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Abstract 

 
Extensive sequencing of modern and ancient human genomes has revealed that contemporary 

populations can be explained as the result of recent mixing of a few distinct ancestral genetic lineages
1
. 

But the small number of aDNA samples that predate the Last Glacial Maximum means that the origins of 

these lineages are not well understood. Here, we circumvent the limited sampling by modelling explicitly 

the effect of climatic changes and terrain on population demography and migrations through time and 

space, and show that these factors are sufficient to explain the divergence among ancestral lineages. 

Our reconstructions show that the sharp separation between African and Eurasian lineages is a 

consequence of only a few limited periods of connectivity through the arid Arabian peninsula, which 

acted as the gate out of the Arican continent. The subsequent spread across Eurasia was then mostly 

shaped by mountain ranges, and to a lesser extent deserts, leading to the split of European and Asians, 

and the further diversification of these two groups. A high tolerance to cold climates allowed the 

persistence at high latitudes even during the Last Glacial Maximum, maintaining a pocket in Beringia 

that led to the later, rapid colonisation of the Americas. The advent of food production was associated 

with an increase in movement
2
, but mountains and climate have been shown to still play a major role 

even in this latter period
3,4

, affecting the mixing of the ancestral lineages that we have shown to be 

shaped by those two factors in the first place. 
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Main Text 
 

Recent large-scale analyses of modern and ancient genomes have revealed that most contemporary 

Out-of-Africa human populations formed during the Holocene as the result of mixing of a limited 

number of genetically distinct ancestral lineages
1
 (see Fig. 1 for a list of the main lineages). But the 

origins of those lineages are less clear. The few very early human ancient genomes (e.g. Sunghir
5
, 

Ust’Ishim
6
) are relatively undifferentiated, and whilst they provide a timing for the split of the Asian and 

European lineages, they say little about the circumstances that promoted the subsequent separation 

into the ancestral lineages that contributed to modern populations. The relatively few ancient genomes 

that predate the Last Glacial Maximum are too sparse to provide a clear picture of these dynamics, and 

by the time sampling of ancient DNA becomes more extensive (i.e. in the last 10k years), those ancestral 

ancestral lineages are already well established.  

 

So, what processes might have promoted the divergence of the ancestral human lineages? Climate and 

terrain are often invoked as major determinants of the degree of movement over the landscape, and 

indeed their signature can still be found in the level of genetic differentiation among contemporary 

populations despite high movement rates in historical times
3
. It is thus plausible that climate and terrain 

played a role in the emergence of the ancestral human lineages that have been identified out of Africa 

(poor ancient DNA preservation means that we only have a limited understanding of African ancestral 

lineages, so we will not investigate them in this paper). Whilst the role of climate in determining the 

timing of the Out-of-Africa has received a great deal of attention
7–9

, quantifying its role in the routes and 

dynamics of the spread has been much more challenging due to the limited archaeological record from 

the early part of the expansion.   

 

Climate and mountains are sufficient to explain divergences among lineages 

 

In this paper, we formally test the role of climate and terrain in shaping the genetic makeup of 

humans out of Africa by modelling the genetic divergence of a panel of high coverage modern and 

ancient hunter-gatherer (HGs) genomes representing the main ancestral lineages (Fig. 1, Extended Data 

Table 1 and 2). We focus on HGs as all ancestral lineages arose before the advent of food production, 

which on the other hand is associated with large scale movements that led to their mixing. Specifically, 

we used climate informed spatial genetic models (a further development of 
9
) that reproduce the world 

as a lattice of hexagonal cells, with coastlines changing through time according to sea level changes. The 

demography within each cell depends on reconstructions of local, time-varying climatic conditions of the 

past (see Methods). We explored a large number of values for the parameters that link climatic variables 

and mountains to local effective population sizes and migration rates (see Extended Data Table 3 and 

4), and selected the values that give the best match to the pattern of genetic pairwise differentiation 

(πbetween) between ancestral lineages using an Approximate Bayesian Computation framework. 
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Fig. 1: Distribution on ancient (diamonds) and modern (circles) HG genomes. Colours represent the 

assignment to ancestral lineages. Individual Yana1 (dated at 31.7 kya) showed a greater genetic affinity 

with samples from North-Central Asia than North-Eastern Asia; therefore it has been included in the 

former ancestral lineage group (Extended Data Fig. 1). Numbers represent the mean date in thousands 

years BP for ancient samples. 

 

 

The effects of climate and mountains were sufficient to explain the divergence among ancestral human 

lineages out of Africa. The model was able to reconstruct all pairwise divergences simultaneously, as 

seen by inspecting pairwise plots of divergences among groups (Extended Data Fig. 2). Furthermore, we 

tested the goodness of fit by comparing the median of Euclidean distances between observed πbetween 

and the estimates for the best set of 2% (n=5058) simulations, to the distribution of Euclidean distances 

between randomly sampled simulations (1000 replicates) and their respective best sets. For a model 

that can replicate the observed statistics, the median of Euclidean distances of the observed data should 

not differ significantly from the distances of random simulations, and this is indeed the case for our 

model, which had a p-value of 0.465 (Extended Data Fig. 3). A separate line of validation of the realism 

of our model comes from comparing the distribution of our estimated effective population sizes based 

on genetics (Ne) to that of census sizes from ethnographic surveys (Ncensus). Ne represents the idealised 

size of a randomly mating population, so we do not expect a 1:1 relationship between these two 

quantities; however, we would expect a good match in their spatial distribution, and indeed we find a 

high and significant spatial congruence (Pearson’s r corrected for spatial autocorrelation: 0.61; p<0.001), 

with similar regions of high and low densities (Extended Data Fig. 4). 

 

Aridity explains the split between African and Eurasian lineages 

 

The timing of the Out-of-Africa migration was linked to a suitably wet period to allow the exit 

through the nowadays mainly arid Arabian Peninsula. In our simulations, we constrained the model to 

prevent an exit out of Africa before 70k years ago. Whilst archaeological evidence has demonstrated 

human expansions prior to this point
10

, made possible by climatically favourable windows, early 

colonists failed to permanently settle in Eurasia in significant numbers (possible due to competition with 
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other hominins
7,8

 which our model does not account for). Indeed, all Out-of-Africa populations have a 

divergence time that imply a more recent exit
3
 (with the exception of a possible very small contribution 

of an early wave into Papuans, but see
11

 ), and we therefore did not explore the scenario of an earlier 

exit. Given this constraint, the precipitation threshold needed by humans to persist and expand was 

estimated between ~102 and 115 mm/yr (95% credible interval)(Fig. 2a) to obtain good fits to the 

genetic patterns. This threshold makes ecological sense, as it is approximately the required amount of 

annual rainfall before a  desert turns into a xeric shrubland
12

. Indeed, a similar threshold is found when 

looking at where contemporary HGs live, as well predicting the presence of grazers in the animal 

community
8
. A threshold above 120mm/yr of rainfall would have prevented any exit until the wet 

Holocene (Fig. 2b). The lower threshold values selected by the model (102-115mm/yr) allowed an exit 

~60kya, with some intermittent connectivity for the following 30 kyrs (Fig. 2b). However, the model 

strongly rejected thresholds lower than 100mm/yr, which would have allowed, over the period from 60 

to 30 kya, for extensive connectivity between Africa and populations close to the exit point, such as 

those in Anatolia and the Zagros Mountains (the Near East lineage and the southern range of the 

Caucasus HGs). This high input by African lineages into these populations, in turn, would have resulted in 

an excessive increase in their divergence from other Out-of-Africa populations, as clearly shown when 

focussing on Western HGs (Fig. 2c): only intermediate values of the precipitation threshold lead to the 

correct amount of divergence between populations in Anatolia and the Zagros Mountains on the one 

hand and the Western HGs on the other.  
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Fig. 2: a) The posterior probability for critical precipitation (mm/yr) defining the minimum

amount of mean annual precipitation required for population persistence. b) Periods of connectivity

between Africa and Eurasia depending on critical precipitation. Red dashed lines represent the 95%

m 

y 

% 
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credible interval of the posterior distribution for critical precipitation. c) The effect of critical 

precipitation and the divergence between Western HGs and populations in Anatolia and the Zagros 

mountains for the 2% of best fitting models used in the ABC. Blue shading shows the 95% interval, with 

darker shading showing progressively tighter quantiles; the observed divergence is shown by the 

horizontal red line. d) Distribution of common ancestor events for the last 70 kyrs. Sampled populations 

are shown with the same colours used in Fig. 1. 

 

Our model tracks the movement of individuals through time and space. Geneflow, the 

movement that mattered in shaping the genetic makeup of populations, can then be visualised by 

following the ancestors of different individuals through time, and plotting the location where common 

ancestors lived. These maps of common ancestors show the key colonisation routes as well as the 

migratory links that impacted the genetics of populations. When focussing on the distribution of 

common ancestor events for the last 70k years for Out-of-Africa populations, we found that, in our 

model, the southern route (through the Bab-el-Mandeb strait) was the main contributor to the 

expansion, whilst the northern (through the Isthmus of Suez) played little or no role (Fig. 2d). In our 

simulations, the southern route was set as possible when the sea level was at its minimum, and thus the 

strait could have been mostly easily crossed
13

. A more thorough discussion of the relative crossability of 

these two routes is provided by
8
; different assumptions could lead to different relative contributions, 

and the lack of ancient genomes from the appropriate regions prevents us from testing alternative 

scenarios. Thus, we caution against using our results as evidence for the southern route; what the 

results indicate clearly is that that connectivity had to be limited and intermittent to generate the 

appropriate Out-of-Africa bottleneck and the divergence among populations in Eurasia. 

 

Mountains and deserts shaped divergences within Eurasia 

 

Mountain ranges were major determinants of the colonisation routes taken once out of Africa, 

and played a key role in promoting the separation among several ancestral lineages. The model 

favoured intermediate costs of crossing mountains (���������) (Fig. 3a). The effect of mountains on 

modulating migration is best seen when considering the divergences of Western HGs and South Asian 

lineages from Africa (the route between them crosses a number of mountain ranges, thus providing a 

strong cumulative effect of altitude): realistic levels of genetic divergence could only be obtained with 

intermediate costs (Fig. 3b). The effect of individual mountain ranges is best visualised by considering 

the location of common ancestor events, thus capturing gene flow through time. The first split was 

between Asians, which turned East of the Zagros mountains that they encountered as they moved out 

of Africa, and Europeans, who turned left and partially crossed them (Fig. 3c). The Caucasus acted as an 

important barrier, as it can be seen from the reduced gene flow through this route; indeed,  Caucasus 

HGs, who reside south of the Caucasus, are genetically distinct from the Western HGs found north of 

this mountain range
14

. Reduced migration over mountain ranges also played a role in generating the 

divergence between Southern and Northern Asians, with two streams of gene flow that moved north 

and south of the Himalayas (and the arid Gobi desert); these two streams met in East Asia (Fig. 3d). 

Because of the lack of barriers at higher latitudes, there was contact between the Eastern range of the 

Western Eurasian HGs and the Northern Asians (Fig. 3e, the Urals are not extensive enough to prevent 
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this contact). This matches the mixed ancestry signals found in the Malt’a genome (24,000-year-old 

individual from south-central Siberia)
15

, which was not included in our analysis due to its low coverage. 

 

 

Fig. 3: a) Posterior probability for the ��������� affecting migration between cells. b) The effect of 

mountain ranges on the divergence between the 4.5kya African sample Mota and Western Hunter 

Gatherers and South Asian hunter gatherers. African divergence with Western and South Asian hunter 
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gatherers require intermediate values of ��������� corresponding to the peak of the posterior distribution 

in panel a). Dashed red lines represent the observed genetic divergence.  Distribution of common 

ancestor events for the c) Caucasus (last 70kyrs), d) Himalayas (last 70kyrs, grey contour represents the 

Gobi desert) and e) Urals (cropped to the last 12.5 kyrs to emphasise migrations). Sampled populations 

are shown with the same colours used in Fig. 1.  

 

The southern Asian stream continued into South East Asia, reaching Papua and crossing to 

Australia (Fig. 3c). The timing of colonisation of Australia is highly dependent on when the Wallace Line 

can be crossed in the model. As for the Bab-el-Mandeb strait, we took the simple assumption to allow 

crossings at the lowest sea levels (between 65 and 17 kya); this leads to a somewhat late crossing into 

Australia at ~60 kya (Extended Data Fig. 5), but we caution that alternative scenarios of an entry several 

thousands of years earlier cannot be tested due to the lack of ancient genomes from that region. 

 

Cold temperatures and the colonisation of the Americas 

 

The archeological record suggests human presence at high latitude in very cold environments, as 

demonstrated by the Yana individual found in Siberia 31 kya (Fig 1 and Fig. 4a). In our model, the ability 

to persist at high latitudes is based on two variables: the optimal temperature (at which humans reach 

maximum population size) and a temperature tolerance that mediates the cost of living away from that 

optimum (see Methods). We combined the effect of these two variables for the best fitting scenarios to 

assess the effect of temperature on the relative population size (i.e. isolating the effect of temperature 

from the other variables that determine Ne). The best fitting scenarios all implied an ability to persist in 

cold environments, such as the area inhabited by the Yana individual; however, population sizes in these 

regions were very low (Fig. 4b).  Our model predicted persistence in Beringia up until the end of the Last 

Glacial Maximum, about 20 kya (Fig. 4c and d), thus supporting a Beringian standstill scenario, also 

supported by other genetic analysis and archaeological evidence
16,17

. In this scenario, the earliest 

colonists of the Americas originated from this stable pocket close to extensive North American Ice 

Sheets (Fig. 4e). The colonisation started relatively early, between 17 and 16 kya, with the opening of 

the coastal corridor along the Eastern Pacific coast
18

 (Fig. 4f). Recent archaeological work has suggested 

the possibility of an even earlier arrival in the Americas
19

; our model does not support that, but it should 

be noted that the population dynamics that we reconstruct are driven by the available genomes. Thus, if 

there was an earlier colonisation that left little genetic signal in the currently sequenced ancient 

genomes, we would not select a demography compatible with it. An early colonisation raises the issue of 

what happened to those early colonists, given that there is no genetic signal of their existence in 

modern or ancient Native American genomes.  
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Fig. 4: a) Mean annual temperature plot at 32 kya, when the Yana individual (black dot) lived. b) Effect of

temperature on the relative population size from the best fitting scenarios, indicating the ability to 

persist at very low temperatures. The solid black line represents the median of all best fits, whilst the 

blue shading shows the uncertainty as percentiles. Effective population density across the best fitting 

scenarios at c) 32 kya,  d) 20 kya and e) 16 kya years ago. Ice sheets are shown in gray, uncolonised areas

in green. f) Distribution of common ancestor events between 50 and 16 kya: the role of Beringia and the 

strong founder events during the rapid colonisation along the coastal corridors are shown by a 

concentration of CA events. Sampled population (Yana) is shown with the same colour used in Fig. 1.   

 

In our model, the colonisation of the Americas requires the coastal corridor along the Pacific

coast west of the Cordilleran Ice Sheet
18

 (Fig. 4e). Considering the high tolerance to low temperature,

the entrance in the Americas started as soon as the corridor was available between 17 and 16kya  (Fig

5a), which is compatible with the genetic separation among early native American genomes. We only

have high coverage ancient genomes for the western part of North America, but we can explore the

predicted gene flow by simulating an additional population in the east (specifically, we chose the ancient

Southwestern Ontario sample, ASO
20

). Our model supported the existence of two main streams of gene

flow into North America
20

: Ancient-A, including Anzick-1, descending eastwards of the Rocky Mountains;

and Ancient B, moving towards the East Coast, reaching ASO (Fig. 5b). As we only have one high
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coverage ancient sample in South America, we are not able to reconstruct the details of the possible

admixture of these two streams in that region. However, we identified an initial entrance of South

America around 14.6 kya (Fig. 5c) with the continent fully colonised by 13.2 kya (Fig. 5d, Extended Data

Fig. 5). For such a fast colonisation process, the model selected high values for the parameter underlying

movement into uncolonised regions (directed mobility, md) combined with an increase in migration

speed over time (Δspeed) to generate a rapid expansion rate (Fig. 5e, Extended Data Fig. 6b,f). We

estimated an expansion speed of 4.1 km/year by calculating the shortest path from the opening of the

Cordilleran Ice Sheet to Sumidouro5 (Brazil) that had to be crossed in 3.2 kyrs considering the earliest

colonist reaching Brazil in our model by 13.8 kya. This date is compatible with some of the

archaeological evidence for the earliest human occupation of the continent 
21,22

. Such a speed is within

the range of the average distance per year covered by contemporary HG populations
23

. 

 

  

Fig. 5: a) Effective population density at the beginning of the colonisation of the Americas (15.8kya) after

the opening of the coastal corridor along the Pacific coast west of the Cordilleran Ice Sheet. b)

Distribution of common ancestor events for the last 25 kyrs: the two main streams of gene flow in North

America represent ANC-A and ANC-B as in
20

. The artificial population representing ancient Southwestern

Ontario (ASO) is highlighted with a white cross. c) Effective population density map showing the

entrance in South America (14.6 kya) and d) when the continent is fully colonised by 13.2kya. e) The
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combined effect of change of migration speed over time and directed mobility parameters suggesting 

high values to generate a rapid expansion rate required to fully colonise South America by 13.2kya. 

(from the best 0.2% scenarios retained during parameter estimation). The posterior distribution for each 

parameter is shown on their corresponding axis.  

 

Discussion 

 

Our model assumes that the link between climate and the demography of HGs did not change 

significantly following the Out-of-Africa expansion, only allowing a change in migration speed. Given the 

ability of the model to faithfully reproduce the observed genetic patterns, this suggests that the 

demography of HGs did not change significantly over that time period. However, whilst the signals that 

these processes leave in the genomes are strong enough that we were able to retrieve clear peaks in our 

posteriors (and thus quantify the relative importance of these processes), but the posteriors are still 

relatively broad (Extended Data Fig. 6), implying that the quantities that we used to describe the 

genomes cannot pinpoint exact values. Importantly, the quantities that we used to describe the 

differentiation among lineages (�, the number of pairwise differences between genomes) are robust to 

rapid recent expansions, and thus would be blind to changes that might have occurred over the last few 

thousand years (as one might expect as a result of the interaction between HGs and food producers). In 

summary, whilst mostly time-invariant demographic rules (except an increase in migration rates) are 

sufficient to explain the differentiation among ancestral human lineages, this does not imply that the 

cultural changes that happened during the last 70k years did not have any effect on the demography of 

different worldwide populations. 

 

In our modelling, we did not attempt to look at different African lineages, as we lack a comprehensive 

catalogue of past African genetic diversity, and aDNA preservation in Africa is limited to the recent 

past
24

. We would expect that the factors identified in this study will also play an important role in Africa. 

However, the deep separation of the Koi San and Mbuti from other African populations
25

 suggests that 

climate and mountains alone might not be sufficient to explain the spatial structuring in Africa, and that 

additional processes will have to be included to explain the divergence among African ancestral lineages. 

 

Recent work on aDNA has emphasised how modern Out-of-Africa populations derive from a mixture of 

distinct ancestral lineages
1
, reflecting high levels of mobility during the Holocene following the advent of 

agriculture and animal husbandry
2,3

. Here, by formally combining high quality ancient and modern 

genomes with comprehensive paleoclimate reconstructions, we have shown that those ancestral 

lineages emerged following the Out-of-Africa expansion as a response to climatic changes and terrain 

that influenced the demography and mobility of hunter gatherers. Whilst the advent of food production 

led to large scale movements that we have not investigated here, recent work on migrations during the 

Neolithic and Bronze Age has shown that climate continued to play an important role during those later 

periods 
4,26

 .  
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Methods 

Samples 

The dataset published in Maisano Delser et al.
27

 was subset and the full list of included samples is shown 

in Supplementary Table 1 and 2. From the initial set of 35 samples, three samples (NE1, NE5, ZVEJ31 and 

LBK) were discarded because they do not represent ancient hunter-gatherer populations. Preliminary 

analyses were based on 31 samples worldwide distributed (HG_EXT dataset). For spatial analysis, we 

favoured ancient over modern individuals where both of them were available for the same geographical 

area (7 modern samples discarded). We also added Bon002 because it represents a proxy for pre-

pottery Neolithic in Turkey
28

. The final dataset (HG dataset) for the spatial analysis includes 25 samples 

(16 ancient and 9 modern individuals) representing hunter-gatherer populations distributed worldwide.  

Genetic summary statistics 

Neutral loci 

We selected 9178 loci of 10kb in length along the genome to represent neutral genetic variation. We 

first applied to the human genome filters to exclude regions that may be under selection or that could 

be problematic in terms of assembly quality: more specifically, we filtered out coding regions, conserved 

elements, recombination hotspots (regions with recombination rates >10cM/Mb), repetitive regions, 

and regions with poor mapping or sequencing quality. The filters are the same as used in Kuhlwilm et al. 

(2016)
29

 and were kindly provided by Ilan Gronau. Contiguous intervals of 10kb were chosen on these 

remaining sites using a sliding window approach. Windows were retained if 7,500 sites or more were 

present in a panel of 7 modern samples distributed worldwide (see Supplementary Information), and a 

subset of these were selected with a minimum inter-locus distance of 50kbp. This minimum 50kbp 

distance between loci was chosen so that the chance of recombination was sufficiently high that loci 

could be treated as unlinked. Finally, 118 regions were discarded after filtering for coverage and CpG 

sites leaving 9060 windows.  

Genetic diversity 

The HG_EXT dataset is a subset from
27

 which includes 84,782,047 sites called for 31 samples (16 

modern and 15 ancient individuals, see Extended Data Table 1 and 2) without any missing data and 

triallelic site. Number of pairwise differences was calculated with plink v1.9 (--distance 1-ibs allele-ct 

flat-missing square --allow-no-sex)
30

 and divided by the total number of sites to obtain estimates of 

whole-genome pairwise π (πwg). However, values of πwg for the non UDG-treated samples are not 

reliable because of the inflation of transitions due to DNA damage and degradation. Therefore, the 

number of transitions (ts) and transversions (tv) per sample was calculated with bcftools stats v1.6
31

. 

The ratio ts/tv was calculated per sample and plotted in R v3.6.3
32

. Transversions only were extracted 

from HG_EXT dataset into a new vcf file and the number of pairwise differences was recalculated with 

plink v1.9 (--distance 1-ibs allele-ct flat-missing square --allow-no-sex)
30

p. The average ts/tv was 

calculated across all samples but non UDG-treated samples (7 in total: Bichon, WC1, Yana1, Kolyma1, 

Sumidouro5, Anzick-1 and Mota) and Loschbour as it shows an unusual low ts/tv ratio. Estimates of 

pairwise π for the non UDG-treated samples and Loschbour were calculated by rescaling the number of 
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pairwise differences obtained from the transversions only (diff_tv) to πwg using the mean ts/tv ratio (see 

above) with the formula ���_����_�	 � 
����_�	 �������

��
�� ����_�	 

�����_����� . We also assessed the correlation 

between πwg and πwg_from_tv generated with the formula above for modern and ancient UDG-treated 

samples (see Supplementary Information).   

 

 We subset the HG_EXT for the neutral loci identified above using tabix v1.9
31

 and we retained 

9,618,572 sites. At this stage, we called these sites as haploid in Bon002 with pileupCaller
33

 because the 

coverage did not allow for calling diploid genotypes reliably. When merging Bon002, 494,784 sites were 

discarded because of missing data bringing the total number of sites to 9,123,788. These sites have been 

split in the 9069 windows identified previously averaging ~1kb per window. We converted the diploid 

vcf file into a haploid vcf file to match the approach used in msprime
34,35

 where haploid chromosomes 

are simulated (convert_diploid_into_haploid_vcf_gz.sh, available in the GitHub repository). We then 

rechecked the number of transitions and transversions per sample and the ts/tv ratio was recalculated 

based on the same samples set used for whole-genome data. Estimates of πwg for ancient non UDG-

treated samples and Loschbour were rescaled from values based on transversions only (πwg_from_tv ) with 

the same approach described above. The correlation between πwindows and πwgwas also calculated (see 

Supplementary Information).   

 

 

Spatial Simulations 

Spatial simulations were performed in CISGeM which stands for Climate Informed Spatial Genetic 

Models. Within this framework, information from climatic reconstructions is used to drive the local 

demography within a spatially explicit metapopulation model, which in turn is used to simulate genetic 

data (Extended data Fig. 7).  

Carrying capacity and demographic model 

CISGeM’s demographic module consists of a spatial model that simulates long-term and global growth 

and migration dynamics of anatomically modern humans (AMHs). These processes depend on a number 

of parameters (see Supplementary Table 3), which we later estimate statistically based on empirical 

genetic data. 

The model operates on a global equal area hexagonal grid of 40,962 cells that represent the whole 

world (the distance between the centers of two hexagonal cells is 120.6 ±7.6 km; the variation is due to 

the earth having a spheroid rather than a perfect spherical shape and the grid not being perfectly 

regular). Each model time step represents 25 years, appropriate as the generation time in AMHs. Each 

time step of a simulation begins with the computation of the carrying capacity of each grid cell, i.e. the 

maximum number of individuals theoretically able to live in the cell for the environmental conditions at 

the given point in time. Specifically, we consider the impact of precipitation and temperature on 

population density. Precipitation and temperature are based on global climate model (HadCM3) 

simulations of the last 120ka
36

 that have been extended further back in time using a linear regression 

approach
37

. The data set has been bias-corrected
38

 and is available at a spatial resolution of 0.5°x0.5°. 

The climate data represent the climatological mean for every 1ka throughout the last 300ka. It has been 

spatially interpolated from the regular 0.5° lon/lat grid to the hexagonal grid, and temporally 
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interpolated onto 25yr time steps (linearly) using the climate data operators
39

. We require precipitation 

to be above a minimum threshold (����� , below which humans cannot survive), with population density 

increasing with increasing precipitation above that level. For temperature, we model human tolerance 

by considering an optimal annual mean temperature (���� , at which the highest population density can 

be achieved) and a scaling parameter (����) which defines how well humans can cope with deviations 

from  ���� . The larger ����, the more tolerant humans are, thus leading to relatively large population 

densities despite suboptimal temperatures. The carrying capacity (in effective individuals, Ne) in a grid 

cell � at a time � was modelled as: 

�	�, �� � �� � max	0, �	�, �� � ����� � � �����������,��������� ,          �� � �� �� ���� �� �� � �                                              0,          ���� !             (1) 

where �	�, �� and �	�, �� denote the annual precipitation (in mm year
-1

) and the mean annual 

temperature (in °C) in the cell � at time �, respectively. �is a scaling constant. We confirmed that this 

relationship is biologically plausible by verifying that it provides a good fit to census population sizes for 

modern hunter-gatherer groups
40

 (Extended data Fig. 8). However, note that the parameters were 

fitted to the genetic data (see below); the census population sizes of modern hunter gatherers were 

only used to test that the shape of the relationship was realistic. 

The estimated carrying capacities are used to simulate spatial population dynamics as follows. We begin 

a simulation by initialising a population in a grid cell �  at a point in time �  with �	� , !0� individuals. 

For our simulations we chose � to be in East Africa (we arbitrarily chose the cell closest to 26.5° E, 9.7° 

N as in 
9
). The exact location has no impact on the simulations, as we were not concerned with the 

within-Africa population structure and we only have one African genome to represent the split between 

African and Out-of-Africa lineages.  

At each subsequent time step between !	 and the present, CISGeM simulates two processes: the local 

growth of populations within grid cells, and the spatial migration of individuals across cells. Similar to 

previous work
7,41,42

, we used the logistic function to model local population growth in humans, 

estimating the net number of individuals by which the population of size "	�, �� in the a � at time � 

increases within the time step as 

 

# � "	�, �� � $1 � "��,��
#��,��&,             (2) 

where $ denotes the intrinsic growth rate. Thus, growth is approximately exponential at low 

population sizes, before decelerating, and eventually levelling off at the local carrying capacity. 

Numerically, the ratio of the above term and some positive whole number n_steps was applied n_steps 

consecutive times to the relevant population size, where n_steps was chosen such that r/n_steps is 

small enough to ensure the stability of the logistic map for the range of growth rates r considered in our 

simulations. 

Across-cell migration is modelled as two separate processes, representing a non-directed, spatially 

uniform movement into all neighbouring grid cells on the one hand, and a directed movement along a 

resource availability gradient on the other hand. For both of them, movement between two grid cells is 

reduced when it involves crossing mountains. Under the first movement type, the number of individuals 

migrating from a cell �% into a neighbouring cell �&is estimated as 

'
 � (1 * +��� � 
1 , �

��
�- � .����������,��� � "	�1, ��,               (3) 
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where ����, '����� , t0,  �  are parameters, and where (	�%, �&� is a measure of the altitude that needs 

to be covered between cells �% and  �&, which we defined as follows. We used a very-high-resolution (1 

arc-minute) global elevation and bathymetry map (ETOPO1
43

) and determined, for each pair of 

neighbouring cells �% and  �& , the altitude profile along the straight line between the geographic 

centres of the two cells. We then defined (	�% , �&� as the sum of the absolute values of all altitude 

changes along the line. This assumes that descends have the same effect in terms of reducing 

movement rates as ascends; in particular we have (	�% , �&�=(	�& , �%�. '�����represents the change of 

migration speed over time, and is scaled by the duration of the simulation 
1 , �

��
� at time t (note that t is 

a negative quantity as it represents the number of generations before present).  This mechanism in 

Eq. (3) is equivalent to a spatially uniform diffusion process, which has previously been used to model 

random movement in AMHs
7,41

. Under the second movement type, an additional number of individuals 

moving from a grid cell �% to a neighbouring cell �& is estimated as 

'� � (1 * +��� � 
1 , �

��
�- �  .����������,��� � "	�, �� �  �� /0, 0�12,!�,2�12,!�

0�12,!� � 0�11,!�,2�11,!�
0�11,!� 3        (4) 

The number 
#��,���"��,��

#��,��  represents the relative availability of unused resources in the cell � at time �, 

equalling 1 if all natural resources in � are potentially available for humans ("	�, �� � 0), and 0 if all 

resources are used ("	�, �� � �	�, ��). Thus, individuals migrate in the direction of increasing relative 

resource availability, and the number of migrants is proportional to the steepness of the gradient. The 

distinction between directed and non-directed movement allows us to examine to which extent 

migration patterns can be explained by random motion alone or requires us to account for more 

complex responses to available resources. The coefficient  � is a parameter. 

For some values of the mobility parameters '
 and '�, it is possible for the calculated number of 

migrants from a cell to exceed the number of individuals in that cell. In this scenario, the number of 

migrants into neighbouring cells are rescaled proportionally such that the total number of migrants from 

the cell is equal to the number of individuals present. 

Similarly, it is in principle possible that the number of individuals present in a cell after all migrations are 

accounted for (i.e. the sum of local non-migrating individuals, minus outgoing migrants, plus incoming 

migrants from neighbouring cells) exceeds the local carrying capacity. In this case, incoming migrants are 

rescaled proportionally so that the final number of individuals in the cell is equal to the local carrying 

capacity. In other words, some incoming migrants perish before establishing themselves in the 

destination cell, and these unsuccessful migrants are not included in the model’s output of migration 

fluxes between grid cells. In contrast, non-migrating local residents remain unaffected in this step. They 

are assumed to benefit from a residential advantage
44

, and capable of outcompeting incoming migrants. 

CISGeM’s demographic module outputs the number of individuals in each grid cell, and the number of 

migrants between neighbouring grid cells, across all time steps of a simulation. These quantities are 

used to reconstruct genetic lineages. 

Once a demography has been generated, gene trees are then simulated (the genetic code borrows 

heavily from msprime
34,35

). This process depends on the population dynamics recorded during the 

demography stage and assumes local random mating according to the Wright-Fisher dynamic. From the 

present, ancestral lineages of sampled individuals are traced back through generations, recording which 

cell each lineage belongs to. At every generation, the lineages are randomly assigned to a gamete from 

the individuals within its present cell. If the assigned individual is a migrant or coloniser, the lineage is 

moved to the cell of origin for that individual. Common ancestor events happen when two lineages are 
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assigned to the same parental gamete and they are then merged into a common ancestor lineage. This 

process is repeated until all the lineages have met. If multiple lineages are still present at the time when 

the demography was initialised, the remaining lineages enter a single ancestral population (with fixed 

population size K0 ), and a coalescent model is used to estimate the timing of additional common 

ancestors events to close the tree (see
34

 for an example of using hybrid models where the coalescent is 

used to close trees generated by an initial Wright-Fisher dynamics). 

To match our data design, we simulated 9060 non-recombining loci of 1kb each. For each locus, 

mutations were added to the gene tree with a mutation rate ) � 1 � 10�4  site/generation
6
. 

Parameter space was explored with a Monte Carlo sweep. Each parameter was randomly sampled from 

a uniform prior distribution (see Supplementary Table 4 for ranges). We generated a total of 3,129,979 

simulations, out of which 252,860 reached all our sample locations at the required dates as estimated 

for the fossil remains.     

Parameter estimation 

CISGeM output files generated from the Monte Carlo sweep were processed with rcisgem v1.0, an R 

package developed to create, edit and process files for CISGeM. Individuals populations were 

aggregated into ancestral lineages: North-Central Asians (“nca” includes Yana1, Xibo, Mansi and 

Uts_Ishim), North-Eastern Asians (“nea” includes Kolyma1, Oroqen, Ulchi and Yakut), South Asia (“sa” 

includes Irula), South-East Asians (“sea” includes Papuan, Jehai and Australian), Western Hunter 

Gatherers (“whg” includes Sunghir III, Bichon, SF12, Loschbour and ZVEJ25), Near East (proto-Neolithic 

Bon002), Caucasus Hunter Gatherers (“chg” includes KK1 and Iranian early Neolithic WC1),  Africa (“af” 

includes Mota) and Native Americans (“am” includes Anzick-1, USR1, Sumidouro5 and AHUR_2064). 

Pairwise π comparisons between these lineages for both observed and simulated data were calculated 

with the function compute_abc_sumstats.R from the package rcisgem. Approximate Bayesian 

Computation based on regression is limited to a small number of statistics (usually not more than ten
45

). 

We therefore focussed on a number of comparisons among adjacent lineages that capture the full 

structure of human genetic diversity: Africa vs North-Central Asia (af_nca), Western Hunter Gatherers vs 

North-Central Asia (whg_nca), Americas vs North-Eastern Asia (am_nea), Europe vs Caucasus Hunter 

Gatherers (whg_chg), North-Central Asia vs South Asia (nca_sa), Africa vs South-East Asia (af_sea), Africa 

vs North-Eastern Asia (af_nea), Africa vs Western Hunter Gatherers (af_whg) and Near East vs Western 

Hunter Gatherers (ne_whg). Parameters estimation was performed in an Approximate Bayesian 

Computational (ABC) framework with the library abc v2.1
46

. The best 2% of simulations (i.e. 

tolerance=0.02), based on the sum of Euclidean distances between observed and simulated summary 

statistics, were used for the ABC analysis, using a local linear regression to estimate the posterior 

distributions. Median and mode estimates with 95% credible intervals of the posteriors are reported in 

Extended Data Table 4.  Posterior distributions (Extended Data Fig. 6) were plotted with the function 

plot_posterior.R from rcisgem. Simulations retained by the ABC approach were also highlighted in the 

plots showing the pairwise comparison across all our summary statistics for all simulations (blue dots in 

Extended Data Fig. 5). Histograms of arrival times per population were plotted with the function 

plot_arrival_times.R from rcisgem (Extended Data Fig. 5).  
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Model fitting 

We then assessed whether the model was able to recreate the observed genetic diversity by 

plotting pairwise comparison across all our summary statistics (Extended Data Fig. 5). An a priori 

Goodness-of-fit PCA test was also performed (Extended Data Fig. 2) using the gfitpca function from R 

the package abc v2.1
46

 to capture and plot the two first components obtained with a principle 

component analysis of the simulated summary statistics. We used a cprob value of 0.2, 0.35 and 0.5 

leaving a different proportion of points from the model outside the displayed envelope (so keeping the 

best 80%, 65% and 50% points within the envelope). The observed summary statistics is then marked to 

check that it is contained within these envelopes, thus suggesting a good fit of the model. We also used 

the gfit function to confirm that our model outperformed a series of null models. In this function the 

goodness of fit test statistic, or D-statistic, is the median Euclidean distance between the observed 

summary statistics and the nearest (accepted, with the same threshold of 0.02 used during the 

parameter estimation) summary statistics. For comparison, a null distribution of D is then generated 

from summary statistics of 1000 pseudo-observed datasets. A goodness of fit p-value can then be 

calculated as the proportion of D based on pseudo-observed data sets that are larger than the empirical 

value of D. Therefore, a non-significant p-value suggests that the distance between the observed and 

accepted summary statistics is not larger than the expectation, confirming that the model fits the 

observed data well. Both analyses have been performed on a random subset of 250,000 simulations.  

 

Demographic scenarios and common ancestor events 

Demography output files were generated for the 5058 simulations retained by the ABC during the 

parameter estimation. For each simulation, we extracted the values of effective population size per cell 

per generation. Weights from the retained simulations during the parameter estimation (5058) were 

extracted and rescaled between 0 and 1 (w=w/sum(w)). Effective population size values for each 

simulation were then multiplied by rescaled weights calculated above and the weighted average was 

then computed as a sum across the 5058 simulations. We then converted the number of individuals into 

population density per 100 km
2
 dividing by the grid cell area (124.5 x 100 km

2
) using cdo v1.9.6

39
. 

Effective densities for present day were compared to estimates based on ethnographic censuses
47

 using 

a correlation corrected for spatial autocorrelation, using the modified.ttest function from the R library 

SpatialPack.For the simulations retained (5058) during the parameters estimation, we extracted the 

time and location of common ancestor events  and plotted them as density map. 

 

Connectivity with Africa for different temperature tolerances 

 

For a range of tolerance values, we tested, every 500 years, whether there was a direct link between 

Africa and Eurasia. Connectivity was deemed possible when there was a continuous set of neighbouring 

inhabited demes that connected Africa all the way to the region outside the Arabian Peninsula, without 

any breaks. Technically, this was achieved by representing the demes as a graph of connected nodes, 

using Dijkstra’s algorithm to find the shortest path (if it existed) between African and out of Africa 

nodes. 
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Extended data figure and table legends 

 

Extended Data Fig. 1 |  Multidimensional scaling representing the genetic relationships between ancient

samples. Whilst Yana1 and Kolyma1 are geographically close, genetically they are distinct: Yana1 shows 

a greater genetic similarity to Central Asia population while Kolyma1 clusters with North-Eastern Asia 

and American populations.  
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Extended Data Fig. 2 |  Pairwise comparisons across all summary statistics. For all comparisons, the 

model is able to recreate the observed genetic diversity as indicated by the fact that the observed values 
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(in red) fall within the simulations (black dots), and also within the subset of  best simulations retained 

during the ABC parameter estimation (in blue), indicating a good fit of the model.  

 

 

 

 

Extended Data Fig. 3 | Goodness-of-Fit test. a) histogram representing the null distribution of the 

logarithmic median Euclidean distance of 1000 pseudo-observed datasets to sets of the closest 2% 

simulations for each of them. The orange line represents the distance between the observed data and 

closets 2% simulations (i.e. those retained for ABC parameter estimation with a tol=0.02). A goodness of 

fit p-value of 0.465 was obtained, indicating that the distance between the observed and retained 

summary statistics is not larger than the expectation, thus confirming that the model fits the observed 

data well. b) An a priori Goodness-of-fit PCA test retaining the best 80%, 65% and 50% point in the 

envelopes from lighter to darker shade respectively. The observed summary statistics (in orange) is 

contained in all the three envelopes further indicating a good fit of the model.  
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Extended Data Fig. 4 | Population density calculated from the weighted mean effective population size

(Ne) of the simulations (5058) retained during the parameter estimation. Inset showing the census sizes

from ethnographic censuses (Ncensus) from
47

. Despite the differences in data sources and modelling

approaches, the two distributions show a high spatial congruence (Pearson’s r corrected for spatia

autocorrelation: 0.61; p<0.001), with similar regions of high and low densities. 
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Extended Data Fig. 5 |  Histogram of earliest arrival time per population for the simulations retained

during the parameter estimation (5058).  
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Extended Data Fig. 6 | Posterior distributions for the parameter estimation in an ABC framework. Local 

linear regression, rejection approach and prior distributions are represented by the red, black and 

dashed black line respectively. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.13.452067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Extended Data Fig. 7 |CISGeM workflow. CISGeM relies on 1) a set of input information which includes 

prior distributions for both demographic and physiological parameters, and paleoclimate 

reconstructions for the period of interest. For every simulation, a value is picked at random from each 

prior distribution and 2) the demography is generated using forward simulations. The availability of a 

cell (and therefore the resources to live on) is determined by the climatic variables through time 

combined with the appropriate demographic parameters. After the demography has been run from past

to present, the genetics is traced backwards in time using a Discrete Time Wright Fisher model, and 3) 

genetic quantities are predicted for the samples of interest. A large number of combinations of 

parameters are tested to cover exhaustively the prior distributions. Finally, 4) the predicted genetics is 

t 
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compared against the observed genetics in an Approximate Bayesian Computation framework to 

produce posterior distributions for each parameter.  

 

 

Extended Data Fig. 8: Effect of mean annual temperature and annual precipitation to census 

population sizes of modern hunter-gatherer groups. The relationship between mean annual 

temperature and annual precipitation (Pearson’s r: 0.47; p<0.001) provides a good fit to the census 

population sizes of modern hunter-gatherer populations.  

 

 

 

Extended Data Table 1 | metadata for ancient samples. 

 

Extended Data Table 2 | metadata for modern samples 

 

Extended Data Table 3 | List of parameters included in the demographic model. 

 

Extended Data Table 4 | Parameter estimation performed in an Approximate Bayesian Computation 

framework with local linear regression. 

W Upper and lower limits of the 95% credible interval. 

W Uniform probability, in the range of the two values. 

W Generation time 25 year. 
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