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Abstract Patterns of motor activity can be used to decode behavior state. Precise spike timing
encoding is present in many motor systems, but is not frequently utilized to decode behavior or
to examine how coordination is achieved across many motor units. Testing whether the same
coordinated sets of muscles control different movements is difficult without a complete motor
representation at the level of the currency of control – action potentials. Here, we demonstrate
nearly perfect decoding of six hawk moth flight behaviors elicited in response to wide-field
drifting visual stimuli about the flight axes – pitch, roll, and yaw – using a comprehensive,
spike-resolved motor program and a simple linear decoding pipeline. A complex decoding
scheme is not necessary, even if the functional patterns of control are nonlinear. We show that
muscle covariation present in one pair of visual stimulus conditions can be used to decode
behavior in a different pair of visual stimulus conditions, indicating the presence of conserved
muscle coordination patterns at the level of motor neuronal timings in functionally distinct
behaviors. We also demonstrate that as few as half the muscles can be used to retain decoding
performance, linking coordination to redundancy in encoding, if not function, across the entire
moth flight motor program.

Introduction
Precise neuronal spike timings are used to encode information in motor circuits from cortex to the
peripheral neurons innervating muscles in both vertebrates and invertebrates (Sober et al., 2018).
In a comprehensive, spike-resolved motor program for hawk moth flight – where we can simul-
taneously record all 10 of the primary muscles actuating the wings – spike timings encode more
information about motor output in a yaw turning behavior than spike rate, and spike timings are
used to coordinate pairs of muscles in this behavior (Putney et al., 2019). Therefore, precise spike
timing is likely necessary for identifying salient coordination patterns and for accurate behavioral
state decoding. We have demonstrated the importance of precise spike timings in motor neurons
for both controlling muscle force output and coordinating muscles in a single type of behavior, but
we have not identified specific patterns of coordination through precise spike timings or how these
patterns change in different types of behaviors.

Previously, muscle coordination has been investigated through the lens of muscle synergies,
temporal patterns of muscle covariation. A set of muscle synergies can be utilized in reconstruct-
ing muscle activity in a variety of behaviors (d’Avella et al., 2003) and similar types of synergies
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can be found in different individuals (Torres-Oviedo and Ting, 2007). In frogs (d’Avella and Bizzi,
2005), cats (Torres-Oviedo et al., 2006), and humans (Torres-Oviedo and Ting, 2007), it has been
demonstrated that the same sets of muscle synergies are found in different behavior types, but
recruited differentially to achieve functionally distinct motor behaviors. Muscle synergies have pri-
marily been identified using rectified EMG recordings from sets of muscles that actuate a behavior;
these muscles incorporate the timing of muscle activations and their activation timing relative to
each other as an important component of coordination, but do not have the spike resolution to in-
terrogate the role of precise motor neuronal spike timings. In vertebrates, recordings from single
motor units can be obtained using new microelectrode techniques (Zia et al., 2020), but it is not
yet experimentally feasible to record from every motor unit composing a single muscle, let alone
the many muscle involved in most movements.

In contrast to the periphery, recordings of large populations of neurons are now ubiquitous in
studies of motor cortical circuits, and a plethora of techniques exist to assess structure in these
massive data sets and decode motor behaviors. While muscle synergies have also been utilized in
decoding frameworks to determine their usefulness in distinguishing between motor tasks (Delis
et al., 2013), more sophisticated techniques that incorporate the dynamics of neural populations
have been utilized to decode and classify behaviors (Pandarinath et al., 2018; Shenoy and Kao,
2021). However, the neural populations used to decode behavior are often incomplete, not cap-
turing an entire motor circuit in either the cortex or the periphery, and do not decode with perfect
accuracy (Hong et al., 2018; Savolainen and Constandinou, 2021). Additionally, these techniques
may involve non-linear transformations that make interpreting coordination patterns across the
neural population difficult, which was an advantage of the linear framework of muscle synergies.
In summary, combining the strengths of these techniques in a complete motor circuit with spike
resolution would enable us to improve behavior decoding and test questions about coordination
in the motor periphery.

The hawkmothmotor program is an excellent system for addressing questions about the struc-
ture of coordination patterns across a complete motor circuit at the level of motor neuronal spike
timings, due to the few number of muscles used by the moth to control its wings and the ability
to obtain proxies for neural activity directly from muscle action potentials. Five pairs of muscles
form a nearly complete, comprehensive, spike-resolved motor program to control the wings dur-
ing flight in the moth (Putney et al., 2019). Each of these muscles is innervated by one or very few
motor neurons, and these muscles produce fast muscle action potentials that can be treated as
1:1 representations of the innervating neuron’s activity (Usherwood, 1962; Rheuben, 1985). Lever-
aging these properties, we recorded all 10 muscles in a tethered flight preparation while the moth
was driven with a wide-field visual stimulus to produce hard turns in opposite directions about the
flight axes: pitch, roll, and yaw. This experimental design extensively samples six discrete behav-
ioral states (three pairs of turns in different directions), similar to prior studies that have explored
decoding of discrete behavior outcomes such as reaching for different targets (Georgopoulos et al.,
1986).

We utilize a simple linear decoding pipeline to determine whether spiking activity in the com-
prehensive, spike-resolved motor program is sufficient to classify the six behavioral states elicited
by the visual stimuli. The choices for muscles to record in the motor program have largely been
justified by previous anatomical and functional studies, but the only investigation that recorded all
these muscles simultaneously investigated only one mode of flight – yaw turning in response to a
horizontally-oscillating robotic flower (Putney et al., 2019). It is possible by sampling new portions
of the behavior space that these muscles will not be sufficient for perfect (or complete) decod-
ing. Second, within this framework we investigate the effect of changing the representation of the
spiking activity used to decode–either by changing the precision of spike timing information or by
reducing the number of muscles given the decoder. Because we know redundant information ex-
ists in the motor program, we test whether perfect or near perfect decoding can be achieved with
reduced representations of the motor program. Alternatively, it may be necessary to maintain all
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the muscles in the motor program and to include precise spike timing information to obtain good
decoding accuracy in our linear pipeline. After investigating different representations that best de-
code all six behavioral states, we then find muscle coordination (muscle covariation) patterns in
each of the three pairs of rotating stimuli (pitch, roll, or yaw) and determinewhether these patterns
can accurately decode behavioral states in the other pairs. If they can, it would indicate coordina-
tion patterns in precise spike timing are conserved across behaviors despite them having different
functional requirements.
Results
Using a simple linear decoding pipeline to classify six turns results in nearly 100%
accuracy, indicating the near completeness of the motor program.
Tethered moths (Manduca sexta, N = 9 individuals) were shown visual stimuli which consisted of
wide-field sinusoidal gratings (spatial frequency = 20°/cycle) on a 3D sphere projected to monitors
surrounding the moth. The spheres drifted at constant velocity (velocity = 100°/sec; temporal fre-
quency = 5 cycles/sec) in opposite directions about the three earth-coordinate axes of rotation:
pitch up, pitch down, roll left, roll right, yaw left, and yaw right (Fig. 1A-B). The spatial and temporal
frequencies were chosen to match the region of peak sensitivity for motion-sensitive neurons in
Manduca sexta to wide-field sinusoidal gratings (Stöckl et al., 2017). Simultaneous force, torque,
and EMG recordings were obtained over approx. 20 second trials where the moth responded to
each of the visual stimuli (Fig. 1C-F) and segmented into wing strokes using a Hilbert phase trans-
form on the bandpass-filtered Fz signal as previously described (Putney et al., 2019). The ten mus-
cles recorded are part of a comprehensive motor program that controls the wings and include the
dorsolongitudinal muscle (DLM), the dorsoventral muscle (DVM), the third axillary muscle (L3AX),
the basalar muscle (BA), and the subalar muscle (SA) from each side of the animal. The DLM and
DVM are conventionally known as flight power muscles that indirectly actuate the wings through
deforming the thorax and control the downstroke and upstroke of the wing, respectively. The 3AX,
BA, and SA muscles act directly on the wing hinge to modulate the motion of the wing during flight
(Kammer, 1985). Different patterns of activity can be observed between the stimulus conditions
both in the neural activity (Fig. 1C-D) and the motor output (Fig. 1F). Changes in both the average
number of spikes in a wing stroke (ex. LSA) and the timing of spikes within a wing stroke (ex. LBA)
can be observed between roll left and roll right conditions in an example moth. These changes in
spike rate and spike timingmediate themotor output in such away that lends itself to classification
of the motor output responses in each visual stimulus.

We used a simple decoding pipeline that involved Gaussian kernel filtering the spike trains in
each wing stroke (Fig. 2A-C), forming linear feature vectors using principal components analysis
(PCA) that retain 99% of the variance in the original data (Fig. 2D), and decoding the visual stimu-
lus condition using 5 axes of best separation discovered using linear discriminant analysis (LDA)
(Fig. 2E). The linear transformations used in this pipeline allowed us to maintain interpretability of
the features that best described the covariance in spiking activity (PCA representation) and best dis-
criminated behavior conditions (LDA-discovered axes). PCA was used to reduce the dimensionality
of the spiking activity representation and to regularize the data before conducting the LDA (see
Methods). Additionally, the principal components discovered using PCA are covariation patterns
that reveal how muscles covary or are coordinated in the spiking activity.

Using this pipeline, we obtained 99.7± 0.2% classification accuracy with all 10 muscles in the
hawk moth flight motor program (N = 4 moths recorded with complete motor program, mean ±
S.E.M.) (Fig. 3A,E). This indicates the completeness of our comprehensive, spike-resolvedmotor pro-
gram for hawk moth flight, since it can nearly fully discriminate individual wing strokes produced
in six conditions that sample the distinct regions of motor output space about all three flight axes.
Additionally, we were able to obtain near perfect classification using linear transformations of the
data with an average dimensionality of 65 ± 21 principal components (N = 4 completed moths,
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Figure 1. A: Schematic of a moth inside a three-sided box formed by computer monitors displaying a visual stimulus. B: Renderings in Unity ofthe visual stimulus displayed to the moths, which were placed at the center of this sphere in virtual space. The wide-field sinusoidal gratingswere drifted at constant velocity in opposite directions about their axes of rotation. C: Simultaneous force, torque, and EMG recordings while anexample moth was viewing a stimulus that caused it to roll left. Wing strokes were segmented in the continuous torque recordings by taking thepeak downward force from the bandpass filtered continuous Fz signal. Here, the unfiltered Fz signal is shown (black, peak downward force inred closed circles). The wing stroke-averaged roll torque (�y) is calculated by averaging the continuous �y signal within each wing stroke (redopen circles). The raw EMG signals for all the muscles on the left side of the animal are shown: L3AX (orange), LBA (yellow), LSA (pink), LDVM(green), and LDLM (blue). D: The same data types in C, but for while the same example moth was viewing a stimulus that caused it to roll right. E:Axes for the moth are defined relative to the center of mass of the average moth when treated as an ellipsoid body. These body-attached axeshave pitching torque about the x-axis, roll torque about the y-axis, and yaw torque about the z-axis. F: The wing-stroke averaged torques aboutall three axes for all six visual stimulus conditions from one example moth: pitch up (orange), pitch down (red), roll left (yellow), roll right (green),yaw left (blue), and yaw right (purple).
Figure 1–Figure supplement 1. Fig. 1F for all moths in the data set.
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Figure 2. Visual stimuli decoding pipeline using Gaussian kernel filtering. A: Spike trains are collected from individual muscles during the first �milliseconds in each wing stroke. B: Continuous time-domain representation of the spike trains is obtained through Gaussian filtering withkernel width �. C: Filtered time series from individual muscles are concatenated to form one large feature vector with dimension m ⋅ (�S�) where
m is the number of muscles, �S is the sampling frequency, and � = 50 ms (the first 60 ms of each spike train). D: The feature vector is projectedon the linear subspace spanned by the first P principal components that describe a percentage ((%)) of the variance in the originalrepresentation. E. The final feature vector is passed through a decoder (classifier) that is used to infer the stimulus applied to the moth. �, � and
 (or P ) are design parameters.

mean ± S.E.M.) (Fig. 3C,E). It is possible a non-linear representation would reduce this dimension-
ality further, but it was not necessary to obtain perfect decoding. Retaining only 75 or 50% of the
variance in the original data caused an expected, but minimal loss in decoding accuracy (99.2 ±
0.3% at  = 75% with P = 45 ± 7 principal components). Decoding was still 97.5 ± 0.8% at  = 50%
with P = 15 ± 5 principal components) (Fig. 3F-G). There is very little performance drop when the
dimensionality is reduced by an order of magnitude.

Moths with incomplete data (missing muscles) were also included in our analysis (Fig. 3B,D,E).
In somemoths, even with one or twomuscles in themotor programmissing classification accuracy
was still above 99.0%. Across all N = 5 moths with incomplete motor programs, we obtained 98.7±
1.1% classification accuracy (range: 97.5 - 99.6% accuracy). The difference between the average
decoding performance in incomplete and complete moths was only 1.0%.
Representationsof themotorprogramthat include timing informationhavehigher
decoding accuracy.
Precise spike timing conveys the majority of mutual information about torque output during yaw
turns in the motor program (Putney et al., 2019), so we expect that spike timing contributes to the
classification accuracy. To demonstrate this, we show that decoding accuracy is dependent on the
size of the Gaussian kernel (defined by the standard deviation of the Gaussian window, �) used to
smooth spike trains into continuous functions and peak classification accuracy occurred at around
� = 2.6 ± 0.2 ms (Fig. 3A-B,E). The natural wing stroke frequency of the hawk moths when flying in
response to these visual stimuli ranged from 15-27 Hz, corresponding to wing beat periods of 37.0
- 66.7 ms (Fig. 3C-D). At � = 1 s, the size of the Gaussian kernel is so large that it essentially removes
any relevant spike timing information in the spike trains for each wing stroke. The classification
accuracy at this value corresponds to a spike rate or count representation of the spiking activity,
since all that would be indicated by the continuous signals after smoothing with a large Gaussian
kernel is the number of spikes that occurred in that wing stroke. The abrupt transition that occurs
around � = 50 ms happens near the length of the wing stroke period, when information about
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E: Peak decoding accuracy for  = 99%.

Moth 1 Moth 2 Moth 3 Moth 4 Moth 5 Moth 6 Moth 7 Moth 8 Moth 9
Accuracy in % 97.5 (.7) 99.5 (.3) 99.6 (.3) 99.2 (.4) 99.6 (.2) 97.5 (.7) 99.7 (.2) 99.9 (.0) 99.5 (.3)
� in milliseconds 0.75 2.5 2.5 2.5 2.5 1 2.5 5 7.5
P 219 76 62 62 77 145 72 34 17
F: Peak decoding accuracy for  = 75%.

Moth 1 Moth 2 Moth 3 Moth 4 Moth 5 Moth 6 Moth 7 Moth 8 Moth 9
Accuracy in % 95.4 (.9) 98.4 (.5) 99.2 (.4) 98.0 (.6) 99.3 (.3) 96.1 (.8) 99.5 (.3) 99.7 (.2) 99.1 (.3)
� in milliseconds 1 0.75 1 0.5 1 1 1 0.75 1
P 40 47 34 61 37 32 41 53 22

G: Peak decoding accuracy for  = 50%.

Moth 1 Moth 2 Moth 3 Moth 4 Moth 5 Moth 6 Moth 7 Moth 8 Moth 9
Accuracy in % 92.4 (1.2) 95.5 (1.0) 96.8 (.7) 95.1 (.8) 98.1 (.6) 94.5 (.9) 98.6 (.5) 98.7 (.5) 98.8 (.5)
� in milliseconds 0.75 0.5 0.5 0.25 1 1 0.75 0.75 0.75
P 18 22 23 47 9 9 16 13 9

Figure 3. A-B: Average decoding accuracy (solid, marked line) ± S.T.D. (shaded area) as a function of the Gaussian kernel width � in seconds. C-D:The dimensionality reduction ratio of the average number of principal components (i.e. P ) that retain more than  = 99% of the total variance inthe data to the original data dimensionality (D = m ⋅ (�S�), see Fig. 2). A, C: Moths with complete data sets (data from all m = 10muscles isavailable). B, D: Moths with incomplete data sets (missing muscles are indicated in the legend in B). E-G: Average peak decoding accuracy andthe corresponding values of � and P after retaining 99% (E), 75% (F) and 50% (G) of the total variance. 100 random training/test data splits wereused with 500 wing strokes in each test set.
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when spikes occur during the wing stroke becomes available to the decoder.
Next, we tested how well the LDA decoded simpler representations of the spiking activity than

the PCA representations (Fig. 4). First, we tested a spike rate representation, which was a 10-
dimensional model of the number of spikes within each wing stroke in each muscle in complete
moths, and an N-dimensional model in incomplete moths where N < 10 was the number of mus-
cles recorded. This representation should be similar to the accuracy of the PCA representations as
� →∞.

Because of the demonstrated importance of spike timing within a wing stroke to obtaining
high classification accuracy, another model tested only utilized information from the first spike
within a wing stroke. We also tested a model that only kept the maximum value of the Gaussian
convolution and the time that that maximum value occurred; in moths with all 10 muscles, this is
a 20-dimensional representation of the spiking activity that includes both spike rate (in the peak
of the Gaussian convolution) and timing (in the time at which the peak occurs) information. Both
were designed to test whether a simpler code that specifies the onset of spikes within a wing stroke
was sufficient to achieve high classification accuracy.

The first spike timing models did not reach the level of performance of the PCA models that
included information throughout the time course of the wing stroke, indicating the importance
of not only the phase of bursts of a muscle but also the patterns of multiple spikes produced
(Fig. 4A-B). The simple Gaussian representations that included themagnitude and time of the peak
of the Gaussian convolution performed better than the first spike timing models as well. When
more of the pattern of spiking activity and information about the spike rate as well as timing was
maintained, the decoding accuracy improved. In nearly all cases, spike rate models had the worst
performance.

For all the PCAmodels, the optimal width of the Gaussian kernel � was on themillisecond scale,
with a highest value of � = 7.5 ms (Fig. 4C). At lower dimensional representations of the PC space,
the decoder’s optimal performance still requires millisecond-scale precision of the spiking activity.
However, when using the Gaussian max. value and timing model, the optimal � was substantially
higher. This is likely due to this model representing a general spike count and phase of activity in
the muscle. Lower � values might have introduced noise to this representation that was uninfor-
mative for decoding the difference between turns. In nearly all cases, this model showed lower
performance than the PCA models, including the lower-dimensional model that only included 10
principal components.
Near peak classification performance can be achieved using only half the muscles
in the motor program.
Another way to reduce or simplify the spiking activity representation used by the decoder is to
remove muscles. In the incomplete moths, all representations of the spiking activity were missing
muscles, yet there was little drop in the decoding accuracy compared to complete moths (Fig. 3A-
B, 4A-B). To test how decoding accuracy would drop with removing muscles, we systematically
removed muscles from the PCA representation of the spiking activity. We tested all combinations
of muscle groups from the complete motor program down to single muscles. Decoding accuracy
reaches similar performance to the complete motor programwith models that only include 5mus-
cles, or half themotor program; all possible combinations of 5muscles have decoding performance
with a standard deviation that encompasses 99.5% decoding accuracy (Fig. 5A-B). This indicates sig-
nificant redundancy in the motor program, since only 5 muscles is sufficient to achieve decoding
accuracy on par with the comprehensive motor representation. Previously, it was shown in yaw
turns that there was significant redundant information encoded in pairs of muscles in the motor
program (Putney et al., 2019). We can now extend this interpretation to other types of turning
behavior and show that much of the information captured in one half of the motor program is rep-
resented in the other half, and that specific functional groupings – like groups of power or steering
muscles – do not significantly outperform other groupings.
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C: Optimal bandwidth � (in milliseconds) for the methods based on Gaussian kernel filtering.

Moth 1 Moth 2 Moth 3 Moth 4 Moth 5 Moth 6 Moth 7 Moth 8 Moth 9
Gauss+PCA:  = 99% 0.75 2.5 2.5 2.5 2.5 1 2.5 5 7.5
Gauss+PCA: P = 20 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 2.5
Gauss+PCA: P = 10 2.5 2.5 2.5 2.5 2.5 2.5 2.5 7.5 7.5
Gauss: Max.Value&Timing 25 10 75 500 25 75 100 100 25

Figure 4. A-B: Average decoding performance (mean ± S.T.D (solid boxes) and entire range (shaded area)) over 100 random training/test splitswith 500 wing strokes in each test set for six feature extraction methods (see legend): Gaussian kernel filtering followed by PCA that retains
 = 99% of the total variation (red), Gaussian kernel filtering followed by PCA that retains the first P = 20 principal component axes (burgundy),Gaussian kernel filtering followed by PCA that retains the first P = 10 principal component axes (orange), a representation that containedretained only the maximum value of the convolved spike train and what time the maximum value occurred for each muscle (yellow), arepresentation of the timing of the first spike for each muscle (blue), and a representation of the spike rate in each wing stroke (gray). In A, themoths have data from all N = 10muscles, so the Gaussian max. value representation is 20-D, and the spike timing and spike raterepresentations are 10-D. In B, the moths do not have data from all the muscles. For the above, � for the Gaussian kernels is selected tomaximize the average decoding accuracy. C: The optimal � for each of the Gaussian kernel representations in A-B for each individual moth.
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Figure 5. A: Average decoding accuracy across all moths (both complete and incomplete) of all possible combinations of muscle groups used toconstruct the PCA and decode the LDA. All decoding accuracies were for models that used Gaussian kernels at the optimal width � for eachindividual moth and retained  = 99% of the variation in the data in the PCA representation before being passed to the LDA. B: Average decodingaccuracy for the least (blue shaded line, mean ± S.T.D.) and most (red shaded line, mean ± S.T.D.) accurate muscle group at each possiblenumber of muscles included, as well as for functional combinations of muscles (mean ± S.T.D. of Left Power: LDLM and LDVM; Right Power:RDLM and RDVM; Left Steering: L3AX, LBA, LSA; Right Steering: R3AX, RBA, RSA; All Power: LDLM, LDVM, RDLM, RDVM; Left Side: L3AX, LBA, LSA,LDVM, LDLM; Right Side: R3AX, RBA, RSA, RDVM, RDLM; All Steering: L3AX, LBA, LSA, R3AX, RBA, RSA.
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Whilemuscle activity differs between visual stimulus conditions, coordination pat-
terns remain consistent.
The LDA axes that best describe howmuscle activity in the pair of responses about each flight axis
are almost always unique to that pair and have strong contributions from the steering muscles
in the motor program (Fig. 6). The centroids of each of the six conditions were calculated in the
LDA space. The distance between the centroids of pairs of opposite conditions for each pair of
conditions – pitch up and pitch down, roll left and roll right, yaw left and yaw right – was calculated
on each of the five LDA axes that best separated all six conditions. The LDA axes that best separate
these centroids for the paired visual stimulus conditions were unique to each pair in all complete
moths except Moth 2, where roll and yaw shared an axis of best separation (Fig. 6A-B). The axis
that best separated one condition was not the one that best separated other conditions in all but
one case. By taking just the three axes of best separation for each pair of conditions, average
decoding accuracy was still above 95% for all moths with approximately 70 PCs retained (Fig. 6D).
This indicates that differentmuscle activity patterns drive the behavioral states elicited by opposing
visual stimulus conditions on each flight axis.

The relative contributions of each muscle to the LDA axes of best separation for these pairs of
conditions can be found by summing the absolute value of the coefficients at each time point of
the the convolved spike train from the matrix that calculates the linear transformation from the
space of spike trains into the LDA space (Fig. 6C, Eq. (3)). While there is significant inter-individual
variation in how each muscle contributes to the LDA axes, in many of the axes of best separation,
activity from the steeringmuscles (3AX, BA, and SA) strongly contributes to the ability to distinguish
between opposite conditions. For all axes of best separation, the single strongest contributing
muscle is always a steering muscle. These muscles are hypothesized to fine-tune the motion of
the wing during flight, though the power muscles (DLM and DVM) are also hypothesized to have
control functions. These patterns could be driven by stronger phase changes observed in steering
muscles during tethered flight than the subtler millisecond to sub-millisecond scale shifts in the
power muscles (Sponberg and Daniel, 2012;Wang et al., 2008).

We also used the established decoding pipeline to investigate differences in the muscle coordi-
nation in the three pairs of flight behaviors by comparing how well the covariance, or coordination
patterns, found in one pair could be used to decode another pair (Fig. 7). This analysis involved do-
ing the PCA analysis only on the two opposite visual stimulus conditions about a flight axis (pitch
up and pitch down, roll left and roll right, and yaw left and yaw right) to obtain the first 5 prin-
cipal component axes that best capture the covariance in the original spike trains between the
opposite conditions, and then using the projections of wing strokes onto those PC axes to decode
either wing strokes within the same pair or wing strokes in a different pair (Fig. 7A, E, I). These PC
axes are considered coordination patterns that capture howmuscles covary with each other within
each wing stroke. The PC axes found in pitch, roll, and yaw were equally useful for decoding both
within the same pair that was used to determine the PC axes and across to a different pair, with
improved decoding accuracy with a smaller �, as was the case when decoding all six conditions at
once (Fig. 7B-C, F-G, J-K). However, there were also cases where decoding accuracy was high even
with larger �, likely due to the simplification of the decoding problem since only two conditions
needed to be discriminated.

While the coordination patterns in a pair from one flight axis is useful for decoding across to
another flight axis, the contributions of each of these coordination patterns (PCA axes) from a
pair of conditions to the LDA axis that discriminates between two conditions differs within and
across pairs (Fig. 7D, H, L). The LDA axis of best separation found using coordination patterns from
the within that pair of conditions was compared to the LDA axis of best separation found for a
different pair of conditions using their unit-normalized inner product. This value, the codirection-
ality, was typically much lower than 1, indicating that how these coordination patterns are used
for decoding was not codirectional. The contributions of the coordination patterns differed when
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D: Decoding accuracy with 3 LDA axes.

Moth 2 Moth 5 Moth 7 Moth 8
Accuracy in % 95.3(1.2) 97.8(.6) 96.2(.9) 99.3(.7)
P 70 70 71 66
LDA axes 1,3,4 1,2,3 1,2,3 1,4,5

Figure 6. A: Separation of individual pairs of conditions along different LDA axes, computed as the Euclidean distance between the projectionsof the condition mean vectors to each LDA axis. B: Illustration of separation of conditions in three-dimensional LDA spaces where the LDA axeschosen are the ones that best separate the two opposite conditions for each visual stimulus axis (pitch, roll, and yaw). C: Contribution ofindividual muscles to LDA axes that separate the conditions nearly perfectly. The contribution is computed as the sum of the absolute values ofthe � ⋅ �S coefficients that project the continuous time-domain representation of individual muscles to each LDA axis (Eq. (3)). D: Averagedecoding accuracy with the three LDA axes from C and the corresponding value of P after retaining  = 99%. 100 random training/test data splitswere used with 500 wing strokes in each test set. For all analyses, � = 2.5milliseconds with PCA that retains 99% of the total variance were used.
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comparing across conditions, even though decoding accuracy remained high. This demonstrates
that while the realization of muscle activity in each of the functionally distinct pairs of behavioral
states changes, the underlying muscle coordination patterns are conserved.
Discussion
Near perfect motor state decoding with precisely timed spikes.
We demonstrated the comprehensiveness of our motor program by showing near perfect decod-
ing accuracy for six behavior states that sampled turns in response to oppositely drifting visual
stimuli about each of the three flight axes. For this simple linear decoding pipeline to obtain near
perfect decoding accuracy, spike timing information to the millisecond-scale was necessary. Peak
performance was achieved when the width of the Gaussian kernel used to smooth spike trains was
on the millisecond-scale in every moth (Fig. 3E).

In themotor periphery, it cannot be assumed that the firing rate ofmotor neurons fully captures
the encoding of muscle force and motor state. Millisecond changes in spike triplets in song bird
breathing muscle causally change pressure production in the lungs (Srivastava et al., 2017). Spike
triplets often found at the start of contraction can have very different force production profiles
depending on the biomechanical and molecular properties of the muscle at the time of activation
(Abbate et al., 2002). Many motor state decoders used in prosthetics or other brain-computer
interfaces (BCIs) do not incorporate millisecond-scale timing information, either relying on estima-
tions of firing rate over longer time periods or EMG activity that does not resolve singlemotor units
(Kapelner et al., 2019; George et al., 2020). Motor state decoders can likely be improved by incor-
porating millisecond-scale timing information, even in the absence of utilizing more channels to
obtain more motor units.

Even in motor cortex there is evidence for the importance of millisecond-scale timing informa-
tion for encoding behavior state, including in determining song syllables produced by birds (Tang
et al., 2014). Much more sophisticated techniques than the ones presented here are used for
motor cortical recordings, like latent factors analysis via dynamical systems (LFADS) which can esti-
mate the firing rates of populations of neurons for single trials of reaches and decode the dynamic
evolution of their kinematics (Pandarinath et al., 2018; Shenoy and Kao, 2021). Incorporating tim-
ing of spikes into these types of decoders could improve the performance of these types of non-
linear decoders. Alternatively, precise spike timings could be unnecessary for accurate prediction
in a non-linear framework or when decoding from larger populations of cortical neurons. One ad-
vantage our linear decoding pipeline maintains over non-linear or neural network methods is the
interpretability of coordination patterns with precise spike timing between the units in our motor
program.

Where timing information was available, reduced representations both in dimensionality and
in number of muscles used to decode did not noticeably degrade decoding accuracy. In fact, the
ability to decode with near perfect accuracy was retained even when the number of muscles used
was cut in half (Fig. 5). In a previous study, we showed all pairs of muscles in the motor program
encode pairwise net redundant, or shared, information (Putney et al., 2019). We now know that
muscle coordination patterns extends across more than pairs of muscles, with many muscles con-
tributing to the LDA decoding axes (Fig. 6C).
Different visual rotations drive the motor program to perform different functions
We designed the stimuli to elicit six distinct behavior outcomes, but also to pair these outcomes
around three different rotation axes. Moths and other flying insects must utilize different patterns
of variation to achieve different types of turns. We find that while there is animal-to-animal varia-
tion in how they responded to each visual stimulus, all moths did produce six distinct output states.
One signature of inter-individual variation was in the muscle contributions that defined the LDA
axes of best separation between opposite conditions (Fig. 6C). This could point to unique muscle
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Figure 7. A, E, I: Schematic of analysis of decoding within and across conditions. The wing strokes from the two opposite conditions for eachflight axis (pitch, roll, and yaw) are used for principal components analysis (PCA) to extract the first 5 axes that explain the most variance in thedata, following the data analysis pipeline in Fig. 2. The muscle activity is then projected onto these axes for either the same pair or across to adifferent pair. The decoder uses the projections of the muscle activity onto the first 5 axes within and across pairs to decode between the twoopposite conditions of each mode. In the row beginning with A, the axes that explain the variance between pitch up and pitch down are used todecode the opposite conditions of pitch (within pair), roll (across pair), and yaw (across pair). In the row beginning with E, the axes that explainthe variance between roll left and roll right are used to decode the opposite conditions of pitch (across pair), roll (within pair), and yaw (acrosspair). In the row beginning with I, the axes that explain the variance between yaw left and yaw right are used to decode the opposite conditionsof pitch (across pair), roll (across pair), and yaw (within pair). B, F, J: Decoding accuracy (mean ± S.T.D. across 100 training/test sets) for anexample moth at different Gaussian kernel widths, �, where the input to the decoder are the projections of muscle activity onto the 5 PC axesthat best describe variation in pitch (B), roll (F), and yaw (J). C, G, K: Decoding accuracy for all moths within and across pairs in the rate regime (�= 1 s) and the precise timing regime (� = 3.2 ms) for the 5 PC axes that best describe variation in pitch (C), roll (G), and yaw (K). D, H, L: Theaverage codirectionality for all pairs of LDA axes for LDA axes found within pair and across pair for each moth (Eq. (4)). Codirectionality of 0indicates orthogonality while a codirectionality of 1 indicates that the LDA axis of best separation is identical for an axis found by decodingwithin pair and an axis found by decoding across pair. Here, for all combinations training/test sets, the codirectionality was calculated betweenthe LDA axis of best separation for the same flight axis as used to generate the 5-D PC space and the LDA axis of best separation for a diferentflight axis. The mean codirectionality for complete (black) and incomplete moths (grey) is reported here. Box plots report the median as the lineinside a box which defines the 25th to 75th percentiles, and the whiskers capture the range of all data points that are not considered outliers.
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activity patterns utilized by each individual to execute a turn, which has been shown in humans for
constrained activities like violinists playing the same piece of music (Fjellman-Wiklund et al., 2004)
or people executing balance control in response to perturbations (Torres-Oviedo and Ting, 2010).
However, in this study, unlike in monkey reaching or the human studies above, the activity of the
moths was not constrained. Moths varied in how and to what extent they responded to each of the
six visual stimuli presented (Fig 1). Variation in what muscle activation patterns was found could
be due to moths producing different force and torque output compared to other individuals, and
not underlying inter-individual differences in muscle coordination. Using a decoder that explicitly
used information about the force and torque output would better elucidate how much animal-to-
animal variation was due to different realizations of the moths’ response to visual stimuli or due
to differences in coordination.

When decoding all six conditions simultaneously, the LDA axes of best separation were unique
to a given flight axis in all but one case, demonstrating that overall patterns of activity changed in
different flight behaviors. Many of the axes that best separated opposite conditions had high con-
tributions from steering muscles (3AX, BA, and SA) as opposed to muscles conventionally known
as flight power muscles (the DLM and DVM). It has long been known that changes in the timing
of the steering muscles are strongly correlated with changes in roll and yaw turning flight (Kam-
mer, 1971), where their activity is thought to cause turns due to bilateral asymmetries that arise
in the wing kinematics on the two sides of the animal. However, in pitch movements, bilaterally
symmetric activity would be expected, though the timing of steering muscles could still play a role.
Specifically, the timing of steering muscles relative to wing stroke reversal has been implicated in
the control of pitch rotations (Wang et al., 2008).

The contributions of the DLMs and DVMs also cannot be overlooked. Their small contributions
to the LDA axes may simply reflect a difference in magnitude of phase changes in muscles during
flight, and not necessarily reflect their functional importance; without the flight power muscles,
the DLM and DVM, the moth would be unable to fly and very small–even sub-millisecond changes–
are used by the DLMs to control power output (Tu and Daniel, 2004; Sponberg and Daniel, 2012).
Additionally, though the LDA axes were strongly loaded with steering muscles, they also had con-
tributions from many muscles in the motor program, including the DLMs and DVMs.

Reduced representations achieving perfect decoding could be a signature of strong left-right
redundancies in turning flight. In fact, in a comprehensive motor program for flies, hypotheses in-
corporating left-right relationships to enable pitch, roll, and yawwere constructed based onmuscle
activity responding to similar visual stimuli to the ones used here (Lindsay et al., 2017). Bilateral
spike timing differences between the dorsolongitudinal muscles–the downstroke power muscles–
of the hawk moth have been shown to causally affect torque and power output in tethered flight
(Sponberg and Daniel, 2012). Bilateral spike timing differences between the dorsoventral muscles–
the upstroke power muscles–have also been correlated with different types of turns and both sets
of power muscles are likely to cause bilateral differences in the deformation of the thorax that
can produce turns (Ando and Kanzaki, 2016). However, some evidence supports independent en-
coding on each side of the animal. For example, bilateral timing differences in the DLMs better
reconstructed yaw torque output when the torque was represented as its mean value throughout
a wing stroke, whereas when changes in the yaw torque within the wing stroke were considered,
independent encoding of the DLM timing produced better reconstructions (Sponberg et al., 2015b).

Bilateral coordination could bemediated by interneurons in the thoracic ganglion. In flies, activ-
ity of dopaminergic interneurons affected the activity of both the DLM and the b1 (basalar) motor
neurons during the onset and termination of flight (Sadaf et al., 2015). The ability to decode using
reduced representations could be a result of this neural architecture where multiple muscles are
coordinated bilaterally by interneurons in the thoracic ganglion.
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Coordination between insect flight muscles is consistent even in functionally dif-
ferent behaviors.
We find conserved patterns of muscle coordination in different kinds of flight behaviors. The pat-
terns of muscle coordination that we discovered in one pair flight behaviors could be used to de-
code in a completely different pair of flight behaviors, regardless of the pair of visual stimuli investi-
gated (Fig. 7). Finding conserved muscle coordination patterns across different types of behaviors
have been shown in frogs and humans (d’Avella and Bizzi, 2005; Ting and McKay, 2007), and here
we show their usefulness for classifying and decoding behavior state. While these patterns for
how muscles coordinate are conserved across behaviors, their contributions to the axis that best
differentiated a pair of conditions in the LDA space were tuned for that specific pair, enabling the
necessarily different overall patterns of spiking activity that realize different behaviors. Here, while
coordination patterns in one pair of conditions could be used to near perfectly decode differences
in another pair of conditions, the contributions of the axes of covariation (the PC axes) that were
used to achieve that best decoding were not codirectional, with low vector strengths indicating
different combinations of coordination patterns enabled flight in the different pairs of conditions.

Of the pairs of conditions, the coordination patterns found in the yaw conditions and their
contributions to the decoding axes were the most transferable to other pairs of conditions. Codi-
rectionality between the decoding axes discovered for yaw and other conditions was higher than
when comparing axes other than yaw (Fig. 7D, H, L). Interestingly, the coupled roll and yaw mode
of hawkmoth flight is one of the few stable modes that does not require active feedback to remain
stable (Kim and Han, 2014; Kim et al., 2015). While these results are in tethered flight, this could
lead to a hypothesis where more muscle synergies or coordination patterns are represented in a
stable flight mode and specific coordination patterns are strongly utilized or underutilized when
controlling unstable flight modes, making the recruitment of specific coordination patterns more
sparse.
Methods and Materials
Experimental Set-Up
Moths (M. sexta) were obtained as pupae (University of Washington colony and Carolina Biologi-
cal Supply Co) and housed communally post-eclosion in incubators on a 12-hour light/dark cycle.
Naïvemales and females (N = 9) were used for these experiments, whichwere all conducted during
the dark period of their cycle. Surgeries were conducted on cold-anaesthetized moths. Two silver
wires were inserted through holes made with insect pins in the de-scaled thorax to target muscles
directly beneath the exoskeleton and record muscle action potentials through the voltage differ-
ential between the wire signals. A common ground for all differential recordings was obtained
through a wire inserted into the abdomen, which lacks muscles. Wires were held in place using
super glue. The 3AX, BA, SA, and DVMmuscles were targeted through the ventral thorax, while the
DLM muscles were targeted dorsally.

Post-surgery, moths were super glued to a 3D-printed acrylonitrile butadiene styrene (ABS)
tether custom-designed to rigidly fit a corresponding 3D-printed attachment to a six-axis custom
force-torque (F/T) transducer (ATI Nano17Ti, FT20157; calibrated ranges: Fx, Fy = ±1.00 N; Fz =
±1.80 N; �x, �y, �z = ±6,250 mN⋅mm). Moths were tethered to the F/T transducer and left for 30
minutes to dark adapt. These moths are crepuscular fliers so lighting conditions during these
experiments were darkened to the luminance present during their periods of heightened flying
activity (Sponberg et al., 2015a).

Moths were presented with wide-field sinusoidal gratings on a rendered 3D sphere drifting at
constant velocity. The visual stimulus was projected to three computer monitors (ASUS PG279Q
ROG Swift; 2560 x 1440 px; 165 Hz max. refresh rate) covered in neutral density filters to achieve
desired luminance conditions. Moths were tethered to be in the center of the three-sided box
formed by the vertical monitors (Fig. 1A). The wide-field sinusoidal gratings had a spatial frequency
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of 10◦ per cycle of dark and light and were drifted at a constant velocity of 100 degrees per second
clockwise and counterclockwise about its axis of rotation for each stimulus (Fig. 1B). The spatial
and temporal frequencies were set to be within the range where the moth’s visual system strongly
responds (Stöckl et al., 2017). Mothswere recorded responding to each of the six possible stimulus
conditions - pitch up, pitch down, roll left, roll right, yaw left, and yaw right - for approximately 20
seconds.

The electromyography (EMG) signals from all 10 muscles and the simultaneous forces and
torques were recorded while the moth responded to each stimulus condition (Fig. 1C-D). The Fzsignal was bandpassed between 5 and 35 Hz using a Type II Chebychev filter to capture the range
of wing beat frequencies observed in tethered flight in the hawkmoth (range observed in this data
set: 15-27 Hz). A Hilbert transformation on the signal was used to identify the phase crossing as-
sociated with the peak downward force the moth produced during each wing stroke. This global
phase variable served as the t = 0 point for each wing stroke used in the analyses. The timings of
spikes in each wing stroke are all relative to this phase crossing. Additionally, the torque signals on
each of the axes was averaged within each wing stroke to produce wing stroke-averaged torques
(Fig. 1E-F).

Spiking events were transformed into digital events from the continuous voltage trace using
Offline Sorter (OFS; Plexon), a spike sorting software. A threshold crossing method was used to
detect events and the time where the voltage signal crossed the threshold was used as the time of
the spike. Due to the sampling frequency of the voltage trace, spike timings were specified to the
0.1 millisecond scale. When necessary, the software’s built-in filtering functions (Butterworth and
Bessel filters) were used to remove motion artifacts and other noise that made it difficult to detect
spikes consistently.
ClassificationUsingGaussianKernel Filtering, Principal ComponentsAnalysis (PCA),
and Linear Discriminant Analysis (LDA)
Next, we describe the decoding methods we used throughout the paper. For the purpose of ex-
position, let tji denote the timing of the i-th spike collected from muscle j during an arbitrary wing
stroke (and arbitrary stimulus), with i = 0, 1,… and j ∈  where  denotes the set of recorded
muscles; Note that || = m ≤ 10 with equality holding for moths with complete data sets.
Standard Decoding Pipeline
The baseline stimulus decoding pipeline is shown in Fig. 2. The spike trains are collected from each
muscle individually during the first � seconds of each wing stroke. In other words, we only consider
spikes that satisfymaxi tji ≤ � for every j ∈. Next, we perform interpolationwithGaussian kernels
to obtain the following continuous time-domain representation of the spike trains for eachmuscle:

xj(t) =
∑

i
exp

(

−
(t − tji )

2

2�2

)

, t ∈ [0, �], (1)
where � denotes the width of the kernel. Note that in practice, we work with the discrete time-
domain representation xj[n], n = 0,… , �S ⋅�−1where �S denotes the sampling frequency. The time-
domain representations are then concatenated to form one large feature vector across muscles
x = (… , xj[0],… , xj[�S ⋅ � − 1],…)j∈ with dimension m ⋅ (�S ⋅ �). Depending on the choice of �, thedimension of the feature vector might be larger than the total number of trial (i.e., wing strokes)
in each data set. To regularize the feature space, we apply Principal Component Analysis (PCA) to
obtain a feature representation of reduced dimension as follows:

x̃ = W PCA(x − x), (2)
whereW PCA is the PCA projection matrix of dimension P ×m ⋅ (�S ⋅ �), comprising the eigenvectors
of the covariance matrix that correspond to the largest P eigenvalues, wheres x is the mean of
the original feature representations. Unless stated otherwise, in our analyses, the value of P is
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chosen over the training data set such that the lower-dimensional representation maintains at
least  percent of the total variation in the signal.

Finally, we apply Linear Discriminant Analysis (LDA) for decoding and we train a standard LDA
classifier over the lower-dimensional feature space representation by assuming that the condi-
tional distribution of the data for eact stimulus is multivariate Gaussian with shared covariance
matrix across stimuli. It is well known that this assumption yields a simple, closed form discrimi-
nant function that maximizes the posterior probability of the decoded stimulus given a test trial
(i.e., wing stroke) and separates the feature space into decision regions via hyper-planes; for more
details, see (Bishop, 2006).
Decoding with Combinations of Muscle Groups
To evaluate the decoding performance for different muscle groups, we use the standard decoding
pipeline from Fig. 2. However, between block A and B, we introduce an additional block that oper-
ates as a muscle selector; namely, for a given, fixed number of muscles k, the block forms a subset
of muscles k ⊂  that contains one specific combination of muscles. To produce the results
presented in Fig. 5, we run the decoding pipeline for all possible combinations for each k, i.e., all
possible subsetsk ⊂ without repetition.
Muscle Loadings on LDA Axes of Best Separation
LDA yields a lower-dimensional representation of the features in an affine subspace of dimension
C − 1 with C denoting the number of stimuli where the classification outcome is equivalent to the
outcome in the higher-dimensional feature space (Hastie et al., 2009). In other words, we can
further reduce the dimension of the features by projecting the PCA features from (2) on the low-
dimensional LDA space as follows:

y = W LDAx̃ = W LDAW PCA(x − x), (3)
where W LDA is the LDA projection matrix of dimension (C − 1) × P ; for more technical details on
how this matrix is computed, see (Hastie et al., 2009). Eq. 3 implies that we can analyse the impact
of the spiking activity of each muscles on the individual LDA axes that best separate the stimuli by
looking at the rows of the matrixW = W LDAW PCA (which is of dimension (C − 1) × m ⋅ (�S ⋅ �)) thatstore the coefficients that project the original feature vector x into the low-dimensional LDA space.
One way to infer the contribution of individual muscles to an LDA axis is to sum the absolute values
of the coefficients involved in the projection of that particular muscle (corresponding columns of
W ) on given LDA axis (corresponding row ofW ).
Decoding Within and Across Pairs of Visual Stimulus Conditions
For the analysis of decoding performance within and across pairs of conditions in Fig. 7, we utilize
the standard decoding pipeline (Fig. 2) but determine the PCA axes used for dimensionality reduc-
tion from the variation only within the two conditions for a given visual stimulus axis (pitch, roll,
or yaw). Then, the projections of the muscle activity for either the two conditions in the same or
different visual stimulus axis into the PC space are used to decode the two conditions, producing a
single LDA axis that best separates two conditions. The coefficients of the PC components on each
LDA axis across 100 training/test sets can be used to measure how orthogonal or codirectional
the LDA axes are within the same pair used to construct the PCA and across to different paired
conditions. The angle, v, defined by the inner product between the loading coefficients of two LDA
axes a and b can be found as:

v =
⟨a, b⟩

‖a‖ ‖b‖
(4)

where a and b are P x 1 vectors that defines the loading of each principal component P onto the
LDA axes that separate two sets of conditions. vwill have values between 0 and 1, with 0 indicating
orthogonality of the two vectors and 1 indicating codirectionality of the two vectors.
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Classification Methods Without Principal Components Analysis (PCA)
Besides the standard decoding pipeline from Fig. 2 that uses Gaussian kernel filtering followed by
concatenation and PCA for dimensionality reduction, we also consider three alternative feature
engineering methods that yield low-dimensional representations that encode spiking activity in-
formation in various different ways and offer varying degrees of interpretability.

The standard approach for constructing features from spiking activity signals in neural engi-
neering is through the spiking rate. In our work, this amounts to counting the number of spike
occurrences in each wing stroke; the spike counts are then concatenated across muscles to form a
m-dimensional feature vector. The feature representation based on spike counts is inherently low-
dimensional; however, it does not carry any information encoded in the timings of the spikes. It
should be noted that the performance of the standard pipeline based on Gaussian kernel filtering
should intuitively approach the performance of the spike count-based features as � → ∞.

An alternative approach that produces feature representation of the same dimension as the
spike counts is based on the timing of the first spike from each muscle in each wing stroke.

The third approach we consider uses the time-domain representation (1) and finds the maxi-
mum value of the resulting waveform as well as the timing of this maximum value:

xj(t∗) = max
t

∑

i
exp

(

−
(t − tji )

2

2�2

)

, for 0 ≤ t ≤ �, (5)
and t∗ satisfies xj(t∗) ≥ xj(t) for any t ∈ [0, �]. The features are then constructed by concatenating
xj(t∗) and t∗ for each muscle to obtain a representation x = (… , xj(t∗), t∗,…) of dimension 2 ⋅ m.
Intuitively, this approach incorporates information encoded in both the spike rate and the spike
timing and offers compromise between accuracy and interpretability.
Acknowledgments
Thisworkwas supportedby aNSFGraduate Research Fellowship (DGE-1650044) awarded to J.P., an
NSF Faculty Early Career Development Award (Award no. 1554790) to S.S., a Klingenstein-Simons
Fellowship in the Neurosciences to S.S., and the Army Research Office MURI Contract Number
W911NF-16-1-0368.
References
Abbate F, Bruton JD, DeHaan A,WesterbladH. Prolonged force increase following a high-frequency burst is notdue to a sustained elevation of [Ca 2+ ] i. American Journal of Physiology-Cell Physiology. 2002; 283(1):C42–C47. doi: 10.1152/ajpcell.00416.2001.
Ando N, Kanzaki R. Flexibility and control of thorax deformation during hawkmoth flight. Biology letters. 2016;12(1):20150733.
Bishop CM. Pattern Recognition andMachine Learning (Information Science and Statistics). Berlin, Heidelberg:Springer-Verlag; 2006.
d’Avella A, Bizzi E. Shared and specific muscle synergies in natural motor behaviors. Proceedings of theNational Academy of Sciences. 2005; 102(8):3076–3081. https://www.pnas.org/content/102/8/3076, doi:10.1073/pnas.0500199102.
d’Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior.Nature Neuroscience. 2003; 6(3):300–308.
Delis I, Berret B, Pozzo T, Panzeri S. Quantitative evaluation of muscle synergy models: a single-trial taskdecoding approach. Frontiers in Computational Neuroscience. 2013; 7:8. https://www.frontiersin.org/article/

10.3389/fncom.2013.00008, doi: 10.3389/fncom.2013.00008.
Fjellman-Wiklund A, Grip H, Karlsson JS, Sundelin G. EMG trapezius muscle activity pattern in stringplayers:: Part I—is there variability in the playing technique? International Journal of Industrial Er-gonomics. 2004; 33(4):347–356. https://www.sciencedirect.com/science/article/pii/S0169814103001719, doi:https://doi.org/10.1016/j.ergon.2003.10.007.

18 of 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452211doi: bioRxiv preprint 

10.1152/ajpcell.00416.2001
https://www.pnas.org/content/102/8/3076
10.1073/pnas.0500199102
10.1073/pnas.0500199102
https://www.frontiersin.org/article/10.3389/fncom.2013.00008
https://www.frontiersin.org/article/10.3389/fncom.2013.00008
10.3389/fncom.2013.00008
https://www.sciencedirect.com/science/article/pii/S0169814103001719
https://doi.org/10.1016/j.ergon.2003.10.007
https://doi.org/10.1016/j.ergon.2003.10.007
https://doi.org/10.1101/2021.07.13.452211
http://creativecommons.org/licenses/by-nc-nd/4.0/


George JA, Davis TS, Brinton MR, Clark GA. Intuitive neuromyoelectric control of a dexterous bionic arm usinga modified Kalman filter. Journal of Neuroscience Methods. 2020; 330:108462. https://www.sciencedirect.
com/science/article/pii/S016502701930319X, doi: https://doi.org/10.1016/j.jneumeth.2019.108462.

Georgopoulos A, Schwartz A, Kettner R. Neuronal population coding of movement direction. Science. 1986;233(4771):1416–1419. https://science.sciencemag.org/content/233/4771/1416, doi: 10.1126/science.3749885.
Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: DataMining, Inference, and Prediction.Springer series in statistics, Springer; 2009. https://books.google.com/books?id=eBSgoAEACAAJ.
Hong KS, Aziz N, Ghafoor U. Motor-commands decoding using peripheral nerve signals: a review. Journal ofNeural Engineering. 2018; 15(3):031004.
Kammer AE. The motor output during turning flight in a hawkmoth, Manduca sexta. Journal of Insect Phys-iology. 1971; 17(6):1073–1086. https://www.sciencedirect.com/science/article/pii/0022191071900114, doi:https://doi.org/10.1016/0022-1910(71)90011-4.
Kammer AE. Flying in Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: PergamonPress, Oxford; 1985.
Kapelner T, Vujaklija I, Jiang N, Negro F, Aszmann OC, Principe J, Farina D. Predicting wrist kinematics frommotor unit discharge timings for the control of active prostheses. Journal of neuroengineering and rehabili-tation. 2019; 16(1):1–11.
Kim JK, Han JH. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Man-duca sexta. Bioinspiration & biomimetics. 2014; 9(1):016011.
Kim JK, Han JS, Lee JS, Han JH. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and6-DOF dynamic stability characterization. Bioinspiration & biomimetics. 2015; 10(5):056012.
Lindsay T, Sustar A, Dickinson M. The function and organization of the motor system controlling flight ma-neuvers in flies. Current Biology. 2017; 27(3):345–358. http://dx.doi.org/10.1016/j.cub.2016.12.018, doi:10.1016/j.cub.2016.12.018.
Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, Kaufman MT, Ryu SI,Hochberg LR, et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Naturemethods. 2018; 15(10):805–815.
Putney J, Conn R, Sponberg S. Precise timing is ubiquitous, consistent, and coordinated across a compre-hensive, spike-resolved flight motor program. Proceedings of the National Academy of Sciences. 2019;116(52):26951–26960. https://www.pnas.org/content/116/52/26951, doi: 10.1073/pnas.1907513116.
Rheuben MB. Quantitative comparison of the structural features of slow and fast neuromuscular junctions inManduca. Journal of Neuroscience. 1985; 5(7):1704–1716.
Sadaf S, Reddy OV, Sane SP, Hasan G. Neural Control of Wing Coordination in Flies. CurrentBiology. 2015; 25(1):80–86. https://www.sciencedirect.com/science/article/pii/S0960982214014171, doi:https://doi.org/10.1016/j.cub.2014.10.069.
Savolainen OW, Constandinou TG. Investigating the Effects of Macaque Primary Motor Cortex Multi-Unit Ac-tivity Binning Period on Behavioural Decoding Performance. In: 2021 10th International IEEE/EMBS Conference
on Neural Engineering (NER) IEEE; 2021. p. 436–439.

Shenoy KV, Kao JC. Measurement, manipulation and modeling of brain-wide neural population dynamics.Nature Communications. 2021; 12(1):1–5.
Sober SJ, Sponberg S, Nemenman I, Ting LH. Millisecond spike timing codes for motor control. Trends inNeurosciences. 2018; 41:644–648. doi: 10.1016/j.tins.2018.08.010.
Sponberg S, Daniel TL. Abdicating power for control: a precision timing strategy to modulate function offlight power muscles. Proceedings of the Royal Society B: Biological Sciences. 2012; 279(1744):3958–3966.

http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.1085, doi: 10.1098/rspb.2012.1085.
Sponberg S, Dyhr JP, Hall RW, Daniel TL. Luminance-dependent visual processing enables moth flight in lowlight. Science. 2015; 348(6240):1245–1248. http://www.sciencemag.org/cgi/doi/10.1126/science.aaa3042, doi:10.1126/science.aaa3042.

19 of 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452211doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S016502701930319X
https://www.sciencedirect.com/science/article/pii/S016502701930319X
https://doi.org/10.1016/j.jneumeth.2019.108462
https://science.sciencemag.org/content/233/4771/1416
10.1126/science.3749885
https://books.google.com/books?id=eBSgoAEACAAJ
https://www.sciencedirect.com/science/article/pii/0022191071900114
https://doi.org/10.1016/0022-1910(71)90011-4
https://doi.org/10.1016/0022-1910(71)90011-4
http://dx.doi.org/10.1016/j.cub.2016.12.018
10.1016/j.cub.2016.12.018
10.1016/j.cub.2016.12.018
https://www.pnas.org/content/116/52/26951
10.1073/pnas.1907513116
https://www.sciencedirect.com/science/article/pii/S0960982214014171
https://doi.org/10.1016/j.cub.2014.10.069
https://doi.org/10.1016/j.cub.2014.10.069
10.1016/j.tins.2018.08.010
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.1085
10.1098/rspb.2012.1085
http://www.sciencemag.org/cgi/doi/10.1126/science.aaa3042
10.1126/science.aaa3042
10.1126/science.aaa3042
https://doi.org/10.1101/2021.07.13.452211
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sponberg S, Daniel TL, Fairhall AL. Dual dimensionality reduction reveals independent encoding of motorfeatures in a muscle synergy for insect flight control. PLoS Computational Biology. 2015; 11(4):1–23. doi:10.1371/journal.pcbi.1004168.
Srivastava KH, Holmes CM, VellemaM, Pack A, Elemans CPH, Nemenman I, Sober SJ. Motor control by preciselytimed spike patterns. Proceedings of theNational Academy of Sciences of theUnited States of America. 2017;114(5):1171–1176. http://biorxiv.org/content/early/2016/05/31/056010.abstract, doi: 10.1101/056010.
Stöckl A, O’Carroll D, Warrant E. Higher-order neural processing tunes motion neurons to visual ecol-ogy in three species of hawkmoths. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1857):20170880.
Tang C, Chehayeb D, Srivastava K, Nemenman I, Sober SJ. Millisecond-scale motor encoding in a cortical vocalarea. PLoS Biology. 2014; 12(12):e1002018. doi: 10.1371/journal.pbio.1002018.
Ting LH, McKay JL. Neuromechanics of muscle synergies for posture and movement. Current Opinion inNeurobiology. 2007; 17(6):622–628. https://www.sciencedirect.com/science/article/pii/S0959438808000044,doi: https://doi.org/10.1016/j.conb.2008.01.002, motor systems / Neurobiology of behaviour.
Torres-Oviedo G, Macpherson JM, Ting LH. Muscle synergy organization is robust across a variety of posturalperturbations. Journal of neurophysiology. 2006; 96(3):1530–1546.
Torres-Oviedo G, Ting LH. Muscle synergies characterizing human postural responses. Journal of Neurophys-iology. 2007; 98(4):2144–2156.
Torres-Oviedo G, Ting LH. Subject-Specific Muscle Synergies in Human Balance Control Are Consistent AcrossDifferent Biomechanical Contexts. Journal of Neurophysiology. 2010; 103(6):3084–3098. https://doi.org/10.

1152/jn.00960.2009, doi: 10.1152/jn.00960.2009, pMID: 20393070.
Tu MS, Daniel TL. Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Man-duca sexta. Journal of Experimental Biology. 2004; 207(26):4651–4662.
Usherwood PNR. The nature of ‘slow’ and ‘fast’ contractions in the coxal muscles of the cockroach. Journal ofInsect Physiology. 1962; 8(1):31–52. doi: 10.1016/0022-1910(62)90052-5.
WangH, AndoN, Kanzaki R. Active control of free flightmanoeuvres in a hawkmoth, Agrius convolvuli. Journal ofExperimental Biology. 2008 02; 211(3):423–432. https://doi.org/10.1242/jeb.011791, doi: 10.1242/jeb.011791.
Zia M, Chung B, Sober S, Bakir MS. Flexible Multielectrode Arrays With 2-D and 3-D Contacts for InΛ⦃V ivoElectromyography Recording. IEEE Transactions on Components, Packaging and Manufacturing Technology.2020; 10(2):197–202.

20 of 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452211doi: bioRxiv preprint 

10.1371/journal.pcbi.1004168
10.1371/journal.pcbi.1004168
http://biorxiv.org/content/early/2016/05/31/056010.abstract
10.1371/journal.pbio.1002018
https://www.sciencedirect.com/science/article/pii/S0959438808000044
https://doi.org/10.1016/j.conb.2008.01.002
https://doi.org/10.1152/jn.00960.2009
https://doi.org/10.1152/jn.00960.2009
10.1152/jn.00960.2009
https://doi.org/10.1242/jeb.011791
10.1242/jeb.011791
https://doi.org/10.1101/2021.07.13.452211
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pitch Up
Pitch Down
Roll Left
Roll Right
Yaw Left
Yaw Right

Complete Moth
Incomplete Moth

τ z (
m

N
-m

m
)

τy (mN-mm) τx (mN-mm)

-200

300

600

-200 -200

600

Moth 1 Moth 2

τ z (
m

N
-m

m
)

τy (mN-mm) τx (mN-mm)

-100

150

400

-200 -800

600

Moth 3

τ z (
m

N
-m

m
)

τy (mN-mm) τx (mN-mm)

-150

150

250

-50 -150

300

Moth 4
τ z (

m
N

-m
m

)

τy (mN-mm) τx (mN-mm)

-100

200

400

0 -300

400

Moth 5

τ z (
m

N
-m

m
)

τy (mN-mm)
τx (mN-mm)

-100

150

300

-100 -400
100

Moth 6

τ z (
m

N
-m

m
)

τy (mN-mm)
τx (mN-mm)

-100

300

600

-200 -250

150

Moth 7

τ z (
m

N
-m

m
)

τy (mN-mm) τx (mN-mm)

-200

100

500

-300-500

300

Moth 8

τ z (
m

N
-m

m
)

τy (mN-mm) τx (mN-mm)

-150

150

500

-100 -50

450

Moth 9

τ z (
m

N
-m

m
)

τy (mN-mm) τx (mN-mm)

-300

200

600

-200 -400

800

Figure 1–Figure supplement 1. The wing stroke-averaged torques about all three axes for all six
visual stimulus conditions for all moths in the data set: pitch up (orange), pitch down (red), roll left
(yellow), roll right (green), yaw left (blue), and yaw right (purple).
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