is classified into one of the major brain regions such as the isocortex, thalamus, and cerebellar
cortex. The connection matrix is shown in Fig. 7a. The color coding at the top and left of the connection matrix
indicates the major brain regions. The color of each entry in the matrix indicates the edge weight between the
brain regions that can be considered to be proportional to the total number of axonal fibers projecting from one
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Figure 7: Complexes in a mouse connectome. Bidirectionality is considered in panels a–c and ignored in panels d–f.
a The inter-region connection matrix of the mouse connectome. The color bars at the left and top of the matrix represent
major brain regions and whether they are in the left or right brain. b Structure of complexes. A connection matrix in
which the rows and columns are sorted according to the hierarchical structure of complexes as in Fig.6. The change in
color map from blue to yellow indicates the min-cut weight wmc of the complexes. Square areas correspond to complexes
and are superimposed in ascending order of wmc. At the left, the brain regions included in the complexes with high wmc

values (top 1, i.e., the main complex, to top 11) are enlarged. c The coreness values are plotted for each major brain
region. The regions above the dashed line, which indicates the upper quartile of coreness values for all regions, correspond
to the enlarged regions in b. d The inter-region connection matrix when bidirectionality is ignored, i.e. the mean of the
original connection matrix W and its transpose WT , (W +WT )/2. e Structure of complexes. At the left, the brain regions
included in the complexes with high wmc values (top 1, i.e., the main complex, to top 14) are enlarged. f The coreness
values are plotted for each major brain region. The regions above the dashed line, which indicates the upper quartile of
coreness values for all regions, correspond to the enlarged regions in e.
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region to the other. See Oh et al.42 for a detailed description.

Brain regions included in complexes

We extracted complexes in the mouse connectome using the proposed method. The extracted complexes are
visualized in Fig. 7b. In Fig. 7b, the rows and columns of the connection matrix (Fig. 7a) are sorted according to
the structure of the complexes in the same way as in Fig. 6. The color coding, which changes from blue to yellow,
represents the value of the min-cut weight wmc of the complexes. See Supplementary Table 1 for specific regions
names and the detail values of wmc. On the left side of Fig. 7b, the brain regions included in the complexes
with high wmc values are enlarged. Specifically, the regions included in the complexes with the highest (a main
complex) to the 11th highest wmc are extracted. The 11th highest wmc corresponds to the upper quartile of the
coreness value for all regions.

In the following, we describe the regions that constitute the complexes with high wmc. In doing so, we do not
distinguish between the left and right brains, because the extracted complexes were perfectly symmetric. That
is, when a region on one side was included in a complex, the corresponding region on the opposite side was also
included in the complex.

We observed that many regions in the cerebral cortex are included in top complexes (complexes with high
wmc). In particular, mainly the isocortical regions constitute the first through third complexes. The only
exceptions are the claustrum (CLA) and the basolateral amygdalar nucleus (BLA) in the cortical subplate,
which are included in the third complex. The 4th to 9th complexes consist of the regions listed above plus
other isocortical and thalamic regions, and the lateral parts of the entorhinal cortex (ENTl) in the hippocampal
formation. The 10th and 11th complexes further includes some regions in the isocortex, olfactory areas, cortical
subplate and pallidum. The regions in the other major regions are not included in the 1st to 11th complexes.

Thus, the regions included in the complexes with the highest wmc are not evenly distributed among all major
regions, but are rather concentrated in the cortical (particularly isocortical) regions and thalamic regions. We
can confirm the unevenness among the major regions from the coreness values (Fig. 7d, Supplementary Table 2).
Regions in the isocortex have particularly high coreness values (i.e., they are included in complexes with high
wmc). Also, regions in the thalamus have high coreness values. Other regions with high coreness values are the
CLA and BLA in the cortical subplate, followed by ENTl in the hippocampal formation, and some regions in
the olfactory areas, cortical subplate and pallidum. On the other hand, regions in the other major regions have
low coreness values. In particular, regions in the cerebellar cortex and cerebellar nuclei have much lower coreness
values.

These results suggest that there appears to be a good correspondence between whether or not a region is
included in complexes with high wmc and whether or not a region is considered important for consciousness.
For example, the isocortex and thalamus are considered essential to consciousness, whereas the cerebellar cortex
and cerebellar nuclei do not directly contribute to consciousness1,19,33. Other than the isocortical and thala-
mic regions, the CLA in the cortical subplate has long been associated with consciousness47. We discuss the
relationship between consciousness and the regions included or not included in the top complexes in detail in
Discussion.

Large difference in complexes when bidirectionality is ignored

Next, we investigated how the results change when the bidirectionality of the connections is ignored, i.e., the
direction of connections is ignored and only the summed strength of connections is considered, as is in the
example in Figs. 6d–f. Figure 7d shows the symmetrized connection matrix, based on which the complexes are
extracted.

Let us first mention that similar to the case when considering bidirectionality, the results are symmetric
between the left and right brains. That is, one of the following two conditions is satisfied: (1) as is in the case
when considering bidirectionality, if a region on one side was included in a complex, the corresponding region
on the opposite side was also included in the complex; or (2) if a region on one side was included in a complex
S, the corresponding region on the opposite side was included in another complex with the same strength of
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Figure 8: Histograms and scatter plots of coreness values and degree of nodes. Histograms of the coreness values
and degree of nodes appear along the diagonal. Scatter plots of pairs of coreness value or degree of nodes appear in the off
diagonal. Color of the points indicates major brain regions. The line in each scatter plot is the identity line (y = x).

bidirectional connections as that of S. We therefore do not distinguish between the left and right brains in the
following.

Figure 7e represents the extracted complexes. See Supplementary Table 1 for specific regions names and the
detail values of wmc. In the left side of Fig. 7e, the brain regions included in the complexes with the highest to
14th values of wmc is enlarged. The 14th highest wmc corresponds to the upper quartile of the coreness value
for all regions. By comparing the brain regions in the top complexes shown in Fig. 7e with Fig. 7b, we can see
that these are largely different in the sense that the brain regions in the top complexes are evenly distributed
in almost all of the major brain regions when bidirectionality is ignored but are included in particular major
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regions such as the isocortex or thalamus when bidirectionality is considered. In fact, regions in all major regions
except the cerebellar cortex are included in the complex with second highest wmc when bidirectionality is ignored.
We then investigate the change by ignoring bidirectionality using the coreness values (Fig. 7f, Supplementary
Table 2). We observed that the difference among the major brain regions becomes small when bidirectionality
is ignored. The maximum values of coreness are equal for many major regions. This reflects the fact that the
regions included in the complex with large wmc are evenly distributed in many major regions. Also, the median
coreness values (represented by white circles in Fig. 7f) are equal for many major regions.

From Fig. 7f, we can see that there are two regions that have a particularly high coreness value, namely the
frontal pole (FRP) in the isocortex and the caudoputamen (CP) in the striatum. The high coreness of these
two regions is due to the strong connection from CP to the FRP. On the other hand, when bidirectionality is
considered, the coreness value of CP is low because the connection in the opposite direction, FRP to CP, is weak.

To directly compare the two cases, namely when bidirectionality is considered or ignored, we made a scatter
plot of coreness in Fig. 8, (1,2) or (2,1) panel. (See also the network diagram that compares the two cases in
Supplementary Fig. 3). We can see that the distributions in the two cases are very different: regions with high
coreness values when bidirectionality is considered do not necessarily have high coreness values when bidirection-
ality is ignored, and vice versa.

Thus, if we ignore the bidirectionality of connections, the results change drastically; the complexes no longer
necessarily consist of regions presumably essential to consciousness. This suggests that considering the bidirec-
tionality of connections is important in associating the network core complexes with consciousness.

Comparison with other existing methods

To further assess the significance of considering bidirectionality, we compare the proposed method with other
existing methods that do not take account of bidirectionality. We first consider s-core decomposition43–46, one
of the most popular methods for extracting network cores. As we mentioned in the toy network analysis, s-core
decomposition does not consider bidirectionality of connections and s-cores become identical to complexes when
bidirectionality is ignored under a certain mathematical condition (See Supplementary Text 1 for details). In
the mouse connectome case, this condition does not hold exactly, but almost does, and the obtained s-cores are
almost the same as the complexes when bidirectionality is ignored. We can see that the coreness values for s-core
decomposition (Coreness for s-core decomposition is defined in the same way as for complexes; see Methods)
and those for the complexes when bidirectionality is ignored are almost identical (Fig. 8, (2,3) or (3,2) panel).
Since for complexes the difference in coreness values among the major regions is small when bidirectionality is
ignored (Fig. 7f), the difference is accordingly also small for s-cores. This means that the s-cores with a high s
do not necessarily consist of regions in particular major regions, and therefore do not consist mainly of regions
considered essential to consciousness.

Next, we investigated whether the complexes with strong bidirectional connections simply consist of the brain
regions with high degree, i.e., network hubs48,49. The degree of a node is the sum of weights of edges connecting
to it, irrespective of direction (Eq. (12) in Methods), and the network hubs are nodes with high degree. If the
complexes with strong bidirectional connections consist of the hub regions, this means that bidirectionality does
not matter to the extraction of complexes. We observed that the complexes when bidirectionality is considered
do not necessarily consist of regions with high degree. In Fig. 8, (1,4) or (4,1) panel, we can see that the
coreness values for the complexes when bidirectionality is considered and the degree are only weakly correlated:
many brain regions with high coreness values have low degree. In contrast, the coreness for the complexes when
bidirectionality is ignored (and the coreness for s-core decomposition) corresponds well to the degree, especially
around the lower degree range (Fig. 8, (2,4) or (4,2) panel). Thus, these results indicate that the consideration
of bidirectionality in the proposed method enabled us to extract core structures in the mouse connectome that
cannot be extracted by simple degree-based methods.
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Discussion

In this study, we proposed a method to find the network cores, called “complexes”, that consist of strong
bidirectional connections. If we search for complexes by brute force, computation time grows exponentially with
the number of nodes. To solve this problem, we introduced a fast and exact algorithm proposed in our previous
study, hierarchical partitioning for complex search (HPC)41. The HPC algorithm reduces the computation time to
polynomial time and enables the analysis of large networks consisting of up to several thousand nodes in a practical
amount of time. By utilizing HPC, we extracted complexes in a mesoscale, whole-brain mouse connectome
consisting of 426 regions42, with the aim of identifying subnetworks in the brain relevant for consciousness. We
found that complexes with strong bidirectional connections include many brain regions that have been considered
essential for consciousness in previous studies. We also found that if bidirectionality is ignored, the brain regions
included in the complexes with strong connections are evenly distributed in major brain regions regardless of
whether or not they are relevant for consciousness. These results indicate that bidirectionality may be the key
that characterizes the regions essential for consciousness.

Correspondence between complexes and essential regions for consciousness

In this subsection, we discuss the relationship between complexes and the regions essential for consciousness. We
first discuss in detail the brain regions with high coreness, i.e., the regions included in the complexes with strong
bidirectional connections, and then the brain regions that are not included in such strong complexes.

First, many regions in the cerebral cortex, especially the isocortical regions, have high coreness. Previous
studies suggested that bidirectional interaction among isocortical regions is essential for consciousness1,34,37. In
addition to the isocortical regions, the claustrum (CLA) in the cortical subplate also has high coreness. Francis
Crick speculated that the CLA is the seat of consciousness, and that metaphorically speaking it plays the role of
the conductor that orchestrates the brain47. In fact, recent studies in mice suggest that the CLA is involved in
the control of arousal and sleep levels50,51. The CLA is also suggested to have a role in salience processing and
attention control52–57, and might therefore be involved in selecting what comes to one’s conscious perception.

As for the subcortical regions, many thalamic regions also have high coreness. It is suggested that the thalamo-
cortical loop - a circuit composed of the thalamus and cortical regions - is important for consciousness58–61.

As we discuss above, the brain regions with high coreness seem to correspond well with the regions that are
considered essential to consciousness. However, the brain regions with high coreness also include some regions
which have not yet been shown to be relevant to consciousness. A notable example is the basolateral amygdalar
nucleus (BLA) in the cortical subplate. The BLA has the same coreness as the CLA, which is highest excluding
the isocortical regions. The BLA is thought to be critical for emotion (positive and negative valence) and to
mediate conditioning both for reward and fear62. To our knowledge, however, the relationship between the BLA
and consciousness is little understood (e.g., whether the BLA directly contributes to subjective experience of
emotions). Further investigation of such brain regions would be useful.

In addition to investigating whether the regions with high coreness are relevant to consciousness, it is also
important to investigate the converse, namely whether the regions with low coreness, which are very weakly
bidirectionally connected, are presumably irrelevant to consciousness. Notably, we found that all nodes in the
cerebellar cortex and cerebellar nuclei have low coreness. It is well known that the cerebellum does not directly
contribute to consciousness3,4 even though it has much more neurons than the cerebrum. We also found that
the regions in the midbrain, medulla, and pons - the major regions which constitute the brainstem - have low
coreness. Although the brainstem is important for enabling consciousness, it is not thought to contribute directly
to conscious experience, in the same way that the heart is important for enabling consciousness but does not
contribute directly to conscious experience. These are called background conditions1.

Taking our results together, we have found that (1) brain regions presumably essential to consciousness have
high coreness - that is, they are included in complexes with strong bidirectional connections; and that (2) brain
regions presumably irrelevant to consciousness have low coreness, meaning that the regions are only weakly
bidirectionally connected to other regions.
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Significance of considering bidirectionality

We here discuss how considering bidirectionality affects the results of the complexes and its importance in relating
the complexes with the locus of consciousness. As we have seen in Results, when bidirectionality is ignored, the
structure of the complexes largely differs from that when bidirectionality is considered. One large difference is
that the difference in coreness between major regions is smaller when bidirectionality is ignored. Regions in the
cerebellum (cerebellar cortex and cerebellar nuclei) and brainstem (midbrain, pons and medulla), which have
smaller coreness than other regions such as the isocortex and thalamus when bidirectionality is considered, have
similarly high coreness to these regions when bidirectionality is ignored. As mentioned in the previous section,
these regions have not been so far considered to directly contribute to consciousness1,3,4. Another large difference
is that the caudoputamen (CP) in the striatum, which is not included among complexes with large wmc when
bidirectionality is considered, forms the main complex when bidirectionality is ignored. The striatum, more
broadly the basal ganglia, is not thought to contribute directly to consciousness5,39 (but see63,64).

Thus, when bidirectionality is ignored, regions both relevant and irrelevant to consciousness are evenly in-
cluded in the strong complexes. Thus, the seemingly good correspondence between complexes and regions
relevant to consciousness we identified when considering bidirectionality is largely lost.

Comparison with other core extraction methods in terms of bidirectionality

In the literature, a variety of methods have been applied to connectomes to extract network cores in which
elements are densely connected to each other. In what follows, in terms of bidirectionality of connections, we
compare complexes with three representative methods for core extraction, namely s-core decomposition, network
hubs, and modularity maximization.

In this study, we first compared s-core decomposition with the complexes. s-core decomposition is a rep-
resentative method which has been widely applied to connectomes of various species43,44,46, and the extracted
cores are related to certain functions. We showed that the s-cores extracted from the mouse connectome largely
differ to the complexes when bidirectionality is considered, but are almost identical to the complexes when bidi-
rectionality is ignored. This means that the consideration of bidirectionality enabled us to reveal core structures
that cannot be revealed by s-core decomposition.

We next compared network hubs48,49 with the complexes. Previous studies showed that the brain network
contains cores in which hubs (high-degree nodes) are densely connected to each other (called “rich-clubs”)45,46,49.
We showed that in the mouse connectome the complexes with strong bidirectional connections included not only
high-degree nodes but many low-degree nodes (Fig. 8). This means that the core structures revealed by the
complexes largely differ to the structures that can be revealed by hub-based methods.

Finally, we discuss modularity maximization, which is also widely used in connectome analysis65. Similar
to the proposed method, modularity maximization is a method used to extract subnetworks with dense con-
nections. Its objective is, however, qualitatively different from that of the proposed method. The objective of
modularity maximization is to partition a network into non-overlapping cores (called modules or communities)
with dense internal connections, and not to decompose a network hierarchically as for complexes. This difference
in objectives hampers direct quantitative comparison of the two methods by experiments. We therefore confined
ourselves here to a qualitative comparison in terms of bidirectionality. The mathematical formulation of modu-
larity maximization is suitable for undirected networks65. It is therefore impossible to consider the direction of
connections and hence bidirectionality. However, a variant of the modularity maximization methods considers
the direction of connections when defining the density of connections66. This variant does not consider bidirec-
tionality, however, and extracted modules do not therefore necessarily consist of bidirectional connections, i.e.,
modules have fully feed-forward structures.

As exemplified above, the core extraction methods in wide current use for connectome analysis do not
consider the bidirectionality of connections. Thus, we conclude that the main result of the present paper, which
has revealed the correspondence between the network cores of the brain and consciousness, can only be achieved
by methods such as the proposed method which take account of the bidirectionality of connections.
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Number of main complexes

In general, since main complexes are “local” maxima in terms of wmc, there can be multiple main complexes in
a network as we mentioned in Results. An extreme example occurs when a network consists of two mutually
disconnected modules: in this case, there will be two (or more) main complexes. The presence of multiple main
complexes in a network indicates that the network consists of multiple weakly coupled modules.

In the mouse connectome, there are five main complexes when bidirectionality is considered, albeit that
we only mentioned one of them in Results. The main complex we mentioned has the highest wmc of all main
complexes (and of all subnetworks by definition) and is largest in size among all main complexes. The other
main complexes, which we did not mention, have low wmc and consist of only two regions, i.e., are minimum in
size. This means that the mouse connectome can be almost considered to consist of one large module.

Thus, we can ascertain modular structure using complexes. In contrast, when we use s-core decomposition,
this cannot be ascertained. Consider a network consisting of two densely connected parts, as shown in Supple-
mentary Fig. 4. In this case, s-core decomposition extracts the entire network as a single core and does not
extract the modular structure in this network. The proposed method, on the other hand, extracts two modules
as two main complexes. This is because s-core decomposition uses only local information, i.e., degree of nodes,
and cannot consider the global structure of a network as a whole. On the other hand, the proposed method uses
the global information of networks, min-cuts, which allows us to extract the modular structure.

Limitations of this study and future direction

We searched for complexes using a method proposed in our previous study, hierarchical partitioning for complex
search (HPC)41. The computation time of HPC increases only polynomially with the number of the nodes,
which is much smaller than the exponential increase in brute force search. This enables us to find complexes in
a network with several thousand nodes in a practical amount of time. However, to find complexes in networks
with more nodes (N � 2, 000–3, 000), a further speeding-up is required. One possible solution is the use of
approximation algorithms for min-cut search67 instead of the exact algorithm, the Hao-Orlin algorithm68, which
we used in this study.

In this study, we discussed how complexes extracted from the mouse connectome, which consists of anatomical
connections, are related to consciousness. We should note, however, that it is not the anatomical connections
themselves that are directly responsible for conscious experiences at a particular time, but rather interactions
between brain regions that result from the brain activity9–17. The location of bidirectional interactions changes
from time to time, and the brain regions that mediate consciousness can also change accordingly1,33. To capture
such dynamic change in consciousness, future research should therefore aim to extract complexes from functional
or causal networks constructed by quantifying interactions using brain activity data. The relationship between
anatomical and functional networks is not as simple as a one-to-one correspondence. It is empirically known,
however, that there are some similarities between them69–71, as would be naturally expected from the fact that
anatomical connections are the basis for interactions between brain regions. We therefore expect that complexes
extracted from functional networks could be similar to the complexes extracted from the anatomical network.

Methods

Strength of bidirectional connections

Here, we propose a way of quantifying how strongly two parts of a graph are bidirectionally connected. We
consider a directed graph G(V,E), where V and E are the node set and the edge set, respectively. For a bi-
partition of the node set V , (VL, VR), there are two types of edges that connect VL and VR depending on its
direction. One is the set of edges outgoing from VL to VR:

E(VL → VR) = {(u, v) ∈ E|u ∈ VL, v ∈ VR}. (1)
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The other is the set of the edges incoming to VL from VR (or equivalently, outgoing from VR to VL):

E(VR → VL) = {(u, v) ∈ A|u ∈ VR, v ∈ VL}. (2)

When we ignore the directions of the connections between VL and VR, the simplest way of quantifying the
strength of the connections is to add up all the weights of the edges that connect VL and VR regardless of their
directions:

wsimple sum(VL;VR) =
1

2

∑
e∈E(VL→VR)∪E(VR→VL)

we, (3)

where we represent the weight of the edge e. The factor 2 in the denominator is for consistency with the strength
of bidirectional connections, as explained later.

On the other hand, when we consider the bidirectionality of connections between VL and VR, we first separately
add up the weight of the edges for each direction,

w(VL → VR) =
∑

e∈E(VL→VR)

wa, (4)

w(VR → VL) =
∑

e∈E(VR→VL)

wa, (5)

and then define the strength of bidirectional connections as their minimum:

w(VL;VR) = min (w(VL → VR), w(VR → VL)) . (6)

With this definition, if two parts of a network are only connected unidirectionally, as in Fig. 2a, the strength of
bidirectional connections w(VL;VR) is 0, which means that the two parts are considered to be “disconnected”
bidirectionally. In Fig. 2b, the connection from one part to the other part is strong (3) but that in the other
direction is weak (1). Consequently, the strength of bidirectional connections is low (w(VL;VR) = 1). In
Fig. 2c, the connections in both directions are strong (2) and the strength of bidirectional connections is high
(w(VL;VR) = 2). If we ignore the directionality of connections and add up the edge weights in the two directions
(wsimple sum), the strength of connections is evaluated as 2 in all three cases.

The two measures w(VL;VR) and wsimple sum, with and without considering bidirectionality, are equal to each
other when connections are symmetric (w(u,v) = w(v,u)).

Minimum cut

Definition of minimum cut

A cut of a graph G(V,E) is called a minimum cut if the strength of the connections for the cut is not higher
than that of any other cut. More formally, a minimum cut (V mc

L , V mc
R ) is defined as follows:

(V mc
L , V mc

R ) = arg min
(VL,VR)∈PV

w(VL;VR), (7)

where PV denotes the set of all bi-partitions of V . We denote the weight of the minimum cut (V mc
L , V mc

R ) of a
graph G as

wmc
G := w(V mc

L ;V mc
R ). (8)

Fast and exact algorithms for searching for min-cuts

We defined a measure of strength of bidirectional connections as in Eq. (6). Although this definition is different
from the canonical definition of a graph cut weight for directed graphs, the minimum cut problems for the
two definitions are equivalent (Supplementary Text 2). Therefore, we can use a well-established algorithm to
solve the minimum cut problem. In this study, we utilize the Hao-Orlin algorithm68. Its time complexity is
O(|V ||E| log(|V |2/|E|), where |V | and |E| are the number of nodes and edges, respectively.
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Complex

In this section, we introduce the definition of a complex40,41,72. We also introduce a main complex, which is a
stronger definition of a complex40,41,72.

To formally define complexes, we need to introduce the concept of an induced subgraph. Let G be a graph
consisting of node set V and edge set E, and let S ⊆ V be a subset of nodes. Then, an induced subgraph G[S]
is the graph consisting of all the nodes in S and all the edges connecting the nodes in S. The min-cut weight of
G[S] is denoted by wmc

G[S]. We are now ready to define complexes.

Definition 1 (Complex). An induced subgraph G[S] (S ⊆ V ) is called a complex if it satisfies wmc
G[S] > 0 and

wmc
G[S] > wmc

G[T ] for any subset T that is a superset of S (T ⊃ S and T ⊆ V ).

A schematic explanation of the definition of a complex is shown in Fig. 4. In this schematic, we consider
induced subgraphs of a graph G consisting of ten nodes {A,B, . . . , J}. An induced subgraph G[{E,F, I, J}] is a
complex because it has greater wmc than any induced subgraph of G that is its supergraph (e.g., G[{B,E, F, I, J}]
and G[{D,E, F,H, I, J}]).

The whole graph G is a complex if it satisfies wmc
G > 0 by definition. We define wmc = 0 for single nodes

because we cannot consider partitions of a single node. Therefore, single nodes cannot be complexes.
An induced subgraph is called a main complex if its min-cut weight wmc is larger than those of any induced

subgraphs that are its supergraphs, and is also larger than or equal to those of any induced subgraphs that are
its subgraphs. That is, a complex is called a main complex if its min-cut weight wmc is larger than or equal to
those of any induced subgraphs that are its subgraphs.

Definition 2 (Main complex). A complex is called a main complex if it satisfies wmc
G[S] ≥ wmc

G[R] for any subset

R of S (R ⊂ S).

A schematic explanation of the definition of main complexes is shown in Fig. 4. An induced subgraph
G[{E,F, I, J}] is a main complex because it is a complex and has greater wmc than any induced subgraph that
is its subgraph (e.g., G[{F, J}] and G[{E,F, I}]).

Hierarchical Partitioning for Complex Search

If we search for complexes by brute force, computation time increases exponentially with the number of nodes.
Therefore, when the number of nodes in the network exceeds several tens, it becomes practically impossible to
identify the complexes. On the other hand, using the algorithm Hierarchical Partitioning for Complex Search
(HPC), which we proposed in a previous study41, the computation time increases only polynomially with the
number of nodes. HPC is an exact method that does not use approximations and can extract all complexes
without any omissions or misidentifications. This makes it possible to extract all complexes from a network
consisting of several thousand nodes in a practical computation time. An actual computation time evaluated by
a simulation is shown in Supplementary Fig. 1.

In what follows in this subsection we write the induced subgraph G[S] for a node subset S as S for simplicity
of notation.

HPC primarily consists of two steps. The first is listing candidates of (main) complexes. HPC narrows
down candidates for (main) complexes by hierarchically partitioning a network. The second step is screening the
candidates to find (main) complexes.

In the first step, HPC hierarchically partitions a network with min-cuts (Fig. 5). HPC starts by dividing the
whole network with its min-cut, and then repeatedly divides the subnetworks with their min-cuts until the entire
network is completely decomposed into single nodes. This procedure in HPC is summarized as follows:

1. Find the min-cut (VL, VR) of the whole network V and divide the whole network V into the two subnetworks
VL and VR.
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2. Find the min-cuts of the subnetworks found in the previous step, VL and VR, and divide them into (VLL,
VLR) and (VRL, VRR), respectively.

3. Repeat this division until the whole network is decomposed into single nodes.

After the procedure above, we obtain the set of hierarchically partitioned subnetworks, that is, V , VL, VR, VLL,
VLR, VRL, VRR, and so on. We consider all the set of subnetworks

V = {V, VL, VR, VLL, VLR, VRL, VRR, . . .}, (9)

excluding single nodes. Then, the following theorem holds.

Theorem 3. Any complex S ⊆ V belongs to V (S ∈ V).

Thus from this theorem, V can be seen as the set of candidates of complexes. The theorem is based on
satisfaction of a mathematical property “monotonicity” by the strength of bidirectional connections (Eq. (6)).
Let us consider the strength of bidirectional connections w(S;T ) between two subsets of nodes S and T . If we
then add another set of nodes U to S, the strength of bidirectional connections does not decrease. That is,

w(S ∪ U ;T ) ≥ w(S;T ). (10)

Also, if we add U to T , w(S;T ∪U) ≥ w(S;T ). This inequality means that the strength of bidirectional connec-
tions monotonically increases as nodes are added. We call this property “monotonicity”. By using monotonicity,
we can easily show that a subnetwork cannot be a complex if it straddles the boundary of a min-cut of a
subnetwork that contains it, and can prove Theorem 3 (see our previous work41 for the proof).

After the hierarchical partitioning procedure described above, in the second step, we need to check whether
each candidate of complexes belonging to V is actually a (main) complex or not in accordance with Def. 1. We
can efficiently check this by taking advantage of the hierarchical (tree) structure. For more detail please see our
previous work41.

In general, a network can have multiple min-cuts. If this is the case, depending on which min-cut is used to
divide a network in the hierarchical partitioning process, the candidate set of complexes V can vary. However,
even though V varies, the resulting complexes (and also main complexes) do not vary. This is because any of the
candidate sets contains all (main) complexes independent of which min-cut is used. Therefore we do not have to
care which of multiple min-cuts we select.

Coreness of each node

Using the complexes and their wmc, we define a “coreness” of each node. When a node is included in complexes
with high wmc, the coreness of that node is high, and conversely, when a node is included only in complexes with
low wmc, the coreness of that node is low. Specifically, we define the coreness of a node v as kv if the node v
is included in a complex with wmc = kv but not included in any complex with wmc > kv. Equivalently, we can
define the coreness of a node v as the largest of the wmc of all complexes containing the node v:

kv = max
C∈Gcomplex|v∈V (C)

wmc
C , (11)

where Gcomplex denotes the set of all complexes in the graph G and V (C) denotes the set of all nodes in the
complex C.

In the same way, we can define a coreness for s-core decomposition: we define the coreness of a node v as s
if node v is included in s-core but is not included in any s′-core with s′ > s.
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Degree of a node

We define the degree of a node v as the sum of the weights of all edges connecting v and other nodes, irrespective
of the direction of edges:

deg(v) =
1

2

∑
e∈E(v,V )

we,

E(v, V ) = {(v, u) ∈ E|u ∈ V }.
(12)

The factor 2 in the denominator is for consistency with the strength of connections: when we measure the
strength of connections (Eq. (3)) between a node and the nodes connecting to it, it becomes equal to the degree
of the node. This degree can be also regarded as the mean of in-degree and out-degree.

Sorting rows and columns of a connection matrix according to the structures of complexes

In Figs. 6 b and 6h and Figs. 7 d and 7h, we sorted rows and columns of a connection matrix according to the
hierarchical structures of the complexes. Here we explain this sorting process in detail.

To start, we sort the rows and columns in the order of the leaf nodes of the hierarchical structure obtained
by hierarchical partitioning (Fig. 5). In the case of Fig. 5, the rows (columns) are sorted in the order of A, B,
E, F , C, D, and G. We now explain in detail. At each step of the hierarchical partitioning process, we sort the
nodes according to which of the two subnetworks (e.g., VL or VR) they are classified in. Therefore, at the end
of the process, nodes classified into the same groups until a late stage of the process are placed close to each
other, whereas those classified into different groups at an early stage are placed away from each other. Since the
hierarchical structure obtained by the hierarchical partitioning is the basis of the hierarchical structure formed
by the complexes, the result is that nodes in the same complex with high wmc are placed close to each other.

This is the rough flow of how the order of nodes is determined. This alone, however, is not enough to uniquely
determine the order. There is still arbitrariness with regard to which of the two subnetworks (e.g., VL or VR)
comes first at each step of the process. To eliminate this arbitrariness, we chose to place the upstream subnetwork
first. That is, for example, when the strength of the connections from VL to VR (Eq. (4)) is higher than that in
the opposite direction (Eq. (5)), i.e., when VL is located relatively upstream to VR, VL is placed ahead of VR. If
the strengths of the connections in the two directions are equal to each other, we arranged the rows (columns)
so that their original order is maintained.
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[12] Matthew W Self, Roxana N Kooijmans, Hans Supèr, Victor A Lamme, and Pieter R Roelfsema. Different
glutamate receptors convey feedforward and recurrent processing in macaque V1. Proc. Natl. Acad. Sci. U.
S. A., 109(27):11031–11036, July 2012.

[13] Ryszard Auksztulewicz, Bernhard Spitzer, and Felix Blankenburg. Recurrent neural processing and so-
matosensory awareness. J. Neurosci., 32(3):799–805, January 2012.

[14] Shankar Sachidhanandam, Varun Sreenivasan, Alexandros Kyriakatos, Yves Kremer, and Carl C H Petersen.
Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci., 16(11):1671–
1677, November 2013.

[15] Hanlin Tang, Calin Buia, Radhika Madhavan, Nathan E Crone, Joseph R Madsen, William S Anderson, and
Gabriel Kreiman. Spatiotemporal dynamics underlying object completion in human ventral visual cortex.
Neuron, 83(3):736–748, August 2014.

[16] Mika Koivisto, Granit Kastrati, and Antti Revonsuo. Recurrent processing enhances visual awareness but
is not necessary for fast categorization of natural scenes. J. Cogn. Neurosci., 26(2):223–231, February 2014.

[17] Satoshi Manita, Takayuki Suzuki, Chihiro Homma, Takashi Matsumoto, Maya Odagawa, Kazuyuki Yamada,
Keisuke Ota, Chie Matsubara, Ayumu Inutsuka, Masaaki Sato, Masamichi Ohkura, Akihiro Yamanaka,
Yuchio Yanagawa, Junichi Nakai, Yasunori Hayashi, Matthew E Larkum, and Masanori Murayama. A
Top-Down cortical circuit for accurate sensory perception. Neuron, 86(5):1304–1316, June 2015.

[18] Seung-Woo Ku, Uncheol Lee, Gyu-Jeong Noh, In-Gu Jun, and George A Mashour. Preferential inhibition
of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical
patients. PLoS One, 6(10):e25155, October 2011.
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Didier Ledoux, Vincent Bonhomme, Jean-François Brichant, Giulio Tononi, Steven Laureys, and Karl Fris-
ton. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness.
J. Neurosci., 32(20):7082–7090, May 2012.

[20] Dror Cohen, Bruno van Swinderen, and Naotsugu Tsuchiya. Isoflurane impairs Low-Frequency feedback
but leaves High-Frequency feedforward connectivity intact in the fly brain. eNeuro, 5(1), January 2018.

[21] L J Cauller and A T Kulics. A comparison of awake and sleeping cortical states by analysis of the
somatosensory-evoked response of postcentral area 1 in rhesus monkey. Exp. Brain Res., 72(3):584–592,
1988.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.12.452022doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.452022
http://creativecommons.org/licenses/by-nc-nd/4.0/


[22] Melanie Boly, Marta Isabel Garrido, Olivia Gosseries, Marie-Aurélie Bruno, Pierre Boveroux, Caroline
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Supplementary information

Supplementary Text 1. s-core decomposition and its relation to the proposed method.

Supplementary Text 2. Equivalence between the min-cut considering bidirectionality and the
canonical min-cut for directed graphs.

Supplementary Figure 1. Computation time of Hierarchical Partitioning for Complex Search.
Computation time was evaluated by a simulation. In the simulation, networks with different numbers of nodes
were randomly generated. The weight of each edge was sampled from a uniform distribution in the interval
(0, 1). The red circles and the red solid lines indicate the computation time of Hierarchical Partitioning for
Complex Search and a fitted linear function (log10 T = 3.419 log10N − 7.463 (T ∝ N3.419)). The black triangles
and black dashed lines indicate the computation time of the exhaustive search and a fitted exponential function
(log10 T = 0.5421N − 5.179). The simulation was done on a machine with an Intel Xeon Gold 5220 processor at
2.20 GHz. All the calculations were implemented in MATLAB 2019a.

Supplementary Figure 2. A network with two main complexes. There are two main complexes
({D,E, F} and {G,H, I}) and the complexes form a nested hierarchical structure with the two main complexes
as peaks.

Supplementary Figure 3. Network diagrams. To directly compare the network structure revealed by the
complexes when bidirectionality is considered and ignored, we plotted a network diagram. Each node represents
a brain region. The color of each node indicates the major brain region in which the node is included. The
size of each node indicates its degree. Each edge represents the connection between a node pair. The width
of each edge is proportional to the edge weight (for visibility, only edges with the top 20% weight are shown).
The color of each edge indicates the min-cut weight wmc. More specifically, if two nodes are included in the
same complex with wmc = w, then the edge between them is colored with the color corresponding to w. The
color is overwritten in the ascending order of wmc. Therefore, if two nodes are included in a complex with
high wmc, the edge color becomes yellowish, whereas if they are included only in complexes with low wmc, the
edge color becomes bluish. We arranged the points so that the x-coordinate of each point is the same as the
order of the rows (columns) in the sorted connection matrix in Fig. 7b, where bidirectionality is considered.
More specifically, the brain region that is at the i-th row (column) of the sorted connection matrix in Fig. 7b
is placed at the position of x = i. As a comparison, we set the y-coordinates of the points to be the same as
the order of the rows (columns) in the sorted connection matrix in Fig. 7e, where bidirectionality is ignored. As
described in Methods, we sorted the rows and columns of the connection matrix according to the structure of
complexes, and also sorted them so that relatively upstream nodes come first and relatively downstream nodes
come later. Therefore, points with a smaller or larger x-coordinate respectively correspond to relatively upstream
or downstream regions. In (a), we draw only rightward edges, which start from the smaller x-coordinate and
end at the larger x-coordinate. On the contrary, in (b), we draw only leftward edges, which start from the larger
x-coordinate and end at the smaller x-coordinate. We can see that the nodes in the complexes with high wmc

are connected to each other by both rightward and leftward edges, which are indicated by yellowish color. In
other words, the nodes are bidirectionally connected to each other. These nodes are mainly in the major regions
such as the isocortex, hippocampal formation, cortical subplate and thalamus. The isocortical regions occupy
the center of the complexes, i.e., the main complex. The thalamic regions are also located close to the center,
but relatively upstream compared to the isocortical regions. On the other hand, the nodes at the left side of the
figure have many edges going out but few edges coming in. In other words, these nodes are located upstream
in the network. Conversely, the nodes at the right side of the figure have many edges coming in but few edges
going out, i.e., these nodes are located downstream in the network.
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Supplementary Figure 4. Comparison of the proposed method with s-core decomposition. a A
network consisting of two densely connected parts. b If we apply s-core decomposition to the network in a,
the entire network is extracted as the smax-core and the modular structure in this network is not revealed. c
If we apply the proposed method, the two modules are extracted as two main complexes regardless of whether
bidirectionality is considered or not.

Supplementary Table 1. Sorted connection matrix, with the region names and the values of wmc.
The first sheet is the sorted connection matrix when bidirectionality is considered, which is the same as that in
Fig. 7b. The second sheet is the sorted connection matrix when bidirectionality is ignored, which is the same as
that in Fig. 7e.

Supplementary Table 2. Coreness values of all regions. In the first and second sheets, the coreness
values when bidirectionality is considered and ignored, respectively, are listed in descending order.
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