Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The myotendinous junction marker collagen XXII enables zebrafish postural control learning and optimal swimming performance through its force transmission activity

Marilyne Malbouyres, Alexandre Guiraud, Christel Lefrançois, Mélanie Salamito, View ORCID ProfilePauline Nauroy, Laure Bernard, Frédéric Sohm, View ORCID ProfileBruno Allard, View ORCID ProfileFlorence Ruggiero
doi: https://doi.org/10.1101/2021.07.14.452354
Marilyne Malbouyres
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandre Guiraud
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christel Lefrançois
2Littoral Environnement et Sociétés (LIENSs), UMR 7266CNRS-La Rochelle Université, La Rochelle Cedex 01, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mélanie Salamito
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pauline Nauroy
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pauline Nauroy
Laure Bernard
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frédéric Sohm
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruno Allard
3Université de Lyon, Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, UMR CNRS 5310, Inserm U1217, Faculté de Médecine et de Pharmacie Rockefeller, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bruno Allard
Florence Ruggiero
1Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Florence Ruggiero
  • For correspondence: florence.ruggiero@ens-lyon.fr
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Although the myotendinous junction (MTJ) is essential for skeletal muscle integrity, its contribution to skeletal muscle function remains largely unknown. Here, we show that CRISPR-Cas9-mediated gene ablation of the MTJ marker col22a1 in zebrafish identifies two distinctive phenotypic classes: class 1 individuals reach adulthood with no overt muscle phenotype while class 2 display severe movement impairment and eventually dye before metamorphosis. Yet mutants that are unequally affected are all found to display defective force transmission attributed to a loss of ultrastructural integrity of the MTJ and myosepta, though with distinct degrees of severity. The behavior-related consequences of the resulting muscle weakness similarly reveal variable phenotypic expressivity. Movement impairment at the critical stage of swimming postural learning eventually causes class 2 larval death by compromising food intake while intensive exercise is required to uncover a decline in muscle performance in class 1 adults. By confronting MTJ gene expression compensation and structural, functional and behavioral insights of MTJ dysfunction, our work unravels variable expressivity of col22a1 mutant phenotype. This study also underscores COL22A1 as a candidate gene for myopathies associated with dysfunctional force transmission and anticipates a phenotypically heterogeneous disease.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted July 15, 2021.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The myotendinous junction marker collagen XXII enables zebrafish postural control learning and optimal swimming performance through its force transmission activity
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The myotendinous junction marker collagen XXII enables zebrafish postural control learning and optimal swimming performance through its force transmission activity
Marilyne Malbouyres, Alexandre Guiraud, Christel Lefrançois, Mélanie Salamito, Pauline Nauroy, Laure Bernard, Frédéric Sohm, Bruno Allard, Florence Ruggiero
bioRxiv 2021.07.14.452354; doi: https://doi.org/10.1101/2021.07.14.452354
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The myotendinous junction marker collagen XXII enables zebrafish postural control learning and optimal swimming performance through its force transmission activity
Marilyne Malbouyres, Alexandre Guiraud, Christel Lefrançois, Mélanie Salamito, Pauline Nauroy, Laure Bernard, Frédéric Sohm, Bruno Allard, Florence Ruggiero
bioRxiv 2021.07.14.452354; doi: https://doi.org/10.1101/2021.07.14.452354

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4226)
  • Biochemistry (9101)
  • Bioengineering (6751)
  • Bioinformatics (23943)
  • Biophysics (12087)
  • Cancer Biology (9493)
  • Cell Biology (13738)
  • Clinical Trials (138)
  • Developmental Biology (7615)
  • Ecology (11659)
  • Epidemiology (2066)
  • Evolutionary Biology (15477)
  • Genetics (10616)
  • Genomics (14293)
  • Immunology (9461)
  • Microbiology (22782)
  • Molecular Biology (9071)
  • Neuroscience (48869)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2564)
  • Physiology (3823)
  • Plant Biology (8308)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2290)
  • Systems Biology (6171)
  • Zoology (1297)