A model of mitochondrial ATP synthase deficiencies. The role of mitochondrial carriers.

Jean-Pierre Mazat 1,2*, Anne Devin 1, Edgar Yoboue 2 and Stéphane Ransac 1,2

1 UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
2 Université de Bordeaux, 146 Rue Leo-Saignat, 33076 Bordeaux Cedex, France
* Correspondence: jean-pierre.mazat@u-bordeaux.fr

Abstract: The m.8993T>G mutation of the mitochondrial MT-ATP6 gene is associated with NARP syndrome (Neuropathy, Ataxia and Retinitis Pigmentosa). The equivalent point mutation introduced in yeast Saccharomyces cerevisiae mitochondrial DNA considerably reduced the activity of ATP synthase and of cytochrome-C-oxidase preventing yeast growth on oxidative substrates. The overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) is able to rescue the growth on oxidative substrate in stimulating the substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate (AKG) into succinate with an increase in Complex IV activity. In order to better understand the mechanism of ATP synthase mutation bypass, we developed a core model of mitochondrial metabolism based on AKG as respiratory substrate. We describe the different possible metabolite output and the ATP/O ratio values as a function of ATP synthase inhibition.

Keywords: Mitochondrial metabolism; Metabolic Model; ATP/O; substrate level phosphorylation; Odc1;

1. Introduction

Mitochondria support aerobic respiration and produce most of cellular ATP by oxidative phosphorylation, i.e. the coupling of a series of redox reactions, the electron transport chain (ETC) with the ATP synthase through a transmembraneous proton gradient. The ETC is mainly fed by the NADH and succinate generated in the TCA cycle and some other possible dehydrogenases.

The ATP synthase organizes into a matrix domain (F1 inside mitochondria) where ATP is synthesized and a membrane-embedded domain (Fo) that moves protons across the membrane [1,2]. Dozens of point mutations in the mitochondrial MT-ATP6 gene (ATP6 in yeast) have been identified as leading to deleterious neuromuscular disorders [3]. The m.8993T>G mutation of the mitochondrial MT-ATP6 gene affecting mitochondrial energy transduction has been particularly studied [4]. This mutation has been associated in human with numerous cases of neuropathy, ataxia and retinitis pigmentosa (NARP) and maternally inherited Leigh syndrome.

The equivalent mutations introduced in the yeast Saccharomyces cerevisiae (NARP mutant) [5] dramatically slow down its respiratory growth. It was recently shown that this mutation prevents proton release in the mitochondrial matrix strongly decreasing ATP synthesis to 10% of the wild type (WT) value [6]. Concomitantly with the ATP synthase defect, a decrease in Complex IV amount is observed (retrograde signaling pathway linking ATP synthase and complex IV biogenesis [4,7,8]).

An additional molecule of ATP (in yeast) or GTP (in liver) is produced in TCA cycle by Succinyl-CoA synthetase, also named succinate thiokinase. It is called substrate level phosphorylation (SLP) as it occurs in glycolysis. Following the pioneer work of Schwimmer et al. [7], a rescue of the NARP mutation in yeast was mediated through the mitochondrial carrier Odc1p overexpression [4]. Odc1p is a mitochondrial carrier able to exchange 2-oxoglutarate (AKG) against succinate, malate or citrate (and several other metabolites, not a priori involved in the rescuing process) [9]. The Odc1p overexpression presumably increases AKG uptake in mitochondria with succinate or malate exchange promoting the subsequent increase in ATP synthesis by SLP (SLP-ATP) [7]. In both cases the rescue is accompanied by an increase of complex IV amount without nevertheless reaching the WT value.
Odc1p carrier was identified and characterized by Palmieri et al. [9]. It operates by a strict counter exchange mechanism. Odc1p carrier can principally uptake 2-oxoglutarate against itself (112.5), succinate (19), malate (56) and citrate (28.6). The numbers in brackets indicate in mmol/min/g protein the rate of 2-oxoglutarate uptake in proteoliposomes preloaded with the corresponding metabolite (table II in [9]). The diversity of output catalyzed by Odc1p offers different metabolic solutions to enhance SLP-ATP. In order to have a better understanding of the rescue mechanism by Odc1p we develop in this paper a metabolic model of yeast mitochondria that allows to characterize the different possible metabolic pathways bypassing ATP deficiency in isolated yeast mitochondria using α-ketoglutarate (AKG) as respiratory substrate.

2. Materials and Methods

Two similar models, detailed in supplementary materials S1 and S2, were developed, one for the calculation of the EFM (Elementary Flux Modes, i.e. the minimal set of fluxes at steady state of the metabolic network), the other in which the incorporation of rate equations allows a more precise study of the dynamics of the metabolic fluxes.

Both models involve a relevant representation of the coupling between respiratory chain and ATP synthesis through a chemiosmotic proton gradient ΔµH\(^+\) considered here as a pseudo substrate called PMF (for Proton Motive Force). For those reactions which depend only on the ΔpH or on the Δψ component of the ΔµH\(^+\), we take, following Bohnensack [10], ΔpH = 0.2 PMF and Δψ = 0.8 PMF.

Both models include the different exchanges catalyzed by Odc1p under the form of 3 reactions for AKG input:

- **T2**: AKG\(_c\) + MAL\(_m\) = AKG\(_m\) + MAL\(_c\).
- **T22**: AKG\(_c\) + SUCC\(_m\) = AKG\(_m\) + SUCC\(_c\).
- **T23**: AKG\(_c\) + CIT\(_m\) = AKG\(_m\) + CIT\(_c\).

In addition there is in yeast mitochondria the dicarboxylate carrier (DIC) which can catalyze the exchanges:

- **T31**: MAL\(_m\) + Pic = MAL\(_c\) + Pim.
- **T33**: SUCC\(_m\) + Pic = SUCC\(_c\) + Pim.

3. Results

The aim of the model is to simulate the experiments on isolated yeast mitochondria with 10 mM AKG as respiratory substrate and to characterize all possible metabolic pathways inside mitochondria, and metabolite outputs including ATP synthesis. We also study the oxygen consumption flux and calculate the ATP/O ratio for which experimental results already exist [11].

In a first part we will describe the Elementary Flux Modes (EFMs) i.e. the minimal pathways at steady-state inside a metabolic network [12]. In this context, minimal means that the removal of a step prevents the establishment of a steady state. They either connect input with output metabolites or are cycles at steady-state. Any set of fluxes at steady-state in a metabolic network can be written as a linear combination of EFMs. Thus the EFMs present all the salient features of a metabolic network making them a powerful tool in metabolic studies.

3.1. Determination of EFMs with 2-Oxoglutarate (AKG) as respiratory substrates

The EFMs of Model 1 were determined using Metatool [13]. The direction of the carriers in Model 1 are such that only AKG is allowed as respiratory substrate. In these conditions, we obtain 59 EFMs. Among these 59 EFMs, 8 involve the entry of only AKG, ADP, Pi and O, and the output of ATP (represented in Fig. 1 and in supplementary Materials S3). The outputs are succinate only (EFMs 28 and 17, Fig. 1a and d respectively), malate only (EFMs 29 and 20, Fig. 1b and e respectively), malate + citrate (EFMs 30 and 23, Fig.1c and f), Succinate + citrate (EFM 42, Fig. 1g) or succinate + malate (43, Fig. 1i). The EFMs 17, 20 and 23 involve a membrane leak (L) which consumes the PMF without ATP synthesis (ASYNT = 0) with a rather low ATP/O of 0.5 or 1. There is a last EFM without oxygen consumption, EFM 4 represented in Fig. 1h. This EFM involves the reversion of ATP synthase (-ASYNT). Even if an oxygen consumption is experimentally observed, this EFM cannot be excluded because it can participate to a linear combination of EFMs, with a net consumption of oxygen. All in all the ATP/O values range...
from 0.5 to 6. Two EFMs (EFM 28 and EFM 30) display an ATP/O of 2.15 close to the published value of 2.3 [7,11]. However because the actual fluxes in a metabolic network can be seen as a linear combination of EFMs, the experimental value of 2.3 can result from a combination of different EFMs with different ATP/O values. Thus, any of the 9 EFMs can be implicated either alone (EFMs 28 and 30) or in combination.

In order to get more insight in the actual metabolic fluxes and the pathway taken by AKG inside the mitochondria, we develop a kinetic model using Copasi [14] involving the kinetic properties known for each step as described in supplementary material S2 with kinetic parameters listed in supplementary material S4.

Of note, Copasi can also calculate the EFMs but only with integer stoichiometric coefficients which necessitates to write the enzymatic reactions with high stoichiometric coefficients, particularly for ATP synthase which uses 10 protons to make 3 ATP and for those reactions which use ΔpH = 0.2 PMF and Δψ = 0.8 PMF. We got exactly the same results with Copasi as with Metatool.

3.2. Dynamics of oxygen consumption and ATP generation and determination of the ratio ATP/O as a function of ATP synthase activity (Fig. 2).

Three properties of the model must be emphasized.

1) Because the thermodynamic span between the pair NADH/NAD and QH2/Q is much broader than the span between succinate/fumarate and QH2/Q, NADH is oxidized before QH2 (Fig. 2b) so that the accumulation of QH2 blocks the respiratory complex II (RCII or SDH).
2) When the ratio NADH/NAD is high (low activity of ATP Synthase) the reversion of IDH3 associated with NADH reoxidation is possible.

3) When both NADH/NAD and QH2/Q ratios are low (high activity of respiratory chain), RCII is active and succinate is easily transformed in fumarate competing with the output of succinate against AKG through Odc1p. The AKG/succinate exchange is thus decreased and replaced by the AKG/malate exchange (Fig. 2a at high ASYNT activity).

Let us now describe the behavior of the mitochondrial metabolism with AKG as respiratory substrate as a function of ATP synthase activity (corresponding to different degrees of activity or different amount of the ATP synthase inhibitor oligomycin) (Fig.2). When ASYNT = 0 the respiratory chain is slowed down by the PMF leading to high NADH/NAD and QH2/Q ratios. The RCII activity is very low so that the succinate goes out against AKG. The high NADH level reverses the IDH3 activity leading to citrate output against AKG. There is a very low malate output in these conditions). An ATP/O = 1.2 is obtained which fit well with the 1.1 value experimentally observed [11].

At an intermediate ASYNT value of 0.04, the respiratory chain becomes active and consumes NADH (Figure 2b). The NADH decrease prevents IDH3 reversion and the production of citrate (Figure 2a). The slight decrease of QH2 (10%) allows an increase in malate production, but succinate output remains high. An ATP/O = 1.9 is observed in these conditions.

At higher ASYNT activity above 0.1 (WT), NADH and QH2 concentrations become low liberating the RCII activity which consumes nearly all synthesized succinate. There is no longer an output of succinate which is metabolized in malate excreted against AKG. The ATP/O is equal to 1.8, a bit lower than the observed value of 2.3. We will discuss this point later.

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>ATP synthesis, respiration and ATP/O in wild type (WT), NARP mutation and NARP + 10 times Odc1p overexpression calculates with Copasi model in arbitrary units.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Odc1p leak</td>
<td>ATP synthesis rate</td>
</tr>
<tr>
<td>WT</td>
<td>0.297</td>
</tr>
<tr>
<td>NARP</td>
<td>0.033</td>
</tr>
<tr>
<td>NARP + Odc1p (x10)</td>
<td>0.074</td>
</tr>
</tbody>
</table>

4. Discussion
In this paper, we introduced a metabolic model of yeast mitochondria respiring on AKG to try to understand the basis of the rescue of ATP synthase mutants by Odc1p and the constraints in this metabolic bypass.

The description of the EFMs, i.e. the minimal pathways in the metabolic network, shows that, in principle, any TCA segment can be taken from AKG leading to any TCA intermediate output (Fig. 1) with ATP/O ratios ranging from 0.5 to 6 except for EFM of Fig. 1h, for which there is no oxygen consumption. The already reported ATP/O ratio of 2.4 [11] is close to the one of 2.15 measured in EFMs of Fig.1a and c which correspond in our system to an exit of succinate on the one hand or malate and citrate on the other hand. However the metabolic fluxes at steady state of the isolated mitochondria respiring on AKG can be the combination of several EFMs with different ATP/O leading to the 2.4 value.

This shows that different combination of EFMs i.e. different combinations of ASYNT-ATP and SLP-ATP can lead to the ATP/O values measured experimentally.

To get insight in this matter, we introduced in our model the rate equations of the different steps and we studied the steady state of the metabolic network at different ATP synthase activity values. We observed a rewiring of mitochondrial metabolism when the amount of ATP synthase is decreased with an ATP/O passing from a value of 1.8-1.9 to a value of 1.2 close to the corresponding experimental values 1.1 reported in [11] in presence of oligomycin, an inhibitor of ATP synthase. However, one may wonder the reason(s) of the difference between the theoretical value of 1.8 and the experimental one of 2.4 at high ATP synthase activity. As we noticed earlier, two EFMs present an ATP/O of 2.15 close to the experimental value. One presents an output of citrate which is not observed in our kinetic model at high ATP synthase activity. The other one supposes that all AKG entry occurs in exchange with succinate output. As discussed above, succinate output necessitates that SDH (complex II) is inactive which in our case is obtained at high QH\_2 concentration. Another solution can come from the participation of EFMs with ATP/O = 6. Once more these EFMs involve a citrate output which necessitates high NADH concentration. This is not the case at high ATP synthase concentration in our kinetic model in which the release of metabolites changed from malate at high ATP synthase activity to succinate and ultimately, at null ATP synthase activity, to mainly succinate release, and marginally citrate and malate release. Experimental characterization of the metabolites outputs is under way to solve this discrepancy.

Curiously, in our model the effect of increasing the activity of Odc1p carrier (x 10) is rather weak (table 1, No Odc1 leak). This could be explained by several factors. First, the growth of NARP + Odc1p is much less than the growth of the wild type (Figure 1 in [4]) suggesting that the increase in ATP synthesis with Odc1p overexpression is far from reaching the WT value; second, it was shown that in the NARP mutant, the activity of complex IV the last step of respiratory chain is decreased by 80%, so that the 0.033 value of ATP synthesis in NARP (Table 1) is probably overestimated. The effect of Odc1p overexpression is not only to increase the expression of the carrier but also to increase the level of the complex IV (40% of the WT activity, table 1 in [4]) (retrograde signaling pathway linking ATP synthase and complex IV biogenesis [4,7,8]).

Another factor could play an important role in the rescue of NARP mutant by Odc1p overexpression. One of the strong constraints of SLP-ATP production is the mandatory reoxidation of the NADH produced by α-ketoglutarate dehydrogenase, the reaction preceding the thiokinase reaction that produces ATP in TCA cycle. Several ways exist in mitochondria to reoxidize NADH [15]. One occurring at low activity of ATP synthase is the reversion of isocitrate dehydrogenase in the presence of high concentration of NADH leading to citrate output as shown in Fig. 2. The other classical one is the activation of the respiratory chain by consumption of the PMF by the ATP synthase. Another way to consume the PMF and NADH activating the TCA cycle and SLP is an increase in the membrane leak. In yeast this leak is naturally high leading to high state 4 and a mild coupling between respiration and ATP synthesis (table 1 in [4]).

As a matter of fact it has been shown that CCCP, an uncoupler of respiratory chain from ATP synthase activity can also rescue ATP deficiency [4].
Table 2. ATP synthesis, respiration and ATP/O in wild type (WT), NARP mutation and NARP + 10 times Odc1p overexpression with a leak attached to Odc1p. The calculation are performed using the Copasi model in arbitrary units.

<table>
<thead>
<tr>
<th>Odc1 leak</th>
<th>ATP synthesis rate</th>
<th>Respiration rate</th>
<th>ATP/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.296</td>
<td>0.168</td>
<td>1.77</td>
</tr>
<tr>
<td>NARP</td>
<td>0.039</td>
<td>0.038</td>
<td>1.02</td>
</tr>
<tr>
<td>NARP + Odc1p (x10)</td>
<td>0.091</td>
<td>0.055</td>
<td>1.67</td>
</tr>
</tbody>
</table>

We can hypothesize that part of the Odc1p effect could be to increase the membrane leak favoring SLP-ATP not only by increasing AKG feeding part of the TCA cycle producing ATP but also NADH consumption by an activated respiratory chain. We tested this hypothesis in our model that showed that increasing the leak in the NARP + Odc1p conditions increased ATP synthesis (table 2).

Several reports show that substrate level phosphorylation is able to rescue ATP synthase deficiency or to favor ATP production in cell fed with glutamine, a precursor of AKG [16–18]. Our theoretical study evidences the constraints in enhancing SLP through a rewiring of energy metabolism. It also evidences the (perhaps multifactorial) role of the mitochondrial carriers such as Odc1p. The measurement of the metabolites releases should help understanding the metabolic pathways taken in ATP synthase rescue to find other possible way to bypass this deficiency.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Model S1; Model S2; S3, list of EFMs of Fig.1; S4, list of the kinetic parameters used in Copasi model.

Funding: This work was supported by AFM, contract N° 218302 MitoBAD and EMERGENCE GSO.

Acknowledgments: This work benefited from helpful discussions with Stéphane Duvezin-Caubet, Jean-Paul di Rago, Michel Rigoulet and Déborah Tribouillard-Tanvier

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
AKG: α-ketoglutarate / 2-oxoglutarate.
ASYNT-ATP: ATP synthesized by the mitochondrial ATP-synthase.
PMF: Proton Motive Force (ΔµH⁺).
SLP: substrate level phosphorylation.
SLP-ATP: ATP synthesized by Succinyl-CoA synthetase (suucinate thiokinase).

References


**Supplementary Material S1: MITOY_AKG_12_in.dat => MITOY_AKG_12_out**

-ENZREV

ANT ASYNT FUMARASE IDH3 MDH2 ME2 NIG RC3 SUCTHIOK T5 T6 T12 T24 T41 T42

-ENZIRREV

AKGDH ATPASE CS L NDI PDH RC2 RC4 T2 T22 T23 T31 T33

-METINT

ACoAm ADPc ADPm AKGc AKGm ATPc ATPm CITm CoAm Cyt_ox Cyt_red DPH DPSI FUMm MALm NADm NADHm OAAm Pic Pim PYRm Q QH2 SUCCm SUCCoAm

-METEXT

ADP AKG ATP CITc CO2 H2O O MALc Pi PYRc SUCCc

-CAT

AKGDH : AKGm + NADm + CoAm = SUCCoAm + NADHm + CO2.

ANT : ATPm + ADPc + DPSI = ATPc + ADPm.

ASYNT : 3 ADPm + 3 Pim + 10 DPH + 10 DPSI = 3 ATPm.

ATPASE : ATPc = ADPc + Pic.

CS : ACoAm + OAAm = CITm.

FUMARASE : FUMm = MALm.

IDH3 : CITm + NADm = AKGm + NADHm + CO2.

L : DPSI + DPH = .

MDH2 : MALm + NADm = OAAm + NADHm.

ME2 : MALm + NADm = PYRm + NADHm + CO2.

NIG : DPSI = 4 DPH.

PDH : PYRm + NADm + CoAm = ACoAm + NADHm + CO2.

NDI : NADHm + Q = NADm + QH2.

RC2 : SUCCm + Q = FUMm + QH2.

RC3 : QH2 + 2 Cyt_ox = Q + 2 Cyt_red + 2 DPH + 2 DPSI.

RC4 : 2 Cyt_red + O = 3 Cyt_ox + 4 DPH + 4 DPSI + H2O.

SUCTHIOK : SUCCoAm + Pim + ADPm = SUCCm + CoAm + ATPm.

T2 : AKGc + MALm = AKGm + MALc.

T22 : AKGc + SUCCm = AKGm + SUCCc.

T23 : AKGc + CITm = AKGm + CITc.

T31 : MALm + Pic = MALc + Pim.

T33 : SUCCm + Pic = SUCCc + Pim.

T5 : Pic + DPH = Pim.

T6 : PYRc + DPH = PYRm.

T12 : Pic = Pi.

T24 : AKGc = AKG.

T41 : ADPc = ADP.

T42 : ATPc = ATP.

**Supplementary Material S2:**

**INTRODUCTION.**
According to [1], we define as global quantities in Copasi, ‘fmu’ which determines the part of \( \Delta \psi \) (DpSI) in \( \Delta \mu H^+ \) (PMF). Here we take for simplicity: \( fmu = 0.8 \) and thus DpSI = \( fmu \times PMF \) (Volts) and DPH = (1-\( fmu \)) \times PMF/Z \) (in pH units).

We also define \( Z = \ln(10) \times RT/F \approx 0.06 \) Volts at 30°C.

\( \alpha \)-KETOGLUTARATE DEHYDROGENASE (AKGDH):

\[ \text{AKGm + NADm + CoAm -> SucCoAm + NADHm + CO2} \]

It is supposed irreversible (\( \Delta G^\circ = -27.2 \pm 7.7 \) kJ/mol => \( K'_{eq} = 5.9 \times 10^4 \)) and inhibited by its products NADH and SucCoA. We propose an irreversible mass action law for the substrates, modulated by competitive inhibition terms for NADHm and SucCoAm with \( K_{AKGdh\_NADH} = 0.03 \) mM and \( K_{AKGdh\_SucCoA} = 10 \) µM taken from the literature [2–4]:

\[
V_{M_{AKGDH}} = \frac{AKGm \times NADm \times CoAm}{1 + \frac{1}{K_{AKGdh\_NADH}} NADHm} \times \frac{1}{1 + \frac{1}{K_{AKGdh\_SucCoA}} SucCoAm}
\]

or linearly written:

\[
V_{M_{AKGDH}}*AKGm*NADm*CoAm*(1/(1+NADHm/K_{AKGdh\_NADH}))*\left[1/(1+SucCoAm/K_{AKGdh\_SucCoA})\right]
\]

\( \text{ANT} \)

We take the reversible mass action law with the intervention of DpSI = \( fmu \times DPH \)

\[
v_{\text{ANT}} = V_{M_{\text{ANT}}}*(\text{ADPc} \times \text{ATPm} - \text{ADPm} \times \text{ATPc}) * 10^{(-fmu \times PMF/Z)}
\]

\( \text{ASYNT} \)

\( \text{ATP SYNTHASE (ASYNT)} : \)

\[ \text{ADPm + Pim + 3.3} \times \text{PMF} = \text{ATPm} \] (stoichiometry of yeast Atp synthase: 10 H+ per 3 ATP).

We took the expression of Bohnensack [1]:

\[
V_{M_{ASYNT}} \times \left(1 - \frac{\text{ATPm}}{\text{ADPm} \times \text{Pim}} \times \Phi_p \times 10^{nA \times \text{PMF} / Z} \right)
\]

where \( nA \) is the number of protons translocated per ATP synthesised (3.3 in the case of yeast), \( \Phi_p \) takes into account the DPH in the phosphate ions equilibrium (see[1]) and PMFa is the standard phosphorylation potential (0.150 V) [1].

\( \text{ATPASE} : \text{ATPc} \rightarrow \text{ADPc} + \text{Pic} \)

We take a Henri-Michaelis-Menten equation [5] with the ATPc as substrate:

\[
V_{M_{ATPASE}} \times \frac{\text{ATPc}}{\text{ATPc} / \text{ATPase}_{\text{ATP}}} \times \frac{\text{ATP}}{\text{ATPase}_{\text{ATP}}} \times \left(1 + \text{ATP} / \text{ATPase}_{\text{ATP}}\right)
\]
CITRATE SYNTHASE (CS).

Acetyl-CoA (AcCoA) + Oxalacetate (OAA) + H₂O ⇌ Citrate + CoASH(CoA) + H⁺ + 38 kJ/mol.

We consider the reaction as reversible and take the rate expression of Cornish-Bowden and Hofmeyr [6] with or without the inhibition by ATP (the inhibition by CoA is supposed to be included in the reverse rate)

\[
V = \frac{VMCS \times [OAA] \times [ACoA] \times (1 - \frac{[CoA] \times [CITm]}{Kq_{CS} \times [ACoA] \times [OAA]})}{1 + \frac{[OAA]}{KCS_{OAA}} + \frac{[AcCoA]}{KCS_{ACOA}} + \frac{[ATP]}{KiCS_{ATP}} + \frac{[CITm]}{KCS_{CIT}} + \frac{[CoA]}{KCS_{COA}}}
\]

with the consensus values (in mM): KCS_OAA = 0.005 ; KCS_ACOA = 0.01 ; KQ_CS = 2.10^6 (Veech JBC 1973) ; KiCS_ATP = 0.3 ; KCS_CIT = 3 ; KCS_COA = 0.04.

FUMARASE: FUMm = MALm

Reversible Henri-Michaelis-Menten equation which takes into account the equilibrium constant KQ_FUMASE = 4.4 in order to satisfy Haldane relationship:

\[
(V_{M_FUM} \times \frac{FUMm}{KFUMASE_FUM} - \frac{MALm}{KFUMASE_FUM}) \times \frac{FUMm}{1 + \frac{KFUMASE_FUM}{MALm}}
\]

IDH3: ACONITASE-ISOCITRATE DEHYDROGENASE 3

Aconitase and isocitrate dehydrogenase are joined together in the reaction:

\[
\text{CITm} + \text{NADm} \rightarrow \text{AKGm} + \text{NADHm} + \text{CO2}
\]

and the rate equation:

\[
V = VM_{IDH3} \times \frac{[\text{CITm}] \times [\text{NADm}]}{K13_{CIT} \times K13_{NAD}} \times \frac{1 - \frac{[\text{AKGm}] \times [\text{NADHm}]}{Kq_{IDH3} \times [\text{CITm}] \times [\text{NADm}]}}{1 + \frac{[\text{CITm}]}{K13_{CIT} + K13_{NAD}} + \frac{[\text{AKGm}]}{K13_{NAD}} \times \frac{[\text{NADm}]}{K13_{NAD}}}
\]

LEAK: PMF -> PMFm

We take the equation:

\[
\frac{VM_{Leak}}{1 + \frac{K_{LEAK}}{PMF}} \times 10^{-Z}
\]
Note that PMFm is created to satisfy the Copasi rules of writing the equations of the reactions. It is not a variable of the system.

**MDH MALATE DEHYDROGENASE (Mitochondrial: MDH2):**

\[ \text{MALm} + \text{NADm} = \text{OAAm} + \text{NADHm} \]

Mass Action reversible with \( K_{eq} = 0.0002 \)

**MALIC ENZYME (ME2):**

\[ \text{Malate} + \text{NAD}(P)+ \rightleftharpoons \text{pyruvate} + \text{CO}_2 + \text{NAD}(P)H. \]

Mass action reversible with \( K_{eq} (\text{NAD ou NADPH}) = 7.6 \times 10^{-3} \)

**NDI: NADHm + Q = NADm + QH2**

In yeast, NDI is the internal dehydrogenase which takes the place of complex I in mammal’s mitochondria. Because it does not excrete protons, its equilibrium constants \( K_{eq} = 4.10^{13} \) can be calculated from the difference in the Q/QH2 and NAD/NADH midpoint potentials (+0.085 V and -0.32 V respectively).

To satisfy this equilibrium constant we take \( k_1 = 10 \text{ s}^{-1} \) and \( k_2 = 2.5 \times 10^{-13} \text{ s}^{-1} \) in a reversible mass action law.

**PYRUVATE DEHYDROGENASE (PDH).**

\[ \text{NAD}^+ + \text{CoA} + \text{Pyruvate} \rightleftharpoons \text{NADH} + \text{CO}_2 + \text{Acetyl-CoA} \]

We take the equation given in [7]. This reaction with a complex mechanism is taken as irreversible despite its \( \Delta G^\circ = -35.3 \pm 6.4 \text{ kJ/mol} \) \( (K'_{eq} = 1.6 \times 10^6) \). We take into account an inhibition by the products NADH and acetyl-CoA (ACoA) (which is more or less equivalent to a reversible mechanism):

\[
\frac{v}{V_{max}} = \frac{\text{PYRm}}{K_{PDHPYR} + \text{PYRm}} \times \frac{\text{NADm}}{K_{PDHNAD}(1 + \frac{\text{NADHm}}{K_{iNADH}}) + \text{NADm}} \times \frac{\text{COAm}}{K_{PDHCOA}(1 + \frac{\text{ACOAm}}{K_{iACOA}}) + \text{COAm}}
\]

**PI TRANSPORT (Pit): Pic + H+ = Pim**

The electroneutral transport of Pi with a H+ (or against OH-) is very fast so that the phosphate distribution is supposed to be in equilibrium (taking into account the \( \Delta\text{pH} \)).

According to[1] we take:

\[
V_{\text{Pit}} = VM_{\text{Pit}} \cdot \left(1 - \frac{P_{\text{im}}}{P_{\text{ic}}} \cdot 10^{-DPH}\right) = VM_{\text{Pit}} \cdot \left(1 - \frac{P_{\text{im}}}{P_{\text{ic}}} \cdot 10^{-0.2\cdot\text{PMF}/Z}\right)
\]

or linearly written:

\[
V_{\text{Pit}} = VM_{\text{Pit}} \ast (1-P_{\text{im}}/P_{\text{ic}} \ast 10^{(-0.2\ast\text{PMF}/Z)})
\]
RCII (Respiratory complex II) or SDH (Succinate dehydrogenase):

In our simple dynamical model, we take the reversible mass action law as rate equation of the SDH with $K_{eq} = 70$ calculated from the difference in the midpoint potentials of the pairs Fumarate/Succinate ($E_1 = +0.03$ V) and $Q/QH_2$ ($E_2 = +0.085$ V).

We adopt the rate equation of Cornish-Bowden and Hofmeyr [6] with a competitive inhibition of oxaloacetate with succinate and fumarate:

$$V = V_{M_{\text{SDH}}} \times \frac{[\text{SUCCm}] \times [Q]}{[\text{KSDH}_{\text{SUCC}}] \times \left(1 + \frac{[\text{OAAm}]}{[\text{KiSDH}_{\text{OAA}}]}\right) \times [\text{KSDH}_{\text{Q}}]} \times \left(1 - \frac{[\text{QH}_2][\text{FUMm}]}{[\text{KQ}_{\text{SDH}}] \times \left([\text{SUCCm}] \times [Q]\right)}\right)$$

With the consensus values (for mammalian): $K_{\text{SDH}_{\text{SUCC}}} = 85 \ \mu M$, $K_{\text{SDH}_{\text{FUM}}} = 100 \ \mu M$, $K_{\text{SDH}_{\text{Q}}} = 1.5 \ \mu M$ (Grivennikova et al., [8]) and $K_{\text{SDH}_{\text{QH}_2}} = 1.5 \ \mu M$ (arbitrarily equal to $K_{M_{\text{Q}}} = 1.5 \ \mu M$ in absence of known determination). $K_{\text{KiSDH}_{\text{OAA}}} = 0.07 \ \mu M \ (0.01 < \mu M < 0.4)$; $K_{\text{Q}_{\text{SDH}}} = 0.14 \ (0.05 < \mu M < 0.5)$.

Note that oxaloacetate (OAAm) is not a metabolite of our model

RCIII or bc1 complex:

$$QH_2 + 2 \times \text{Cox} = Q + 2 \times \text{Cred} + 2.4 \times \text{PMF}$$

(4 protons ($4 \times 0.2 = 0.8 \ \text{PMF}$) and 2 charges ($2 \times 0.8 = 1.6$))

We follow the model of Bernard Korzeniewski [9] which was also taken over by Daniel A. Beard [8] of a linear dependence of the rate upon the difference of potential near equilibrium:

$$V_{C_{\text{III}}} = V_{M_{\text{CIII}}} \times \Delta E_{\text{CIII}}.$$

$\Delta E_{\text{CIII}}$ (for two electrons) decomposes into $\Delta E_{\text{CIII}}_{\text{chem}} = 2(\text{EC} - \text{EQ})$ which accounts for the chemical part of the reaction and $-2.4 \times \text{PMF}$ (Volts) corresponding to the protons and charges transported on either side of the inner mitochondrial membrane

$$\Delta E_{\text{CIII}} = 2(\text{EC} - \text{EQ}) - 2.4 \times \text{PMF} = 2 \left(\left|\text{EC}_0 + \frac{RT}{F} \times \text{In}(\text{Cox/Cred})\right| - \left|\text{EQ}_0 + \frac{RT}{2F} \times \text{In}(Q/QH_2)\right|\right) - 2.4 \times \text{PMF}$$

With $\text{EC}_0$ (standard potential of Cox/Cox) = +0.25 V and $\text{EQ}_0$ (standard potential of Q/QH2) = +0.085 V and with $RT/F$. In(10) = 0.06 V at 30°C, we obtain:

$$\Delta E_{\text{CIII}} = 2(0.25 + 0.06 \times \text{log}_{10}(\text{Cox/Cred}) - 0.085 + 0.03 \times \text{log}_{10}(Q/QH_2)) - 2.4 \times \text{PMF}$$

Linearly written the equation reads:

$$V_{\text{M_{CIII}}} \times (0.50 + 0.12 \times \text{log}_{10}(\text{Cox/Cred})) - (0.17 + 0.06 \times \text{log}_{10}(Q/QH_2)) - 2.4 \times \text{PMF}$$
RCIV or Cytochrome c oxidase.

We take an equation close to that of Korzeniewski ((6)): \( \frac{V_{CMIV,Cred}}{K_{O_2}^{1}} \) modulated by a sigmoid function: \( \frac{K_{slip}}{PMF^{P_{slip}+K_{slip}}} \) to take into account the H\(^+\) slip at the level of complex IV as a function of the PMF. This function exchange a transduction of 3.6 H\(^+\) to 1.6 H\(^+\) around 0.2 V.

**SUCCINATE THIOKINASE or SUCCINYL-COA SYNTHETASE (SUCTHIOK):**

SUCCoAm + ADPm + Pim = SUCCm + ATPm + CoAm

We consider this equation as reversible with KQ_STK = 1.3 integrated in the mass action law equation:

**ODC1 or ODC2 (Oxo-dicarboxylate carrier)**

**T2:** AKGc + MALm = AKGm + MALc . (ODC)

Mass action reversible

**T6:** PYRm -> PYRc + 0.2 PMF

Mass action irreversible

**T22:** AKGc + SUCCm = AKGm + SUCCc . (ODC)

Mass action reversible

**T23:** AKGc + CITm = AKGm + CITc (ODC)

Mass action reversible

As an indication, Odc1 exchanges the following internal metabolites against AKG ext (with the corresponding rate in mmol.min/mg prot): AKG (112), Malate (56), Succinate (19). [11]

**DIC (Dicarboxylate carrier)**

**T31:** MALm + Pic = MALc + Pim .

Mass action reversible

**T33:** SUCCc + Pim = SUCCm + Pic .

Mass action reversible

**S3. EFMs with entry of AKG, ADP, Pi and O and output of ATP.**

EFMs
4: (12) [bl 1] (10 ANT) -ASYNT (-13 IDH3) (13 SUCTHIOK) (10 T5) (-10 T12) (-26 T24) (-10 T41) (10 T42) (13 AKGDH) (13 T22) (13 T23) irreversible

17: (13) [bl 1] ANT RC3 SUCTHIOK T5 -T12 -T24 -T41 T42 AKGDH (5 L) NDI RC4 T22 irreversible. ATP/O = 1

20: (15) [bl 1] ANT FUMARASE (2 RC3) SUCTHIOK T5 -T12 -T24 -T41 T42 AKGDH (11 L) NDI RC2 (2 RC4) T2 irreversible ATP/O = 0.5

23: (16) [bl 1] ANT FUMARASE :IDH3 RC3 SUCTHIOK T5 -T12 (-2 T24) -T41 T42 AKGDH (5 L) RC2 RC4 T2 T23 irreversible ATP/O = 1

28: (13) [bl 1] (28 ANT) (5 ASYNT) (13 RC3) (13 SUCTHIOK) (28 T5) (-28 T12) (-13 T24) (-28 T41) (28 T42) (13 AKGDH) (13 NDI) (13 RC4) (13 T22) irreversible. Echange AKGc/SUCCm avec chemin AKGm – SUCCoAm – SUCCm qui sort ATP/O = 2.15

29: (15) [bl 1] (46 ANT) (11 ASYNT) (13 FUMARASE) (26 RC3) (13 SUCTHIOK) (46 T5) (-46 T12) (-13 T24) (-46 T41) (46 T42) (13 AKGDH) (13 NDI) (13 RC2) (26 RC4) (13 T2) irreversible ATP/O = 1.77

30: (16) [bl 1] (28 ANT) (5 ASYNT) (13 FUMARASE) (-13 IDH3) (13 RC3) (13 SUCTHIOK) (28 T5) (-28 T12) (-26 T24) (-28 T41) (28 T42) (13 AKGDH) (13 RC2) (13 RC4) (13 T2) (13 T23) irreversible Echange AKGc/MALm et AKGC/CITm. Pas production de NADH. Seul RC2 ATP/O = 2.15

42: (14) [bl 1] (6 ANT) (-5 IDH3) RC3 (6 SUCTHIOK) (6 T5) (-6 T12) (-11 T24) (-6 T41) (6 T42) (6 AKGDH) NDI RC4 (6 T22) (5 T23) irreversible

43: (16) [bl 1] (6 ANT) FUMARASE (-6 IDH3) RC3 (6 SUCTHIOK) (6 T5) (-6 T12) (-12 T24) (-6 T41) (6 T42) (6 AKGDH) RC2 RC4 T2 (5 T22) (6 T23) irreversible

OVERALL REACTIONS

4: 10 ADP + 26 AKG + 10 Pi = 10 ATP + 13 CITc + 13 SUCCc (no O)

17: ADP + AKG + O + Pi = ATP + CO2 + H2O + SUCCc

20: 0.5 ADP + AKG + 2 O + Pi = ATP + CO2 + 2 H2O + MALc

23: ADP + 2 AKG + O + Pi = ATP + CITc + H2O + MALc

28: 28 ADP + 13 AKG + 13 O + 28 Pi = 28 ATP + 13 CO2 + 13 H2O + 13 SUCCc

29: 46 ADP + 13 AKG + 26 O + 46 Pi = 46 ATP + 13 CO2 + 26 H2O + 13 MALc

30: 28 ADP + 26 AKG + 13 O + 28 Pi = 28 ATP + 13 CITc + 13 H2O + 13 MALc

42: 6 ADP + 11 AKG + O + 6 Pi = 6 ATP + 5 CITc + CO2 + H2O + 6 SUCCc

43: 6 ADP + 12 AKG + O + 6 Pi = 6 ATP + 6 CITc + H2O + MALc + 5 SUCCc

Supplementary Materials S4 : Parameters of the kinetic model :

<table>
<thead>
<tr>
<th>Model</th>
<th>MITOY_AKG_12_reduit_v3_TM_ASYNT.cps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0.06 (LEAK).Z mmol/l</td>
</tr>
<tr>
<td>DGP</td>
<td>0.37472 (T2).k1 l/(mmol*s)</td>
</tr>
<tr>
<td>nA</td>
<td>3.3 (ND1).k1 l/(mmol*s)</td>
</tr>
<tr>
<td>DG_SN</td>
<td>0.555204 (RCII).VM_SDH mmol/(l*s)</td>
</tr>
<tr>
<td>Gamma</td>
<td>1.79E+09 (RCII).KSDH_SUCC mmol/l</td>
</tr>
<tr>
<td>fmu</td>
<td>0.8 (RCII).KSDH_OAA mmol/l</td>
</tr>
<tr>
<td>DPSI</td>
<td>0.225436 (RCII).KSDH_Q mmol/l</td>
</tr>
<tr>
<td>DPH</td>
<td>0.939317 (RCII).KQ_SDH 1</td>
</tr>
<tr>
<td>Ac</td>
<td>5.00E-13 (RCII).KSDH_FUM mmol/l</td>
</tr>
<tr>
<td>Am</td>
<td>0.0483731 (RCII).KSDH_QH2 mmol/l</td>
</tr>
<tr>
<td>fPSI</td>
<td>0.8 (T22).k1 l/(mmol*s)</td>
</tr>
<tr>
<td>fP</td>
<td>0.2 (T33).k1 l/(mmol*s)</td>
</tr>
<tr>
<td>Phi_p</td>
<td>7.15676 (CS).VM_CS mmol/(l*s)</td>
</tr>
</tbody>
</table>

Supplementary Materials S4 : Parameters of the kinetic model :
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP/O</td>
<td>1.84327</td>
<td>(CS).KCS_OAA mmol/l</td>
</tr>
<tr>
<td>(AKGDH).VM_AKGDH</td>
<td>340</td>
<td>(CS).KCS_ACOA mmol/l</td>
</tr>
<tr>
<td>(AKGDH).KAKGdh_NADH</td>
<td>0.03</td>
<td>(CS).KQ_CS 1</td>
</tr>
<tr>
<td>(AKGDH).KAKGdh_SucCoA</td>
<td>0.01</td>
<td>(CS).KiCS_ATP mmol/l</td>
</tr>
<tr>
<td>(SUCTHIOK).VM_STK</td>
<td>6.97225</td>
<td>(CS).KCS_CIT mmol/l</td>
</tr>
<tr>
<td>(SUCTHIOK).KQ_STK 1</td>
<td>1.3</td>
<td>(CS).KCS_COA mmol/l</td>
</tr>
<tr>
<td>(FUMARASE).VM_FUM</td>
<td>12.5478</td>
<td>(IDH3).VM_IDH3 mmol/l</td>
</tr>
<tr>
<td>(FUMARASE).KFUMASE_FUM</td>
<td>0.004</td>
<td>(IDH3).Kl3_CIT mmol/l</td>
</tr>
<tr>
<td>(FUMARASE).KQ_FUMASE 1</td>
<td>4</td>
<td>(IDH3).Kl3_NAD mmol/l</td>
</tr>
<tr>
<td>(FUMARASE).KFUMASE_MAL</td>
<td>0.009</td>
<td>(IDH3).KQ_IDH3 1</td>
</tr>
<tr>
<td>(ASYNT).VM_ASYNT</td>
<td>0</td>
<td>(IDH3).Kl3_AKG mmol/l</td>
</tr>
<tr>
<td>(ASYNT).PMFa</td>
<td>0.15</td>
<td>(IDH3).Kl3_NADH mmol/l</td>
</tr>
<tr>
<td>(ASYNT).Phi_p</td>
<td>7.15676</td>
<td>(MDH2).k1 l/(mmol*s)</td>
</tr>
<tr>
<td>(ASYNT).Z</td>
<td>0.06</td>
<td>(MDH2).k2 l/(mmol*s)</td>
</tr>
<tr>
<td>(ASYNT).nA</td>
<td>3.3</td>
<td>(ME2).k1 l/(mmol*s)</td>
</tr>
<tr>
<td>(ANT).VM_ANT</td>
<td>0.2</td>
<td>(ME2).k2 l²/(mmol²*s)</td>
</tr>
<tr>
<td>(ANT).fmu</td>
<td>0.8</td>
<td>(PDH).VMPDH mmol/l</td>
</tr>
<tr>
<td>(Pit).VM_Pit</td>
<td>200</td>
<td>(PDH).KPDHPYR mmol/l</td>
</tr>
<tr>
<td>(Pit).Z</td>
<td>0.06</td>
<td>(PDH).KPDHNAD mmol/l</td>
</tr>
<tr>
<td>(ATPASE).VM_ATPASE</td>
<td>0.05</td>
<td>(PDH).KINADH mmol/l</td>
</tr>
<tr>
<td>(ATPASE).KATPASE_ATP</td>
<td>3.57734</td>
<td>(PDH).KPDHCAm mmol/l</td>
</tr>
<tr>
<td>(RCIII).VM_CIII</td>
<td>1</td>
<td>(PDH).KiACoA mmol/l</td>
</tr>
<tr>
<td>(RCIV).VM_CIV 1/s</td>
<td>1</td>
<td>(T6).k1 l^4/(mmol^4*s)</td>
</tr>
<tr>
<td>(RCIV).KO</td>
<td>0.001</td>
<td>(T24).k1 1/s</td>
</tr>
<tr>
<td>(LEAK).VM_Leak</td>
<td>1.00E-06</td>
<td>(T24).k2 1/s</td>
</tr>
</tbody>
</table>

The table above lists various biochemical reactions along with their corresponding values and units.
References


