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Abstract

+microstate is a MATLAB toolbox for brain functional microstate analysis. It builds upon
previous EEG microstate literature and toolboxes by including algorithms for microstate analy-
sis for other neuroimaging modalities such as sensor-space MEG and source-space data. +mi-
crostate includes codes for performing individual- and group-level brain microstate analysis
in resting-state and task-based data including event-related potentials/fields. Functions are in-
cluded to visualise and perform statistical analysis of microstate sequences, including novel
advanced statistical approaches such as microstate-segmented functional connectivity analysis,
cluster-permutation topographic ANOVAs, and χ2 analysis of microstate probabilities in response
to stimuli. Additionally, codes for simulating microstate sequences and their associated M/EEG
data are included in the toolbox, which can be used to generate artificial data with ground truth
microstates and to validate the methodology. +microstate integrates with widely used toolboxes
for M/EEG processing including Fieldtrip, SPM, LORETA/sLORETA, EEGLAB, and Brainstorm to
aid with accessibility, and includes wrappers for pre-existing toolboxes for brain-state estimation
such as Hidden Markov modelling (HMM-MAR) and independent component analysis (FastICA) to
aid with direct comparison with these techniques. In this paper, we first introduce +microstate be-
fore subsequently performing example analyses using open access datasets to demonstrate
and validate the methodology. MATLAB live scripts for each of these analyses are included in
+microstate, to act as a tutorial and to aid with reproduction of the results presented in this
manuscript.

1 Introduction

Magento- and electro-encephalography (M/EEG) are non-invasive tools for functional neuroimaging through
recording of extracranial electromagnetic fields generated by electrophysiological cortical activity. M/EEG
have been pivotal in uncovering neural mechanisms underpinning healthy cognition and neurological
diseases (Lopes da Silva, 2013). In recent years, there has been much interest in the concept of functional
brain states, characterised by a discrete (usually small) number of patterns of activation or synchrony across
the cortex remaining stable before rapidly transitioning to a different state (Baker et al., 2014; Khanna et al.,
2015; Michel and Koenig, 2018; O’Neill et al., 2018).

In the EEG literature, EEG microstate analysis has proven to be a useful tool for studying functional
brain states (Michel et al., 2009; Khanna et al., 2015; Michel and Koenig, 2018) in both single-trial data
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(e.g. resting-state or passive task) (Milz et al., 2016; Seitzman et al., 2017; Michel and Koenig, 2018) and
event related potentials (ERPs) (Murray et al., 2008; Koenig et al., 2014). EEG microstate analysis involves
clustering spatial topographies of the sensor-space electric potentials (known as ‘maps’) recorded by EEG
into a small number of discrete clusters which remarkably typically explain a large amount of variance of
the data (Khanna et al., 2015; Michel and Koenig, 2018). The resulting microstate maps are subsequently
back-fit to the data, labelling each EEG sample with a microstate label based on maximal similarity to the
map in order to obtain a temporal microstate sequence. Microstates have been useful for understanding
healthy cognition (Brodbeck et al., 2012; Britz et al., 2014; Milz et al., 2016; Seitzman et al., 2017; Zappasodi
et al., 2019), Alzheimer’s disease and other dementias (Nishida et al., 2013; Musaeus et al., 2019; Smailovic
et al., 2019; Schumacher et al., 2019; Tait et al., 2020), schizophrenia (Lehmann et al., 2005; Andreou et al.,
2014; Tomescu et al., 2014), and other neurological disorders (Khanna et al., 2014)

However, a key limitation of the EEG microstate pipeline is that it is unsuitable for application to MEG or
source-reconstructed M/EEG data (Tait and Zhang, 2021). Since MEG has higher spatial resolution than EEG
(Boly et al., 2015), and source-reconstruction allows for anatomical interpretation of the electrophysiological
data on the cortical level (He et al., 2018), generalization of the microstate pipeline to these modalities is
crucial for advancement of understanding the neural mechanisms underpinning brain microstates. Recently,
we presented such a generalization of the microstate k-means algorithm and applied this algorithm to
uncover source-space resting-state microstates and their associations with auditory stimulation (Tait and
Zhang, 2021). A number of further advancements were also presented, including validation that microstates
were associated with distinct patterns of cortical synchrony and a pipeline to simulate M/EEG sensor- or
source-space data with known ground truth microstate maps and microstate sequences (Tait and Zhang,
2021).

Here, we present +microstate, an open-source MATLAB toolbox for multi-modal analysis of microstates
in M/EEG sensor- and source-space using the generalized k-means algorithm presented by Tait and Zhang
(2021). Several open-source toolboxes for sensor-space EEG microstate analysis currently exist such as
Cartool, a plugin for the BrainVision Analyzer, and a plugin for EEGLAB (Michel and Koenig, 2018), but
+microstate is the only toolbox available for MEG or source-reconstructed microstate analysis. In addition
to the generalized k-means algorithm for microstate analysis, +microstate can perform a number of other
functionalities. While the focus is on k-means, +microstate includes options to perform Hidden Markov
Modelling (HMM; Baker et al. (2014); Vidaurre et al. (2018)), principal component analysis (PCA), and
independent component analysis (ICA; Hyvarinen (1999)) for brain-state estimation using external packages
(see subsubsection 2.1.1) in the same framework as our microstate pipeline so that brain-state dynamics
using different methodologies can be directly compared and contrasted. Furthermore, +microstate includes
functions to calculate microstate-segmented functional connectivity (Hatz et al., 2015, 2016; Tait and Zhang,
2021) which is potentially useful as a tool for studying dynamic functional connectivity beyond the arbitrary
sliding window (Tait and Zhang, 2021), as well as perform simulations of data from ground truth microstate
sequences (Tait and Zhang, 2021), which is useful for assessing clustering methodologies against a ground
truth (Tait and Zhang, 2021). Novel advanced statistical techniques for task-based analysis are additionally
included in the toolbox, including cluster-permutation (Maris and Oostenveld, 2007) extensions to topographic
ANOVAs (TANOVAs) (Murray et al., 2008) and χ2 statistics of microstate probabilities in response to stimuli
(Tait and Zhang, 2021). +microstate is based around objects which store the data and have intuitively named
functions for analysis, simulation, visualization, and statistics, resulting in a simple, accessible toolbox for
microstate analysis with limited coding background required.

This manuscript is structured as follows. In Materials and Methods, we outline the requirements,
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implementation and usage of +microstate, including key commands and how data is stored. In Results, we
demonstrate the results of some examples of usage with empirical/simulated, sensor/source-space M/EEG
data, particularly with a focus on benchmarking against ground truths to validate results are as expected.
This includes analysis of resting-state EEG to reproduce the well established canonical EEG microstates
(Michel and Koenig, 2018), analysis of MEG event related fields (ERFs) to uncover a sensor-MEG microstate
associated with different levels of activation under different experimental conditions, analysis of source-space
MEG microstate sequences in response to auditory stimuli, and reproducing ground truth source-space
microstate maps and microstate statistics in a simulated experiment. Codes and data for these analyses
are freely available and included in +microstate as MATLAB Live Script tutorials, and the figures reported
here were produced using MATLAB’s default random number generator seed to increase transparency and
reproducibility. Therefore the examples presented here may act as validation of the toolbox, examples of
possible use cases of the toolboxes, and as a tutorial.

2 Materials and Methods

2.1 Installing the toolbox

+microstate can be freely downloaded from https://github.com/lukewtait/microstate_toolbox. To
use the toolbox, MATLAB should be installed and the folder +microstate should placed into a folder on the
MATLAB path.

2.1.1 Requirements

+microstate is compatible with MATLAB R2017b and later versions; rigorous testing with earlier versions of
MATLAB have not been performed. A number of MATLAB built in toolboxes are required for full functionality,
including the Statistics and Machine Learning toolbox, Signal processing toolbox, and Wavelet toolbox (only
required for simulations of random walk sequences). A number of external toolboxes are also used and the
required functions are included with +microstate under microstate.external. These include FastICA v2.5
(https://research.ics.aalto.fi/ica/fastica/) to use ICA for clustering, HMM-MAR (https://github.
com/OHBA-analysis/HMM-MAR) to use Hidden Markov Modelling for clustering, and freely available custom-
written scripts for data visualization of summary statistics (https://github.com/lukewtait/matlab_data_
visualization).

2.2 The ‘individual’ object

All data from a given participant or scan is stored in an object of the individual class. Methods for this class
include the functionality to import and preprocess the data, perform individual-level microstate analysis,
calculate statistics of microstate sequences, and calculate microstate-segmented functional connectivity.
An empty individual object can be created by calling ms = microstate.individual in the command line,
where ms is a microstate individual object. The electrophysiological data is stored in the class properties:

• data: A T ×N double array storing the MEG/EEG/source reconstructed time series, where T is the
number of samples and N is the number of sensors/ROIs.

• time: A vector of length T containing the time axis for the data.
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• modality: A character array, which can be either ’meg’, ’eeg’, ’source’, or ’ampenv’ depending on
the modality of the data.

• bad_samples: A vector containing the indices of bad samples, such as samples which contain artifacts.

Once microstate analysis has been performed, other relevant properties of the class will be filled, such as:

• gfp: A vector of length T containing the GFP of each sample.

• maps: A N × k double array storing the microstate maps resulting from cluster analysis, where k is the
number of clusters.

• label: A vector of length T containing the integer microstate label of each sample resulting from
cluster analysis.

• stats: A structure which can output statistics of the microstate sequences.

• networks: A cell array of length k containing N ×N functional networks.

A full list of properties and methods for the individual object can be found by typing
help microstate.individual in the MATLAB command line.

2.2.1 Adding and preprocessing data

To construct a non-empty microstate individual object, the following command is used:

ms = microstate.individual(data ,modality ,time) ;

where the inputs data, time, and modality fit the descriptions of the class properties with the same name
given above (note, alternatively time can be given as a single value corresponding to a sampling rate, and
the time axis will be automatically generated). Bad samples, for example those identified by artifact detection
algorithms, can be added by typing ms = ms.add_bad_samples(bad_samples).

Alternatively, an empty individual object can be created as ms = microstate.individual, and data
can be subsequently be added. If data is in the correct format for +microstate, it can be added using the
add_data function. Additionally, +microstate integrates with a number of other M/EEG processing toolboxes,
allowing for data to be imported directly from these toolboxes. The toolboxes integrated with +microstate (and
their respective +microstate functions to import data) are:

• Fieldtrip (Oostenveld et al. (2011); http://fieldtriptoolbox.org). Import data using the function
ms = ms.import_fieldtrip(data), where data is a Fieldtrip raw, timelock, or or source structure.

• SPM (https://www.fil.ion.ucl.ac.uk/spm/). For MEEG objects, use the function
ms = ms.import_spm_meeg(D), where D is the SPM MEEG object. For source data, one must first
calculate the inverse filter in SPM (automatically saving the filter in the MEEG object), and then call
the function as ms = ms.import_spm_meeg(D,’source’). Additionally, 4D volumetric SPM images
saved as NiFTi files can be imported by calling ms = ms.import_spm_nifti(filename,fsample),
where filename is the path to the NiFTi file and fsample is the sampling rate of the data.

• EEGLAB (Delorme and Makeig (2004); https://eeglab.org). ms = ms.import_eeglab(EEG), where
EEG is an EEGLAB data object. Note that EEGLAB integrates with Fieldtrip for source reconstruction,
so only sensor-space data can be called using import_eeglab.
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• LORETA and sLORETA/eLORETA (http://www.uzh.ch/keyinst/loreta). Import source recon-
structed data using the command ms = ms.import_loreta(filename,fsample), where filename is
the path to the LORETA binary (*.lorb) or sLORETA binary/text (*.slor/*.txt) file and fsample is the
sampling rate of the data.

• Brainstorm (Tadel et al. (2011); http://neuroimage.usc.edu/brainstorm). For sensor data, call
ms = ms.import_brainstorm(bst_data,modality). For voxel-wise source data, use
ms = ms.import_brainstorm(bst_data,bst_source). For parcellated/ROI source data, call
ms = ms.import_brainstorm(bst_data,bst_source,bst_scouts). Descriptions of the structures
bst_data, bst_source, and bst_scouts and how to export them from Brainstorm to MATLAB can be
found in the import_brainstorm function help.

While the focus of +microstate is on microstate analysis as opposed to data preprocessing, some simple
preprocessing commands are included. Functions for preprocessing include re-referencing EEG data to
average, resampling, bandpass filtering, orthogonalization (Colclough et al., 2015), and calculating the
amplitude envelope. A typical microstate pipeline might include bandpass filtering 1-30 Hz, re-referencing to
average (EEG only), and resampling to 256 Hz (if data is sampled at faster rates) (Tait and Zhang, 2021).
This default pipeline is simple to call and implemented as a default, by calling

ms = ms.preprocess ;

Other functions are called in a similar manner, e.g. to bandpass filter in the range a-b Hz, one could
call ms = ms.preprocess_filter(a,b). Almost all functions have optional inputs which can be called in
name-value pairs, e.g. for a band-stop filter between 48-52 Hz to attenuate line noise, type

ms = ms.preprocess_filter (48,52,’type’,’stop’) ;

2.2.2 Performing microstate analysis using k-means clustering

A full description of the generalized modified k-means algorithm is given in Tait and Zhang (2021). Briefly
described, the algorithm involves the following steps. Firstly, the data must be appropriately transformed
depending on whether it is EEG (re-referenced to average), MEG (no transform), source (absolute value
taken), or amplitude envelope data (no transform). These transforms are automatically handled within the
functions of the toolbox based on the modality property of the individual object, and do not need to be
performed manually by the user at any stage. The GFP for a given sample t is given by

σ(t) =

√√√√ 1

N − 1

N∑
n=1

xn(t)2, (1)

where xn(t) is the value of the n’th sensor/ROI at the t’th sample. For EEG data, this is the standard
deviation (due to average reference). For all other datasets, it can be viewed as a normalized vector norm.
In both cases, peaks of the GFP correspond to samples with local maxima of signal-to-noise ratio and
topographic stability (Koenig and Brandeis, 2016; Tait and Zhang, 2021). In +microstate, the GFP can be
calculated by calling ms = ms.calculate_gfp, and plotted by calling ms.plot(’gfp’).

Subsequently, GFP peaks are extracted and a generalized version of the modified k-means algorithm
presented by Pascual-Marqui et al. (1995) is run. This algorithm is equivalent to a typical k-means clustering
algorithm, but instead of Euclidean distance, map dissimilarity is used. Map similarity between two spatial
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topographies x ∈ N × 1 and y ∈ N × 1 is given by

R(x,y) =
|xT · y|√

xT · x
√
yT · y

, (2)

and the map dissimilarity (or distance) is given by 1 − R(x,y). The command below runs the k-means
clustering in +microstate,

ms = ms.cluster_estimatemaps(k)

where k is the number of clusters. The toolbox uses kmeans++ to choose initial maps for clustering (Arthur
and Vassilvitskii, 2007), and by default uses a maximum of 100 iterations and 20 replicates, although these
values can be changed using the name-value pair inputs ’kmeans_maxiter’ and ’kmeans_replicates’

respectively. After running this function, the individual object ms will have non-empty properties maps and
label, corresponding to the microstate maps and temporal microstate sequence respectively.

The choice of k, the number of states, is a free parameter. To use an algorithm to identify the optimum
number of states, the function cluster_koptimum can be called as follows

ms = ms.cluster_koptimum ;

By default, this will run the clustering analysis for 2-20 states and use the kneedle algorithm (Satopää et al.,
2011; Tait and Zhang, 2021) to select an optimum value. Other choices of criterion can be selected using
the name-value pair input criterion, which can take values of ’KrzanowskiLai’ (Murray et al., 2008),
’CrossValidationIndex’ (Pascual-Marqui et al., 1995), or the four available criteria in the MATLAB func-
tion evalclusters (https://www.mathworks.com/help/stats/evalclusters.html#shared-criterion).
Other name-value pair inputs include ’kmin’ and ’kmax’ which take integer values and control the maxi-
mum and minimum values of k to search respectively. The object ms will be updated to contain the microstate
maps and temporal labels for the optimum number of microstates. By calling additional outputs to this
function, the microstate maps and labels for all values of k can be saved.

2.2.3 Performing microstate analysis using other algorithms

+microstate also includes options to perform microstate analysis using PCA, ICA, and HMM by integrating
with external toolboxes. It should be noted that for these algorithms, the functions cluster_estimatemaps

and cluster_koptimum simply act as wrappers for these external toolboxes to give outputs in the same
format as the k-means output. These alternative methods can be called in the clustering functions described
above using the name-value pair input ’clustermethod’, with value ’pca’, ’ica’, or ’hmm’ respectively.
PCA uses the pca function in the MATLAB Statistics and Machine Learning Toolbox. ICA uses the fastica
algorithm (https://research.ics.aalto.fi/ica/fastica/). HMM uses the HMM-MAR toolbox (https:
//github.com/OHBA-analysis/HMM-MAR), by default using the standard options from the example scripts
in this toolbox which are based on the pipelines of Baker et al. (2014) for amplitude envelope data and
Vidaurre et al. (2018) for all other modalities. Other options can be included by specifying the name-value
pair input ’hmm’ which contains the options structure used when calling the HMM-MAR toolbox (see the
documentation for this toolbox for more details). For PCA and ICA, any of the criterion of choosing number
of states described above can be used. For HMM, the value of k which minimises free energy is used.
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2.2.4 Analysing microstate sequences

Once clustering analysis has been performed as described above, a range of statistics of the microstate
sequences can be calculated. Global statistics of the microstate sequences include GEV (Murray et al.,
2008), mean duration of microstates (Koenig et al., 2002), Hurst exponent of the sequences (Van De Ville
et al., 2010), microstate complexity (Tait et al., 2020; Tait and Zhang, 2021), and the autoinformation function
of the microstate sequence (von Wegner et al., 2017). Class-specific statistics include mean duration of the
microstates within a particular class (Koenig et al., 2002; Lehmann et al., 2005), coverage of a class (the
percentage of time spent within a class) (Lehmann et al., 2005), and occurrences of the class (number of
times the state appears per second) (Lehmann et al., 2005). +microstate can also calculate the Markov
and syntax matrices (with and without self-transitions respectively) (Lehmann et al., 2005; Nishida et al.,
2013; von Wegner et al., 2017), the information-theoretical zeroth and first order Markov statistics and
their p-values (von Wegner et al., 2017), and test for non-random microstate syntax (Lehmann et al., 2005;
Nishida et al., 2013).

Each statistic is given by a function beginning with stats_, e.g. to calculate GEV you can call the function
stats_gev. +microstate also includes a wrapper function for each of these stats functions, which can be
called as

ms = ms.stats_all ;

The property stats of the object ms will be updated to include values for each of the stats described above.

2.2.5 Microstate-segmented functional connectivity

Microstate-segmented functional connectivity patterns (Hatz et al., 2015, 2016; Tait and Zhang, 2021) can
also be calculated in +microstate. This can be performed by calling

ms = ms.networks_wpli(freq_band) ;

While the input freq_band = [f_low,f_high] is optional, phase synchrony is typically calculated from
narrowband signals and hence it is strongly recommended to include this input in order to specify a frequency
band (from f_low to f_high Hz, e.g for the 8-13 Hz alpha band specify freq_band = [8,13]) in which to
calculate connectivity.

2.2.6 Visualizing microstate data

+microstate includes options for visualizing the data and microstate sequences stored in the individual object
using the plot function. This can be called as follows

ms.plot(string) ;

Here, string is a string specifying what should be plotted, and can take on a wide range of values. For
example, to plot the electrophysiological timeseries, you can call ms.plot(’data’). There are options
to plot many other statistics including GFP, power spectrum, microstate maps, Markov/syntax matrices,
autoinformation functions, coverage/duration/occurrence of microstate classes, and microstate segmented
functional connectivity patterns.
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2.3 The ‘cohort’ object

While the individual object is useful for performing microstate analysis at the level of an individual participant
or scan, the cohort object can be used for group level analysis. An empty cohort object can be created by
calling coh = microstate.cohort in the command line, where coh is a microstate cohort object. Properties
of this class include:

• individual: An array of M individual objects, where M is the number of participants/scans and each
element in the array corresponds to a participant/scan.

• condition and conditionlabels: These values are used when the data contains multiple conditions
(e.g. multiple scans, disease vs control groups, experiment vs rest, etc) to specify which individual
object belongs to which condition. condition is an array of length M taking on integer values
from one to the number of conditions, while conditionlabels gives labels for each condition. For
example, if coh.conditionlabels = {’task1’,’task2’,’rest’} and coh.condition(1)=2, then
coh.individual(1) was recorded during the task2 condition.

• globalmaps: A N × k double array storing the group level microstate maps resulting from global
clustering.

• stats: A structure which can output statistics of the microstate sequences

• process: A table containing a record of all processes performed on the data.

2.3.1 Adding individuals to a cohort

Let ms be a microstate individual object and coh be a cohort object. The add_individuals property of the
cohort class can be used to add the individual as follows:

coh = coh.add_individuals(ms) ;

Now, let us assume we have two individual objects recorded during two conditions condition1 and condition2.
We can add these to a cohort object as

coh = coh.add_individuals(ms1 ,’condition1 ’) ;

coh = coh.add_individuals(ms2 ,’condition2 ’) ;

For large cohorts, including all of the data can be very memory intensive. It therefore might be preferable
to take more memory efficient approaches if not all the data is required. For example, one could read in
each dataset individually, perform clustering on that dataset, and then to obtain group level maps perform
clustering on the sets of individual maps (Khanna et al., 2014), in which case no data (only the individual
maps) would be required for clustering. Alternatively, one might sample a subset of GFP peaks from each
individual for clustering (Tait and Zhang, 2021). A third input to the add_individuals function allows for
specification of how much data is stored; a value in the range 0-1 specifies to store a random fraction of the
data (e.g. 0 stores none of the data, 0.1 would randomly select 10% of data points to store, and 1 stores all
data), while integer values greater than 1 specify a fixed number of GFP peaks to store.

2.3.2 Calling ‘individual’ functions for all individuals within a cohort

Many of the functions that apply to the individual class can be called for the cohort class with the prefix
ind_. Any function with this prefix is simply a wrapper, looping over all individuals in the cohort. For example,
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calling coh = coh.ind_preprocess_filter(1,30) is equivalent to running a for loop through all individuals
in the cohort and using the preprocess_filter function to bandpass filter 1-30 Hz.

2.3.3 Performing group-level microstate analysis

Group level clustering can be performed using the functions cluster_global and
cluster_globalkoptimum, which are group level equivalents to the individual class functions
cluster_estimatemaps and cluster_koptimum respectively. In fact, these functions generate a new
individual object whose data property is a concatenation of all stored data points from all individuals and
calls the individual clustering functions on this concatenated data set. To perform group level clustering, call

coh = coh.cluster_global(k) ; % option 1: cluster k maps

coh = coh.cluster_globalkoptimum ; % option 2: find optimum k and cluster

These commands will update the property globalmaps of the cohort object to include the clustered maps.
To first perform clustering analysis on the individual level and then cluster the individual maps (Khanna

et al., 2014), you can call the following:

coh = coh.ind_cluster_estimatemaps(k) ;

coh = coh.cluster_global(k,’cohortstat ’,’maps’) ;

2.3.4 Performing trial-based ERP/ERF microstate analysis

The cohort object can also be used to store multiple trials under multiple conditions for one or more
participants. This is particularly useful for analysis of ERPs/ERFs (Murray et al., 2008; Koenig et al.,
2014). In this case, you can perform permutation tests on GFPs or topographies for both between-trial or
within-participant designs, using the methodologies outlined by Murray et al. (2008). For example, to perform
TANOVA tests, we can call

[p,stats] = coh.erp_clusterperm_TANOVA;

The millisecond-by-millisecond TANOVA results (Murray et al., 2008) are stored in the output
stats.p_sample. However, this approach has the issue of needing to correct for multiple comparisons (i.e.
one p-value per sample of data), and hence +microstate also implements a cluster permutation TANOVA
combining the map dissimilarity (DISS) statistic (Murray et al., 2008) and permutation methodology from
millisecond-by-millisecond TANOVAs with the multiple comparison cluster approach used in cluster
permutation testing (Maris and Oostenveld, 2007). That is, DISS is calculated and condition labels are
permuted in the same manner as described for the millisecond-by-millisecond TANOVAs (Murray et al.,
2008), but instead of comparing empirical DISS against the distribution of permuted DISS to obtain a
p-value at each time point, we choose a threshold (here the midway point between maximum and minimum
DISS values), find clusters of neighbouring points exceeding the threshold, and calculate the sum of DISS
over all samples within a cluster to obtain a cluster DISS value. We subsequently compare the maximal
empirical cluster statistic against the null maximal cluster statistics to obtain a multiple-hypothesis corrected
p-value for the cluster, which is reported in the output p.

Similarly, one can calculate the χ2 distance between the histograms of microstate probabilities in two
sets of conditions and perform cluster permutation analysis by calling

stats = coh.erp_chi2stateprobs(expectedConditions ,observedConditions) ;
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where expectedConditions and observedConditions are the names of the conditions to be compared.
For example, in subsection 3.4 we compare standard and deviant stimuli, so treat the standard stimuli as the
expected (or baseline) probabilities of microstate classes, and the deviants as the observed probabilities.
Alternatively, one can specify the expected conditions to be ’prestim’ to compare pre- and post-stimulus
periods as presented in Tait and Zhang (2021), but in this case cluster permutation analysis is not available
and only millisecond-by-millisecond p-values are returned.

2.4 Simulations

Tait and Zhang (2021) presented a methodology for simulating microstates. This takes on three steps, which
are easily implemented in +microstate. Firstly, a microstate sequence must be simulated. Two options are
implemented in +microstate, including a random walk decision tree (Tait and Zhang, 2021) or simulating
from a pre-specified Markovian transition matrix. These simulated sequences are generated by making
an individual object and then calling functions simulate_seq_randomwalk or simulate_seq_markov, which
will update the label property of the individual object. Secondly, microstate maps must be added. This
is as simple as specifying the maps property of the individual object. Thirdly, the data must be simulated.
This is done by calling the simulate_data function, which will update the individual object’s data property
to include the simulated MEG/EEG/source data. By default, the parameters of the neural mass model
are those previously reported (Deco et al., 2009; Abeysuriya et al., 2018; Tait and Zhang, 2021), but the
parameters can be customized using the name-value pair input ’params’, which takes a value of a structure
specifying any custom parameters.

Alternatively, simulations can be called via the wrapper function

ms = ms.simulate ;

which performs all steps of this pipeline.

3 Results

In this section, we will demonstrate some examples of using +microstate for microstate analysis of real
data and simulations. In the first and second examples, we will use +microstate to perform sensor-level
microstate analysis on free open access EEG and MEG datasets. Subsequently, we will simulate an example
experiment and demonstrate group level analysis. The aims of these examples are to test against known
benchmarks to validate the toolbox. In the first example (resting-state EEG data), we aim to recreate the
four canonical resting-state EEG microstate maps (Michel and Koenig, 2018). In the second example (MEG
evoked fields), we use a dataset where known topographical differences between ERFs are exhibited at
a particular latency. We test a hypothesis that these topographical difference are related to activation of
a particular microstate class with a similar topography during this latency. In the third example (simulated
source-space data), we aim to test whether the microstate pipeline can recreate ground-truth group-level
differences between simulated cohorts. In the fourth example, we analyse microstate sequences from
source-space MEG recordings during an auditory task, as presented in Tait and Zhang (2021). For each of
these examples, all data and a MATLAB Live Script tutorial is included with the toolbox such that all figures
and results can be reproduced exactly. Finally, we will briefly give an overview of the results of Tait and
Zhang (2021) when applying the toolbox to source-reconstructed resting-state MEG data.
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Figure 1: EEG microstate maps derived from a single-subject open-access resting-state EEG scan using
the +microstate toolbox and plotted using the toolbox’s plot(’maps’) function. The maps closely correspond
to the canonical maps A (top right), B (bottom right), C (bottom left), and D (top left) (Michel and Koenig,
2018).

3.1 Recreating the canonical EEG microstate maps

EEG microstate analysis has widely been applied to resting-state data, identifying an optimum of four states
known as the canonical microstates (Michel and Koenig, 2018). When the data is sensor-space EEG, the
generalized formalism of the microstate algorithm implemented in +microstate is identical to the widely used
EEG microstate modified k-means algorithm. Hence, +microstate can be used for traditional EEG microstate
analysis as well as MEG or source space microstate analysis. In this section, we demonstrate an example
of how to perform EEG microstate analysis using +microstate.

The dataset used here is the open-access data supplied with the Fieldtrip tutorial for cleaning and pre-
processing resting-state data (https://www.fieldtriptoolbox.org/workshop/madrid2019/tutorial_
cleaning/), and is described in Chennu et al. (2016). We downloaded the data set and pre-processed
the data according to this webpage. For efficiency, we also downsampled the data to the 20 electrodes
which correspond to the 10-20 system, since this is sufficient for accurate estimation of microstates (Khanna
et al., 2014). +microstate was used to preprocess the data (re-reference to average and 1-30 Hz bandpass
filter) and perform cluster analysis for 4 microstates. Figure 1 shows the resulting microstate maps, plotted
using +microstate’s plot(’maps’) function. The resulting maps closely correspond to the four canonical
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microstate maps (Michel and Koenig, 2018). Analysis of this microstate sequence in +microstate demon-
strates microstate statistics are within ranges reported in the literature, including a mean duration of 54 ms
(von Wegner et al., 2017; Tait et al., 2020), and GEV of 55% (Michel and Koenig, 2018), and non-Markovian
transitioning indicated by a highly significant information-theoretical Markov statistic (von Wegner et al.,
2017) and a Hurst exponent of 0.60 (Van De Ville et al., 2010; von Wegner et al., 2016, 2018).

3.2 Topographic microstate analysis of MEG ERPs

Murray et al. (2008) proposed a topographic and microstate methodology for analysing event-related
potentials (ERPs). In this section, we used +microstate to perform topographic microstate analysis on the
open-access MEG ERP data supplied with the Fieldtrip tutorial for cluster-based permutation tests on event-
related fields (https://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock/). This
dataset is from a study in which MEG was recorded following congruent and incongruent sentences (Wang
et al., 2012). The data was downloaded and pre-processed according to the Fieldtrip tutorial. Following the
Fieldtrip tutorial, we analysed data in the range 0-1 seconds following the stimulus.

Here, we will demonstrate results from between-trial experimental design comparing congruent and
incongruent trials between participants, but +microstate can also be used for within-subject designs with only
minor adaptions to the script (an example script is included in the toolbox). In the Fieldtrip tutorial, cluster
permutation testing on the ERP time courses demonstrated significant differences between congruent and
incongruent trials 550-750 ms following, localized to left frontal and parietal electrodes. The topography of
these differences are shown in Figure 2A. In this section, we hypothesised there is a cortical network (or
microstate) associated with this topography which differs in activation between congruent and incongruent
trials, and used +microstate to test this hypothesis.

Firstly, topographic ERP analysis (Murray et al., 2008) was used to find time samples with significant
differences between the conditions. Figure 2B shows the global map dissimilarity between the grand
average ERPs for each condition. Murray et al. (2008) proposed a millisecond-by-millisecond TANOVA
approach to identify samples in which the topography differs between conditions. Results of millisecond-by-
millisecond TANOVA are shown in Figure 2C. However, this approach has the issue of needing to correct for
multiple comparisons, so here we instead analyse the output of the cluster permutation TANOVA approach
(subsubsection 2.3.4). Figure 2B shows that a significant cluster was identified between 530-737 ms using
this cluster permutation TANOVA approach, in line with the differences observed for classical ERP analysis
in the Fieldtrip tutorial.

We subsequently performed microstate analysis on the ERPs as described in Murray et al. (2008) and
implemented in +microstate. We used the Krzanowski-Lai criterion for choosing the number of states,
restricting this to greater than three states (Murray et al., 2008). Four states were optimum. Of these
four states, one showed close correspondence with the ERP difference map (Figure 2D), supporting
our hypothesis that there is a cortical network which is associated with differences in response between
congruent and incongruent trials. To further test the hypothesis that this network differs in activation between
conditions, we quantified the coverage of this state between 530-737 ms, and found a significantly different
coverage (p = 0.0151, Wilcoxon-rank sum test; Figure 2E).

3.3 Simulations and group-level analysis of cohorts under different conditions

In this section, we demonstrate simulations and group-level analysis of cohorts in +microstate. The simulated
experiment is as follows: We have n = 20 participants, who undergo two M/EEG scans. In the first scan,

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452193doi: bioRxiv preprint 

https://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock/
https://doi.org/10.1101/2021.07.13.452193
http://creativecommons.org/licenses/by/4.0/


Tait and Zhang (2021)

Figure 2: Topographic microstate analysis of MEG ERPs. (A) Result of analysing the data in Fieldtrip
following the cluster permutation analysis tutorial (see text for description) between 550-750 ms, and plotted
using Fieldtrip. Shown is the difference between congruent and incongruent responses. Sensors marked with
an asterisk were significantly different between conditions. (B) Map dissimilarity (DISS) between congruent
and incongruent trials. The horizontal dashed line shows the threshold used for cluster permutation
TANOVAs, and the shaded region shows the significant clusters from cluster permutation TANOVAs. The
timing of significant differences are between 530-737 ms. (C) In contrast to cluster permutation TANOVAs,
which correct for multiple comparisons, here we plot millisecond-by-millisecond TANOVA results without
correction for multiple comparisons following Murray et al. (2008). (D) One of the four microstate maps
identified from clustering analysis, and plotted using +microstate. Due to the correspondence between this
microstate and the difference map shown in A, we hypothesise this microstate is associated with a network
which differs in activation between congruent and incongruent trials. (E) There is a significant difference
between congruent and incongruent trials in the coverage of the microstate shown in D between 530-737
ms.
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conditions are such that the microstate sequence is generated by a random walk decision tree, and hence
should exhibit long range temporal correlations. In the second scan, the microstate sequence is generated
by a Markov chain; specifically a Markovian surrogate to the random walk sequence (i.e. coverages and
syntax are theoretically identical to the random walk sequence, but no long range correlations exist). All
other parameters are equal between conditions, e.g. microstate maps and equations for neural dynamics.
In the first section below, we will describe how to simulate such an experiment, generating artificial data
and creating a +microstate cohort structure. In the subsequent section, we will treat the simulated data
as if it were real data from an experiment and perform microstate analysis, making the hypothesis that the
estimated microstate sequences should demonstrate evidence of more Markovian properties in the second
condition.

3.3.1 Simulating the experiment

Here, we demonstrate the output from simulating the experiment using +microstate. For each participant in
the simulation, we assume their ground truth microstate maps to be some group level map plus some noise.
Group level maps were arbitrarily chosen and are shown in Figure 3A. Since source flipping is a motivator
for using the generalized methodology in +microstate as opposed to classical microstate analysis (Tait and
Zhang, 2021), we additionally included source flipping in our individual maps by randomly switching the sign
of the maps with 50% probability. An example individual set of ground truth maps are shown in Figure 3B.

For each participant, a random-walk microstate sequence was simulated and neural dynamics generated
as described in (Tait and Zhang, 2021). The resulting simulated source M/EEG and its power spectrum for
an example individual is shown in Figure 3. These simulated source data (without ground truth maps or
sequences) were stored in a cohort structure for later analysis. To generate Markovian surrogate sequences,
we used the stats_markov function to obtain the Markovian matrix (shown for an example individual without
self-transitions in Figure 3D), and subsequently used this matrix to simulate a new Markovian microstate
sequence and associated source M/EEG dataset. The simulated M/EEG data for each individual was stored
in the same cohort object as the data from the random-walk simulations, but using a different condition
label to separate the groups. For validation purposes, Figure 3E shows the information theoretical Markov
property (von Wegner et al., 2017) for the ground truth random-walk and Markov sequences, showing
that (as expected) the random-walk sequences are highly non-Markovian while the Markov sequences are
Markovian.

3.3.2 Group-level microstate analysis and comparing conditions

In this section, we will treat the simulated data as though it were experimental source-reconstructed M/EEG
and perform group-level microstate analysis. To remove high-frequency noise and slow drifts, we bandpass
filtered the simulated data in the range 1-30 Hz (Michel and Koenig, 2018; Tait and Zhang, 2021), and then
ran the group level microstate analysis for four states on our cohort object.

Figure 4A shows the estimated group-level microstate maps. It is clear that the four estimated maps
closely correspond to the group truth group level maps (Figure 3A), excluding polarity. This exclusion of
polarity is required for source data to deal with the problem of source flipping (Tait and Zhang, 2021). When
aligned to the original group maps using a template matching algorithm, the four estimated maps had
map similarities to the original maps between 0.88-0.92, indicating robust estimation of the ground truth
microstate maps.
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Figure 3: Simulating the experiment described in subsection 3.3. (A) Ground truth group level maps,
which are the same for all participants and all conditions. (B) An example individiual ground truth map, which
includes random dipole flipping and noise. (C) An example simulation of the source M/EEG data (top) and
its power spectrum (bottom). The spectrum shows the mean spectrum across all ROIs, with shaded regions
showing standard deviation. (D) Example Markovian syntax matrices for the random walk sequence (i.e.
experimental condition 1; top) and Markov sequence (i.e. experimental condition 2; bottom), demonstrating
first order Markov properties are consistent across conditions. (E) For the 20 simulated participants, violin
plots of the first order Markov statistic (G1) are shown. G1 values exceeding the dashed black line are
significantly different than a Markovian sequence to p < 0.05. While (D) showed first order Markov transitions
are the same across experimental conditions, (E) demonstrates that higher order properties of the sequences
differ between conditions.
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Figure 4: Group-level microstate analysis performed on the simulations shown in Figure 3. (A) Estimated
group microstate maps. (B) The Hurst exponent of the estimated sequence is significantly lower in condition
2, suggesting fewer long-range correlations than condition 1. Since the underlying simulated sequence for
condition 2 was Markovian, this reflects what we should expect.

Next we tested the hypothesis that (estimated) microstate sequences from condition 1 will contain
more long-range correlations than sequences from condition 2. To test this hypothesis, we compared
the Hurst exponent between conditions, using a Wilcoxon sign-rank test due to the paired experimental
design. There was a significantly lower Hurst exponent in the Markov data than the random-walk data
(p = 2.19 × 10−4; Figure 4B), supporting our hypothesis (and validating that the microstate sequences
estimated by +microstate reflect statistical properties of the ground truth sequences). Here, we used the Hurst
exponent as it is a widely used measure of long-range temporal correlations in microstate sequences, but
similar results can be found from studying other measures of non-Markovianity and long-range correlations
in +microstate, including the Markov G1 statistic, the auto-information function, and the microstate sequence
complexity.

3.4 Source-space MEG microstates response to stimuli

Tait and Zhang (2021) presented a methodology to examine the response of source-space MEG microstates
to auditory stimuli, which is implemented in +microstate. In this section, we used +microstate to expand upon
this analysis and compare standard vs deviant auditory stimuli. Participants, data acquisition, preprocessing,
source-reconstruction, and group-level microstate analysis for the continuous task-based was described in
Tait and Zhang (2021). The microstate sequences for all participants and the scripts for the analysis are
freely available and included with +microstate.

After importing the continuous task-based data in +microstate, we defined trials from 100 ms prestimulus
to 350 ms post-stimulus about each stimulus and concatenated all trials for all participants into a cohort
object. Tait and Zhang (2021) calculated the χ2 distance between the histograms of pre-stimulus and
post-stimulus microstate probabilities based on the number of samples in each period within each state,
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Figure 5: Microstate responses to auditory stimuli. (A) For each sample post-stimulus, the χ2 distance
between the histograms of microstate probabilities for standard and deviant stimuli are shown. The dashed
red line corresponds to (uncorrected) p < 0.05, which was used as a threshold for cluster permutation
analysis. Cluster permutation analysis identified significant differences between 128.9-250.0 ms following
the stimulus (shaded region). (B) At peak χ2 in the significant time period, we plot the Pearson residuals.
The dashed red line show Bonferroni corrected p < 0.05. Microstate 2 (map for this microstate is inlaid) is
significantly more likely for deviant stimuli than standards.

demonstrating a significant peak around 100ms following the auditory stimulus. As described in Tait and
Zhang (2021), this was a result of an increased likelihood of the microstate containing the auditory cortex.
Codes to reproduce the analysis of Tait and Zhang (2021) are included in the tutorials for +microstate.

Here, we expanded upon the analysis of Tait and Zhang (2021) by comparing standard vs deviant stimuli
using a similar approach implemented in +microstate. For each sample following the stimulus, we calculated
the probability of each microstate (across all participants and trials) for standard stimuli and deviant stimuli.
This was used to generate a χ2 distance between the likelihood of each microstate in the standard vs
deviant stimuli at each time point following the stimulus (Figure 5A). By permuting the standard/deviant
labels, we performed a cluster-permutation test on χ2, demonstrating a significant difference in microstate
probabilities between 129-250 ms (p = 0.0310, cluster permutation test). This time period is consistent with
the approximate latency of the auditory mismatch negativity (Rentzsch et al.; Mahadeva Iyer et al., 2017;
Nagai et al., 2017). We subsequently plotted the Pearson residuals (Tait and Zhang, 2021) at the sample
with peak χ2 within this time period, representing a histogram of change in microstate probability (shown
in Figure 5B). The 2nd microstate, corresponding to the fronto-temporal state ((Tait and Zhang, 2021))
which contains the auditory cortex, was more likely to be active in response to deviant stimuli than standard
stimuli. Interestingly, Tait and Zhang (2021) showed that across all stimuli this same microstate is more
likely to be active around 100ms post-stimulus than the pre-stimulus period. These results are potentially
suggestive of a mechanism by which the fronto-temporal microstate is activated in response to a stimulus
(latency approximately 100ms) and remains active for longer during processing of deviant stimuli (latency
approximately 130-250 ms).
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3.5 Source space resting-state microstates

Tait and Zhang (2021) used +microstate to examine source-space microstates in resting-state MEG data.
Here, we will briefly review their results as an example of the utility of +microstate for anatomical estimation of
microstates. Scripts demonstrating how to perform this analysis with +microstate are included in +microstate.
These maps explained approximately 60-65% of the variance of the source-reconstructed MEG data, and
were robust to new scans.

A key novel feature of the analysis presented by Tait and Zhang (2021) and implemented in +microstate is
microstate-segmented functional connectivity. Combining the microstate-segmented functional connectivity
patterns with machine learning tools such as multivariate pattern analysis (Treder, 2020), Tait and Zhang
(2021) demonstrated that source microstates were associated with distinct patterns of cortical connectivity
and can potentially be used as an alternative to arbitrarily chosen sliding windows for studying dynamic
functional connectivity states. Study of both microstate activation patterns and microstate synchrony are
important for a wholistic understanding of the brain regions involved in generating stable functional brain
states, as it is clear that patterns of functional connectivity associated with a microstate are not directly
reflective of their activation patterns (Tait and Zhang, 2021).

4 Discussion

+microstate is an open-source freely available toolbox for performing microstate analysis in EEG and MEG
in sensor and source space. The toolbox includes functionality for pre-processing, microstate clustering
analysis, visualization, and statistical analysis at the single-trial and group level. A number of toolboxes
for EEG microstate analysis are currently available, including CARTOOL (Brunet et al., 2011) and a
plugin for EEGLAB (Poulsen et al., 2018). However, these toolboxes are limited to sensor-space EEG
analysis. +microstate is at present the only toolbox for topographic microstate analysis of MEG and
source-reconstructed M/EEG data.

It should be highlighted that the focus of +microstate is on the microstate k-means algorithm and
microstate segmented functional connectivity, and hence there is limited functionality for pre-processing
data or statistical analysis. Functions for pre-processing data are limited to re-referencing EEG data,
bandpass/bandstop filtering, resampling, orthogonalization and computing amplitude envelopes. More
advanced pre-processing steps, notably source-reconstruction, are beyond the scope of the toolbox. Similarly,
the only statistical tools implemented in +microstate are non-standard microstate-specific tools such as
TANOVA tests. The toolbox was implemented this way by design, since the choice of pipeline for pre-
processing and source-reconstruction and the choice of statistical tools used are data and hypothesis
dependent. We therefore suggest using +microstate in combination with existing MATLAB toolboxes. For
pre-processing and source-reconstruction of M/EEG data, a wide range of toolboxes are available for
MATLAB such as Fieldtrip (Oostenveld et al., 2011), Statistical Parametric Mapping (Litvak et al., 2011),
EEGLAB (Delorme and Makeig, 2004), and Brainstorm (Tadel et al., 2011). For statistical analysis, in
addition to these toolboxes there are options such as the MATLAB Statistics and Machine Learning Toolbox
and MVPA-Lite (Treder, 2020). For example, to study source-space MEG microstates, Tait and Zhang (2021)
performed data processing and source-reconstruction using Fieldtrip, microstate analysis used +microstate,
and statistical analysis used MATLAB functions and MVPA-Lite (Treder, 2020). Other toolboxes such as
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) implemented in MATLAB will likely additionally
be useful for analysing properties of the novel microstate-segmented functional networks (Tait and Zhang,
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2021) implemented in +microstate. We implemented +microstate in MATLAB on the command line (as
opposed to using a graphical user interface), so that the toolbox is easily used in combination with any
of these pre-existing MATLAB toolboxes, in contrast to standalone graphical applications for microstate
analysis such as CARTOOL.

A number of example use cases were included in this report. The motivations of the use cases were
twofold. Firstly, we aimed to demonstrate potential ways that +microstate can be used to analyse (and
simulate) data from a range of modalities (sensor-EEG, sensor-MEG, and source-reconstructed data)
as well as different cognitive conditions (resting-state and cognitive task). A second motivation for the
specific choice of use cases presented here was as validation of the toolbox versus benchmarks and
ground truths. In the first example, we analysed resting-state sensor-EEG microstates which have been
widely studied in the literature (Khanna et al., 2015; Michel and Koenig, 2018). By reproducing canonical
microstate maps and temporal statistics in line with the literature, this example acts as validation that the
generalized algorithm used in +microstate gives comparable results to existing EEG microstate literature.
In the second example, we performed microstate analysis on sensor-MEG evoked fields between two
conditions (congruent and incongruent sentences). Using microstate pipelines implemented in +microstate,
we identified topographic differences between conditions at comparable latencies to ERF cluster permutation
analysis (Maris and Oostenveld, 2007) implemented in Fieldtrip. We additionally found a microstate map
with a topography closely corresponding to the ERF difference map, and found that this map demonstrated
significant differences in activation between conditions. This example therefore acts as validation of the
sensor-MEG microstate pipeline and topographic ERP/ERF analysis implemented in +microstate. A third
example showed simulations of source-space data, and demonstrated that the source-microstate pipeline
can reproduce the ground truth microstate maps and group-level differences between conditions. A fourth
example contrasted source-reconstructed MEG microstates between standard and deviant auditory stimuli,
finding differences at a latency reflecting that of the auditory mismatch negativity. The microstate responsible
for these differences include the localization of the auditory mismatch negativity. Finally, we discussed the
results of Tait and Zhang (2021) when applied to empirical source-space data (source-reconstructed MEG),
particularly highlighting alterations to microstate statistics reflect different cognitive states (resting-state
vs auditory task) and the machine learning methods demonstrating associations between microstates
and functional networks. Together, these examples provide much evidence for the generalized microstate
algorithm implemented in +microstate.

4.1 Conclusions

We have presented +microstate, an accessible and freely available toolbox for multi-modal microstate
analysis implemented in MATLAB. The aim of this toolbox is to facilitate the use of microstate analysis
in a wider range of electrophysiological datasets in future research. Example use cases were given in
this toolbox, validating the toolbox and demonstrating use of the toolbox with sensor-EEG, sensor-MEG,
and source-reconstructed data across resting- and task-evoked datasets. MATLAB Live Scripts for these
examples are included in the toolbox to act as a tutorial to maximise useability and make functional brain
microstate analysis an accessible tool for a wider range of researchers.
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V. Satopää, J. Albrecht, D. Irwin, and B. Raghavan. Finding a ”kneedle” in a haystack: Detecting knee points in system
behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops, pages 166–171,
2011. doi: 10.1109/ICDCSW.2011.20.

J. Schumacher, L.R. Peraza, M. Firbank, A.J. Thomas, M. Kaiser, P. Gallagher, J.T. O’Brien, A.M. Blamire, and J.P.
Taylor. Dysfunctional brain dynamics and their origin in lewy body dementia. Brain, 142(6):1767–1782, 2019. doi:
10.1093/brain/awz069.

B.A. Seitzman, M. Abell, S.C. Bartley, M.A. Erickson, A.R. Bolbecker, and W.P. Hetrick. Cognitive manipulation of brain
electric microstates. Neuroimage, 146:533–543, 2017. doi: 10.1016/j.neuroimage.2016.10.002.

U. Smailovic, T. Koenig, E.J. Laukka, G. Kalpouzos, T. Andersson, B. Winblad, and V. Jelic. EEG time signa-
ture in Alzheimer’s disease: Functional brain networks falling apart. Neuroimage Clin, 24:102046, 2019. doi:
10.1016/j.nicl.2019.102046.

F. Tadel, S. Baillet, J.C. Mosher, D. Pantazis, and R.M. Leahy. Brainstorm: A user-friendly application for MEG/EEG
analysis. Comput Intell Neurosci, 2011:879716, 2011. doi: 10.1155/2011/879716.

L. Tait and J. Zhang. MEG cortical microstates: spatiotemporal characteristics, dynamic functional connectivity and
stimulus-evoked responses. bioRxiv, 2021.03.25.436979, 2021. doi: 10.1101/2021.03.25.436979.

L. Tait, F. Tamagnini, G. Stothart, E. Barvas, C. Monaldini, R. Frusciante, M. Volpini, S. Guttmann, E. Coulthard, J.T.
Brown, N. Kazanina, and M. Goodfellow. EEG microstate complexity for aiding early diagnosis of Alzheimer’s
disease. Sci Rep, 10:17627, 2020. doi: 10.1038/s41598-020-74790-7.

M.I. Tomescu, T.A. Rihs, R. Becker, J. Britz, A. Custo, F. Grouiller, M. Schneider, M. Debbané, S. Eliez, and C.M.
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