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Abstract 
 

The NF-κB signaling pathway, which plays an important role in cell fate determination 
in various cells, has been found to be involved in the activation of long clusters of 
enhancers known as super-enhancers (SEs) for transcriptional regulation. However, 
the contribution of NF-κB to SEs has not yet been validated under microscopic 
observation. Using fluorescence imaging, single-cell transcriptome, and chromatin 
accessibility analyses, we show that NF-κB subunit RelA nuclear foci formation and 
single-cell gene expression demonstrate SE-like properties in anti-IgM-stimulated B 
cells. This contributed to bimodal and enhanced cell-to-cell variability in transcriptional 
response. Furthermore, we found that the predicted cis-regulatory interacting genomic 
regions from chromatin co-accessibility analysis were associated with the observed 
transcriptional heterogeneity. These findings suggest that NF-κB-mediated SE 
formation is important for the expression of NF-κB target genes and the amplification 
of transcriptional heterogeneity in response to environmental stimuli in B cells. 
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Introduction 
 

The NF-κB signaling pathway, which plays important roles in cellular functions and cell 
fate determination1–3, regulates B cells after B cell receptor (BCR) activation4. In BCR 
signaling, stimulation by antigens induces the canonical NF-κB pathway by activating 
protein kinase C β, kinase TAK1 (MAP3K7), BCL10, MALT1, and IκB kinase complex. 
This signaling cascade leads to the activation of IKKβ, which phosphorylates and 
promotes the proteasomal degradation of IκB. Since IκB masks the nuclear 
localization signal of NF-κB, its degradation promotes the nuclear translocation of p50 
and RelA (p65) NF-κB heterodimer complex5,6. These then act as transcription factors, 
promoting the transcription of NF-κB target genes. 

Anti-IgM has been reported to activate BCR and the NF-κB pathway, eliciting a dose-
dependent all-or-none response in the nuclear translocation of NF-κB at the single-
cell level7 and causing cell-to-cell variability in transcriptional response8. This 
heterogeneity within the cell population may be responsible for the varying responses 
of B cells under the same environmental conditions in clonal selection9,10. Moreover, 
this heterogeneity in cell response upon NF-κB induction has also been observed in 
other cell types11,12, indicating the presence of specific molecular functions associated 
with the transcriptional regulation of NF-κB. Furthermore, an earlier study found that 
the anti-IgM-induced all-or-none NF-κB nuclear translocation response was observed 
to lead to the formation of nuclear aggregates7, hereby referred to as foci.  

In this study, we hypothesized that these foci may be related to super-enhancer (SE)-
mediated transcriptional regulation. SEs are long clusters of enhancers that have been 
reported to control cell identity and serve as nuclear platforms for the cooperative 
binding of transcription factors13,14. In previous chromatin immunoprecipitation 
sequencing (ChIP-seq) analyses using NF-κB and histone H3 lysine 27 acetylation 
(H3K27Ac) antibodies, NF-κB has been shown to be involved in SE activation along 
with other transcription factors8,15 and coactivators, such as bromodomain protein 4 
(BRD4)16. The aggregation of multiple transcriptional coactivators and mediators 
possessing intrinsically disordered regions (IDRs) promotes the formation of liquid-
liquid phase separation (LLPS), which favors efficient gene transcription17. Together 
with mediator proteins and RNA polymerase II, these proteins have been observed 
under fluorescence microscopy17,18 to form LLPS condensates at enhancer regions19 
through interaction of their activation domains20. However, the contribution of NF-κB 
to SEs has not yet been validated through microscopic observation.  

We previously reported that anti-IgM dose-dependent NF-κB SE activity in primary B 
cells caused higher fold change and threshold gene expression, inducing a wider 
distribution of expression in the cell population8. This has also been observed in SE-
regulated genes in embryonic stem cells21. In contrast, an earlier model of SE-
mediated transcriptional regulation did not exhibit reductions in transcriptional noise22. 
Nevertheless, the behavior of NF-κB upon SE activation and its control over individual 
gene expression remain unclear. Therefore, we investigated the dynamics of NF-κB 
SE-mediated gene expression to confirm the function of the SEs.  
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The regulation of NFKBIA and CD83, which are known NF-κB target genes23,24, were 
examined in this study. NFKBIA is an early response gene expressed upon NF-κB 
activation25,26 that encodes IκBα, an NF-κB inhibitor. In contrast, CD83 is a marker of 
B cell activation that is crucial for the development of B cells27. We used these two 
genes to represent NF-κB SE-mediated gene regulation since they are both regulated 
by NF-κB but have different biological functions. 

In this study, we performed single-cell fluorescence imaging to assess the biochemical 
properties and dynamics of RelA foci upon anti-IgM stimulation in DT40 B cells. We 
then utilized scATAC-seq (single-cell assay for transposase accessible chromatin with 
sequencing) to investigate the changes in SE activity in B cells upon activation through 
chromatin accessibility and predict the cis-regulatory interactions of these regions 
through co-accessibility analysis28. We found that the formation of NF-κB nuclear 
aggregates upon nuclear translocation in anti-IgM-stimulated DT40 B cells exhibits 
switch-like dynamics with LLPS condensate-like biochemical properties. Single-cell 
sequencing analyses further showed that these SEs were related to the generation of 
enhanced transcriptional variation. These findings show that SEs are highly complex 
and that further study of SEs may elucidate the mechanism of SE-mediated gene 
regulation. 

 

Results 
 

RelA proteins form SE-like nuclear foci 
We first observed under fluorescence imaging the RelA foci that formed in the nucleus 
upon nuclear translocation in DT40 cells of GFP-tagged RelA proteins, a component 
of the NF-κB heterodimer. We found that nuclear NF-κB maximally formed foci 20–30 
min after anti-IgM stimulation (Fig. 1a, Supplementary Fig. 1a). As expected, an anti-
IgM dose-dependent effect was observed in the numbers of RelA foci per cell, showing 
a bimodal distribution across doses (Supplementary Fig. 1b) that was observed in an 
earlier study7. Fitting the median number of foci of the dose-response curve to the Hill 
function resulted in a Hill coefficient of N = 4.33, suggesting that the formation of foci 
proceeded in a cooperative fashion (Fig. 1b). Since cooperative binding of 
transcription factors is a marker of SE-mediated gene regulation17,29, our findings 
suggest that NF-κB localizes and activates the transcription of SE-dependent genes. 

To further investigate the properties of the RelA foci, we focused on the relationship 
between NF-κB and BRD4. We generated DT40 cells co-expressing RelA-GFP and 
mKate2-BRD4S (see Methods section). These cells showed co-localization of BRD4S 
and NF-κB upon anti-IgM stimulation in a time-dependent manner (Fig. 1c–d). We 
further inhibited BRD4 activity by adding JQ1, a BET bromodomain inhibitor, 60 min 
before anti-IgM stimulation. The number of foci increased to a maximum point at 20 
min, where the difference between the control and JQ1 treated cells was negligible, 
before significantly decreasing (Fig. 1e–f). In addition, JQ1 inhibition disrupted BRD4S 
puncta formation (Supplementary Fig. 2). This indicates that RelA foci formation itself 
is BRD4-independent, but foci maintenance is BRD4-dependent. This is consistent 
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with a previous report that found that BRD4 maintained active NF-κB through RelA 
binding16. On the other hand, inhibition of IκB kinase (IKK) using IKK-16 prevented the 
formation of RelA foci altogether (Fig. 1e–f), confirming that RelA foci formation is 
signal-dependent. 

We next investigated the presence of LLPS-like properties in RelA foci. We used 
PONDR VLXT to analyze the IDRs and found that RelA had high disorder scores in 
250–500 amino acid residues, which is comparable to BRD4 (Supplementary Fig. 
3a)30. In addition, it was previously determined through experimental approaches that 
RelA possessed IDRs31. To examine whether the RelA foci exhibited LLPS 
condensate-like properties, we treated cells with 1,6-hexanediol (1,6-HD), a 
compound known to promote the dissolution of liquid-like condensates32. 
Fluorescence imaging analysis (Fig. 1g, Supplementary Fig. 3b) showed that 
treatment with 1,6-HD after 20 min of anti-IgM stimulation dramatically reduced the 
number of foci and that washing recovered the foci. These results suggest that the 
RelA foci were similarly regulated and were responsible for anti-IgM-dependent SE 
formation. 

NF-κB-dependent SE-regulated genes demonstrated SE-like 
transcriptional dynamics 
Next, we analyzed the transcriptional responses of anti-IgM stimulated single cell 
populations (n=453) at various anti-IgM doses (0, 0.1, 1, and 10 µg/mL; 
Supplementary Table 1) using RamDA-seq with an oligo-dT primer, a method for 
single-cell RNA sequencing33. Using Seurat, we obtained two distinct cell clusters (Fig. 
2a)34. This suggests the presence of two discrete cell populations, such as those 
obtained in the imaging analysis. We classified these clusters as activated (red cluster) 
and inactivated (blue cluster), as determined by their mean expression levels of 
representative NF-κB target genes, such as NFKBIA, CD83, and TNFAIP335 (Fig. 2b).  

Prediction of cell activation through logistic regression analysis on the number of foci 
per cell showed similar quantitative profiles in cell activation, in which most cells were 
activated at 1 and 10 µg/mL as well as inactivated at 0 and 0.01 µg/mL doses of anti-
IgM (Fig. 2c, Supplementary Table 2). This suggests that the cell states determined 
from the scRNA-seq and imaging analysis were closely related.  

Since the cells exhibited bimodal responses, we investigated how gene expression 
variability changed across different concentrations of anti-IgM stimulation. To 
investigate the heterogeneity of gene expression at each dose point, we calculated 
the Fano factor of 1337 differentially expressed genes (DEGs) that were upregulated 
in the activated cells compared with inactivated cells from the scRNA-seq analysis. 
The Fano factor (Ω2/µ), which is typically used to calculate changes in transcriptional 
bursting36,37, provides a measure of deviation from the Poisson distribution where Ω2/µ 
= 1. Hierarchical clustering analysis across dose points yielded 4 modes of variability 
modulation: decreasing along dose points (cluster 1), increasing only at 0.1 µg/mL 
(cluster 2), increasing at 0.01 and 1 µg/mL (cluster 3), and increasing along dose 
points (cluster 4) (Fig. 2d). We focused on clusters 2 and 4. Cluster 2 showed low 
variability between low and high doses compared to the intermediate dose point (Fig. 
2c), which is similar to the observed cell state (Fig. 1c). Additionally, this cluster 
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contained representative NF-κB negative modulators such as NFKBIA2 and 
TNFAIP338. The high variability of gene expression at intermediate anti-IgM 
concentrations (0.1 µg/mL) may be related to dose-dependent cell activation, in which 
steep changes in the frequency of RelA foci formation were observed (Supplementary 
Fig. 1b). Cluster 4 contains genes encoding immunoreceptors, such as CD83, and 
transcription factors, such as FOSL2, showing increasing variability across dose points. 
This result indicates that the expression of these genes is variable even when most 
cells are in the activation state. From these findings, we selected NFKBIA and CD83 
as representative genes for further analysis. 

Since the cells exhibited two discrete states with increasing concentrations of anti-IgM 
stimulation (Fig. 2a), we performed a pseudo-time analysis to visualize the gene 
expression across cellular states leading to cell activation (Supplementary Fig. 4a). 
This was performed since some genes may be correlated with cellular states rather 
than anti-IgM concentration. For example, we found that NFKBIA exhibited bimodal 
expression at 0.1 µg/mL anti-IgM (Supplementary Fig. 4b). The pseudo-time analysis 
further showed that the two cell populations were discrete (Supplementary Fig. 4c). 
Additionally, NFKBIA and CD83 showed different dynamics across pseudo-time. For 
NFKBIA, the inactivated cells demonstrated slightly higher gene expression than 
CD83, whereas cells at later activation stages demonstrated switch-like high gene 
expression. Moreover, NFKBIA exhibited bimodal expression across all cells. On the 
other hand, CD83 had lower basal expressions across the inactivated cells but 
enhanced diverse expression levels at later cell activation stages (Fig. 2e). This 
indicates that the transcriptional regulation between these two genes upon cell 
activation was potentially controlled by different modes.  

To validate the changes in transcriptional dynamics of the NF-κB-regulated genes 
upon anti-IgM stimulation from scRNA-seq, we quantified their cellular mRNA using 
smRNA-FISH (single-molecule RNA-FISH) (Fig. 2f–g). There was a positive 
correlation between the RelA foci number and mRNA expression of both genes at all 
dose points (Supplementary Fig. 5a–b). We also confirmed that the RelA foci numbers 
per cell across doses of the CD83 and NFKBIA smRNA-FISH samples were similar 
(Supplementary Fig. 5c), suggesting that the technical differences between the 
samples were minimal. It should be noted that the correlation coefficient was lower at 
doses of 1 and 10 µg/mL since most cells were expected to be activated. However, 
the correlation at a dose of 0 µg/mL between NFKBIA mRNA and GFP was lower than 
that of CD83 mRNA and GFP, which may be attributed to the high basal transcription 
of NFKBIA mRNA prior to cell activation (Fig. 2e). Moreover, the trend previously 
observed across dose points in scRNA-seq (Supplementary Fig. 4b) was also 
observed in the smRNA-FISH (Supplementary Fig. 5d).  

As expected, we were able to reproduce the expression trend in RNA-seq data using 
smRNA-FISH (Fig. 2g, Supplementary Fig. 6). We then calculated the Fano factor 
change between cells at doses of 10 and 0 µg/mL, where the cells were predominantly 
activated and inactivated, respectively. We observed a significantly higher change in 
heterogeneity associated with CD83 (RNA-seq: 2.7, RNA-FISH: 10.1) compared to 
NFKBIA (RNA-seq: 1.1, RNA-FISH: 1.7). Furthermore, stimulation with other anti-IgM 
concentrations demonstrated a high bimodality of NFKBIA expression across doses, 
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whereas expression of CD83 demonstrated a long-tailed distribution (Supplementary 
Fig. 5d), which may be explained by its larger transcriptional burst size39.  

To clarify the underlying transcriptional mechanism, we performed epigenetic analysis 
on SEs and their effects on transcription. Traditionally, SE analysis is performed using 
transcription factors, histone acetylation ChIP-seq, or DNase-seq data13,14,29. In our 
research, we utilized ATAC-seq data to investigate a large stretch of enhancers similar 
to SEs since these have been reported to correlate with transcription factors and 
histone acetylation ChIP-seq signals in SEs8. In particular, we examined changes in 
chromatin accessibility before and after cell activation through anti-IgM stimulation. 

Stitching of ATAC peaks was performed for peaks within 5 kb of each other, which is 
shorter than the default (12.5 kb) since ATAC peaks are often broader than 
transcription factor ChIP-seq peaks40. In addition, we aimed to resolve more closely 
packed enhancers by selecting a narrower peak stitching distance. The rank-ordering 
of super-enhancers (ROSE) algorithm was then implemented to rank the enhancers 
in the samples with and without anti-IgM stimulation (Fig. 3a)13,41. Changes in 
chromatin accessibility between the unstimulated and stimulated cells were acquired 
by obtaining the merged peaks and calculating the fold changes of the signals between 
both conditions (see Methods). We then classified the enhancers as gained, lost, or 
unchanged by the quantiles for TEs (typical enhancers) and SEs (Supplementary Fig. 
7a). We found that both CD83 and NFKBIA were present in the gained SE-associated 
genes (Fig. 3b); however, NFKBIA showed less accessibility differences upon 
stimulation (Fig. 3c). These results suggest that CD83 was more highly influenced by 
SEs than NFKBIA.  

RT-qPCR analysis revealed that CD83 expression was sustained, while NFKBIA 
expression was transient (Fig. 3d), suggesting that the differences in transcriptional 
regulation between these genes may be related to their functions. Then, we treated 
cells with IKK-16 and JQ1 60 min before anti-IgM stimulation to investigate the 
dependences of CD83 and NFKBIA on SEs. We confirmed that both genes were NF-
κB-regulated since IKK-16 treatment suppressed the expression of both genes (Fig. 
3e). In contrast, JQ1 treatment suppressed CD83 expression significantly, while 
NFKBIA expression increased proportionally with higher JQ1 concentration (Fig. 3f), 
suggesting that CD83 gene expression was more highly controlled by SE than NFKBIA.  

We identified genes associated with changes in accessibility and transcriptional 
activity by comparing genes with gained SEs with the positively upregulated genes 
from RNA-seq analysis of the activated cell cluster. We identified 52 genes with gained 
SEs associated with upregulated RNA expression (Supplementary Fig. 7b). Gene 
Ontology analysis of these 52 genes revealed that a high proportion of these genes 
exhibited enriched functions related to immune cell activation and regulation 
(Supplementary Fig. 7c). These results confirm that SE-regulated genes play an 
important role in cellular decisions, such as in B cell development.  
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Predicted cis-regulatory interactions correlate with transcriptional 
heterogeneity 
Due to the complex arrangement of high-order chromatin structures involving SE-
mediated gene expression, it remains difficult to generalize the contribution of SEs to 
transcriptional regulation42. Therefore, we utilized single-cell ATAC-seq data for co-
accessibility analysis using Cicero to elucidate the epigenetic regulation of CD83 and 
NFKBIA28. In this analysis, we predicted accessible genomic regions that were 
potentially in close physical proximity by determining their co-accessibility scores and 
changes upon cell stimulation. Co-accessibility calculations were performed 
separately for the stimulated and unstimulated samples. The peaks used for co-
accessibility analysis were obtained by merging shortly-stitched peaks (108 bp) from 
both samples. Regions were filtered based on co-accessibility scores ≥ 0.1 in the 
stimulated samples and ≥ 0.05 in differences between the stimulated and unstimulated 
samples.  

We then examined upregulated genes in the activated cells that gained SEs or TEs 
upon stimulation to analyze the effects of chromatin accessibility and gene expression 
noise. We found that the ratio of Fano factor between anti-IgM doses 10 and 0 µg/mL 
were positively correlated (Fig. 4a), in which genes with gained SEs had higher 
correlations. To determine whether co-accessibility was correlated with gene 
expression amplitude and noise, we annotated each gene with co-accessible pairs 
above the threshold and observed a positive correlation between the number of 
regions with co-accessible pairs and their RNA fold changes (Fig. 4b) or Fano factor 
ratios (Fig. 4c). These results suggest that co-accessibility is a suitable predictor of 
gene expression levels or transcriptional variations.  

To closely compare CD83 and NFKBIA, we visualized the co-accessible region pairs 
within thresholds between peaks residing ±1 kb of each gene annotated transcriptional 
start site (TSS) as well as other positions in the same chromosome. Surprisingly, no 
co-accessible regions paired with the peaks ±1 kb of the NFKBIA-annotated TSS were 
observed. However, several regions associated with CD83 were observed (Fig. 4d–
e), indicating the formation of higher chromatin interactions upon cell activation. In total, 
we identified three regions (2 within SE and 1 outside SE) above our set threshold that 
did not intersect the gene bodies of other annotated genes (Fig. 4d–e).  

 

Discussion 
 

First, we characterized RelA foci through fluorescence imaging analysis, 
demonstrating the SE condensate-like properties, such as binding cooperativity, LLPS 
perturbation sensitivity, and BRD4 dependence. This showed that NF-κB-dependent 
SE nuclear aggregates also exhibited properties similar to those of known SE 
condensates19,20,22,43. 

SE-mediated gene regulation has been reported to cause transcriptional 
heterogeneity21 and threshold gene expression8. However, another report showed that 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.13.452147doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452147


9 
 

transcriptional noise was reduced in SE-mediated gene regulation22. Through 
experimental and computational approaches, we showed that NF-κB-mediated SE 
formation strongly modulated transcriptional heterogeneity. This was observed in 
CD83, a B cell activation marker, demonstrating its involvement in cell fate 
determination in B cell development. 

Our analysis also showed that sequence-based identification of SEs may not truly 
reflect the biological functions of SEs for each target gene. For example, NFKBIA and 
CD83 mRNAs exhibited varying sensitivities to JQ1 (Fig. 3e). Since the NFKBIA SE 
had a constitutively open chromatin prior to anti-IgM stimulation (Fig. 3a), the signal-
dependent effect on SE regulation of NFKBIA appeared to be small. The observed 
dynamics of NFKBIA in this study are also consistent with a previous report stating 
that bimodality of gene expression can be produced even in noncooperative systems44. 
The long-tailed mRNA distribution, as shown by CD83, has been reported to be crucial 
to the regulation of immune cell-mediated cytokine secretion45 and inflammatory 
responses46. These two genes demonstrated large fold-changes in gene expression 
and transcriptional heterogeneity upon SE regulation. However, the molecular 
regulation of SE in each gene varied. Therefore, our results suggest that the functional 
evaluation of SE should not solely rely on sequence analysis, but also on other 
experimental methods.  

We hypothesized that it is difficult to generalize transcriptional dynamics solely through 
genome-wide SE analysis since SEs refer to a broad group that consist of smaller 
regulatory elements with different properties contributing to gene expression 
regulation47. For example, different enhancer elements may have sub-additive and 
additive properties in the activation of gene expression in Drosophila development48. 
In the context of SE, it is still unclear how these singular elements, such as biochemical 
properties, cause external effects. Therefore, analysis of potential enhancer contacts 
may resolve this issue. 

To confirm our findings, we utilized a CRISPR-Cas9 system with double-flanking 
gRNA to induce long deletion in regions with the highest co-accessibility scores in the 
CD83 promoter (Fig. 4d–e). Unfortunately, we were unable to confirm the deletion of 
the regions within CD83 SE, which may be attributable to the incomplete genome 
database of the reference genome used for the gRNA design (GRCg6a). We were 
able to induce a long deletion in the enhancer region outside of the CD83 SE. However, 
the obtained cell clone demonstrated low survival and impaired proliferation rates. 
Thus, we were unable to confirm the changes in gene expression dynamics upon 
deletion of this enhancer region.  

These results provide insight into the mechanism of SE-mediated gene regulation in 
the NF-κB pathway, and similar methods may be applied to further study other 
signaling pathways regulated by SEs. 

 

Materials and methods 
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DT40 cell culture 
Wild-type and RelA-GFP-expressing DT40 cells were obtained from Dr. Shinohara. 
The DT40 cells were cultured in RPMI-1640 without phenol red (Wako) supplemented 
with 10% fetal bovine serum (Sigma-Aldrich), 1% (v/v) chicken serum (Nippon Bio-test 
Laboratories), 75 µM 2-mercaptoethanol (Gibco), 1 mM sodium pyruvate (Wako, 
Japan), 1% (v/v) penicillin-streptomycin solution (Nacalai Tesque), 1% (v/v) 100x MEM 
non-essential amino acids solution (Wako), and 2 mM L-glutamine (Nacalai Tesque). 
The cells were cultured at 39°C and 5% CO2 in a humidified incubator.  

JQ1, IKK-16, and 1,6-hexanediol cell treatment 
For JQ1 and IKK-16 inhibition, the DT40 cells were suspended in 5 µM JQ1 
(Selleckchem) and 6 µM of IKK-16 (Selleckchem) 60 min before anti-IgM stimulation. 
For 1,6-hexanediol inhibition, 5% of 1,6-hexanediol (Sigma-Aldrich) was added after 
anti-IgM stimulation.  

Quantification of RelA foci in single cells 
An inverted microscope IX81 (Olympus) equipped with a CSU-X1 confocal scanner 
unit (Yokogawa) and oil-immersion objective (100x, NA 1.45) was used to obtain 
images. MetaMorph software (Molecular Devices) was used to obtain 13 z-slices of 
stack images at 1 µm increments in the z-direction. The image resolution used was 
512 × 512 pixels (1 pixel = 0.16 µm). The observation chamber was maintained at 
39°C during observation. FIJI ImageJ 1.52i (https://imagej.net/Fiji/Downloads) was 
used to count the foci using a custom macro, where the diameter for foci detection 
was set to 0.96 µm. 

Quantification using smRNA-FISH 
Fluorescence-conjugated chicken GAPDH, CD83, and NFKBIA probes were 
generated for smRNA-FISH using the Stellaris Probe Designer 
(https://www.biosearchtech.com/support/tools/design-software/stellaris-probe-
designer) according to the protocols of Biosearch Technologies. A total of 1 × 107 
DT40 cells in 600 µL RPMI without supplements were stimulated with anti-IgM or PBS 
(control) for 30 min before washing with PBS and resuspending in 1 mL suspension 
buffer. Procedures following cell fixation were performed as described in the manuals 
of Biosearch Technologies for suspension cells. The fixed cells were mounted using 
Vectashield (Vector Laboratories), sandwiched in cover glasses (Matsunami Glass), 
and sealed with clear nail polish prior to imaging. 

A DeltaVision Elite - Olympus IX71 (Olympus) fluorescence microscope equipped with 
a Photometrics Coolsnap HQ2 camera and an oil-immersion objective (60x, NA 1.42) 
was used for image acquisition. SoftWoRx software (Applied Precision) was used for 
image acquisition and deconvolution. FISH-quant v3 was used to quantify the RNA-
FISH images49. The default parameters were used in the quantification.  

Calculation of Hill coefficient 
The focus dose response curve was fitted to the Hill function with a constant additive 
term accounting for basal activity. The parameters were optimized using all methods 
of the “oWptimx()” function in the “optimx” R package, and the method with the best fit 
was selected50. The equation used was as follows:  
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𝑎𝑎 +
𝑘𝑘[𝑁𝑁𝑁𝑁𝜅𝜅𝐵𝐵]𝑁𝑁

𝐾𝐾𝐾𝐾𝑁𝑁 + [𝑁𝑁𝑁𝑁𝜅𝜅𝐵𝐵]𝑁𝑁
, 

where N, Km, k, and a represent the Hill coefficient (cooperativity), the binding affinity 
of NF-κB to the enhancer region, the rate constant for foci formation, and the constant 
additive term accounting for basal activity, respectively. 

Clustering of Fano factor change 
Hierarchical clustering of Fano factor changes across anti-IgM doses was performed 
using the “hclust()” function of R with the method option “ward.D2.” 

Quantitative RT-PCR (qRT-PCR) analysis 
Total RNA was collected from the DT40 cells using a NucleoSpin RNA kit (Macherey-
Nagel GmbH & Co.) and subjected to complementary DNA synthesis and quantitative 
PCR using a ReverTra Ace qPCR RT Kit and KOD SYBR qPCR kit (Toyobo Life 
Science) according to the manufacturer’s protocol. PCR cycling conditions were as 
follows: 40 cycles of 10 s at 98°C, 10 s at 60°C, and 30 s at 68°C. The primers used 
for qRT-PCR are listed in Supplementary Table 3. Expression values (n = 3) were 
normalized to those of GAPDH.  

Single-cell RNA-sequencing analysis 
The DT40 cells were stimulated with anti-IgM (0, 0.01, 0.1, 1, and 10 µg/mL) for 1 h 
and sorted using an SH800 cell sorter (Sony) with a 130 µm sorting chip to select 
single cells. RamDA-seq with oligo-dT primer single-cell RNA-seq method was used 
for cDNA preparation33. The samples were sequenced using HiSeq2500 (Illumina). 

A quality check of the data was performed using FastQC. Trimming was performed 
using TrimGalore (with Cutadapt v2.3; 
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with default options, 
and alignment to the Gallus gallus reference genome (GRCg6a) was done using 
STAR v2.7.1a with default options51. Then, a gene count table was obtained from the 
alignment files using featureCounts v1.6.4 with “-t exon -g gene_id” options and the 
annotation GTF file GRCg6a.96 from ENSEMBL (ftp://ftp.ensembl.org/pub/release-
96/gtf/gallus_gallus/)52.  

Seurat v3.2.1 was used for clustering and differential gene expression analysis of the 
scRNA-seq data34. Prior to clustering, a quality check of the data was performed to 
remove cell outliers (total count ≥ 1.5 million, detected genes ≥ 8500, and 
mitochondrial gene count ratio < 0.04) resulting in 89, 92, 87, 92, and 93 cells used in 
the analysis of the 0, 0.01, 0.1, 1, and 10 µg/mL anti-IgM concentrations, respectively. 
Data normalization was performed using Baynorm53 and the log scaling method in 
Seurat. Data were regressed based on the cell cycle scoring with the 
“CellCycleScoring()” function of Seurat and mitochondrial gene count ratio. The top 
2000 variable features were used for dimensionality reduction and clustering with a 
resolution of 0.2. Differentially expressed genes were extracted using the 
“FindAllMarkers()” function of Seurat. Pseudo-time analysis was performed by 
creating a principal curve using the Princurve v2.1.4 R package on the dimensionality-
reduced projection with the Lowess smoother.  
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Single-cell ATAC-sequencing analysis 
All protocols for generating scATAC-seq data on the 10x Chromium platform, including 
sample preparation, library preparation, and instrument and sequencing settings, are 
described below available here: https://support.10xgenomics.com/single-cell-atac. 
Prior to nuclei extraction, the DT40 cells were stimulated with 10 µg/mL of anti-IgM or 
PBS for 60 min. 

Cellranger-atac count v1.1.0 (https://support.10xgenomics.com/single-cell-
atac/software/pipelines/latest/algorithms/overview) was used with default options for 
performing quality checks and mapping the scATAC-seq data to the genome. The 
sequence files were downsampled to 250 million reads before running the Cellranger-
atac count pipeline. The reference genome used was the ENSEMBL genome with the 
annotation file GRCg6a.96 (ftp://ftp.ensembl.org/pub/release-96/gtf/gallus_gallus/). 

Identification of SEs and TEs 
Peak calling and enhancer identification from ATAC-seq data were performed using 
Homer v4.10.4 (http://homer.ucsd.edu/homer/). A tag directory was created using the 
“makeTagDirectory” program with the “--sspe -single -tbp 1” option. Peak calling was 
performed using the “findPeaks” program with the “-style super -typical -minDist 5000 
-L 0 -fdr 0.0001” option. Peak annotation was performed using the “annotatePeaks.pl” 
program with the GRCg6a.96 annotation file. Resulting peak files were merged 
between each stimulation condition for the SE and TE peaks using the “mergeBed” 
program of bedtools. 

Gene ontology analysis 
Gene ontology analysis was performed using the function “enrichGO” of clusterProfiler 
v3.14.3 for gained SE and RNA upregulated genes54. The Ensembl gene id was 
converted to the mouse homolog gene id prior to enrichment analysis. 

Motif analysis 
Motif score calculation for enhancer regions was performed using FIMO v5.0.5 with 
the database obtained from Homer v4.10.455. The motif files from Homer were 
converted using the universalmotif v1.4.10 package of R. 

Co-accessibility analysis 
Peak calling was performed for co-accessibility analysis in Homer v4.10.4 using the 
“findPeaks” program with the “-style super -typical -minDist 0 -L 0 -fdr 0.0001” option 
to identify peaks constituting SE and TE. The “FeatureMatrix()” function of Signac 
v1.0.0 was used to assign fragments from the “fragments.tsv” file previously filtered 
for cell barcoding to the bed file containing peaks. 

Cicero v1.3.4.1028 was used to calculate the co-accessibility scores28 between the 
ATAC peaks using the reference genome GRCg6a.96. The “max_sample_windows” 
argument of the “distance_parameters()” function was set to 1000, and the 
“max_elements” argument of the “generate_cicero_models()” function was set to 500. 
The other options were set to default. Co-accessibility calculations were performed 
separately for both the stimulated and unstimulated cells. The final co-accessibility 
scores were determined as the differences between the co-accessibility scores of the 
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stimulated cells and unstimulated cells, where the initial score ≥ 0.1 in the stimulated 
cells. Gviz v1.30.3 was used to visualize the co-accessibility between genomic regions.  

mKate2-BRD4S transposon plasmid construction 
We engineered the PB-TA-ERP2-mKate2-BRD4S construct from two addgene clones 
(6537856 and 8047757) and pmKate2-H2B (Evrogen). Overlap extension PCR was 
performed to amplify the mKate2 insert from the mKate2-H2B plasmid while adding 
the attB1 adapter and linker sequence. Another round of overlap extension PCR was 
performed to amplify the BRD4S insert from GFP-BRD4 while adding the attB2 
adapter and linker sequence. A final round of fusion PCR was performed to fuse the 
fragments containing mKate2 and BRD4 to create an insert containing mKate2-linker-
BRD4S. The primers used for the overlap extension PCR are listed in Supplementary 
Table 4. A BP reaction using BP Clonase II (Invitrogen) was performed to clone the 
insert into pDONR221 (Invitrogen), creating the entry clone pENTR221-mKate2-
BRD4S. The entry clone was amplified using NEB-Stable (New England Biolabs). An 
LR reaction using LR Clonase II (Invitrogen) was performed with the destination vector 
PB-TA-ERP257 to create the final expression vector. 

Cell transfection 
Cell transfection was performed using the Neon Transfection System (Invitrogen). A 
total of 2 µg of tplasmid was mixed with 1 × 106 cells in 10 µL buffer R. Electroporation 
was performed at 1400 V for 30 ms with 1 pulse. For piggyBac co-transfection, a mass 
ratio of 1:3 (PB:pBase) of the plasmid was used. 

Statistics and reproducibility 
The qPCR data are presented as the mean ± standard deviation (SD), wherein 
N = number of biological replicates. Data were evaluated using the unpaired Student’s 
t-test for statistical significance. The means were considered statistically significant at 
p < 0.05. Box plots represent the median (center line), interquartile range (IQR; box 
limits), and 1.5× IQR for the whiskers. 

 

Data availability 
 

All sequencing data were deposited in the DNA Data Bank of Japan (DDBJ) under the 
accession number DRA012330. The codes used for the bioinformatics analysis and 
imaging analysis are available at https://github.com/okadalabipr/Wibisana2021. Other 
data are available from the corresponding author upon request. 
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Figures 
 

Figure 1 
RelA foci demonstrate SE-like properties.  

(a) Representative real-time fluorescence micrographs of an individual RelA-GFP-
expressing DT40 cell upon stimulation with 10 µg/mL anti-IgM (scale bar, 25 µm) and 
the quantification of the number of foci per cell across various anti-IgM doses (red 
points represent the median). (b) Quantification of the number of foci per cell after 20 
min of various doses of anti-IgM stimulation (red dots represent the median). The 
median value was fitted to the Hill equation, resulting in a Hill coefficient of 4.33. (c) 
Time-lapse fluorescence micrograph of DT40 cells co-expressing mKate2-BRD4S and 
RelA-GFP upon stimulation with 10 µg/mL anti-IgM (scale bar, 5 µm). (d) Quantification 
of the co-localization of mKate2-BRD4S and RelA-GFP 20 min after anti-IgM 
stimulation. (e) Representative fluorescence micrographs of RelA-GFP-expressing 
DT40 cells pre-treated with 5 µM JQ1 for 60 min or 4 µM IKK-16 for 60 min. (f) 
Quantification of RelA foci from (e). (g) Quantification of RelA-GFP foci before 
treatment, after 1,6-hexanediol treatment, and after washing. The threshold of foci 
detection was lowered to compensate for the low fluorescence intensities of the 
recovering foci.  

Figure 2 
NF-κB SE-regulated genes demonstrate SE-like dynamics.  

(a) UMAP projection of the dimensionality reduction and clustering results of 
approximately 450 cells scRNA-seq stimulated with various anti-IgM doses. (b) Box 
plot of the expression of known marker genes used to identify activated (red) and 
inactivated (blue) cell clusters. (c) Cell activation ratio from imaging obtained using 
logistic regression of foci at 20 min compared with the cell activation ratio from RNA-
seq. (d) Hierarchical clustering analysis of Fano factors across anti-IgM concentrations 
for marker genes. The red lines represent the means. (e) Single-cell expression of 
CD83 (B cell activation marker) and NFKBIA (NF-κB target gene) obtained from 
scRNA-seq across pseudo-time. (f) Micrograph of CD83 and NFKBIA smRNA-FISH 
(scale bar, 5 µm). (g) Single-cell expression of CD83 and NFKBIA obtained from 
scRNA-seq and smRNA-FISH after stimulation with 10 and 0 µg/mL anti-IgM. 

Figure 3 
SE analysis of NFKBIA and CD83.  

(a) Plot of SEs determined using the ROSE algorithm13 from cells with and without 
anti-IgM stimulation. (b) Scatter plot of SE-associated genes with significantly 
upregulated and downregulated mRNA levels in activated cells. (c) Scatter plot of DEG 
expression comparisons between inactivated and activated cells against SE and TE 
fold changes. (d) Time-course RT-qPCR of CD83 and NFKBIA upon stimulation with 
1 µg/mL anti-IgM. Gene expression was normalized to GAPDH. Error bar = SD. (e–f) 
RT-qPCR results after (e) IKK-16 and (f) JQ1 treatment 60 min prior to stimulation with 
1 µg/mL anti-IgM for 60 min (N = 3). Gene expression was normalized to GAPDH, and 
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P-values were calculated using Student’s unpaired t-test against dose 0 for each dose 
point. Error bar = SD. 

Figure 4 
Prediction of cis-regulatory regulation correlates with transcriptional noise.  

(a) Correlation plot of Fano factor ratios (10 vs 0 µg/mL anti-IgM-stimulated cells) 
against intensity fold changes at SEs and TEs of marker genes. R = spearman 
correlation. (b) Correlation plot of RNA fold changes (activated vs inactivated cells) 
against numbers of co-accessible pairs. R = spearman correlation. (c) Correlation plot 
of Fano factor ratios (10 vs 0 µg/mL anti-IgM-stimulated cells) against numbers of co-
accessible pairs. R = spearman correlation. (d–e) Co-accessibility score differences 
obtained using Cicero between stimulated and unstimulated cells shown between 
genomic regions interacting with regions ±1 kb around the annotated start site of CD83. 
The red arrows indicate regions that do not intersect with gene body of CD83 or other 
genes.  
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