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Abstract 

 
Aim Large number of indices for presence-absence data that compare two assemblages 
have been proposed or reinvented. Interpretation of these indices varies across the 
literature, despite efforts for clarification and unification. Most effort has focused on the 
mathematics behind the indices, their relationships with diversity, and between each other. 
At the same time, following issues have been largely overlooked: (i) inter-dependence of 
indices based on their informational value, (ii) overlap of the ecological phenomena that the 
indices aim to capture, (iii) requirement that a small re-arrangement of assemblages should 
only cause a small change in an index, and (iv) inferences from the indices about diversity 
patterns. Underappreciation of these issues has led to invention or reinvention of indices 
without increasing their information value. We offer a framework for pairwise diversity 
indices that accounts for these issues. 
 

Methods We present a framework that links different ecological phenomena to pairwise 
indices, and show mathematical links between the indices. We distinguish statistical 
dependence of indices from their informational (mathematical) dependence. Using linear 
algebra, we found the minimum number of indices needed to detect different patterns. 
 
Results We (1) classified existing indices into three major and four minor mutually 
independent families, (2) demonstrated how assemblage interrelation confuses 
conceptually different patterns, (3) showed what can be inferred about diversity 
phenomena from different indices, (4) demonstrated problems with most of the indices of 
nestedness, (5) provided formula linking mathematically (informationally) dependent 
indices, and (6) showed which combinations of indices can be used for meaningful 
ecological inference. Additionally, (7) we showed how to calculate any index from two 
presence-absence indices, which can be used to standardize and compare different indices 
across the literature. 
 

Main conclusions It is impossible to purify an index of a single biodiversity phenomenon 
from the effects of other phenomena, because phenomena inevitably bound each other 
(e.g. a species richness gradient bounds possible values of Jaccard index of community 
similarity). Consequently, inventing indices which seemingly purify these effects (e.g. pure 
turnover or nestedness) leads to misleading inference. In contrast, a proper inference is 
obtained by using a combination of classical indices from different, information-
independent families.  
 
Key words: beta diversity, biodiversity, co-occurrence, partitioning, dependence, Simpson, 
dissimilarity 
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Introduction 
 
Considerable effort has been made to capture variation in biological diversity using a single 
variable (e.g., Brualdi & Sanderson, 1999; Gotelli, 2000; Vellend, 2001; Koleff & Gaston, 
2002;  Gaston et al., 2007; Jost, 2007; Juranski et al., 2009; Ulrich et al., 2009; Baselga, 
2010a; Tuomisto, 2010, Podani & Schmera, 2011; Almeida-Neto et al., 2012; Carvalho et al., 
2012; Chao et al., 2012; Newbold et al., 2016; Schmera et al., 2020). Differences in species 
composition between assemblages in space and time have been assessed by various indices, 
with a heated debate and a little consensus about which are better for different purposes 
(Baselga, Podani & Schmera and Ulrich & Almeida-Neto, Baselga, 2010a, 2012; Podani & 
Schmera, 2011; Schmera et al., 2020; Almeida-Neto et al. ,2012; Ulrich et al., 2009, 2017). In 
the debate, a particularly notable disagreement concerns indices of species nestedness, and 
how to purify them from the effects of species turnover and richness (and vice versa). 

The debate over the proper index to compare species assemblages can be traced 
back to Simpson (1943), whose invention of the Simpson index (����; Tab. 1) resolved the 
undesirable interdependence between Jaccard index (�; Jaccard, 1912; Tab. 1) and the 
difference in species richness of assemblages. Since then, a number of indices have been 
introduced that carry equal information as Jaccard and Simpson indices (e.g. ��ø�; Sørensen, 
1948; Tab. 1), or which are mathematically equivalent to earlier indices (e.g., �� = ��
 =���, defined by Wilson and Shmida 1984, Schluter and Ricklefs 1993, Harte and Kinzig 1997, 
respectively; Tab. 1). At the same time, we lack a general framework for relationships 
between existing indices, which would also apply for any index invented or introduced in the 
future. All this allows for generation of new, often redundant indices; for several indices 
new to the last decade see, e.g., Baselga, (2012) or Schmera et al. (2020). 
 Despite disagreements and redundancies, there has been progress. It is to Baselga’s 
(2010a,b) credit that the field has refocused from classification of indices to their meaning. 
Lennon et al. (2001) and Newbold et al. (2016) showed that Simpson index is in fact 
Sørensen similarity relativized to the contrast in species richness. Koleff et al. (2003) and 
Legendre & De Caceres (2013) have shown independence of the Jaccard index from mean 
and total species richness.  These authors also pointed out that Simpson and Jaccard 
represent two different groups of indices, which Koleff et al. (2003) labelled as broad-sense 
and narrow-sense turnover. This classification resonates with Almeida-Neto et al. (2008) 
and Šizling et al. (2009) who realized that reversed Simpson index (���� ; Tab. 1) quantifies 
the phenomenon of nestedness, while the Jaccard index quantifies reversed species 
turnover. Lastly and importantly, Ulrich et al. (2017, 2018) pioneered null models that are 
able to disentangle mathematical and biological drivers of the dependence between various 
indices and species richness. All this abovementioned effort has concerned incidence-based 
indices (i.e. those based on binary presence-absence data). In parallel, a considerable effort 
concerned abundance-based indices, and their inclusion in the framework of Hill numbers 
(Hill, 1973; Jost, 2007; Tuomisto, 2010; Chao et al., 2012, 2014a,b; Chiu et al., 2014). 
However, accurate data on abundances are still more difficult to obtain and less common 
than simple presences and absences (Keil et al. 2021), particularly at large 
“macroecological” spatial scales. Because of this, pairwise indices based on presences and 
absences, rather than abundances, have been used in major global analyses of biodiversity 
(e.g. Dornelas et al., 2014; Blowes et al., 2019). 
 A particular attention has been paid to the dependence of the indices on species 
richness (Koleff et al. 2003, Jost, 2006,2007; Baselga, 2010b; Chao et al., 2012; Schmera et 
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al. 2020) and on each other (Simpson, 1943; Koleff et al. 2003; Baselga, 2010a; Baselga & 
Leprieur, 2015; Schmera et al. 2020), and there has been an effort to purify one effect from 
another by means of additive partitioning (Baselga, 2010a, 2012; Podani & Schmera, 2011). 
Jost (2006, 2007, 2010) and Chao et al. (2012) emphasized that while statistical dependence 
refers to the dependence between variables (two indices are statistically dependent if 
observing an index value modifies the probability to observe particular values of another 
index) the definititon of independence between indices should utilize their mathematical 
formulas. In order to replace the statistical dependence, Chao et al. (2012) defined 
unrelatedness as the situation where minimum or maximum of one index is affected by the 
variation of another index. Importantly, the relatedness says nothing about equal or 
different information carried by the variables in focus, but instead it induces statistical 
dependence as defined above. The reason is that changing constraints on minimum or 
maximum values necessarily modify probabilities to observe particular index values, which is 
the basis of statistical dependence. 
 Baselga (2010a,b, 2012), Podani & Schmera (2011) and Schmera et al. (2020) 
presented two new approaches to the problem of dependence among indices; both are 
based on mathematical partitioning of the indices, but differ in the way they standardize 
them. Baselga (2012) based his reasoning on the observation that some arrangements of 
assemblages affect both turnover and nestedness simultaneously, and the respective 
indices are thus ‘related’ (sensu Chao et al., 2012), which means that their random samples 
are statistically dependent. To address this dependence, Baselga (2012) defined 
“nestedness-resultant component” (����), which is ���� ≝ �� − ����, where �� is Sørensen 
dissimilarity and ���� is Simpson dissimilarity (see Tab. 1 for definitions). The subtraction 
supposedly removes the effect of turnover component represented by ���� from the overall 
dissimilarity represented by ��, and what remains is considered to be ’nestedness resultant 
component’. In contrast, Podani & Schmera (2011) see nestedness as antithetic to 
replacement (a synonymum for turnover) and so indices of nestedness (����; Podani & 

Schmera, 2011) and replacement (���; Podani & Schmera, 2011) (see Tab. 1 for definitions) 

together sum to one. Their index of nestedness is thus ���� ≝ 1 − ���.  

We argue that the abovementioned approaches have several problems (outlined in 
the chapter below) which have led to a confusing situation in which researchers are typically 
not sure which indices can be used in different situations and what the indices actually 
measure. To sort out the confusion, we take inspiration in physics, basic linear algebra, 
conditional entropy theory, and economics, and present a unified framework for incidence-
based indices that addresses these issues. In our framework, the indices are tools to capture 
phenomena observed during fieldwork or data processing, and we show that these 
phenomena are already mutually dependent by their very nature, regardless of the indices 
which quantify them. This makes it impossible to find neither unrelated nor statistically 
independent indices. We further show that the interdependence between the phenomena 
makes it impossible to ‘purify’ any index from the effects of other phenomena. For instance, 
species spatial turnover (first phenomenon) is affected by the difference in species richness 
(second phenomenon). Partitioning them statistically on the level of indices does not lead to 
a proper inference, since the two phenomena affect each other irrespectively of any index.  

Instead of statistical s-independence (or unrelatedness sensu Chao et al. 2012) of 
indices, we advocate for accounting for the independence of the indices in terms of their 
information content (which we call i-independence). We then show that only two i-
independent indices carry enough information to compute any (even not yet introduced) 
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dimensionless index, and provide a user friendly tool to perform this conversion. We 
develop guidelines to attribute the indices to different diversty phenomena. Finally, we 
demonstrate that the interrelationship of assemblages introduces mutual i-dependence 
between otherwise i-independent indices, and that this effect can obscure differences 
between otherwise clearly distinguishable patterns. Our framework addresses the problems 
that have repeatedly acted as incentives for generating new indices. In doing so, we 
demonstrate that most of the work needed has already been achieved by Jaccard (1912), 
Simpson (1943) and others in early 20th century (see also Tjørve et al., 2018). 
 

 

Problems with previously suggested indices 

 

We distinguish five fundamental problems with the indices proposed in literature during last 
few decades. Our basic assumption is that different indices should measure different – 
albeit not neccesarily entirely independent – phenomena, and that the value of an index 
should reflect the strength of given phenomenon (Ulrich et al. 2017,2018). The problems 
listed below represent the cases when this general assumption is not fulfilled. 
 

Problem 1: Some commonly used indices do not satisfy the requirement of continuity 
(Neumann & Morgenstern, 1953). The requirement, presented for ecologists by Podani & 
Schmera (2012), states that a small re-arrangement of species assemblages should lead to 
only a small change in the index value and conversly, a small change in index value should 
indicate only a small re-arrangement of the assemblages. This is important for two reasons: 
an index that changes considerably with a negligible re-arrangement of assemblages is (i) 
sensitive to errors in observed data, and (ii) leads to misleading inference about the pattern 
and/or ecological phenomenon. For example, common indices of nestedness (��, Patterson 
& Atmar, 1986; �����, Almeida-Neto et al., 2008) have been defined as zero when �� = ��. 
This violates the the requirement of continuity (Fig. 1). To satisfy the requirement when �� = ��, a value of nestedness should instead lie between nestedness for �� = �� − 1 and 
nestedness for �� = �� + 1.  The requirement of continuity is also violated in ���� (Podani 

and Shmera, 2011), which is discontinuously defined as ���� ≝ 0 when ��∩� = 0, but ���� = (1 + |�� − ��|) ��∪�⁄  when one species instead of zero is shared between the 

assemblages (��∩� = 1, Fig. 1). This discontinuity introduces sensitivity of ���� to errors in 

data collection where ��∩� is small. Finally, the problematic assumption of zero nestedness 
for �� = �� also affects the “nestedness-resultant components” by Baselga (2010a, 2012) 
(Fig. 1). Baselga (2010a,2012) explicitly stated that in the absence of nestedness an index of 
dissimilarity equals to its turnover component. However, this statement would hold only if 
the equality of �� and �� implied zero nestedness, even if the asemblages were preciselly 
identical and thus (in accord with the requirement of continuity) they should be similarily 
nested as two almost identical and absolutely nested assemblages. 
 

Problem 2: The relationships between indices and ecological phenomena that the indices 
aim to capture (e.g. nestendess) have been typically derived using an ambiguous from-

pattern-to-index implication: a pattern (particular arrangement of assemblages) affects the 
value of an index, so it is assumed that the index measures the phenomenon asociated with 
the pattern. However, the correct reasoning should follow a from-index-to-pattern 
implication: a value of an index should always correspond to a unique pattern that reflects 
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an ecological phenomenon (e.g. nestedness), making the index an unambiguous measure of 
the phenomenon. An example of the ambigous from-pattern-to-index implication is used by 
Podani and Shmera (2011), who argue that “because species replacement and nestedness 

reflect contrasting ecological phenomena […] it is meaningful to express nestedness (����) 

with the effect of species replacement (���) completely removed from [its] maximum”. 

However, in Fig. 1 we show that cases with different levels of nestedness can have equal ����(= 13 27)⁄ , violating the from-index-to-pattern implication. Thus, ���� is not an 

unambiguous measure of nestedness. Similarly, Baselga’s reasoning described above is an 
example of a wrong implication: The fact that absence of nestedness leads to equal indices 
of Sørensen and Simpson does not at the same time mean that the equality of the indices 
implies zero nestedness. This problem of the incorrect implication was mentioned by several 
authors (e.g., Ulrich et al. 2017, 2018; Schmera et al. 2020) but has not been appreciated in 
practice. 
 

Problem 3: So far, attempts to partition an effect of one index from another considered 
statistical dependence (we label it s-dependence) between indices (e.g., Simpson, 1943; 
Koleff et al. 2003; Baselga, 2010a, 2012, 2020; Lyasevska & Farnsworth, 2012). However, in 
terms of the exact meaning of the indices and their links to ecological phenomena, the 
dependence of indices in terms of their information content (hereafter i-dependence) is 
more fundamental. Information content of two indices is identical when each value of the 
first index uniquely determines the value of the second index, and each value of the second 
index uniquely determines the value of the first index (Orlitski, 2003) (i.e. if there is a 
bijection, which means that there is a function F so that *+ = ,(*-) and *- = ,.-(*+), where 
‘I’s are the values of the first and second indices) (Fig. 2). When two indices have equal 
information content, they are i-dependent, which means that they cannot capture different 
phenomena. I-independent indices may be at the same time s-dependent, but this 
dependence stems from the dependence of the phenomena themselves and, as we show 
below, partitioning of s-dependent indices thus leads to a distorted link between the 
phenomena and the indices that are intended to measure them. 
 
Problem 4: The mathematical operation of subtraction of indices does not remove one 
effect from another. According to Baselga (2010a, 2012) the subtraction results to 
nestedness-resultant component regardless of the index. Baselga (2012) applies the 
reasoning about nestedness-resultant components equally to �� (see reasoning above) and 
Jaccard dissimilarity (�/; Tab. 1). In the second case, the nestedness resultant component of 
Jaccard dissimilarity is �0�� ≝ �/ − �0�1, where �0�1 is ‘turnover component of Jaccard 

dissimilarity’ (Tab. 1). However, the subtraction can remove the effects only for �� or �/ (or 
none of them), but not for both, and it is unknown which of ���� and �0�� is the ‘true’ 

nesteness resultant component. The reason is that �� is a unique transformation of �/  
(Baselga 2012, SI.1), and that ���� is a unique transformation of �0�1 (�0�1 = 2����/(1 +����), SI.1). Thus �� and �/ carry the same information and are i-dependent, and the same 
is true for �0�1 and ����. If the subtraction produced nestedness-resultant components in 

both cases (Baselga 2012), then the subtraction would have to account for the same effect 
in both cases, and thus ���� and �0�� would also have to be i-dependent, which is not the 

case (Baselga 2012). This proves that the subtraction does not work.  This is analogous to 
the logarithmic transformation where a variable 3 carries equal information as log(3), and 7 carries the same information as log(7), but 3 − 7  does not scale with log(3) − log	(7) - 
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there is bijection between log(3) − log(7) and 3/7	 (as log(3) − log(7) = 9:;(3/7))	, but 
not between log(3) − log(7) and 3 − 7. In both cases the problem is that any nonlinear 
transformation also transforms the meaning of the operation between transformed 
variables. For the same reason the minus operator in ��	 − ���� (≝ ����) has a different 
meaning than the minus operator in �/ − �0�1 (≝ �0��).  ���� and �0�� thus cannot both 

capture nestedness-resultant components. Since the meaning of any mathematical 
operation between two indices depends on prior transformation of the indices,  inferring 
the meaning of indices from the operations between them should be avoided. 
 

Problem 5:  More generally, although pairwise indices are dimensionless quantities and can 
take values within the same range (e.g. 0 and 1), they  are not universally comparable 
(Schmera & Podani 2011). For example, the framework introduced in Baselga (2010a) 
subtracts and compares Sørensen dissimilarity, ��, and Simpson dissimilarity ���� (Tab. 1); 
however, these all are not commensurable, as pointed out by Schmera & Podani (2011), 
who proposed to sum (or subtract) only indices with the same denominator.  
 

 

Theory 
 
In this part, we first describe five distinct phenomena that represent different aspects of the 
structure of species communities, and thus should be quantified by different indices. 
Second, we define the constraints necessary to attribute each of the indices to one spatial 
phenomenon. We argue that these indices (mathematical expressions) should capture the 
intuitive understanding of their respective phenomena. Third, we define the independence 
of biodiversity indices (including alpha diversity) in terms of their information value. We 
show that, to make correct and complete inference, we need to combine three indices that 
are i-independent. We contrast this i-independence with s-independence (including 
relatedness; Fig. 2), which was the major topic of large ecological literature (Simpson, 1943; 
Koleff & Gaston, 2002; Jost, 2007; Baselga, 2010a; Chao et al. 2012). We show that that s-
independence is not achievable in most cases, and even if it was, it may not guarantee 
correct inference. 
 
 
Distinguishing different diversity phenomena 

We propose that most of the commonly used indices have originated as proxies for five 

phenomena: (1) Nestedness, (2) co-occurrence, (3) beta-diversity, (4) community turnover, 
and (5) species-richness gradient. Imagine ecologists roaming the landscape, leaving one 
site and approaching another. They see changes in species richness, changes in species 
composition, and overlap in species composition between species assemblages. These 
correspond, in the same order, to different (but not mutually exclusive) patterns, where: (i) 
species of the species-poor site are all present in the species-rich site; (ii) some species 
often co-occur at the same site, (iii) the checklist of observed species grows rapidly or slowly 
with increasing number of visited sites, (iv) new species replace the species of the site that 
the ecologist has left, but the species richness may or may not change, and (v) species 
richness either differs or remains the same between sites. Importantly, patterns (i-v) 
correspond to phenomena (1-5). A roaming ecologist observes a combination of these 
patterns, as there are species-poor sites that host species missing in species-rich sites, and 
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equally rich sites do not necessarily share the same set of species. Nevertheless, these five 
patterns delimit the whole range of possibilities. So, the ecologist can intuitively perceive 
the phenomena in the field even without the knowledge of the mathematically defined 
indices. This is like comparing temperature, speed, or mass without measuring them. 
Detailed descriptions of the five phenomena are: 

Nestedness: The idea of nestedness was originally intended to capture the patterns 
in assemblages of archipelagos and/or of inland islands (e.g., mountain ridges). Patterson 
(1984), and Patterson & Atmar (1986) noticed that lists of species on mountain ridges 
varied, and that species of the species-poor sites were almost universally found at the 
species-rich sites. They suggested that this pattern was driven by selective extinction and 
called it a “nested pattern”. Their index of nestedness, ��, was designed to measure the 
deviation from a perfectly nested assemblage, in which species-poor sites have no unique 
species. This concept of nestedness fully agrees with the mathematical definition of 
nestedness where a subset is nested within the set. Although the original indices of 
nestedness (��, �<, and Discrepancy, Patterson & Atmar, 1986; Wright & Reeves, 1992 and 
Brualdi & Sanderson, 1999) were designed for multisite assemblages, here we explore them 
using only two assemblages (Koleff et al., 2003; Gaston et al., 2007), provided that the 
indices for multi-site assemblages are extensions of two-site indices. 

Co-occurrence: Co-occurrence has been originally tightly linked with the idea that 
competition structures communities (Connor & Simberloff, 1979; Diamond & Gilpin, 1982), 
and with assembly rules (Diamond, 1975; Gotelli & McCabe, 2002). Species co-occur if their 
spatial ranges (distributions) overlap (Gotelli, 2000). If a species occurs at several sites, and 
another species occurs at only one of the sites, co-occurrence of these two is apparently 
low, although their ranges are nested within each other. This is the main difference 
between co-occurrence and nestedness. In the literature, however, co-occurrence typically 
refers to the overlap of species ranges and nestedness mostly refers to the overlap in 
assemblages. A closer look at several measures of nestedness, however, reveals that indices 
of nestedness are often used to indicate the overlap of species ranges (Wright & Reeves, 
1992; Brualdi & Sanderson, 1999; Šizling et al., 2009), which makes nestedness and co-
occurrence seemingly inseparable from each other. Here, we argue that nestedness and co-
occurrence may both refer to overlaps in species ranges and assemblages, but that they 
differ from each other where overlap is small due to a large contrast between range areas 
or species richness. Then nestedness can be high, but co-occurrence low. 

Species spatial turnover and species-richness gradient: Species spatial turnover 
explicitly addresses the gain and the loss of species in space (Cody, 1975; Wilson & Shmida, 
1984) and it is sometimes referred as species replacement (Podani & Schmera, 2011). This 
covers both a change in species richness (Harrison et al., 1992) and a change in species 
composition (Cody, 1975; Lennon et al., 2001). Although these two changes are bound by 
each other (change in species richness is always accompanied by a change in species 
composition to some extent), they are also mutually independent to some extent (two 
equally species-rich assemblages can have all or no species in common). It is therefore 
useful to split turnover, in its broad sense, into these two components (Lennon et al., 2001). 
Here we adopt the idea that the contrast between the species richness of two different 
assemblages (called species-richness gradient) and species spatial turnover are two different 
spatial phenomena (Lennon et al., 2001). 

Beta diversity: The original idea behind β-diversity is that different regions have 
different relationship between local (alpha) and regional (gamma) diversity (Whittaker, 
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1960). Beta-diversity thus quantifies the contrast between gamma-diversity and average 
alpha-diversity (Whittaker, 1960). Beta-diversity thus does not primarily compare two 
assemblages with different locations, but instead a set of sub-assemblages with a merged 
assemblage of the whole region. The Whittaker (1960) formula that defines beta-diversity 
was later included in the indices of similarity between two different assemblages (Koleff et 

al., 2003) and several mathematical links between similarity indices and Whitaker beta-
diversity were introduced (Koleff et al. 2003; Tuomisto, 2010; Chao et al. 2012). However, in 
accord with with Koleff et al. (2003), Jost (2007) and Tuomisto (2010) we contend that the 
two forms of comparison (i.e., between species richness of an assemblage and its sub-
assemblages, and between two separate assemblages) should not be confused, and we will 
not deal with the issue of comparisons of multiple assemblages in this text, which is focused 
on pairwise indices. 

These phenomena are interconnected and constrain each other. Apparently, if no 
species co-occur, then the turnover is higher than where all species co-occur. If all species 
co-occur, all sites are occupied by equal set of species, and so there is no richness gradient 
and no turnover. Removing species from species poor assemblages increases both the 
richness gradient and turnover, and perfectly nested assemblages show lower turnover than 
non-overlapping assemblages of the same richness. The interdependence and mutual 
constraints between the phenomena are their inevitable properties, and are consequently 
reflected by the indices.  

 
Constraints needed to specify the phenomena 

Here, we show the strict constraints that delimit the extreme cases of the phenomena 
described above. This will serve to attribute each index to a particular phenomenon, which 
is a prerequisite for any meaningful index. To describe the constraints mathematically, we 
will use six extreme re-arrangements of two sets as illustrated in the Venn diagram in Fig. 3. 
Each set can be considered either as a list of species, or as a species range (i.e. distribution 
in space). The constraints are: 

• Nestedness has its maximum either where all the species from the species-poor 
assemblage are found in the species-rich assemblage (e.g., Patterson & Atmar, 1986; 
Baselga, 2010; Almeida-Neto et al., 2008), or where one range falls completely within the 
second range for all species in the assemblage (e.g., Wright & Reeves, 1992; Brualdi & 
Sanderson, 1999; Šizling et al., 2009). Therefore, two assemblages or ranges are 
maximally nested if one of them is completely contained within the other regardless of 
their size (as in re-arrangements r1, r2, r5, r6 in Fig. 3). The nestedness is at its minimum 
when none of the species is shared between two lists, or when there is no range overlap 
between two species (r3 and r4 in Fig. 3). No index should oscillate widely if re-
arrangement changes only slightly, which is the abovementioned requirement of 
continuity sensu Neumann & Morgenstern (1953). Therefore, two nearly identical lists of 
species or two nearly identical ranges (r6 in Fig. 3) should have nestedness near to that of 
two strictly identical lists of species or ranges (r5 in Fig. 3). Since in the case of strictly 
identical lists one set of species is completely comprised within the other set, it also 
constitutes the maximum possible nestedness. This understanding is supported not only 
by the mathematical usage of the term “nestedness”, which refers to a superset and its 
subsets, but it is also the basis of the conceptual (pre)definition by Patterson and Atmar 
(1986). Therefore, we do not attribute zero nestedness to two equally rich assemblages, 
or equally large ranges, as did the creators of �� (Patterson & Atmar, 1986), ����� 
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(Almeida-Neto et al., 2008), ���� (Podani & Shmera, 2011), ���� (Baselga, 2010a) and 	�0�� (Baselga, 2012); all of these indices are discontinuous, and as such fail to 

discriminate assemblages/ranges of equal size and zero overlap (r4 in Fig. 3) from 
assemblages/ranges of equal size and complete overlap (r5 in Fig. 3). This ambivalence 
renders inference from discontinuous indices spurious. 

• Maximum co-occurrence is where two species occupy the same sites (r5 Fig. 3), whereas 
minimum co-occurrence is where the ranges are completely non-overlapping (r3, r4 in 
Fig. 3). Species that share only part of their ranges (r1, r2, r6 in Fig. 3) co-occur less than 
species with identical ranges (r5 in Fig. 3) and more than species with no shared 
occurrences (r3, r4 in Fig. 3). Importantly, the distinction between nestedness and co-
occurrence therefore lies in re-arrangements r1 and r2 (Fig. 3), with equal nestedness 
(NestAB1C = NestAB2C in Fig. 3) but different co-occurrence (CoAB1C < CoAB2C in Fig. 3). 
We hold that species whose ranges are perfectly nested, but differ in their size, have a 
lower co-occurrence than species with two identical ranges (CoAB2C < CoAB5C in Fig. 3). 

• Turnover captures the contrast in species composition between two or more 
assemblages. Consequently, in Fig. 3, the turnover found in re-arrangement r3 must be 
larger than that of r1, which in turn represents a larger turnover than r2. In r5, the 
species lists or ranges are identical, hence there is no turnover at all, which means that 
the index of turnover is at its minimum. However, it is not intuitively evident whether the 
case r3 represents a larger turnover than that of r4. In our framework, we distinguish 
between turnover and species richness gradient (SRG, Lennon et al., 2001) and so we 
solve this dilemma by stating arbitrarily that TurnAr3C = TurnAr4C but SRGAB3C >SRGAB4C (Fig. 3). 

• Because we define the species-richness gradient (SRG) as simply the contrast in species 
richness between two sites, the re-arrangements r1 and r3 in Fig. 3 represent the same 
SRG, as do r4 and r5 in Fig. 3. The latter also represents a zero SRG and therefore the 
minimum. Consequently, the value of the SRG in r2 Fig. 3 falls between the above. 

Importantly, these constraints do not define the indices uniquely and two i-independent 
indices (see Fig. 2) may have the same constraints. In such case we say that these two 
indices capture two different aspects of the same phenomenon. 
 

Definition of independence in terms of information content 

To capture different phenomena by different indices, we need an idea of an independence 
of indices in terms of their information content – only the indices that do not carry the same 
information can distinguish different phenomena. To find out the information provided by 
an index, we need to see the definitions of the indices as equations to solve (Box 1). When 
we add an equation to the set of n equations, and if these n+1 equations provide equal 
solution as the set of n equations, then the new equation is said to be i-dependent on the 
others and carries no extra information. If the solution of the n+1 equations is a subset of 
(but not equal to) the solution of the n equations, then the new equation is i-independent of 
the others and carries extra information. Note that this is not a new term, but a widely 
accepted mathematical definition of independence in a system of equations (see also Box 1) 
and that it follows the theorem from information theory that only variables that are 
uniquely mapped to each other have equal informational content (Orlitski, 2003). In 
extreme circumstances, the set of equations with one unique solution carries complete 
information on assemblages. In the case of two assemblages, it all means that the complete 
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set of equations uniquely determines richness of both assemblages (��, ��) as well as 
species overlap (��∩�; for details see Box 1). 

We utilize this mathematical definition of independent equations, and define the 
indices that are mutually i-independent if the equations of the indices are mutually 
independent (Box 1). The ����  (Simpson nestedness) and � (Jaccard similarity) (Tab. 1) are 
mutually independent because there is no way to convert ����  to �. This is easy to see from 
Fig. 4a and b, where more than one value of ����  is attributed to each value of � (� ≠ 0). 
This is an analogy to a case from physics, where the kinetic energy (QR) and momentum (S) 
of a moving object cannot be calculated from each other although they are computed using 
the same variables (QR = 0.5UV+, S = UV; U is mass and V is speed). It induces 
relatedness (according to Chao et al. 2012), but not one-to-one correspondence (Fig. 2) 
between energy and momentum (Fig. 4c, d). However, because QR and p are independent in 
terms of the lack of one-to-one correspondence, the equations of these variables can be 
combined to determine the mass and speed of an object. All this means that � and ����  
carry different information about assemblages, similarly to QR and S that carry different 
information about moving objects, although statistical tests would reveal their mutual 
statistical dependence, and constraints reveal their relatedness. 

In contrast to this definition of i-independence, the independence that is used in 
ecological literature is almost always of statistical nature, and we call it s-dependence. While 
the i-independence refers to a mathematical formula, the s-independence refers to data 
values (i.e., a conditional probability of measuring a particular value of one variable, given a 
value of another variable). Some indices are i-independent, while their values are s-
dependent because their definitions are related sensu Chao et al. (2012). For example, � and ����  are i-independent but related, and thus their values generated across multiple 
assemblages are correlated (Fig. 4a, b). 
 

 

Results 
 

Families of indices 

In the previous section, we have developed a framework to assign the indices to different 
phenomena. Now, we will group them to families within which indices share equal 
information, and thus capture the same phenomena. Then we proceed by assigning a 
phenomenon to the index which is most often used or most convenient for some reason. 
Finally, we will show how to convert indices within their respective family to each other (Box 
2). Mathematical details of these steps are in appendix SI.2.T1-19, and here we summarize 
the results. 

There is a number of diversity indices and each has some information value. Some of 
them, however, are i-dependent, and they are thus equivalent in terms of any inference. To 
distinguish families of i-dependent indices, we first examined their mutual bivariate 
relationships, i.e. we simply plotted the indices against each other, using simulated and 
empirical data (Figs. 5,6). Where we did not see a one-to-one correspondence (Fig. 2), i.e. 
the line joining the points in the plot was neither strictly increasing nor strictly decreasing, 
the two plotted indices were considered i-independent. Where we found a one-to-one 
correspondence along a strictly increasing or decreasing curve, we had to prove the i-
dependence by mathematical analysis (SI.2). This way we found three major and five minor 
families of mutually equivalent indices (Fig. 5), and our mathematical analysis (SI.2) 
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confirmed the one-to-one correspondences (i-dependence) between the indices within 
these families. The three major families of more than one index can be attributed to 
turnover, nestedness, and species richness gradient. 
 

1. Jaccard index family. The largest major family of indices is grouped around the Jaccard 
index (�, Jaccard, 1912). It has 9 indices of (dis)similarlity, including Sørensen (��ø�, as 
defined in Gaston et al., 2007), ��� (Harte & Kinzig, 1997), �/ (Gaston et al., 2001), ��
 
(Schluter & Ricklefs, 1993), �� (Wilson & Shmida, 1984) and ��WXY (Raup & Crick, 1979). The 
Bray-Curtis index of dissimilarity (�ZX, Bray & Curtis, 1957), belongs to the Jaccard index 
family when computed from incidences. A classical index of nestedness, �< (Wright & 
Reeves, 1992) also belongs to the Jaccard-index family (Fig. 5, SI.2.T8) when standardized by �� + �� (Gotelli & McCabe, 2002). The indices of the Jaccard-index family capture the 
phenomenon of species turnover (Fig. 5, SI.2.T15). To be precise, � measures species co-
occurrence (proportion of species that co-occur in both assemblages), which is a reversed 
measure of species turnover (the relationship between an index and the reversed index is 
strictly decreasing), and all indices from the Jaccard-index family that decrease with 
increasing � (e.g., �� or ��ø�) are measures of turnover (Fig. 5). Indices from Jaccard family 
are measures of co-occurrence of two species if we replace ��, �� and ��∩� by the numbers 
of occupied sites by species X and Y. 
 

2. Simpson-beta family. The second major family consists of Simpson’s beta (����, Simpson, 
1943), r-Nestedness (B�, applied to species lists; Šizling et al., 2009), and Simpson’s 
nestedness (���� , Simpson, 1943). As ����  is identical to B� when applied to species lists, 
we do not plot these indices separately in Fig. 5. Two classical indices of nestedness, the 
Discrepancy ([, Brualdi & Sanderson, 1999), and the standardized �X  by Wright & Reeves 
(1992) also belong to the Simpson-beta family under certain circumstances. Specifically, [ 
(standardized as in Greve et al., 2005) converges to the mean across all ���� (i.e. 〈����〉) as 
number of sites increases (SI.2.T13). In practice, n>10 guarantees 
 [ ≅ 〈����〉         (1) 

 
(Fig. SI.3); 〈3〉 stands for a simple mean accros all x’s. �X  belongs to Simpson beta family if 
standardized as suggested by its authors (Wright & Reeves, 1992; see Tab. SI.1) and if 
species richness is high (SI.2.T9). The indices from the Simpson-beta family capture the 
phenomenon of nestedness (SI.2.T4).  ���� and [  are measures of reversed nestedness, 
whereas ����  and B� measure nestedness, applied at the level of assemblages and ranges, 
respectively. 
 
3. Species richness gradient/uniformity. The third (minor) family so far consists of just two 
indices: �_`, (Tab. 1, Lennon et al., 2001) and � (Tab. 1, Newbold et al., 2016). The �_` 
captures the contrast in species richness between two sites, which is the phenomenon of 
species richness gradient (SI.2.T14). � scales negatively with �_` and so we call � an index of 

species-richness uniformity. Although �_` is older, the � is simpler and thus more tractable 

than �_`, and so we will use � in equations describing the relationships between the families 

(Eqs. 2,4,5,B8, SI.1). 
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The other minor families are each made up of only a single index (Figs. 5). Neither of these 
indices capture any phenomenon under consideration (SI.2.T7,10,12). Of these only 
Ruggiero index of beta-diversity (�
�a, Ruggiero et al., 1998) satisfies the requirement of 
continuity. The others are: Baselga nestedness-resultant components of both Sørensen 
dissimilarity (����, Baselga 2012, labelled as ���� in Baselga, 2010) and Jaccard dissimilarity 
(�0��, Baselga, 2012; not plotted); the classic index of nestedness, �� (computed for two 

sites; Patterson & Atmar, 1986); and the ����� index of nestedness (computed for two 
sites; Almeida-Neto et al., 2008). The ����� would have belonged to the Simpson-beta 
family if it did not violate the requirement of continuity, which splits the scaling line in the 
bivariate plot into two different trajectories (Fig. 5), which makes any inference difficult. 

 
i-independent combinations of indices 

Although we have delineated four families of indices that satisfy the requirement of 
continuity (hereafter continuous indices), it does not mean that there are four i-
independent indices. The reason is that three indices from any three families are i-
dependent even if any single pair from this triplet is i-independent. Only two families are 
then i-independent with certainty, and the indices of the other families can be determined 
from these two (Box 1; this does not hold for Whittaker beta-diversity due to the fact it is 
not a pairwise index, and for this reason we avoid discussing this index). A clear case of 
mutual i-dependence of a triplet of indices is the combination of the Jaccard-index family, 
the Simpson-index family and the species-richness-gradient family. A simple rearrangement 
of Eq. B5 (where � = * and b-, b+, 9-, 9d = 0,  bd, 9+ = 1, see Box 1), gives 
 e-fe = ���� 
-f
   and   〈 e-fe〉 = 〈���� 〉 〈 
-f
〉 + g:V(���� , 
-f
)  (2) 

 
which says that reversed turnover increases with increasing nestedness and species richness 
uniformity (reversed gradient). The covariance corresponds to the effect described by 
Diserud & Ødegaard (2007) and Baselga (2013). The result (Eq. 2) can be generalized (Box 2) 
to all the considered indices that can be defined by Eq. B1, which includes all dimensionless 
and continuous indices listed in Tab. 1 and SI.1 (Box 1), and even indices that have not yet 
been introduced. 

The Eq. B5 unifies indices across ecological studies, assuming that authors calculated 
and published at least two i-independent presence-absence indices for their data.  
 
Special cases: families of indices in the case of assemblage interrelation  

The mutual i-independence of the indices implicitly assumes that species assemblages are 
completely ‘independent’ of each other. However, this may not be the case, as assemblages 
are often interrelated due to similarity in habitats or due to dispersal. This leads to two 
special cases of behavior of the indices. First, let us assume an effect that limits variation of 
species richness between sites. In extreme, �� = ��. In this case, there is no species richness 
gradient, � = 1 and Eq. 2 turns into 
 ���� = 2 e-fe   and   〈���� 〉 = 2 〈 e-fe〉.      (3) 

 
This means that the Jaccard-index and the Simpson-beta families become i-dependent (Fig. 
SI.4). Second, assemblages can be perfectly nested, i.e. the species-poor assemblages have 
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no unique species.  In this case, ��∩� = min	(��, ��) and so ���� = 1. It follows from Eq. 2 
that 
 e-fe = 
-f
 ⟹ � = �,  and  〈 e-fe〉 = 〈 
-f
〉.     (4) 

 
It reads that the families of Jaccard-index and the species richness gradient are no longer i-
independent (Fig. SI.4). Third, assemblages can have equal proportion of shared species 
which gives 
 �.- = k ∙ ���� − 1,   and   〈�.-〉 = k〈���� 〉 − 1,     (5) 
 
where k is a constant. These special cases can easily be recognized in any data. It follows 
that 〈���� 〉 approaches one in the case of a fully nested pattern, and 〈2 � (1 + �)⁄ 〉 (see Eq. 
3) in the case of a low spatial variation in species richness. In the latter case � approaches 
one. 
 The loss of i-independences in these special cases is trivial, but it illustrates an 
important point: Even if indices are i-independent, they appear more dependent on each 
other as species richness values across sites become similar, and/or when assemblages 
approach complete nestedness (compare Figs. 6 and SI.4). 
 
Statistical non-equivalence of the indices 

We have argued that the indices within a given family are equivalent, since they are i-
dependent and provide the same information. However, they are not equivalent 
statistically. The reason is that they often scale non-linearly with each other. For instance, 
within the Jaccard-index family there are three groups of indices that scale in a linear 
manner to each other (group i: �, �/; group ii: �<, m, ���, ���, �ZX, ��ø�; group iii: ��WXY; Fig. 
5), and are statistically equivalent. Between these groups, however, the indices scale 
nonlinearly (see, e.g., � and ��ø� in Fig. 5), and this decreases the correlation coefficient 
between otherwise i-dependent indices, which decreases s-dependence between the 
indices (e.g., Koleff & Gaston, 2002; Lyashevska & Farnsworth, 2012). 
The values of an index within one family that scales in a non-linear manner (Fig. 5) with 
another index can also be seen as transformed values of the other index. For example, the ��ø� and ��� are two indices that originated as equal transformations of � (Fig. 5, Tab. SI.1). 
However, this means that these values have different frequency distributions, which can 
affect parametric statistical tests and their sensitivity. This could lead to the conclusion that 
it is best to use an index with the most symmetric/regular frequency distribution in a given 
system. However, the commonly used indices represent a rather poor spectrum of 
transformations (Fig. 5). We argue that it’s more logical to first pick the index that best 
describes the phenomenon of interest, and transform/normalize it using an appropriate 
transformation (e.g., logit-transformation), rather than pick and choose from the range of 
existing indices with “good” statistical properties. Alternatively, it is possible to test the 
index values against a null model, and then the precise distribution of the values is not an 
issue (Ulrich & Gotelli, 2007, 2013; Chase et al., 2011). 
 
Consequences of “purifying" an index from the effect of other phenomena 
We have shown that it makes little sense to develop indices that purify one aspect of 
diversity patterns, controlling for the other aspects; an example is the attempt to partition 
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the nestedness-resultant and turnover components (Baselga, 2010a, 2012). The reason is 
that s-dependence represents an inherent property of the phenomena, where different 
aspects bound each other (they are related sensu Chao et al. 2012). For instance, inequality 
in species richness (diversity gradient) bounds possible values of species turnover, imposing 
its bottom limit. In other words, s-dependence and relatedness of indices mirror 
dependence between phenomena, which makes summing and subtracting of indices 
problematic. 

In all situations when we compare two regions or periods, or test for 
(non)randomness in diversity pattern with respect to a particular phenomenon, a single 
index that captures the focal phenomenon is sufficient, regardless of its s-dependence on 
other indices. We will demonstrate the irrelevance of s-dependence of indices on the triplet �, ���� , � (as any pair of i-independent indices is convertible to these three indices; Box 1,2). 
S-dependence (including relatedness; Chao et al. 2012) between these indices is driven by 
inequalities: 

 0 ≤ � =- � opqrs

f-.
opqrs ≤+ opqrs

+.opqrs , and 0 ≤ � ≤d �.    (6) 

 
The first equality (=-) results from Eq. 2, the next inequality ( ≤+) involves ����  and is a 
consequence of 0 ≤ � ≤ 1, and the last inequality ( ≤d) is a consequence of both 0 ≤ ���� ≤ 1 and the first equality (=-). The ≤d is well known relatedness between �  and 
the contrast between alpha-diversities, which has led to the definition of ���� (Tab. 1).  Both 
bounds ( ≤+,d) have been taken as an argument that � and ���� have to be corrected for the 
effect of the other indices (e.g., Simpson, 1943; Baselga, 2010a). We argue that, when we 
are interested in turnover, indices of the Jaccard family need no correction for variation in 
species-richness gradient. The rationale is that (i) the �  is a measure of reversed turnover or 
co-occurrence regardless of its relatedness with R, and that (ii) the bounds only show the 
limits of maximum possible reversed turnover given the level of nestedness or uniformity 
(R) in species richness across sites. Obviously, it would be possible to use the value of � 
relative to its maximum (≤-), but this value reflects just the level of uniformity R (Fig. 7), so 
using this relative J is equivalent to direct measurement of R. 

A special case is the widely discussed s-dependence (which includes relatedness) 
between pairwise indices and species richness (Koleff et al. 2003, Jost, 2006, 2007, 2010, 
Baselga, 2010b, Chao et al., 2012, Legendre & De Cáceres, 2013). All dimensionless indices 
are, by definition, i-independent of species richness (SI.5), and species richness can be used 
(together with, e.g., � and ����) to make correct inferences about assemblages (Boxes 1,2). 
However, dimensionless indices are also necessarily s-dependent on species richness, 
especially when species richness is low (see SI.5 for the mechanism of s-dependence 
between dimensionless indices and species richness). 
 

A case study: How to make inference from the indices 

To provide an example of an inference based on similarity indices we use indices from 
Šizling et al. (2016) who studied temporal change of Central European plants during 
Holocene. They reported an increase in mean species richness 〈�〉 from 23 to 36, almost no 
change of ����  (���� ≅ 0.7), and an increase of average � from app. 0.38 at the end of the 
last Ice Age to the recent value of app. 0.48. � and ����  determine R (eq. 2), and we can 
additionally calculate the contribution of species-poor (��tt� = 〈�〉 2� (� + 1)⁄ ) and 
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species-rich (���<u = � ∙ ��tt�) sites to the average alpha diversity. These contributions 

result from the solution of Eqs. B3 and B4 (Box 1, see SI.2.T17 for the derivation). We thus 
find that � increased from 0.65 to 0.86, ��tt� increased from app. 18 to 33, and ���<u 

increased from app. 28 to 39. We conclude that recent plant assemblages in Central Europe 
show lower spatial turnover (higher similarity), and lower contrasts in species-richness than 
those 14,000 years ago. Nestedness has not changed during this period, however, the 
contribution of species-poor sites to the mean alpha diversity increased more (∆��tt� = 15) 

than contribution of species rich sites (∆���<u = 11). The spatial pattern in plant diversity 
therefore became more uniform with a proportionally higher increase of richness at species-
poor sites, and temporally increasing average richness of all sites. Regardless of the higher 
recent uniformity, the species poor sites used to have similar proportion of unique to 
common species as today (an inference from the constant nestedness). 

The results of this empirical analysis directly contradict Baselga’s (2010a,2012) 
interpretation, problematic for all the reasons demonstrated in previous sections. When we 
used Baselga’s (2012) partitioning method on our Holocene plant data, we got ���� = 0.15, ���� = 0.3 for the past and ���� = 0.05, ���� = 0.3 for the recent. This reads in the 
Baselga’s (2010a,2012) framework as no temporal change of turnover component, and a 
decrease of nestedness-resultant component, which is the exact opposite to the trends 
described above. This shows that using the mathematically consistent framework is not just 
a cosmetic improvement of the otherwise intuitive and robust trends; rather, it can entirely 
invert the interpretation of the analysis.  Furthermore, Baselga’s (2010a,2012) 
interpretation suggests stronger contribution of turnover than nestedness in the past 
(�Zw� < ����), but the patterns reported above, based on direct interpretation of i-
independent indices, do not suggest anything like that. We have already shown that 
nestedness and turnover are incomparable (Box 3), and that it is impossible to say if 
nestedness contributes to species pattern more or less than turnover. 
 
Practical guidelines 

Practical inference from pairwise indices can have different purposes (Anderson et al., 
2010), for instance: (i) exploration of diversity (e.g. Qian et al., 2009) or (dis)similarity (e.g., 
Simpson, 1943) between biotas of two sites or regions, (ii) revealing non-random origin of a 
spatial or temporal biodiversity patterns (e.g. Patterson & Atmar, 1986; Ulrich & Gotelli, 
2013), (iii) meta-analysis based on indices extracted from the literature, and (iv) exploration 
of the behavior of the indices along a temporal, spatial or environmental gradients. Based 
on previous considerations, here are practical recommendations for using the presence-
absence indices: 
 
1. Avoid using ‘component’ indices that supposedly remove an effect of one phenomenon 
from an effect of another phenomenon (e.g. purifying turnover from the effect of richness 
gradient, or purifying nestedness from the effect of turnover). These indices are either 
mathematically flawed (e.g. they violate the requirement of continuity), and their meaning 
is thus unclear, or they measure a different phenomenon from what they were originally 
claimed to measure. An example of the latter is the standardization of an index relative to 
its maximum value, e.g. standardization of Jaccard index by its maximum given by the 
nestedness, which in fact directly measures the species richness gradient (Fig. 7). The reason 
is that nestedness, together with richness gradient R, uniquely determine J, so that 
measuring J relative to Jmax (bounded by nestedness) is equivalent to measuring R. 
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2. When choosing an index, first consider which phenomenon it should capture, then select 
a corresponding family of indices (see Fig. 5, Tab. SI.1, user-friendly calculator SI.6). It does 
not matter which index within the family is selected, as all indices within any family can be 
converted to each other (Tab. SI.1) and are thus practically equivalent. If there is a need for 
an appropriate statistical distribution of the index, a proper transformation can be used. 
 
3. When comparing already published indices, use the equations in Tab. SI.1 or calculator, 
SI.6 to convert them to a common index which is the most desirable for a given purpose. If a 
desirable common index is not available in the publication, but two indices from two 
different families are, they can be used to calculate any other index (using equations from 
Boxes 1,2 or calculator SI.6), as two indices from different families uniquely determine an 
index from any other family. 
 
4. For evaluating the importance of different phenomena (e.g. nestedness vs. turnover), use 
null models that randomize species incidences (Gotelli & Ulrich, 2012) to eliminate the 
undesirable phenomenon, and produces a distribution of an index (expected under the 
absence of the phenomenon) that can then be compared to the observed value of the 
index. Without a null model, the indices are not commensurable (see above) and 
comparison of their values does not make a sense. 
 
6. When publishing indices from your research, ensure that these indices conserve complete 
information, i.e., publish at least two i-independent indices (�, and ���� or � are 
recommended) plus regional and mean local species richness, if available. 
 

 

Discussion 
 

We have proposed a new and mathematically consistent framework for presence-absence 
biodiversity indices. We have identified the sources of the proliferation of new indices in 
ecological literature as: (1) the search for indices that are statistically independent of each 
other and of species richness, (2) the habit of designing indices without considering all 
constraints necessary for delineating the phenomena that the indices aim to capture, and 
(3) the lack of tools to make inferences about spatial and temporal biodiversity patterns. 
Our framework avoids these pitfalls. 

We demonstrated that the phenomena that are measured by different indices 
constrain each other, and respective indices are thus necessary related sensu Chao et al. 
(2012). This leads to their statistical dependence. It is pointless to search for s-independent 
indices, because (i) s-independence concerns index values instead of index formulas and 
thus s-dependence is a matter of the structure of data rather than index definitions; and (ii) 
s-dependent values emerge even from the desired i-independent indices. In other words, 
there are no s-independent indices that capture different, but necessarily mutually 
dependent phenomena. 

On the other hand, i-independent indices are desiderable, as they provide (by 
definition) different information about the system. However, a sufficient number of i-
independent indices have already been invented (and any not yet invented index is i-
dependent on �, and ����), and there is thus no need for new indices. We have 
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mathematically proven that two i-independent indices, in combination with a species 
richness value (which acts as a scaling parameter), provide complete information about any 
system (SI.2.T1). Moreover, when variation of species richness across sites is negligible, or 
when there are no species that are unique to the species-poorer assemblage (i.e. perfect 
nestedness), only one index is sufficient. The interrelation between assemblages which 
leads to these effects thus leads to higher correlations between the observed index values 
than what would follow from the theory (Ulrich et al. 2017), which makes some families 
almost indistinguishable (Figs. 6, SI.4). This is apparently the reason why it has been so 
difficult to achieve agreement regarding which indices characterize different phenomena 
(Lennon et al., 2001; Gaston et al., 2007; Ulrich & Gotelli, 2007; Baselga, 2012; Podani & 
Schmera, 2011; Ulrich et al. 2017; Schmera et al. 2020). 

In terms of practical utility of the indices, the finding that the five phenomena 
distinguished by ecologists are mutually dependent and that two i-independent indices fully 
characterize the system implies that it is reasonable to calculate just two indices belonging 
to different families (see Results section) to make a proper inference. These indices (for 
example � and ���� ) can be, if necessary, converted to any other index within respective 
families (and vice versa). However, we have shown that indices from different families 
cannot be directly compared to each other, as their absolute values characterize different 
phenomena. Different indices within a family of i-dependent indices are just different 
transformations of each other and their particular values thus reflect just different ways 
(formulas) how they are calculated. Therefore, if we need to evaluate the index values in 
terms to what is expected, a proper null model is needed (Ulrich & Gotelli, 2013). This does 
not exclude the possibility to compare the values of the indices, e.g., among different 
regions or taxa, but it is crucial to keep in mind that the values are inherently simultaneously 
affected by different phenomena, and any attempts to purify them leads to spurious results. 

We have focused only on pairwise indices, and avoided speaking about beta-diversity 
in its strict, original sense (Whittaker, 1960), which comprises the relationship between local 
and regional species richness, or, more specifically, between alpha and gamma diversity. 
This relationship is related to the turnover, since when alpha is considerably lower than 
gamma, there must be high turnover among communities. However, exact mathematical 
links between pairwise community turnover and Whittaker’s beta is a separate issue (Koleff 
et al., 2003; Tuomisto, 2010; Chao et al., 2012).  

Our findings have important consequences for understanding to the forces shaping 
distance decay in assemblage similarity (Nekola & White, 1999). A direct consequence of Eq. 
2 is that distance decays of nestedness (���� ) and turnover (measured by � (1 + �)⁄ ) follow 
the same mathematical function only when there is no distance decay in the species 
richness gradient. This happens only in environments without geographical gradients that 
affect the species richness, for example, gradient in productivity (e.g., Willig et al., 2003; 
Currie et al., 2004). In these cases spatial structuring of the assemblages is anisotropic, and 
there are different rates of distance decay in different directions. Even more importantly, it 
is meaningless to assume a universal functional form of the distance decay of community 
similarity, e.g. exponential (Nekola & McGill, 2014). This follows from the mutual non-linear 
scaling between different indices, even between the i-dependent ones. Consequently, if one 
index reveals, say, exponential distance decay, another index can reveal a non-exponential 
distance decay. 

Unfortunately, our results question the interpretation of hundreds of empirical 
assessments that used the subtractive partitioning of pairwise indices. To date, the original 
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publication describing the partitioning to nestedness and turnover components (Baselga, 
2010a) has 2,493 citations, publication announcing the R package betapart which does the 
partitioning (Baselga & Orme, 2012) has 1,317 citations, and the R package on CRAN 
(Baselga, et al. 2018) has 510 citations (Google Scholar accessed on 19 May 2022). Most of 
these are empirical studies, including some high-profile ones in top journals (e.g., Molinos et 

al. 2016; Gotelli et al., 2017; Rocha et al., 2018; Blowes et al., 2019; Chase et al., 2020). The 
approach has also been gaining momentum in young fields, for example in microbial ecology 
(Shade et al., 2013). Furthermore, the approach has been extended to partition functional 
(Villéger et al., 2013) and phylogenetic (Nowakowski et al., 2018) nestedness and turnover. 
To start with, our recommendation is to simply stop. The next step would then be to assess 
the extent of the damage that has been done, potentially re-analyzing and re-interpreting 
some of the studies; in this effort, our equations from Boxes 1,2 (or Tab. SI.1 or user friendly 
calculator SI.6) can be helpful. 

In conclusion, our framework systematically deals with problems that unnecessarily 
generated new indices, and it resolves old issues concerning the mutual dependence of the 
indices. Based on the distinction between two types of dependence (i- vs s-dependence), we 
offer a tool for making inference using classical indices, a tool that can be further developed 
when new spatial or temporal phenomena are identified. Our framework is mathematically 
consistent as a whole, which is an advantage over earlier works that have accumulated new 
indices and phenomena without a unifying concept. 
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Table 1: The frequently used pairwise indices. �� and �� are species richness of the 
assemblages to compare , and ��∩� is the number of shared species between them. The 
labelling follows Gaston et al. (2007) and the symbol ‘≝’ stays for definitions. For complete 
list of indices and their mutual relationships see SI.1. Asterix (*) labels indices that capture 
none of the defined phenomena. 
 

Definition Name and Source Phenomenon 

� ≝ ��∩��� + �� − ��∩� 
Jaccard index, Jaccard similarity, 

Jaccard (1912) 
reversed turnover, 

co-occurrence 

 �/ = 1 − � Jaccard dissimilarity, 
Gaston et al. (2001), 

labeled as in Gaston et al. (2007) 

turnover, reversed 
co-occurrence 

���� ≝ min(�� , ��) − ��∩�min(�� , ��)  
Simpson index, Simpson dissimilarity, 

Simpson (1943) 
reversed 

nestedness 

���� ≝ 1− ���� = ��∩�min(�� , ��) Simpson similarity, Simpson 
nestedness, Lennon et al. (2001) 

Nestedness 

��� ≝ 2min(��, ��) − ��∩��� + �� − ��∩�  
‚Replacement‘ (turnover) 

by Podani & Shmera (2011) 
(*) 

���� ≝ �x∩yf|�x.�y|�xf�y.�x∩y  if ��∩� ≠ 0 

else ���� ≝ 0. 

‚Nestedness‘ by Podani & Shmera 
(2011) 

 

(*) 

��ø� ≝ 2��∩��� + �� 
Sørensen similarity, Sørensen (1948) reversed turnover, 

Co-occurrence 

�� ≝ �� + �� − 2��∩��� + �� = 1 − ��ø� 
Wilson & Shmida (1984), labelled as 

in Gaston et al. (2007), 
Baselga (2010) calls this index 

Sørensen dissimilarity 

Turnover 

�_` ≝ 2 |�� − ��|�� + ��  
Gaston & Lennon index of Species-

Richness gradient, Lennon et al. 
(2001) 

species-richness 
gradient 

reversed uniformity ���� ≝ ��Y� ≝ �� − ���� ‘Nestedness-resultant component’ of 
Sørensen dissimilarity 
Baselga (2010a,2012) 

(*) 

�0�1 ≝ 2min(�� , ��) − 2��∩�2min(��, ��) − ��∩�  
Turnover component of Jaccard 

dissimilarity Baselga (2012) 
(*) 

�0�� ≝ �/ − �0�1 Nestedness resultant component of 
Jaccard dissimilarity, Baselga (2012) 

(*) 

����� = ����  if �� ≠ ��, 

else ����� = 0 

Nestedness by 
Almeida-Neto et al. (2008) 

 

(*) 

� ≝ min(�� , ��)max(�� , ��) = 2 − �_`2 + �_` Newbold et al. 2016 species-richness 
uniformity 

reversed gradient �� ≝ |}~(�x,�y).�x∩y�xf�y  if �� ≠ �� 

else �� ≝ 0. 

Nestedness by 
Patterson & Atmar (1986) 

 

(*) 
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Table 2: Table of possible inference from variation of pairwise indices along temporal, 
geographic, or environmental gradients. Inference can be obtained from the comparison of 
the properties that vary (significant) with the properties which are constant (insignificant) 
along a given gradient. Some inference can be based on variation of a single index, 
regardless of other indices (first three rows in the table), but more specific inference follows 
from a situation when one index significantly changes, while another index reveals only 
small variation (all remaining rows). 
 

Variation along a gradient Inference 

Yes (Significant) No (Insignificant) 

 �  
 

Change in turnover between regions/periods, change in co-
occurrence, change in proportion of common species relative to 
alpha diversity 

 ����  

 
 

Change in nestedness  compared between regions/periods (i.e. 
nestedness for region 1 vs nestedness for region 2), change in 
proportion of common species relative to richness of species 
poorer sites (this change may or may not be induced only by 
change in the list of species of species-richer sites) �  Change in species richness gradient (uniformity) between 
regions/periods; change in spatial variation of alpha diversity ����  ���<u Change in nestedess between regions/periods is driven by 
exchange of species at species poor sites 〈�〉 ���<u Difference of alpha diversity between regions/periods is driven by 
sites with fewer species 〈�〉 ��tt� Difference of alpha diversity between regions/periods is driven by 
species-richer sites � 〈�〉 Regions/periods differ in spatial variation of alpha diversity without 
change of its average value 

 ����  
 � Change in nestedness but not turnover/co-occurrence; 

Simultaneous change in lists of species that are unique to species- 
richer and species-poorer sites; variation in ���� , no change in �, 
and Eq. 2 induce necessarily a change in � 

 �  ���� , ��tt� 

Change in turnover/co-occurrence but not nestedness; change in 
list of species that are unique to species-richer sites; necessarily a 
change in � 
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a) 

 
b) 

 
c) 

 
 
Fig. 1: The requirement of continuity (see Section Problems), and consequences of its 
violation. The top plot (a) shows a sequence of 20 pairs of assemblages X and Y, with a 
continuous change of the arrangement of assemblages, increasing similarity and nestedness 
from left to right, and constant total species richness. Columns show assemblages, lines 
species and blackened cells presences of species within assemblages. First two lines in (b) 
show numbers of species in the left (Sx) and right (Sy) assembages for each situation along 
the gradient. The third line in (b) shows ��∩� labeled as Sxy. The most bottom plot (c) shows 
values of ����  (squares), � (circles), ���� (solid bold line), ����� (dashed thin line), ���� 

(dashed bold line), and No (solid thin line). 
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 i-dependent indices  i-independent indices 

a) 

 

c) 

 
d) 

 

b) 

 

e) 

 
 
 
Fig. 2:  An example of relationships between two i-dependent (a,b), i-independent (c-e), s-
dependent (a-d), s-independent (e), related sensu Chao et al. (2012) (a-c) and unrelated 
(d,e) indices. Dots show 200 samples from the underlying relationships and lines show linear 
regressions. I-dependent indices (a,b) carry equal information because the strictly increasing 
or decreasing relationship between them uniquely transforms one index to another. The 
relatedness (Chao et al., 2012) is one of the mechanisms that drive s-dependence, and i-
dependence is a special case of relatedness where both upper and bottom constraints are 
identical (a,b). The existence of identical constraints must be proven by means of 
mathematical analysis using the formulae that define the indices for each particular case 
separately (SI.2.T19). Anyway, there are apparently no one-to-one (strictly increasing nor 
decreasing) continuous lines beyond the samples of i-independent indices (c-e) (which does 
not require analytical proof). Only the indices in panel a) scale in a linear manner. The 
indices in panel b) are continuous (non-linear) transformations of each other. This 
transformation is called homeomorphism. Indices in panels c-e can also be viewed as 
transformations of each other, but this transformation is not a homeomorphism and thus 
each index may or may not measure different phenomena, depending on the constraints 
(Fig. 3). Degree of s-dependence measured by Pearson correlation coefficient decreases 
from a) to e) (1; 0.95; 0.86; 0.73; 0; N=200). The i-dependences and i-independences are 
equal for a-b, and c-e, respectively. 
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r1) 

 

r2) r3) 

 

r4) 

 

r5) r6) 

 

 

Fig. 3: Constraints by the five spatial phenomena on the indices. Various re-arrangements of 
two sets in the Venn diagrams define differences between the phenomena. The scheme 
equally applies to re-arrangements of two lists of species and two species spatial ranges, for 
the sets that would represent either lists of species or species spatial ranges, respectively. 
The sizes of the sets follow M1 = M2 > M3 > M4 = M5 = M6 = M7 = M8 = M9 = M10 
=M11>M12. The sets M9 and M10 are identical. The constraints that define the five spatial 
phenomena are as follows:  
(Nestedness) Min = NestAr4C = NestAr3C < NestAr1C = NestAr2C = NestAr6C = Max =(-) NestAr5C;  
(Co-occurrence) Min = CoAr4C = CoAr3C < CoAr1C < CoAr2C < CoAr6C < CoAr5C = Max;  
(β-diversity) Min = BDAr5C < BDAr6C < BDAr2C < BDAr1C; 
(Turnover) Min = TurnAr5C < TurnAr6C < TurnAr2C < TurnAr1C < TurnAr4C ≤ TurnAr3C; and  
(sr-gradient) Min = SRGAr5C = SRGAr4C < SRGAr6C < SRGAr2C < SRGAr1C = SRGAr3C. 
Where ‘Min’ and ‘Max’ label the extreme values of the indices (usually Min=0 and Max=1) 
and the letters in brackets refer to the re-arrangements. The equation =(-) is often violated, 

and nestedness of r5 is in some indices defined as zero, which is the violation of continuity 
that results in problems.  
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a) 

 

c) 

 
b) 

 

d) 

 
 

 

Fig. 4: Statistical and information (in)dependence in ecology (a, b) and physics (c, d). 
Mutually statistically independent (s-independent) values for species assemblages in 
ecology (�� and ��; a), and moving objects in physics (mass and speed; c) do not necessarily 
result in statistically independent indices (� and ���� ; b) and variables (S and QR; d). This is 
despite  �, ���� , S, and QR carry a specific information and therefore are independent (i-
independent) regarding their information value. Here ��, ��, (∈ �1,⋯ , 100�) and ��∩� 
(≤ min	(��, ��)) are drawn at random from a uniform distribution. 
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Fig. 5: Relationships between the indices for pairs of simulated random (blue dots, N=1352) 
and observed (red – plants, N=946; yellow – Ice Shield microbes, N=406) assemblages (see 
SI.7 data sources).  The species richness values of assemblages in each pair are uncorrelated, 
i.e., numbers ��∩�, � = �� − ��∩� and g = �� − ��∩� vary between 0 and 1, they are drawn 
from a uniform distribution and are mutually s-independent. In �� and ����� (i.e., where 
the equality between �� and �� affects the result) species richness is a random integer 
between 1 and 20 species.  Where possible the notation is adapted from Gaston et al. 
(2007). The notation in the plot is simplified. From up to down: � – Tab. 1, ��ø� – Tab. 1, ��WXY - Raup & Crick (1979), �ZX  – Bray & Curtis (1957) (computed for incidences), ��� – 
Harte & Kinzig (1997), �/ – Tab. 1, ��
 – Schluter & Ricklefs (1993), �� – Tab. 1, �X  - Wright 
& Reeves (1992) standardized as in Gotelli & McCabe (2002), ���� – Tab. 1, ����  - Tab. 1, it 
equals rN (range nestedness, Šizling et al., 2009) if applied to ranges, ���a – Ruggiero et al. 
(1998), ���� ≝ �Z��, Tab. 1, R –  Tab. 1; �_` – Tab. 1, �� - Patterson & Atmar (1986), ����� 

– Tab. 1. Blue, red, yellow and green rectangles delimit the families of Jaccard similarity, 
Simpson nestedness, and species-richness gradient, respectively. 
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Fig. 6: Relationships between pairwise indices of assemblages which have low (20%) species 
richness variation (simulations) or which are spatially close to each other (observed data). 
Blue (N=1254) and yellow (N=98) dots show data generated by the simulations of random 
assemblages, and red dots show data for the plant and Ice-Shield microbe assemblages that 
are closer than 0.5 km from each other (N=98) (for details on data see SI.7). The cluster of 
yellow dots is a random subsample of the blue dots, with N equal to the observation to 
allow comparison. In accord with the theory, when there is low variation in species richness 
or when the assemblages are close to each other,  the Jaccard-index, Simpson-beta, 
Ruggiero-beta, and �� families collapse together into one big family of almost i-dependent 
(and definitely s-dependent) indices. For the meaning of abbreviations see the legend to Fig. 
5. 
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Fig. 7: The reason why mutual dependence of indices cannot be eliminated to purify 
individual effects. The relationship between Jaccard similarity ( �) and Simpson nestedness 
(���� ) is determined by species richness uniformity R (Eq. 6), each line shows points with 
equal R (the dot has R=0.4). � is limited by 1 (dashed bold line) and each particular ��  is 
limited by ��,�w�, which is a function of ����  (bold line, Eq. 6). The value of ��  relative to the 

limit of one should be read as similarity (or reversed turnover) without a need for any 
partitioning of � or ����  into components. We say that � is a similarity per se (or reversed 
turnover per se). The value  ��  rescaled by ��,�w� shows ��, and should be read as evenness 
per se (or reversed species richness gradient per se). The fact that R affects J is a matter of i-
dependence between triplet �,���� ,R, and thus the interplay between J and R should not 
invalidate their unique meaning determined by the constraints (section ‘Constraints needed 
to define the phenomena’). This is somehow similar (inset) to the Ohm’s law in physics 
where the triplet of voltage (U), current (I) and resistance (R) are mutually dependent (U=RI; 
see inset). Each I is therefore affected by R (�-.�, for the dot � = �+) and has its upper limit 
given by technological limits to produce a component of low resistance (����, bold line). 
Most importantly, the understanding in physics is that *� is the current even though it also 
scales with resistance. No one would say that partitioning � minus * is the ‘voltage resultant 
component’. In the same way, ��  is reversed turnover per se even though it also scales with 
reversed richness gradient per se. For the same reason ����  is a measure of nestedness per 
se, without a need for partitioning into components of turnover and/or nestedness. 
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Box 1: How many indices do we need? 

 

For a given system, multitude of indices can be calculated. What is the minimum number of 
indices that characterize a given system fully? Here we show that three i-independent 
indices (including species richness) are sufficient for full characterization of the system, so 
that any other index can be reconstructed using this information. We adopt the term of 
independence from mathematics, which is independence of equations in terms of their 
solutions (hereafter i-independence). For this purpose, we need to see definitions of the 
indices as equations to solve. This allows for two statements: (i) all the focal indices listed in 
SI.1 are i-dependent on the pair of Jaccard index, J (Tab. 1) and Simpson nestedness, ����  
(Tab. 1); and (ii) all information concerning the difference between two assemblages is 
captured by J, ���� , and an index that is i-dependent on species richness (e.g. species 
richness itself). Here we show why these statements hold. 

All the focal indices of diversity (SI.1) can be defined as a ratio of two linear functions  
 * ≝ R��x∩yfR��xfR��y`��x∩yf`��xf`��y ,     (b-.d, 9-.d ∈ �), |9+| + |9d| > 0 , �� ≥ �� > 0.  (Eq. B1) 

 
For J and ���� , {b-.d, 9-.d�={1,0,0,-1,1,1} and {1,0,0,0,0,1}, respectively.  Following the logic: * = wa 		→ �* − � = 0, Eq. B1 can be converted into linear equation  

 ��(*9+ − b+) + ��(*9d − bd) + ��∩�(*9- − b-) = 0,     (Eq. B2) 
 
where ��, ��, ��∩� are the unknowns and the I is a particular value of an index. Eq. B2 turns 
into  
 ��� + ��� − ��∩�(� + 1) = 0 and ������ − ��∩� = 0 or ��� − �� = 0  (Eq. B3) 
 
for J and ���� , respectively. The two equations for two indices (Eq. B3), and the three 
unknown variables (��, ��, ��∩�), do not provide a unique solution, and have zero at the 
right side. If the third equation had zero on the right side, the system would either provide 
multiple solutions or the only solution would be zero (�� , ��, ��∩� = 0, 0, 0). We therefore 
need an independent equation with nonzero right side to get unique information on ��, ��, ��∩�. This equation is 
 �� + �� = 2〈�〉,        (Eq. B4) 
 
where 〈�〉 ≠ 0 is the expected species richness of one assemblage, that is, the mean 
richness (for the proof that Eq. B4 is independent of equations B3, see SI.2.T1). The three 
equations (Eqs. B3,B4) determine �� , ��, ��∩� uniquely, and thus no other index (even if its 
definition does not follow B1) can further specify the solution. Moreover, if we restrict our 
statements on the existing indices which can be expressed using Eq. B1, we can compute 
the value of any other index from the values of J and ����  as 
 * = e(opqrs (R�fR�).R�fR�)fopqrs R�e(opqrs (`�f`�).`�f`�)fopqrs `�  for � ≠ 0 else * = R�fR�
`�f`�
     (Eq. B5) 

 
where b�, 9� define the new index I (for the proof see SI3.T16)  
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Box 2: How to unify indices from across the literature 

 

A large number of different indices is spread over the literature (e.g., Gaston et al. 2007; 
Baselga, 2012; Podani & Schmera, 2020). However, if one wishes to do a meta-analysis and 
compare indices from different published sources, one needs to make the indices 
comparable, and to convert them to only one or two reference indices. Here we show how 
this can be done, based on the idea that an index is defined by an equation. Firstly, we need 
a publication using at least two i-independent indices, *-, *+, that are expressed as Eq. B1 
(see Box 1). Then we write a system of three independent equations: two equations B2, 
each for one of the indices, and one scaling equation Eq. B3. If 〈�〉 is missing from the 
publication, we can put 〈�〉 = 	1 without loss of generality. The reason is that the indices to 
be converted (Eq. B1) are i-independent of species richness and therefore the exact value of 〈�〉 does not matter in the case. The third equation then is �� + �� = 2.          (B7) 
The solution of the three equations (See SI.2.T18 for the guide how to solve them) is ��<t��, ��<t�� and ��∩�<t��. This solution is different from the solution based on the original data 

behind the published source, but we can get the original average values ��t��_, ��t��_, ��∩�t��_ by simple rescaling of the computed values (��t��_ = 〈�〉��<t�� and so on), in case 

we know 〈�〉. From ��<t��, ��<t��, ��∩�<t�� we can compute any index that is i-

independent of species richness, even an index that cannot be expressed as Eq. B1 (e.g.,  
 * = ����∩� ��+⁄ ). 
 
A special case are the indices that originated from additive partitioning (*- = *w − *a) such 
as ����, �0��, of ���� (Tab. 1). These indices cannot be universally expressed as Eq. B1, and 

the equations to solve are no longer linear. In the case of additive partitioning, we can 
compute *a from two i-independent indices *- and *+ using equation B8 
 *a+[�� − *a(*-[�� − [�� + [��) + *-[�� −[�� = 0      (B8) 

 
where [�� are determinants listed in SI.2.T20 (see also SI.2.T20 for derivation). *w then 
follows *- + *a. If *w, *+, or *a, *+, or *w, *a are i-independent then we can follow the above 
algorithm that uses linear equations, and compute any even not yet invented index. 
However, as Eq. B8 may have two realistic solutions (both solutions are within miminum and 
maximum possible range of *a), the partitioning often leads to the loss of information. An 
example is ���� = 0.15, (Baselga, 2012; Tab. 1) and ���� ≅ 0.714 (Podani & Schmera, 2011; 

Tab. 1) (〈�〉 = 25) which produce � ≅ 0.43,  (��∩� = 15, �� = 20, �� = 30 ), or � ≅ 0.04 
(��∩� ≅ 2.08, �� ≅ 8.93, �� ≅ 41.07) (for details See SI.6, last panel). As difference 
between � = 0.43 and � = 0.04 is considerable, ���� and ���� provide less information 

than, e.g. � and ����, and any inference from them is ambiguous. 
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Box. 3: Turnover and nestedness are incomparable 
 
There are three main reasons for incomparability of nestedness and turnover. First, 
dimensionless indices are universally incomparable, which can be demonstrated as follows: 
let’s assume an index of turnover *� = 0.5 and an index of nestedness *� = 0.4. The 
temptation to claim that the nestedness is lower than turnover collides with this simple 
logic:  *�+ is a strictly increasing transformation of *�, and thus also measures turnover; 
however, *�+ = 0.25 is also a dimensionless index and suggests smaller turnover than 
nestedness, which contradicts the initial conclusion. Comparison and subtraction of 
dimensionless indices is thus mathematically problematic, and is only possible under some 
circumstances. Second, Eq. 2 implies that we cannot put an equal (nor unequality) sign 
between the indices of nestedness and turnover without taking into account the effect of 
the richness gradient (Schmera & Podani, 2012). Similarly, no one would directly compare � 
with * in Ohm's law, � = �* (Fig. 7). Third, nestedness and turnover differ in their 
constraints (Fig. 3), and are thus distinct phenomena. In the exact sciences, we cannot 
compare measures of different phenomena even if they had equal units.  The example from 
phisics is ‘work’ and ‘torque’ that are both computed as a product of force (F) and distance 
(r or d) (� = , ∙ � and � = , ∙ B, in scalar form) and have equal units (N ∙ m), but differ in 
the direction of the acting force (they are different phenomena) and cannot thus be 
compared. Different phenomena can only be compared using their consequences, if these 
consequences are comparable. 
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SI.1: Scaling properties: The table shows the definitions of the diversity indices and their mutual scaling. The indices by the equation marks refer 
to the derivations of the relationships (see SI.2.T19 for derivations). The equation marks without affiliation are derived by simple rearranging the 
equations listed in the table. All the scaling properties listed are unique except those marked ‘ ≅ ’. Where possible, indices are defined as in 
Koleff et al. (2003) and Gaston et al. (2007); see the column ‘Notes’ for exceptions. In agreement with Koleff et al. (2003), and Gaston et al. 
(2007), a refers to the number of species shared by the focal assemblages (� ≝ ��∩�), and b and c refer to the number of species that belong 
only to the first and second assemblages (� ≝ �� − ��∩� and g ≝ �� − ��∩�). See the column ‘Notes’ for further references. 
 
Notation Definition scaling properties Notes ��u� ≝ ��〈�-〉 

 

Gaston et al. (2007) call ��u� as ��u+, for 
the case of two assemblages; ��u+ scales 

with indices of Jaccard-index family 
(SI.3.T19.4), but it has fundamentally 

different inferences 

Overall Whittaker (1960) beta diversity 
For two assemblages (in this study), �� = ��∪� =�� + �� − ��∩� and 〈�-〉 = (�� + ��) 2⁄  

Beta-diversity (SI.2.T1) 

J  ≝ �� + � + g 

≝ ��∩��� + �� − ��∩� 

 

� =(-) ����1 + �.- − ����  
Jaccard (1912) 

reversed turnover or co-occurrence applied on 
between assemblage level (SI.2.T15) 

��
 ≝ � + � + g2� + � + g 

≝ �� + �� − ��∩��� + ��  

 

��
 =(+) 11 + � Schluter & Ricklefs (1993) 
turnover or reversed co-occurrence applied on 

between assemblage level (SI.2.T15) 

��ø� ≝ 2�2� + � + g 

≝ 2��∩��� + �� 

��ø� =(d) 2 �1 + � Sørensen (1948) similarity, 
reversed turnover or co-occurrence applied on 

between assemblage level (SI.2.T15) 

��WXY ≝ 2�� + g 

≝ 2��∩��� + �� − 2��∩� 

��WXY =(-�) 2 �1 − � Raup & Crick (1979) 
reversed turnover or co-occurrence applied on 

between assemblage level (SI.2.T15) 

(w
hich w
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�ZX ≝ 1− �2� + � + g 

≝ 1− ��∩��� + �� 

�ZX =(-�) 11 + � Bray & Curtis (1957) simplified for incidence data 
Turnover or reversed co-occurrence applied on 

between assemblage level (SI.2.T15) 

��� ≝ 1− 2�2� + � + g 

≝ 1− 2��∩��� + �� 

��� =(�) 1 − �1 + � Harte & Kinzig (1997) 
Turnover or reversed co-occurrence applied on 

between assemblage level (SI.2.T15) 

�� ≝ � + g2� + � + g 

≝ �� + �� − 2��∩��� + ��  

�� =(�) 1 − �1 + � Wilson & Shmida (1984) in Gaston et al. (2007) 
Baselga (2010a,2012) calls this index Sørensen 

dissimilarity 
Turnover or reversed co-occurrence applied on 

between assemblage level (SI.2.T15) �/ ≝ � + g� + � + g 

≝ �� + �� − 2��∩��� + �� − ��∩�  

�/ =(�) 1 − � 
�/ =(�,�) 2 ��1 + �� 

Gaston et al. (2001) 
Turnover or reversed co-occurrence applied on 

between assemblage level (SI.2.T15) 

���� ≝ min(�, g)� +min(�, g) ≝ min(��, ��) − ��∩�min(��, ��)  

���� =(�) 1 − ����  Simpson beta 
Simpson (1943); Lennon et al. (2001) 

reversed nestedness (SI.2.T4) 

����  
(B�) 

≝ �� +min(�, g) ≝ ��∩�min(��, ��) 
���� =(�) 1 − ����, ���� =(�) -f

 e-fe Šizling et al. (2009,2016) ����  equals B� computed for assemblages 

Nestedness 

�_` ≝ 2 |� − g|2� + � + g 

≝ 2 |�� − ��|�� + ��  

 

�_` =(-�) 21 − �1 + � �1 + � =(-�) 2 − �_`4  

Lennon et al. (2001) 
Species-richness gradient (SI.2.T14) 

(w
hich w
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� ≝ � +min(�, g)� +max(�, g) 

≝ min(��, ��)max(��, ��) 
� =(-�) 2 − �_`2 + �_` � =(�) ����� (1 + �) − � 

 
Newbold et al. (2016)scales in one-to-one 
manner with �_` by Lennon et al. (2001);  

reversed sr-gradient or species-richness evenness 

 

 

 

 

�0�1 ≝ 2 min(�, g)� −min(�, g) 
 

�0�1 ≝ 2 min(� , �¡)− � ∩¡2min(� , �¡)− � ∩¡ 

 

�0�1 =(+-) 2 ����1 + ���� 

Turnover component of Jaccard dissimilarity 
Baselga (2012) 

���� ≝ ��Q� ≝ �� −���� does not scale with other indices Baselga ( 2012) 
No family under examination (SI.2.T7) ���a ≝ �� + g 

≝ ��∩���  

 

���a = ����  where �� = min	(��, ��) 
else it does not scale with other indices 

Ruggiero et al. (1998) 
Nestedness or co-occurrence depending on the 
direction; �� stands for species richness of the 

approached assemblage if we leave assemblage X 
(SI.2.T11) 〈����〉 ≝ 1¢£����,�

�
�¤-  

〈����〉 =(--) 1 − 〈���� 〉; 〈����〉 ≅(-+) [ arithmetic mean across n Simpson indices as 
introduced in Lennon et al. (2001) (a pair wise 

index); it is labeled simply Sim in literature (e.g., 
Gaston et al. 2007) 

The scaling (12) works for only assemblages with 
an high number of sites (≥ 10) 
reversed Nestedness (SI.2.T17) 〈���� 〉 ≝ 1¢£����,��

�¤-  
〈���� 〉 =(--) 1 − 〈����〉; 	〈���� 〉 ≅(--f-+) 1 − [; 〈 e-fe〉 ≅(-d) 〈���� 〉 〈 
-f
〉 

arithmetic mean across n rN2 indices, as 
introduced in Šizling et al (2009) (a pairwise 

index) 
The scaling between 〈����〉 and discrepancy 

works only for assemblages with an  high number 
of sites ((≥ 30) 

Nestedness (SI.2.T13) 

D Discrepancy [ ≅(-+) 〈����〉 =(--) 1 − 〈���� 〉 Brualdi & Sanderson (1999) 

(w
hich w
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(defined by an algorithm) Scaling between either of these works only for 
assemblages with a high number of sites (≥ 10) 

Reversed Nestedness (SI.2.T13) �����  ≝ 1¢£�����,�
�
�¤-  

�����,� ≝ 1− ����,� if the two 
assemblages vary in their species 
richness; otherwise �����,� ≝ 0. 

does not scale with other indices Almeida-Neto et al. (2008) 
No family under examination (SI.2.T8) 

�� Number of gaps 
(defined by an algorithm) 

does not scale with other indices Patterson & Atmar (1986) 
For two assemblages (in this study), �� ≝ |}~	(a,<)+wfaf<  if the two assemblages vary in their 

species richness; otherwise �� ≝ 0. 
No family under examination (SI.2.T10) �X  (defined by an algorithm) �X- =(-�) 1 − ��
 =(+�) opø¥+ =(d) e-fe  �X+ 〈�〉→¦§̈ ¨̈ ©(��) 2���� − 1  

 

Wright & Reeves (1992), 
For two assemblages (in this study), 

 �X- ≝ �x∩y�xf�y (standardized as in Gotelli and 

McCabe 2002); �X+ ≝ �x∩y.Y(�x∩y)�w�(�x∩y).Y(�x∩y) 
(standardized as in Wright & Reeves 1992) �X-, Jaccard index family (SI.2.T8) �X+ Simpson beta family for high species richness 

(SI.2.T9) 

    

(w
hich w
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SI.2: Theses and proofs 

Theses T1-15 state whether or not each index satisfies the constraints of the five spatial phenomena 
(Fig. 3). The evidences for the theses uses three parameters �, � and g (the number of shared 
species, ��∩�, the number of species exclusive to the first assemblage, ��, and the number of species 
exclusive to the second assemblage, ��, respectively). Individual arrangements in Fig. 3, are 
characterized by � = 0 in arrangements r3 and r4 in Fig. 3; by � = 0 in arrangements r1,r2,r5 and r6 
in Fig. 3; by g = 0 in arrangement r5 in Fig. 3 and by g�� < g�+ < g�- in arrangements r1,r2,r6,. 
 

T1: The system of Eqs. B3,B4 is mutually i-independent.  
 

Evidence: ª� � −� − 10 ��«U′ −11 1 0 ∥ 002〈�〉®~ ª� � −� − 10 ��«U′ −10 0 � + 1 ∥ 002�〈�〉®, this matrix provides unique 

solution of the system. Hence  °±² ª� � −� − 10 ��«U′ −10 0 1 + � ® = �(1 + �) ∙ ��«U′ ≠ 0, if �, ���� ≠ 0.The 

condition � ≠ 0 is equivalent to ���� ≠ 0 by definition. Then also 2�〈�〉 ≠ 0 and the solution 

is not trivial (it is non zero). As an alternative, the last, scaling equation can be replaced with �� + �� − ��∩� = ���� where ���� is species richness of both sites. 

 
 

T2: �, ����  and 〈�〉 became i-dependent under conditions �� = �� and �� = ��∩�. 
 
Evidence: Firstly, let �� = �� = �, then the system turns into (i) 2�� − (� + 1)��∩� = 0, (ii) ���� � − ��∩� = 0, and (iii) 2� = 2〈�〉. Then 

³ 2� −� − 1���� −12 0 ∥ 002〈�〉´~ ³ 2� −� − 1−���� (� + 1) + 2� 02 0 ∥ 002〈�〉´ 
~ µ2� −� − 12 0 ∥ 02〈�〉¶. Hence ����  is redundant. 

Secondly, let �� = ��∩� then the system turns into (i) ��� − ��∩� = 0, (ii) (���� − 1)��∩� =0 (���� = 1 in the case), and (iii) �� + ��∩� = 2〈�〉. Then 

³� −10 ���� − 11 1 ∥ 002〈�〉´~ ª� −10 ���� − 1� 0 ∥ 002〈�〉® ~ µ� −1� 0 ∥ 02〈�〉¶. Again, ����  is redundant and thus 

carries no extra information. 
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T3: Evidence for the constraints Eq. 1 is as follows - �(�� + ��) − ���∩� ≝ � ∩¡ ⇒ �(�� + ��) =��∩�(1 + �) ⇒ 
eef- (�� + ��) = ��∩� =(¸¹.		�d) ���� min	(��, ��). It follows that

eef- �xf�y|}~	(�x,�y) = ���� . 

Hence Eq. 1. 
 

T4: Simpson beta (����, here Sim) is a reversed index of nestedness. Evidence: ���� = |}~Aa,<Cwf|}~Aa,<C. ����AB3C = ����AB4C = 1 because � = 0 in these cases; ����AB1C = ����AB2C = ����AB5C =����AB6C = 0 because one of the variables �, g equal zero and � ≠ 0 in these cases. 
 

T5: Whittaker index (��u) is an index of beta diversity.  Evidence: ��u� = �º〈��〉. �� is the size of the 

large set and 〈�-〉 is the size of the small set in re-arrangements r1,r2,r5 and r6 in Fig. 3. Hence, �ℎAB1C > �ℎAB2C > �ℎAB6C > �ℎAB5C = 1. These constraints are also met by the species-
richness gradient (Tab. 1). Nevertheless, following Gaston et al. (2007), the difference between R and ��u� is given by the fact that ��u� is computed for two nested sites whilst R is computed for two 
non-overlapping sites. 
 
T6: C-score (CS) captures none of the five phenomena. Evidence: This evidence is based on C-S indices 
computed for various pairs of sets with mutual re-arrangement as in Fig. 3 and sizes M1 = M2 = 15, 
M3=10, M4 = M5 = M6 = M7 = M8 = M9 = M10 =M11=5, and M12=4. The computed order is 0 = k�AB1C = k�AB2C = k�AB5C = k�AB6C < k�AB3C < k�AB4C = 0.6 for C-Scores that were 
standardized (in accord with Gotelli & McCabe, 2002) by numbers of pairs. For rough C-Score the 
order is as follows: 0 = k�AB1C = k�AB2C = k�AB5C = k�AB6C < k�AB4C < k�AB3C = 0.75. This 
matches no experience of the five spatial phenomena. 
 

T7: Nestedness by Baselga (�Zw�) captures none of the five phenomena. Evidence: ���� = af<+wfaf< −����. In re-arrangements r3 and r4 in Fig. 3 ���� = 0, for � = 0, which excludes turnover and beta 
diversity. In re-arrangements r1 and r2 in Fig. 3 ����AB1C < ����AB2C, for ����AB1C = ����AB2C = 0, � = 0, g�+ < g�-, and � does not vary between these two cases. This excludes nestedness. Finally, ����AB5C = ����AB3C = 0, for � = g and ����AB5C = 0, which excludes cooccurrence. 
 
T8: �X , standardized as in Gotelli & McCabe(2002) belongs to Jaccard index family and captures 

reversed turnover or co-occurence. Evidence: In accord with T19.20 it scales positively with ��ø�, 
which in accord with T19.3 scales positively with J. 
 
T9: : �X , standardized as in Wright & Reeves (1992)  (labeled as C in Wright & Reeves (1992) ) scales 

with Simpson beta and captures nestedness if Species Richness approaches infinity. �X  is i-dependent 

on species richness. 

Evidence: �X+ ≝ � ∩¡−Q(� ∩¡)max(� ∩¡)−Q(� ∩¡), where max(��∩�) = �� if we put �� ≥ ��, and E() stands 

for expectance. So, E(��∩�) = -f⋯f�y�y = �yf-+ . Hence �X+ = +�x∩y.�y.-�y.- . In general,	�X+ =+��x∩y.��y.-��y.-  , where B > 0 emulates variation in species richness. Apparently, �X+ is I 

dependent on r, and lim�→¦�X = 2 �x∩y�y − 1 = 2���� − 1. 

 
 
T10: Number of gaps (��) captures none of the five phenomena. Evidence: This evidence is based on �� indices computed for various pairs of sets (see T6 above). The computed order is  0 = ��AB1C = ��AB2C = ��AB4C = ��AB5C = ��AB6C < ��AB3C = 0.3 for the index that were 
standardized by number of incidences within the focal matrix. This matches no experience of the five 
spatial phenomena. 
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T11:  Ruggiero index of beta-diversity  (�
�a) is co-occurrence or nestedness depending on the 

direction. Evidence: The index rib depends on the order of the focal assemblages. It is defined as �
�a = wwf<, where c captures either the first or second assemblage. In our case, 0 = g�� < g�� <g�+ < g�- and ��� = ��� = ��+ = ��-. Hence 0 < �
�aAB1C < �
�aAB5C. At the same time 0 =�
�aAB3C < �
�aAB4C, for � = 0 in these cases. The index �
�a thus captures co-occurrence. If we 
replace b with c, then �
�aAB1C = �
�aAB2C = �
�aAB6C = �
�aAB5C = 1, for c=0 in these cases. The 
index rib therefore captures nestedness in the case. 
 
T12: Nestedness by Almeida-Neto et al. (2008) (�����) would be an index of nestedness if we ignored 

the condition that �� = �� 	⟹	����� = 0. Evidence: Where assemblages differ in their species 
richness, ����� equals ����  from the Simpson-beta family, and which is an index of nestedness. 
Where assemblages have equal species richness ����� = 0. If we accepted that two equal-sized 
assemblages cannot be mutually nested, then ����� is an index of nestedness; but our framework 
excludes this possibility. 
 
T13: Discrepancy (D) for a high number of sites approaches the reversed constraints on nestedness. 

Evidence: For a small number of sets to compare D does not follow any of the focal phenomena. The 
evidence is again based on D computed for various pairs of sets (see T6 above). The computed order 
is 0 = [AB1C = [AB2C = [AB5C = [AB6C < [AB3C < [AB4C = 0.5 for D standardized by number of 
incidences within the focal matrix. For rough D, the order is as follows: 0 = [AB1C = [AB2C =[AB5C = [AB6C < [AB3C = [AB4C = 5. This matches no experience of the five spatial phenomena. 
However, if the number of sets is large enough (simulations suggest more than 30 simulations), the 
standardization by number of incidences begins to work properly and the D will scale with the indices 
of nestedness (Fig. SI.3). The reason is that: Discrepancy is defined as the minimum number of 
incidences that must be shifted along rows of incidence matrix (rows – sites; columns - species) to 
get absolutely nested assemblages. Discrepancy is standardized by the number of incidences within 
the matrix. Discrepancy of absolutely nested matrix is thus by definition zero. Discrepancy of an 
absolutely non-nested matrix (where each site has its unique set of species) is computed as ∑ ��������¤- −U�3�¤-�����A��C, where �� is the species richness of the i-th site. It is standardized by number 

of incidencies, i.e., ∑ ��������¤- . Hence, [ = ∑ �qpq¾¿ÀqÁ� .�w�qÁ�pq¾¿ÀA�qC∑ �qpq¾¿ÀqÁ� = 1 − �w�qÁ�pq¾¿ÀA�qC∑ �qpq¾¿ÀqÁ� , which approaches 

one if U�3�¤-�����A��C ≪ ∑ ��������¤- . This is the case for practically all datasets with large numbers of 
sites. It might only be broken if maximum species richness was high and species richness of the other 
sites was extremely small. Apparently, this cannot happen for almost regular (i.e., square-shaped 
matrices), as each site must be occupied by at least one species. Simulations show a one to one 
scaling of D with Simpson beta (non nestedness) for matrices of 30 and 100 sites (Fig. SI.3). 
 
T14: Indices of species-richness gradient (�_` and �) capture the experience of species-richness 

gradient. Evidence: R is the ratio between minimum to maximum species richness. Hence �AB1C = �AB3C < �AB2C < �AB6C < �AB4C = �AB5C = 1. R is therefore a strictly reversed value to 
the species-richness gradient and it thereby belongs to the species-richness-gradient family. 
 

T15: Jaccard index (J) is a reversed index of species turnover or co-occurrence. Evidence: � = wwfaf<. � = 0 in re-arrangements r3 and r4 in Fig. 3. Hence �AB3C = �AB4C = 0, which excludes the sr-
gradient but support turnover as defined in our framework. 0 = g�� < g�� < g�+ < g�-, � = 0 and � 
does not vary between re-arrangements r1,r2,r5 and r6 in Fig. 3. Hence, 0 < �AB1C < �AB5C = 1, 
which supports only reversed constraints of turnover or the constraints of co-occurrence. 
 
T16 (i-dependence of three indices): The value of any index defined by Eq. B1 can b computed from 
values of Jaccard index (J, Eq. T1, SI2) and Simpson nestedness (���� , Eq. T3, SI2) using Eq. B5. 
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Evidence: Put arbitrary �� ≤ ��, then  

* =(YÃ.Z�) e(opqrs (R�fR�).R�fR�)fopqrs R�e(opqrs (`�f`�).`�f`�)fopqrs `� =(YÃ.�-,�d)
px∩ypxÄpyÅpx∩y(px∩ypy (R�fR�).R�fR�)fpx∩ypy R�px∩ypxÄpyÅpx∩y(px∩ypy (`�f`�).`�f`�)fpx∩ypy `�  

=
R��x∩yfR��xfR��y`��x∩yf`��xf`��y , which is the definition Eq. B1. The Eq. B5 was gain as a solution of the 

equation �Æm Ç −� −� � + 10 ���� −1*9+ − b+ *9d − bd *9- − b-Ç = 0. 

 
T17 (species rich and poor assemb lages): The variation of ��tt� = 2〈�〉�/(1 + �) indicates 

inevitable change in richness of the species poorer assemblage, and the variation of ���<u =2〈�〉/(1 + �) indicates inevitable change in richness of the species richer assemblage. 
Evidence: The evidence is based on the solution of the system of three equations (see Box 1 for the 

equations and T1 for the matrix of these equations). Then 

ª� � −� − 10 ��«U′ −10 0 � + 1 ∥ 002�〈�〉® ⇒ ��∩� = 2〈�〉 eef- & �� = �x∩yopqrs  & �� = (ef-)�x∩y.e�ye . It follows that 

�� = 2〈�〉 e(ef-)opqrs =(YÃ.�) 2〈�〉 
-f
. The last equality follows from Eq. 7. Finally, 

�� = +〈�〉e.+〈�〉e ÈÈÄ�e = 2〈�〉 É1 − 

f-Ê = 2〈�〉/(� + 1). Because 0 < � ≤ 1 then �� ≤ ��, and we 

relabel ��tt� ∶= �� and ���<u ∶= ��. 

 
T18. (Guide to solve a system of three equations). System can be written as 

³Ì3 + Í7 + kÎ =[3 + Q7 + ,Î = 00Ï3 + Ð7 + ÑÎ = �´ now we multiply the second equations by minus A and the first equation 

by D and add up them. Then we replace the second equation with the resulting equation. So 

= ³ Ì[3 + Í[7 + k[Î =−Ì[3 − ÌQ7 − Ì,Î = 00Ï3 + Ð7 + ÑÎ = �´ = ³ Ì3 + Í7 + kÎ =(Í[ − ÌQ)7 + (k[ − Ì,)Î = 00Ï3 + Ð7 + ÑÎ = �´. If D=0 we skip this 

step. Similarly we multiply the first equation with G and the third equation with minus A and add up 

them 

= ³ ÌÏ3 + ÍÏ7 + kÏÎ =(Í[ − ÌQ)7 + (k[ − Ì,)Î = 00−ÌÏ3 − ÌÐ7 − ÌÑÎ = −Ì�´ = ª Ì3 + Í7 + kÎ =(Í[ − ÌQ)7 + (k[ − Ì,)Î = 00(ÍÏ − ÌÐ)7 + (kÏ − ÌÑ)Î = −Ì�®. If G=0 

we skip this step. Now we do the same with the second and third equations to eliminate the term 

with y from the last equation. Thus 
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= ª Ì3 + Í7 + kÎ =(Í[ − ÌQ)7 + (k[ − Ì,)Î = 00((k[ − Ì,)(ÍÏ − ÌÐ) − (Í[ − ÌQ)(kÏ − ÌÑ))Î = Ì�(Í[ − ÌQ)®. If ÍÏ − ÌÐ = 0 we 

skip this step.  

The ultimate goal is to get diagonal matrix ÒÓ-�3 +Ó-Ô70 +Ó+Ô7 +Ó-ÕÎ = Ö-+Ó+ÕÎ = Ö+0		 					+0 +ÓdÎ = Öd
× where  

Ó-� ≠ 0, Ó+Ô ≠ 0 and ÓdÕ ≠ 0, thus we stop the procedure whenever we gain this goal. Replacing 

lines with each other is allowed. 

From the last equation in the above matrix we compute Î = ��(Z�.�Y)(X�.��)(Z/.��).(Z�.�Y)(X/.��). 
If the equations are independent (that is, the indices are i-independent) the denominator differs 
from zero. They can be computed from the second equation providing that we know z (7 =.(X�.��)ÕZ�.�Y ), and x can be computed from the first equation providing that we know z and y 

(3 = .XÕ.ZÔ� ). In the matrix notation (as in T1 and T17), we only did not write ‘x’,’y’,’z’ and ‘=’ to hold 

the notation as simple as possible (this is a standard habit in mathematics). 
 
 

T19 (scaling properties): Relationships between the focal indices obey the equations as listed in Tab. 

SI.1. Evidences for the relationships are as follows (the numbering ‘1-21’ refers to the labels above 
the equation marks in Tab. SI.1; brackets 〈. 〉 label a mean value): 

1. � = w<fafw = w(<fw)f(afw).w = ØÙÚÛAÜ,ÝCÄØÝÄØÙÚÛAÜ,ÝCÄØf ÜÄØÙÚÛAÜ,ÝCÄØ. ØÙÚÛAÜ,ÝCÄØ = ��-f
Å�.�� = opqrs
-f
Å�.opqrs  To be 

continued at T15.8. 

2. ��� = wfaf<+wfaf< = É1 + wwfaf<Ê.- = --fe. 
3. ��t� = +w+wfaf< = 2É1 + wfaf<w Ê.- = 2(1 + �.-).- = 2 eef-. 

4. ��u+ = wfaf<(+wfaf<) +⁄ =(+) 2��� = 2 --fe. 
5. ��� = 1 − +w+wfaf< =(d) 1 − ��t� = 1 − 2 eef- = -.e-fe. 
6. �� = af<+wfaf< = +wfaf<.+w+wfaf< = 1 − +w+wfaf< =(�) -.e-fe. 
7. �/ = af<wfaf< = wfaf<.wwfaf< = 1 − wwfaf< = 1 − �. 
8. ���� = |}~	Aa,<Cwf|}~	Aa,<C = wf|}~Aa,<C.wwf|}~	Aa,<C = 1 − wwf|}~Aa,<C = 1 − ���� . Consequently, � =(-) -.opqrs


Å�fopqrs . 

9. � =(�) -.opqrs

Å�fopqrs 	⇒ �(� + 1 − ���� ∙ �) = ���� ∙ � ⇒	 e-fe = ���� 
-f
. 

10. Let � ≤ g then � = afw<fw and thus �_` = 2 <.a+wfaf< = 2 (<fw).(afw)+wfaf< = 2 (<fw)(-.
)+wfaf< = 

= 2(1 − �)É+wfaf<wf< Ê.- = 2(1 − �) Éwfafwf<wf< Ê.- = 2(1 − �)(1 + �).- = 2 -.

f-  ⟹ � = +.oÞß+foÞß. 
11. ���� =(�) 1 − ���� 	⟹	 〈����〉 = 〈1 − ���� 〉 	⟹	 〈����〉 = 〈1〉 − 〈���� 〉 
12. Simulation based evidence (see Fig. SI.3). 

13. 
eef- =(�) ���� 
-f
 ⇒ 〈 e-fe〉 = 〈���� 
-f
〉 ⇒ 〈 e-fe〉 = 〈���� 〉 〈 
-f
〉 + cov(���� , 
-f
). 

Where the i-th values ����,�  and 

q-f
q are s-independent across all i, cov É���� , 
-f
Ê = 0. Where the 

covariance is large small, the Eq. 8 is approximative. Nestedness, ����,�  and species richness gradient 
q-f
q does not constraint each other (share only one sr component of the ��, ��, ��∩�) therefore does 
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not constraint each other and are likely s-independent (implying zero covariance), else an ecological 
driver makes covariance nonzero. For data verification see Fig. SI.8. 

14. 0 ≤ � ≤ 1	 ⇒ 	0 ≤ 
-f
 ≤ 0.5 ⇒ 
e-fe =(¸¹.-+) ���� 
-f
 ≤ 0.5����  ⇒ � ≤ opqrs

+.opqrs . 

15. � =(�) -.o¾-fo¾ =(âãä	oZw�) -.opå¿.opqr-fopå¿fopqr. 

16. �ZX ≝ 1 − �x∩y�xf�y = 1 − � �xf�y.�x∩y�xf�y = 1 − ��ZX  ⇒ �ZX = 1 − ��ZX   ⇒ �ZX = --fe. 
17. ��WXY ≝ +�x∩y�xf�y.+�x∩y = 2� �xf�y.�x∩y�xf�y.+�x∩y = 2� É1 − �x∩y�xf�y.�x∩yÊ.- = 2 e-.e. 
18. ���� ≝ �m − ��«U = � +�¡−2� ∩¡� +�¡ − � ∩¡�¡ = � � ∩¡−�¡� ∩¡�¡(� +�¡)   = pyÈ �x∩y.�y�x∩y�y(�xf�y)   = (�−1−1)� ∩¡� +�¡ . �� ≤ �� is an arbitrary choice without losing generality. 

19. �X- ≝ �x∩y�xf�y = �xf�yf�x∩y.�x.�y�xf�y = 1 − �xf�yf�x∩y�xf�y = 1 − ��
 

20. �X- ≝ �x∩y�xf�y = -+ +�x∩y�xf�y = opø¥+  

21. �0�1 ≝ 2 min(� ,�¡)−� ∩¡2min(� ,�¡)−� ∩¡ = 2 -.opqrs
+.opqrs = 2 opqr-fopqr 

 
T20. How to get Jaccard similarity and Simpson nestedness if one of the indices is 
partitioned. 
 
Let  *- = ��Ø�x∩yf��Ø�xf��Ø�y��Ø�x∩yf��Ø�xf��Ø�y + ��Ü�x∩yf��Ü�xf��Ü�y��Ü�x∩yf��Ü�xf��Ü�y = *w + *a  

(if indices are subtracted the b�a coefficients are multiplied with minus one) 
and *+ = ����x∩yf����xf����y����x∩yf����xf����y  . 

 
Then the triple *w, *a, and *+ are necessarily i-dependent. Thus 

°±² ³*wÓ-w − Ñ-w *wÓ+w − Ñ+w *wÓdw − Ñdw*aÓ-a − Ñ-a *aÓ+a − Ñ+a *aÓda − Ñda*+Ó-+ − Ñ-+ *+Ó++ − Ñ++ *+Ód+ − Ñd+ ´ ≡ 0. 

*+, and *- are known (*- = *w + *a), so 

 

°±² ³(*- − *a)Ó-w − Ñ-w (*- − *a)Ó+w − Ñ+w (*- − *a)Ódw − Ñdw*aÓ-a − Ñ-a *aÓ+a − Ñ+a *aÓda − ÑdaÖ- Ö+ Öd
´ ≡ 0  

where Ö� = *+Ó�+ − Ñ�+. 

 
After expansion 
 *a+[�� − *a(*-[�� − [�� + [��) + *-[�� −[�� = 0, 
 

where [�� = °±² ³Ó-w Ó+w ÓdwÓ-a Ó+a ÓdaÖ- Ö+ Öd ´; [�� = °±² ³Ñ-w Ñ+w ÑdwÑ-a Ñ+a ÑdaÖ- Ö+ Öd ´; [�� = °±² ³Ó-w Ó+w ÓdwÑ-a Ñ+a ÑdaÖ- Ö+ Öd ´;  
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and [�� = °±² ³Ñ-w Ñ+w ÑdwÓ-a Ó+a ÓdaÖ- Ö+ Öd ´. 
 
Having *a, we can pick up two i-independent indices and then use the algorithm from Box 2 to 
compute any dimensionless index. 
 
The above solution works only if the pair *w, *a is i-independent, the pair *w, *- is i-independent, and 
the pair *-, *a is i-independent (together they are always i-dependent). If either pair of indices is i-
dependent, the solution is simpler. We just convert the i-dependent indices to an index from their 
family (Tab. SI.1) and then follow the algorithm from Box2. 
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Fig. SI.3: Relationships between indices of nestedness computed for more assemblages as simulated 
(30 sites x 30 species – black dots; 100 sites x 100 species – blue dots) and observed (red dots, SI.7). 
Matrices were generated to cover as wide spectrum of assemblages as possible (see details on 
simulations below). D – discrepancy by Brualdi & Sanderson (1999); 〈�«U〉– a simple mean of the 
Simpson index across all pairs of adjacent plots (Lennon et al. 2001); 〈B�〉 ≡ 〈���� 〉 – simple mean of 
nestedness as defined in Šizling et al. 2009,2016; D, was standardized (i.e., divided) by total number 
of incidences within the focal matrix (Greve et al. 2005). The indices scale in one-to-one manner 
belonging to the same family and measuring the extent of nestedness. For exact evidence see 
SI.2.T12. 
 
The incidence matrices for testing the relationships between various indices of nestedness of 

multiple assemblages 

 
The 30x30 and 100x100 matrices of artificial assemblages were generated to cover the whole range 
of possible values for each index of nestedness as follows: 
1. Matrices with various distributions of incidences in rows and columns were generated using the 

algorithm published by Šizling et al. (2009). This algorithm places each species‘ incidence 
randomly within a matrix to keep the required distributions. We created matrices with the 
distributions of incidences for each row or column randomly picked up from the regular 
distribution of the numbers (a) between 1 and 30, (b) between 10 and 20, (c) between 15 and 16 
and (d) between 15 and 30, and used all the combinations of these possibilities for rows and 
columns. One hundred matrices were generated using each combination, which gave altogether 
600 matrices. 

2. Matrices with column and row counts of approximately 5, 10, 15, 20 and 25 (the column and row 
distributions were regular) were generated using the same algorithm. One hundred matrices 
were generated for each setting. 
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3. One hundred matrices with various combinations of bimodal (variously chosen bimodal 
distributions were used to cover the full range of indices values; the set of the matrices is 
available see the item 7 below) and unimodal distributions of incidences for rows and columns 
were generated. These make altogether 400 matrices. 
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Fig. SI.4: Relationship between pairwise indices where there is no variation in species 
richness (left) and where assemblages are perfectly nested (right). As predicted, no variation 
in species richness merges families of �, ���� and �� together, and perfect nestedness 
merges families of �, ��a, ����, and �_`.  The evidence that ���� shows variability where 

nestedness is perfect disqualifies this measure from being a proxy for nestedness. Black 
rectangles delimit the merged families. For detailed legend see capture to Fig. 5. 
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SI.5 i-independence of and s-dependence on species richness 

The Jaccard index (J), and thus all the indices that scale one-to-one with J (Fig. 2), has been 
referred to as ‘dependent’ on species richness (Simpson, 1943; Lennon et al., 2001; Koleff & 
Gaston, 2002; Baselga, 2010a) and on the contrast between species richness of two 
assemblages (Simpson, 1943). This has led to a search for an index that is species richness 
‘independent’, and to attempts to modify J , so that ecologists could compare assemblages 
that varied in species richness. This s-dependence between J and species richness was based 
on empirical experience (Koleff & Gaston, 2002), and on arguments that there are bounds on 
the J imposed by contrast in species richness (Simpson, 1943).  

We found that all dimensionless (unitless) indices, including J, are i-independent of 
species richness. For all indices that can be expressed by the universal definition (Eq. B1) it 
holds that 
 * ≝ R��x∩yfR��xfR��y`��x∩yf`��xf`��y = R�ç�x∩yfR�ç�xfR�ç�y`�ç�x∩yf`�ç�xf`�ç�y , (è ≠ 0)    (Eq. SI.6) 

 
and thus the index does not change when ��, ��, and ��∩� scale proportionally to each 
other. In this case, the index has the same value regardless of species-richness, and thus it is 
not uniquely determined by species richness (see SI.2.T1 for a proof using Cramer’s rule). 
Any observed s-dependence between the dimensionless index and species richness is 
therefore caused by disproportional scaling between ��, �� or ��∩�. 

Disproportional scaling can, however, appear at sites with small species richness 
because species richness is an integer. In this case, the frequency distribution of possible J 
values is affected by total species richness. This in turn affects the most likely value of J, 
imposing its s-dependence on species richness. The reason is that the Jaccard index can only 
have a finite number of values. For example, if �� = 1 then � = 1, 1 2⁄ , 1 3⁄ , 1 4⁄ ,… , 0, 
accumulating possible values below 1/2. �� = 2 then allows for 2/3, which is above 1/2, �� = 3 allows for 3 4⁄ > 2 3⁄  and so on. Further computation of possible J values for 
increasing �� (Fig. SI.5) shows an increasingly even distribution of J-values. This 
mechanismus works for any index that can be expressed by Eq. B1, and the effect cannot be 
eliminated by inventing a new dimensionless index. 
 

 
Fig. SI.5: Rank plot of the first fifty values that can reach Jaccard index if �� is fixed and �� and ��∩� 
vary within their limits (1 ≤ �� < ∞ and 0 ≤ ��∩� ≤ min	(��, ��)); the three distributions on display 
correspond to �� = 1 (circles), �� = 2 (squares) and �� = 3 (triangles). 
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SI.6 Software Calculator (manual) 
 
The calculator works properly only with mashines that utilize ‘dot’ as a decimal separator. 
See the help for detailed instructions. 
 

     
 
After running the calculator (click your mouse) a pannel appears. 
 

 
 
Fill the sections Definitions and Limits. At the pannel above ‘Ia1’ is defined as Sørensen simillarity 
(see Box 1) and I1b is always zero, thus the calculator will ignore the component I1b. I2 is species 
richness uniformity �. This is because �� ≤ �� by definition. Mean species richness is known in this 
example and it is 6.5. Limits are theoretical limits of the indices.  
 
The errors have to be reasonably defined (here 0.02 for indices and 1 for species richness). Too small 
errors may lead to wrong conclussion that there is no solution because index definitions and values 
in logical conflict. 
 
Press the RUN button. 
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The Results section and the figures are displayed. The resulting values of Jaccard similarity, Simpson 
nestedness, species-richness uniformity, and three species richnesses are computed as described in 
Box 2 if there is no partitioning. If there is a partitioning (both I1a and I1b are defined), the equation 
SI.2.T20 is employed. This equation is quadratic, therefore two different solutions may exist for 
partitioned indices indicating lost of information. 
 
Figures help to see whether there is a unique solution. The number of solutions is always none, one 
or two. Two solutions may appear only when index I1 is partitioned. The reason is that additive 
partitioning may decrease information. 
 
Blue area in figs shows all possible combinations, the yellow line shows all possible combinations 
constrained by the value of I2, and the red point shows the solution constrained by both indices I1, 
I2. 
 
Thus, the red point that is out of the yellow line shows mutuall logical conflict of definitions and 
values of indices. Two red points within the yellow area indicate umbiguous solution. 
 
 

 
 
There is no need for precise species richness. The indices are dimensionless, which means that they 
are i-independent of species richness. Just write the question mark ‘?’ or number of one in the edit 
lane for average species richness. The resulting Sx,Sy and Sxy are then only proportional numbers. 
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If I1 is partitioned (e.g., *- = ����, Baselga, 2012; *+ = ����; Podani & Schmera, 2012), then two 

solutions may exist. Both solutions are displayed and computed in the case. 
 
Enjoy the work and, please, report any error with the calculator (sizling@cts.cuni.cz). 
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SI.7 Datasets 

For comparison with the results from the artificial (simulated) data, we also plotted 
observed values of the indices. This allows us to identify relationships that are 
mathematically possible but may be rare or absent in nature. These observations consisted 
of three different datasets: a set of 29 microbial assemblages extracted from cryoconite on 
the Greenland Ice Shield, a set of 24 arctic plant assemblages (4 from Greenland, and 20 
from Svalbard), and a set of 20 temperate zone plant assemblages (10 from the Czech 
Republic, and 10 from Southern Norway). The microbial assemblages were sampled by J.Ž. 
and A.Š, and processed by J.Ž. Plant assemblages were sampled by A.L.Š., Eva Šizlingová and 
E.T (see LINK TO DATA ARCHIVE after acceptance). 
 A list of plant species found in a 10x10 m area was recorded. The data are nested in 
the sense that the assemblages are grouped so that each group of five assemblages is 
located within a 1km diameter circle.  For the purposes of this analysis, only Genera were 
used. 
 Microbial assemblages were sampled at 300 m intervals along two lines on the 
western margin of the Greenland Ice Sheet in the vicinity of Kangerlussuaq. Sampling and 
sample processing procedures followed Cameron et al. 2016. Here we use data inferred 
from environmental RNA using Illumina amplicon sequencing to detect the active part of the 
microbial assemblage. Processing of the sequencing output was performed using the QIIME2 
environment (Bolyen et al., 2019), filtering for sequences present at least three times in the 
whole dataset, and rarefaction to the sampling depth of 5000 features per sample. This 
resulted in the exclusion of 7 samples out of 36 that had fewer features than the sampling 
depth. The remaining samples were used for the diversity analysis. 
 
Cameron1, K.A., Stibal, M., Zarsky, J.D., Gozdereliler, E., Schostag, M. & Jacobsen, C.S.. 

(2016) Supraglacial bacterial community structures vary across the Greenland ice sheet. 

FEMS Microbiology Ecology, 92, doi: 10.1093/femsec/fiv164 

Bolyen, E., Rideout, J.R., Dillon, M.R., et al. (2019) Reproducible, interactive, scalable and 

extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–

857. 
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