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F IGURE 6 PDFs of a: cubic sections copula copula_1 and b: rectangular patchwork copula copula_2.

traj <- make_traj(

n = 10000,

copula = copula_1,

marginal_circ = "mixedvonmises",

parameter_circ = list(mu1 = 0, mu2 = pi, kappa1 = 2, kappa2 = 1, prop = 0.7),

marginal_lin = "gamma",

parameter_lin = list(shape = 3)

)

Any distribution for which a quantile function is available can be used when specifying the linear marginal distri-
bution (using argument marginal_lin). For the circular marginal distribution, the von Mises, the wrapped Cauchy,
and a mixture of 2 von Mises distributions are available.

The ouput of make_traj() is a data.frame that contains the draws from the copula, the step lengths and turn
angles, i.e. the draws from the copula transformed by the inverse CDFs of the marginal distributions, and the positions
in space the animal would visit by moving according to those step lengths and turn angles. We have implemented
several functions, below, to visualize simulated trajectories (e.g. Fig. 7).

scat_plot(traj, periodic = TRUE)

traj_plot(traj)

cop_scat_plot(traj)

circ_plot(traj)

The argument periodic determines whether the plot is periodically extended past the angles −π and π .
We provide several options for quantifying the correlation between circular and linear variables, which we demon-

strate with our simulated data. The first available option is the circular-linear correlation coefficient described in
section 5.2.
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F IGURE 7 Circular-linear data representing turn angles and step lengths were simulated using copula_1, a
copula with cubic sections, and marginal distributions given by gamma and mixed von Mises distributions. a:
scatterplot of turn angles (Θ) and step lengths (X ) with non-parametric density estimates in blue and red,
respectively, obtained with scat_plot(). b: Plot of the trajectory derived from the sequence of turn angles and
step lengths obtained with traj_plot(). c: scatterplot of the draws from copula_1 obtained with
cop_scat_plot(). d: circular scatterplot of turn angles and step lengths obtained with circ_plot().

cor_cyl(theta = traj$angle, x = traj$steplength)

[1] 0.07428712

The second option is to calculate the mutual information between the step lengths and turn angles. The mutual
information can be normalized to lie in [0, 1] by dividing by the square root of the product of the entropies of the two
random variables (see equation 59). By specifying symmetrize = T, we set the values of u of the empirical copula that
are larger than 0.5 to 1 − u , ensuring that a symmetric circular-linear copula with perfect correlation has a normalized
mutual informaiton of 1 (see appendix A6)
mi_cyl(theta = traj$angle, x = traj$steplength, normalize = T, symmetrize = T)

[1] 0.0223797

As described in section 5.2, neither correlation measure depends on the marginal distributions, which means that
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we obtain the same output, whether we take step lengths and turn angles as input, or the corresponding untrans-
formed draws from the copula.

To facilitatemodel selection, we havewritten a function, opt_auto, to autonomously fit 15 different circular-linear
copulae (see appendix A7) to the data. The function returns a list containing descriptions of the copulae, cylcop-
objects, and AIC values associated with the fitted copulae.
guess_fit <- opt_auto(theta = traj$angle, x = traj$steplength)

The copula with the lowest AIC (-932.50) is a cubic sections copula with parameters a = 0.048 and b = −0.15, i.e.
the copula with which we have generated the data (copula_1). The copulae with the second and third lowest AIC
are a quadratic sections copula (a = 0.11, AIC = −754.10, see Figure 8 a) and a rectangular patchwork copula with
symmetric rectangles spanning the entire unit square and the copula inside the rectangles based on a Frank copula
with parameter α = 1.65 (AIC = −732.19, see Figure 8 b).

F IGURE 8 a: PDF of a quadratic sections copula with a = 0.11. b: PDF of a rectangular patchwork copula with
symmetric rectangles spanning the entire unit square and the copula inside the rectangles based on a Frank copula
with parameter α = 1.65.

To fit a chosen copula to the data "by hand" we can first calculate starting values for MPLE using a correlation
measure. optCor first calculates the circular linear correlation coefficient or the mutual information (specified by the
argument method). Next, n samples are drawn from copula and the corresponding correlation measure is calculated.
The parameters of the copula are changed and the process repeated until the copula parameters giving the lowest
difference between the correlation of the data and the correlation of the sample drawn from that copula are found
with an accuracy specified by the argument acc. The parameter search is implemented as an exponential followed by
a binary search.
start_val <- optCor(

copula = cyl_cubsec(0,0),

theta = traj$angle,

x = traj$steplength,

acc = 0.01,

n = 10000,
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method = "cor_cyl",

parameter = "both"

)

Finally, copula parameters can be fit to the data via MPLE with the output of optCor as starting value. The func-
tion optML() is based on copula::fitCopula() and returns a list containing the cylcop object with the optimized
parameters, the maximum likelihood value and the corresponding AIC.
optimized <- optML(

copula = cyl_cubsec(),

theta = traj$angle,

x=traj$steplength,

parameters = c("a","b"),

start = start_val,

lower = c(-0.1, -1 / (2 * pi)),

traceOpt = T,

optim.method = "L-BFGS-B",

optim.control = list(maxit = 100)

)

Wealso provide functions to fit the parameters of linear (fit_steplength()) and circular (fit_angle()) marginal
distributions to the data using maximum likelihood. The circular (Agostinelli and Lund, 2017) and MASS packages
(Venables and Ripley, 2002) provide excellent methods and functions for fitting almost any circular or linear distri-
bution; our functions are basically just wrappers to these functions with some simplifications for easier usage. One
exception is the mixed von Mises distribution, for which there was no method available to obtain maximum likelihood
estimates in the circular package. We based our implementation on code from the movMF package (Hornik and Grün,
2014) with the added feature of optionally fixing the mean directions.
angle_distr <- fit_angle(theta = traj$angle, parametric = "mixedvonmises", mu = c(0, pi))

For both linear and circular marginal distributions, we can also obtain non-parameteric density estimates by set-
ting parametric = FALSE, and passing a bandwidth (in this case, obtained using the opt_circ_bw function)
bw <- cylcop::opt_circ_bw(theta = traj$angle, loss = "adhoc", kappa.est = "trigmoments")

angle_non_param <- fit_angle(theta = traj$angle, parametric = FALSE, bandwidth = bw)

Further details can be found in Agostinelli and Lund (2017). As is also described there, an adhoc estimation of
the bandwidth used for the non-parameteric density estimate can give wrong results, especially with multimodal
distributions, and we compare density estimates obtained with different bandwidths in section A8 in the appendix).
Finally, the non-parametric density estimates can be used to simulate trajectories
steplength_distr <- fit_steplength(x = traj$steplength, parametric = "gamma")

traj_fit <- make_traj(

n = 10000,
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copula = optimized$copula,

marginal_circ = "dens",

parameter_circ = angle_non_param,

marginal_lin = "gamma",

parameter_lin = steplength_distr$coef

)

7 | CONCLUSIONS

We derived new copulae and implemented them in our cylcop package to facilitate modeling correlated circular-
linear data where the circular variable is expected to be symmetric. We aimed to provide a thorough derivation of our
circular-linear copulae together with a package that is easy to use, even as a black-box. This should, on the one hand,
allow application-oriented researchers to easily and quickly use these copulae to visualize and model their data and,
on the other hand, provide statisticians and modellers with a starting point to further develop new methods.

In the future, we hope to integrate non-parametric copulae obtained from smoothing the empirical copula us-
ing e.g. Bernstein polynomials (Sancetta and Satchell (2004); Janssen et al. (2012); Carnicero et al. (2013); García-
Portugués et al. (2013, 2014)) into our package. The addition of conditional copulae (Patton, 2006; Fermanian and
Wegkamp, 2012) would also allow tackling issues, such as temporal autocorrelation, or performing time series analysis
and regression.
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