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Abstract 24 

Pancreatic ductal adenocarcinoma (PDAC) is a major research focus due to its poor therapy 25 

response and dismal prognosis.  PDAC cells adapt their metabolism efficiently to the 26 

environment to which they are exposed, often relying on diverse fuel sources depending on 27 

availability. Since traditional experimental techniques appear exhaustive in the search for a 28 

viable therapeutic strategy against PDAC, in this study, a highly curated and omics-informed 29 

genome-scale metabolic model of PDAC was reconstructed using patient-specific transcriptomic 30 

data. From the analysis of the model-predicted metabolic changes, several new metabolic 31 

functions were explored as potential therapeutic targets against PDAC in addition to the already 32 

known metabolic hallmarks of pancreatic cancer. Significant downregulation in the peroxisomal 33 

fatty acid beta oxidation pathway reactions, flux modulation in the carnitine shuttle system, and 34 

upregulation in the reactive oxygen species detoxification pathway reactions were observed. 35 

These unique metabolic traits of PDAC were then correlated with potential drug combinations 36 

that can be repurposed for targeting genes with poor prognosis in PDAC. Overall, these studies 37 

provide a better understanding of the metabolic vulnerabilities in PDAC and will lead to novel 38 

effective therapeutic strategies.  39 

 40 

Author summary 41 

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, with 42 

late diagnosis, early metastasis, insufficient therapy response, and very low survival rates. Due to 43 

these challenges associated with the diagnosis and treatment of PDAC, it has been a research 44 

area of interest. With the goal of understanding the metabolic reprogramming in proliferating 45 

PDAC cells, we reconstructed healthy and PDAC models by incorporating patient transcriptomic 46 

data into a genome-scale global human metabolic model. Comparing the metabolic flux space for 47 

the reactions in the two context-specific models, we identified significantly divergent pathways 48 

in PDAC. These results allowed us to further investigate growth-limiting genes in PDAC and 49 

identify potential drug combinations that can be repositioned for treatment of PDAC. 50 

 51 

Introduction 52 

Pancreatic ductal adenocarcinoma (PDAC), with poor prognosis, resistance to radio- and 53 

chemotherapy, and a five-year survival rate of only 8.2% is the most prevalent form of 54 
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pancreatic cancer and the third-leading cause of cancer-related morbidity in the USA[1]. Its poor 55 

prognosis can be attributed to its complicated and multifactorial nature, especially the lack of 56 

early diagnostic markers as well as its ability to quickly metastasize to surrounding organs[2-4]. 57 

Additionally, high rates of glycolysis and lactate secretion are observed in PDAC cells, fulfilling 58 

the biosynthetic demands for rapid tumor growth[1]. The combined action of regulatory T cells 59 

(Treg), myeloid-derived suppressor cells (MDSCs), and macrophages blocks theCD8+ T cell 60 

duties in tumor recognition and clearance and, ultimately, results in PDAC cells manifesting 61 

extensive immune suppression[2].  62 

 63 

PDAC microenvironment is greatly dominated by the presence of dense fibroblast stromal cells. 64 

In addition to creating an acidic extracellular environment, the dense stroma surrounding the 65 

tumor reduces oxygen diffusion into pancreas cells, resulting in hypoxia. In response to the 66 

reduced oxygen uptake, the tumor cells undergo metabolic reprogramming to favor Warburg 67 

effect metabolism12, which involves increased rates of glycolysis. Because cancer cells are 68 

characterized by unregulated growth, much of the cellular metabolism is hijacked to maximize 69 

the potential to generate biomass. Since PDAC cells are forced to live within a particularly 70 

severe microenvironment characterized by relative hypovascularity, hypoxia, and nutrient 71 

deprivation, these must possess biochemical flexibility in order to adapt to austere conditions. 72 

Rewired glucose, amino acid, and lipid metabolism and metabolic crosstalk within the tumor 73 

microenvironment contribute to unlimited pancreatic tumor progression. The metabolic 74 

alterations of pancreatic cancer are mediated by multiple factors. These cells survive and thrive 75 

mainly in three ways: (1) Reprogramming intracellular energy metabolism of nutrients, including 76 

glucose, amino acids, and lipids; (2) Improving nutrient acquisition by scavenging and recycling; 77 

(3) Conducting metabolic crosstalk with other components within the microenvironment[5]. In 78 

addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely 79 

related to chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Thus, 80 

investigations of metabolism not only benefit the understanding of carcinogenesis and cancer 81 

progression but also provide new insights for treatments against pancreatic cancer. A better 82 

understanding of the metabolic dependencies required by PDAC to survive and thrive within a 83 

harsh metabolic milieu could reveal specific metabolic vulnerabilities.  84 
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Systemic chemotherapy is presently the most frequently adopted treatment strategy for PDAC. 85 

However, chemotherapy treatments often show limited success due to intrinsic and acquired 86 

chemoresistance[6, 7]. While many previous studies have predicted potential biomarkers for 87 

therapeutic purposes, including the ribonucleotide reductase catalytic subunits M1/2 (RRM1/2), 88 

an enzyme catalyzing the reduction of ribonucleotides, or the human equilibrative nucleoside 89 

transporter 1 (hENT1), a transmembrane protein, the treatment with drugs (i.e., gemcitabine and 90 

other combinatorial drugs) often failed [8-12]. The hypoxic microenvironment is also resistive to 91 

radiation dosage, reducing the efficacy of radiotherapy. In addition, the overexpression of key 92 

regulators of the DNA damage response (e.g., RAD51 in PDAC) has been reported to contribute 93 

to the accelerated repair of DNA damage [128, 129]. Several genes have been reported to be 94 

frequently mutated in PDAC (i.e., KRAS, CDKN2A, TP53, and SMAD4)[13, 14] and, therefore, 95 

received increased attention as potential drug targets [15-19]. However, successful therapeutic 96 

strategies are yet to be developed [20-22]. The downstream events of metabolic reprogramming 97 

are considered as prominent hallmarks of PDAC[23]. Therefore, tackling this aggressive cancer 98 

through establishing a clear understanding of its metabolism has been a critical challenge to the 99 

scientific and medical communities. Since the underlying mechanism of these drug-resistive 100 

metabolic traits are only poorly understood, it warrants the use of novel computational 101 

techniques to understand the metabolic landscape of tumor progression and further compliment 102 

the going experimental efforts.  103 

The increase in knowledge of macromolecular structures, availability of numerous biochemical 104 

database resources, advances in high-throughput genome sequencing, and increase in 105 

computational efficiency have accelerated the use of in silico methods for metabolic model 106 

development and analysis, biomarkers/therapeutic target discovery, and drug development[24-107 

29]. These models provide a systems-level approach to studying the metabolism of tumor cells 108 

based on conservation of mass under pseudo-steady state condition. Since genome-scale 109 

metabolic models are capable of efficient mapping of the genotype to the phenotype [30-35], 110 

integrating multi-level omics data with these models enhances their predictive power and allows 111 

for a systems-level study of the metabolic reprogramming happening in living organisms under 112 

various genetic and environmental perturbations or diseases. Applications of the genome-scale 113 

metabolic modeling to cancer includes network comparison between healthy and cancerous cells, 114 
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gene essentiality and robustness studies, integrative analysis of omics data, and identifying 115 

reporter pathways and reporter metabolites [36-40]. For example, Turanli et. al used metabolic 116 

modeling to pinpoint drugs that could effectively hinder growth of prostate cancer[37]. Similarly, 117 

Katzir, et. al mapped the reactions and pathways in breast cancer cells using a human metabolic 118 

model and various "omics" datasets[41]. Pancreatic cell and pancreatic cancer metabolism have 119 

been modeled before as a part of reconstructing draft models of several human cell types aimed 120 

at identification of anticancer drug through personalized genome-scale metabolic models [28, 121 

42]. Although a pan-cancer analysis of the metabolic reconstructions of ~4000 tumors were 122 

attempted recently [43], the models generated were tasked with only finding the origin of the 123 

cancer-specific genes and reactions, and were not essentially curated and refined to achieve a 124 

high level of predictability. Kinetic modeling of the pancreatic tumor proliferation was also 125 

attempted, by modeling the glycolysis, glutaminolysis, tricarboxylic acid cycle, and the pentose 126 

phosphate pathway to find enzyme knockout or metabolic inhibitions suppressing the tumor 127 

growth [44]. While these studies have advanced our understanding of the metabolic landscape of 128 

pancreatic ductal adenocarcinoma or cancer in general, there is still necessity of a highly curated 129 

and predictive genome-scale metabolic model in order to have a system-level understanding of 130 

the metabolic changes. 131 

 132 

To understand the PDAC-associated metabolic reprogramming that involves changes in the 133 

metabolic reaction fluxes and metabolite levels, genome-scale metabolic reconstructions of the 134 

healthy human pancreas and the PDAC cells encompassing the genes, metabolites, and reactions, 135 

were developed. This reconstruction process utilized patient transcriptomic dataset from the 136 

Cancer Genome Atlas (https://www.cancer.gov/tcga). The models were used to elucidate the 137 

altered metabolism of PDAC cells compared to the healthy pancreas. A concise schematic of the 138 

workflow in this study is presented in Figure 1. Upon incorporation of the transcriptomic data, 139 

the shifts in reaction flux spaces were observed across the metabolic network, notably in 140 

glycolysis, pentose phosphate pathway, TCA cycle, fatty acid biosynthesis, Arachidonic acid 141 

metabolism, carnitine metabolism, cholesterol biosynthesis, and ROS detoxification metabolism. 142 

Many of the observed metabolic shifts are in accordance with previously identified cancer 143 

hallmarks in omics-based studies. In addition, unique metabolic behavior was observed in 144 

mitochondrial and peroxisomal fatty acid beta oxidation, various parts of lipid biosynthesis and 145 
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degradation, and ROS detoxification, which are discussed as potential for prognostic biomarkers. 146 

Significant downregulation in the peroxisomal fatty acid beta oxidation pathway reactions was 147 

observed in this study, which explains the shifts in cellular energy production and storage 148 

preference during pancreatic tumor proliferation. Furthermore, flux modulation in the carnitine 149 

shuttle system and the upregulation in the reactive oxygen species detoxification pathway 150 

reactions that was observed in this study indicate the unique strategies the PDAC cells adopt for 151 

survival. Potential drug repositioning and synergistic interaction between existing drugs that 152 

repressed the differentially expressed genes with poor prognosis in PDAC were identified. These 153 

findings manifest the predictive capabilities of genome-scale metabolic models at the reactome-154 

level and can potentially direct new therapeutic approaches. 155 

 156 
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Figure 1: Schematic of the workflow for generating healthy pancreas and PDAC model and 158 

elucidating the metabolic divergence in PDAC.  159 

 160 

Results and Discussion 161 

Tissue-specific consensus pancreas metabolic reconstruction using transcriptomics data 162 

A metabolic model describes reaction stoichiometry and directionality, gene-protein-reaction 163 

associations (GPRs), organelle-specific reaction localization, transporter/exchange reaction 164 

information, transcriptional/translational regulation, and biomass composition[45]. By defining 165 

the metabolic space, genome-scale metabolic models can assess allowable cellular phenotypes 166 

and explore the metabolic potential and restrictions under specific disease conditions[46]. The 167 

latest global human metabolic reconstruction, Human1[47], is an extensively curated, genome-168 

scale model of human metabolism. It unified two previous and parallel model reconstruction 169 

lineages by the Systems Biology community, namely the Recon[48-50] and the Human 170 

Metabolic Reaction (HMR)[51, 52] series using an open-source version-controlled repository. In 171 

addition to curating the aggregated reconstruction, Human1 addressed issue with duplication, 172 

reaction reversibility, mass and energy conservation, imbalance, and constructed a new generic 173 

human biomass reaction based on various tissue and cell composition data sources. This 174 

standardized model allowed us to conveniently integrate omics data to develop a pancreas-175 

specific metabolic reconstruction.  176 

 177 

The transcriptomic data used to customize the global human model to a pancreatic reconstruction 178 

was obtained from the Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/tcga). 179 

The Cancer Genome Atlas contains genomic, epigenomic, transcriptomic, and proteomic data on 180 

33 cancer types in human, and is publicly available for the scientific research community. To 181 

obtain a representative set of transcriptomic data on both healthy and cancerous pancreas cells, 182 

18 samples from the TCGA-PAAD project that contained quantified RNASeq transcriptomic 183 

data, were used. These samples contained Fragments Per Kilobase of transcript per Million 184 

mapped reads (FPKM) data of individuals from different ethnic backgrounds, ages, and sexes. 185 

Since the dataset accounted for a numerical expression value of every single of the 60483 genes 186 

across all the samples without any unique genes in the samples, the dataset was filtered for genes 187 

with no read count across samples. After that, 50392 genes remained, out of which 3628 188 
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metabolic genes overlapped with the genes in the Human1 metabolic reconstruction[47]. 189 

Differential gene expression analysis of the metabolic genes within the transcriptomic dataset 190 

from TCGA revealed 102 significantly differentially expressed genes, among which 53 showed 191 

significant upregulation and 49 showed repression in PDAC cells compare to healthy pancreatic 192 

cells (see details in Methods). Genes involved in glycolysis/gluconeogenesis, fatty acid and 193 

cholesterol biosynthesis, tRNA synthesis, Arachidonic acid metabolism, protein kinases, 194 

glutathione metabolism, RNA polymerase, DNA repair, mitochondrial beta oxidation, cytosolic 195 

carnitine metabolism, leukotriene and linoleate metabolism, and estrogen metabolism were 196 

consistently upregulated in all PDAC samples. On the other hand, genes related acylgylyceride 197 

metabolism, peroxisomal beta oxidation, mitochondrial and peroxisomal carnitine metabolism, 198 

several peroxidases, chondroitin, keratan, and heparan sulfate biosynthesis, glycerolipid 199 

metabolism, and different types of vitamin metabolism, including vitamins B12, D, and E, 200 

showed significant downregulation in PDAC. The complete results of differential gene 201 

expression analysis are presented in Supplementary information 1.  202 

 203 

The preliminary pancreas metabolic reconstruction was obtained using the FPKM values for the 204 

3628 metabolic genes in the TCGA dataset by iMAT[53] (details in the Methods section). It 205 

contained 3,628 genes, catalyzing 7,076 reactions, involving 4,415 metabolites located in 8 206 

intracellular compartments (Cytosol, Mitochondria, Inner mitochondria, Golgi apparatus, 207 

Lysosome, Nucleus, Peroxisome, and Endoplasmic reticulum). The reactions are distributed 208 

across 133 different pathways, the largest of which include transport reactions, exchange/demand 209 

reactions, fatty acid oxidation, and peptide metabolism. Flux Variability Analysis[54] found that 210 

the 1444 reactions across 54 pathways could occur an unreasonably high rate not supported by 211 

thermodynamics, which are named unbounded reactions. The pathways contributing the largest 212 

number of unbounded reactions were transport, fatty acid oxidation, nucleotide metabolism, and 213 

drug metabolism. After the model had been refined by rectifying reaction imbalances and 214 

identifying and fixing infeasible cycles using Optfill[55] (see a complete list in Supplementary 215 

information 2), a thermodynamically feasible intermediate metabolic reconstruction of the 216 

pancreas encompassing all the reactions in both healthy and cancerous pancreas cells was 217 

obtained. This reconstruction was used as a baseline for generating the healthy and cancerous 218 

genome-scale pancreas metabolic model. 219 
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 220 

Metabolic models of PDAC and healthy pancreas cell 221 

The healthy pancreas and PDAC models were reconstructed from the consensus metabolic 222 

reconstruction of the pancreas. The Integrative Metabolic Analysis tool (iMAT)[53] was used to 223 

customize the model according to the gene expression values and corresponding ranking of the 224 

reactions (see methods section for details) in both healthy and PDAC cells. The healthy cell 225 

model contains 3,628 genes, catalyzing 6,384 reactions, across 129 pathways, involving 4,703 226 

metabolites, while the PDAC cell model contains 3,628 genes, catalyzing 5,872 reactions, across 227 

127 pathways, involving 4,381 metabolites. In both models, the pathways involving the largest 228 

number of internal reactions include fatty acid oxidation, cholesterol formation, peptide 229 

metabolism, and transport reactions. Supplementary information 3 and 4 contain the genome-230 

scale metabolic model of the healthy and cancerous pancreas cells in Systems Biology markup 231 

Language level 3 version 1, respectively.  232 

 233 

Figure 2 shows further details of the two models. While there are 5180 reactions overlap between 234 

the healthy and PDAC models, they have 1204 and 692 unique metabolic reactions, respectively 235 

(see Figure 2A and 2B). The unique reactions are distributed across divergent pathways in these 236 

two models (Figure 2C). The PDAC model distinctly shows better completeness of the Acyl-237 

CoA hydrolysis, leukotriene metabolism, and starch and sucrose metabolism. On the other hand, 238 

many pathways have a more complete presence in the healthy cell model, including amino acid 239 

metabolism, structural carbohydrates (heparan and keratan sulfate) degradation, glycan 240 

metabolism, bile acid synthesis, and TCA cycle. While the more complete Acyl-CoA hydrolysis 241 

and sugar metabolism have been known to be associated with cancer cells, particularly 242 

interesting are the more complete leukotriene metabolism and lack of structural carbohydrate 243 

degradation pathways in the PDAC cell. It has been reported that the leukotrienes derived from 244 

membrane phospholipids play an important role in carcinogenesis [56, 57]. Furthermore, 245 

glycosaminoglycans (e.g., keratan sulfate, heparan sulfate, chondroitin sulfate) degradation in 246 

lysosomes are part of the normal homeostasis of glycoproteins. These molecules must be 247 

completely degraded to avoid undigested fragments building up and causing a variety of 248 

lysosomal storage diseases [58]. Lack of these degradation pathways in the PDAC indicate an 249 
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increased accumulation of glycosaminoglycans in the tumor cell, which have previously been250 

associated with cancer metastasis [59, 60]. 251 

 252 

253 

Figure 2: Model statistics for the healthy pancreas and the PDAC models. A) Numbers of254 

Genes, Reactions, and Metabolites, B) overlap and uniqueness of metabolic reactions (Blue:255 

Healthy, Red: PDAC), and C) Most divergent pathways between the two models.  256 

 257 

Unique metabolic traits in PDAC  258 

The mathematically feasible flux ranges of the reactions in the healthy and PDAC models were259 

assessed (see details in Methods sections) to explore the distinct shifts in PDAC cell metabolism.260 

In Figure 3, the pathways with the biggest fraction of reaction fluxes significantly upregulated261 

and downregulated are shown (a more detailed version is presented in Supplementary262 

Information 5). While the observed metabolic shifts agree with the differential gene expression263 

results discussed above, they also reveal some unique metabolic traits in PDAC. The model264 

simulation results capture the most well-known metabolic hallmarks of pancreatic ductal265 

adenocarcinoma. For example, the expansion of the flux space of the reactions in glycolytic266 

pathways, bile acid biosynthesis, nucleotide metabolism, pentose phosphate pathway, and267 
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arachidonic acid metabolism is consistent with many studies[19, 23, 56] on pancreatic cancer in268 

recent years.  269 

270 

Figure 3: Significantly upregulated and downregulated pathways in PDAC cell metabolism. The271 

bars (red: downregulated, blue: upregulated) represent the percentage of the total number of272 

reactions in the respective pathway that changed their flux ranges.  273 

 274 

These major metabolic reprogramming in pancreatic ductal adenocarcinoma arises from the275 

well-known Warburg effect[61] due to constitutive activation of KRAS oncogene [62, 63].276 

KRAS activation in PDAC cells upregulates the uptake of glucose and enhance the glycolytic277 

flux, including the production of lactate through lactate dehydrogenase (which demonstrates278 

expanded flux ranges in PDAC) and channels carbon flux into the hexosamine biosynthetic279 

pathway and pentose phosphate pathway. Both primary and metastatic PDAC tumors280 

demonstrate increased glycolytic gene expression [64]. Notably, upregulation of pentose281 

phosphate pathway and the downstream nucleotide biosynthesis pathway has been implicated in282 

PDAC progression and therapy resistance [65-71]. Increased bile acid secretion has previously283 

been identified in PDAC patients, which is indicative of tumor expansion into the bile duct[72]284 
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and may result in bile acid reflux into the pancreatic duct and acinar cells, from which PDAC is 285 

derived[73]. NR1D1, one of the two differentially expressed regulator genes, positively regulates 286 

bile acid synthesis[74], indicating a possible link between overexpression of that gene and PDAC 287 

carcinogenesis through increased bile acid synthesis. In addition, glutamine metabolism is vastly 288 

reprogrammed to balance the cellular redox homeostasis. Glutamine is sequentially converted to 289 

glutamate and aspartate in the mitochondria, which is shuttled into cytoplasm and eventually 290 

generates NADPH after a series of reactions to maintain redox homeostasis. The regeneration of 291 

NAD+ as an upstream substrate of NADH production is, therefore, an absolute requirement 292 

PDAC cell survival, particularly when mitochondrial demands escalate. Alterations in glucose 293 

and glutamine metabolism have also been linked with poor response to chemotherapy in PDAC 294 

[68, 71, 75]. 295 

 296 

Reactions in the arachidonic acid metabolism and leukotriene metabolism were observed to 297 

expand their flux space in PDAC. The two distinct branches of arachidonic acid metabolism, 298 

mainly driven by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), were found to have 299 

significantly expanded their flux space in PDAC model. Several studies have reported that 300 

eicosanoid metabolism, especially arachidonic acid (AA) metabolizing enzymes including 301 

prostaglandins and leukotrienes (LT), play an important role in carcinogenesis [56, 57]. 302 

Specifically, the eicosanoids formed via COX-2 and 5-LOX metabolism directly contribute to 303 

pancreatic cancer cell proliferation in human[76]. Leukotrienes are also known to initiate 304 

inflammation and mount adaptive immune responses for host defense[77]. Prostaglandins have 305 

also been shown to regulate tumorigenesis in PDAC [78]. 306 

 307 

While the Warburg model explains these shifts to a great extent, especially in increased uptake of 308 

glucose and subsequent increased oxidative phosphorylation, recent studies have shown that the 309 

balance between glycolysis and oxidative phosphorylation may not always be in homeostatic. 310 

Rather,  the metabolic reprogramming happening in PDAC is highly dynamic and dependent on 311 

the harsh tumor microenvironment [79]. Therefore, it is imperative to investigate other less 312 

suspected sources of unique metabolic traits of PDAC cells. Simulating the flux space of the 313 

PDAC cell model and comparing that with the healthy pancreas model allows us to examine the 314 
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distinct changes metabolism in the reaction and pathway level. These observations are concisely 315 

presented in Figure 4. 316 

 317 

Increased abundance of acetyl-CoA and upregulated mitochondrial carnitine metabolism result in 318 

more carnitine and acyl-carnitine (mostly acetyl-carnitine) in the mitochondria. Carnitine can be 319 

transported to the cytosol and accumulated in biomass. Recent findings have suggested that 320 

carnitine shuttle could be considered as a gridlock to trigger the metabolic flexibility of cancer 321 

cells [80, 81]. Carnitine shuttle system is involved in the bidirectional transport of acyl moieties 322 

between cytosol to mitochondria, thus playing a fundamental role in tuning the switch between 323 

the glucose and fatty acid metabolism. This is crucial for the mitochondrial fatty acid beta-324 

oxidation and maintaining normal mitochondrial function (balancing the conjugated and free 325 

CoA ratio) [82]. Higher burning of long-chain fatty acids produces increased energy for the cell 326 

to survive [83]. The available acetyl-CoA can be fed into the TCA cycle to produce more energy 327 

or acetyl moieties can be repurposed in the nucleus to recycle acetyl group for histone 328 

acetylation [84]. Thus, the carnitine shuttle system plays a significant role in tumor by supplying 329 

both energetic and biosynthetic demand for cancer cells[84].  330 

 331 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452356
http://creativecommons.org/licenses/by-nc-nd/4.0/


332 

Figure 4: Distinct metabolic features of PDAC cell. ACLY: ATP-citrate lyase; Asp: aspartate;333 

FASN: fatty acid synthase; Gln: glutamine; GLS1: glutaminase; Glu: glutamate; GOT: glutamic-334 

oxaloacetic transaminase; GPX: glutathione peroxidase; GSH: glutathione reduced; GSSG:335 

glutathione oxidized; LDHA: lactate dehydrogenase A; ME: malic enzyme; OAA: oxaloacetic336 

acid; TCA: tricarboxylic acid; VLC: very long chain. 337 

 338 

While the mitochondrial beta oxidation pathway reactions primarily showed an expansion in flux339 

space, all of the reactions in the peroxisomal beta oxidation pathway shrunk their flux space.340 

This is an interesting feature of pancreatic ductal adenocarcinoma, since peroxisomal beta341 

oxidation pathway was found to be upregulated in some cancer types [85] and downregulated in342 

others [86-88]. The primary differences between fatty acid beta oxidation in mitochondria and343 

peroxisome is the chain length at which fatty acids are synthesized and the associated product.344 

Mitochondria catalyze the beta oxidation of the majority of the short to long-chain fatty acids,345 

and primarily generate energy, while peroxisomes are involved in the beta oxidation of very-346 

long-chain fatty acids and generate H2O2 in the process [89]. This means that while347 

 

te; 

-

G: 

tic 

ux 

ce. 

eta 

 in 

nd 

ct. 

ds, 

-

ile 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452356
http://creativecommons.org/licenses/by-nc-nd/4.0/


mitochondrial beta-oxidation is governed by the energy demands of the cells, peroxisomal beta-348 

oxidation does not. Peroxisomal beta-oxidation is mostly involved in biosynthesis of very-long-349 

chain fatty acids and do not produce energy, while the mitochondrial pathway is related to 350 

mostly catabolism and is coupled to ATP production [90]. Therefore, it is expected that the 351 

rapidly proliferating and energy-demanding tumor cells will favor the more energy-efficient 352 

mitochondrial pathways instead of the less required very-long-chain fatty acid-producing 353 

peroxisomal pathways. Furthermore, the reduction of the peroxide byproduct by downregulating 354 

the peroxisomal beta oxidation pathways reduces the oxidative stress, which helps the cancer cell 355 

to survive.  356 

Lipid metabolism is essential for cancer progression since it provides the necessary building 357 

blocks for cell membrane formation and produces signaling molecules and substrates for the 358 

posttranslational modification of proteins. However, the role of fatty acids in pancreatic cancer is 359 

complicated and still not very well understood. In PDAC, we observe that reactions participating 360 

in de novo fatty acid biosynthesis, fatty acids elongation, and cholesterol biosynthesis pathways 361 

are upregulated, including citrate synthase, ATP citrate lyase, fatty acid synthase, and coenzyme 362 

A reductase. Overexpression of these lipogenic enzymes in PDAC have been reported in some 363 

previous studies as well [91-93]. Of note, increased fatty acid biosynthesis has been shown to 364 

impart poor chemotherapy responsiveness [93]. At the initial step of de novo lipid synthesis, 365 

ATP-citrate lyase (ACLY) converts citrate to acetyl-CoA, which is then channeled to cytoplasm. 366 

Acetyl-CoA and malonyl-CoA are coupled to acyl-carrier protein domain of fatty acid synthase 367 

(FASN) and the downstream genes to synthesize mono- and poly-unsaturated as well as 368 

saturated fatty acids [94]. Acetyl-CoA is also converted to cholesterol and cholesterol ester. This 369 

observation agrees with the elevated expression of HMG-CoA (3-hydroxy-3-methylglutaryl-370 

Coenzym-A) reductase and LDLR (low density lipoprotein receptor) in a mouse model with 371 

PDAC [95]. In addition to higher intercellular lipid synthesis, uptake of extracellular lipids is 372 

also increased in PDAC. This indicates an increased demand of nutrients for rapid proliferation 373 

that the PDAC cells have to meet for survival. 374 

Lactate dehydrogenase (LDHA) enzyme has shown a reversal of direction and increase in flux 375 

space in PDAC compared to healthy pancreas cell model, in the direction of lactate production. 376 

The overexpression of LDHA in pancreatic cancer and its ability to induce pancreatic cancer cell 377 
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growth have been reported by Rong et al. in 2013 [96]. In addition, they showed that knocking 378 

down the LDHA in the pancreatic cancer cells significantly inhibited the cell growth revealing 379 

the oncogenic trait of LDHA and its association with poor prognosis [96]. LDHA overexpression 380 

and its association with the poor survival outcome have also been reported [97]. Although a 381 

complete mechanistic insight behind the causal effect of upregulation of LDHA could not be 382 

established yet, it potentially serves as an independent prognostic marker of PDAC. 383 

 384 

Potential Drug Repurposing 385 

The uniqueness in gene expression and metabolic profile in PDAC cells allows for an extended 386 

search for potential drug-gene interactions. In addition to that, the ever-increasing challenges 387 

associated with the therapy-resistance of PDAC have necessitated the repurposing of old drugs. 388 

Leveraging the development in the various data-driven approaches, drug repurposing is 389 

becoming an efficient way of drug discovery which is cost effective. We identified 25 genes 390 

associated with poor prognosis in pancreatic cancer which had an overexpression in PDAC (see 391 

Supplementary information 6 for a complete list). In Figure 5, These genes are the shown to be 392 

associated with several drug currently in use in human, which are at different stages of the 393 

approval process. The edges connecting the drug to the genes indicated the evidence of 394 

repressive effects on the genes, according to DrugBank Pharmaco-transcriptomic database [98]. 395 

Several of these drugs have potential synergistic association between each other, as shown in 396 

Figure 5. These non-oncology drugs can potentially target not only known but also hitherto 397 

unknown vulnerabilities in pancreatic cancer. While many of the drugs are either approved (e.g., 398 

Ofloxacin, Ciprofloxacin) or at the investigational stage (e.g., Puromycin) for treating other 399 

diseases in the human body, some of these drugs (e.g., troglitazone) has been withdrawn from 400 

the market due to risk of severe liver failure that can be fatal [99, 100]. Nonetheless, they are still 401 

included in this association study, since newer studies have revealed anti-proliferative activities 402 

of the derivatives of this drug in other cancer types [101-104], which can result in an improved 403 

benefit-to-risk ratio for these drugs as well as suggest new drug combinations for reduced 404 

hepatotoxicity [105]. 405 

 406 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452356
http://creativecommons.org/licenses/by-nc-nd/4.0/


407 

 408 

 409 

 410 

Figure 5: Potential drug interactions with upregulated genes in PDAC with poor prognosis. Edge411 

thickness between the genes denote the correlation coefficient and the size of the nodes denote412 

the magnitude of the gene expression fold change value in PDAC. 413 

 414 

Since these drug-gene association are predicted in different tissue or disease systems and are a415 

result of text mining through literature, we furthered our analysis of these associations by416 

validating their effect on the fitness of the pancreatic cancer cell. To this end, we checked the417 

inhibition effect on PDAC biomass when each of these genes are knocked out. The strongest418 

growth inhibiting effect was observed when SLC2A1 was knocked out, resulting in a no-growth419 

phenotype during out model simulations. SLC2A1 encodes major small sugar transporter across420 

cellular membrane and between cellular organelles[106-110]. With its broad substrate421 

specificity, SLC2A1 can transport a wide range of aldoses including both pentoses and422 

hexoses[110]. This is not only a rate limiting factor in sugar transport [107, 111], promoting423 
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aggressive tumor proliferation but also have been observed to be deregulated in pancreatic ductal 424 

adenocarcinoma [112]. Therefore, SLC2A1 appears to be a high-confidence target for 425 

repositioning of the drugs repressing its expression, including fluoroquinolone-based antibiotics 426 

Ofloxacin and Ciprofloxacin. Other moderately growth-inhibiting genetic perturbations include 427 

monocarboxylate transporter (SLC16A1), which is responsible for catalyzing the proton-428 

linked transport of monocarboxylates such as L-lactate, pyruvate, and the ketone bodies [113]; 429 

Methylenetetrahydrofolate Dehydrogenase (MTHFD1), which is closely coupled with nuclear de 430 

novo thymidylate biosynthesis [114]; and Cytochrome C Oxidase Subunit 6B2 (COX6B2), which 431 

accelerates oxidative phosphorylation, NAD+ generation, and cell proliferation [115].  432 

 433 

To adapt to severe metabolic constraints, PDAC cells rely on specific metabolic reprogramming, 434 

thus offering innovative therapeutic strategies in the future. In this study, we attempted to 435 

identify a few poorly explored metabolic traits of PDAC cells, which can potentially complement 436 

the ongoing effort of finding novel therapeutic targets against pancreatic cancer. While many 437 

aspects of the pancreatic tumor progression have been studied with help of transcriptomics, 438 

proteomics, and metabolomics, this metabolic model-based study helps unravel the reactome 439 

layer of biochemical features that are associated with PDAC. While this systems-level metabolic 440 

analysis incorporates a relatively small sample size of clinical data, this allows us to assess the 441 

genome-scale changes in metabolism under tumor progression, and therefore can unravel 442 

previously unknown mechanistic insights into cancer cell proliferation as well as identify 443 

potential drug associations and synergistic drug combinations that can be repurposed. A better 444 

understanding of the metabolic dependencies needed to survive harsh conditions will uncover 445 

metabolic vulnerabilities and guide alternative therapeutic strategies.  446 

 447 

Methods 448 

Transcriptomic data processing 449 

Transcriptomic data of 18 individuals (16 PDAC, 2 healthy normal) was obtained from the 450 

Cancer genome atlas (https://www.cancer.gov/tcga). The Fragments Per Kilobase of transcript 451 

per Million mapped reads were used as the input of differential gene expression analysis. The 452 

transcriptomic data included FPKM information for 60,483 genes for each of the samples. The 453 

FPKM values were filtered to exclude the genes with zero expression values throughout samples. 454 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452356
http://creativecommons.org/licenses/by-nc-nd/4.0/


The DESeq algorithm in R software package “Bioconductor” was used for differential gene 455 

expression analysis [116]. DESeq employs negative binomial distribution and a shrinkage 456 

estimator for the distribution’s variance methods to test for differential expression [116]. Genes 457 

with a log2 (foldchange) value of 2 or higher were considered overexpressed and genes with a 458 

log2 (foldchange) value of -2 or lower were considered underexpressed, while satisfying an 459 

adjusted p-value of <0.05 [117]. Heatmap was generated using Morpheus 460 

(https://software.broadinstitute.org/morpheus) from the Broad Institute. 461 

 462 

Co-expression analysis with regulatory genes 463 

Of the 490 differentially expressed genes, two over-expressed genes (NR1D1 and FOSL1) were 464 

identified as regulatory genes using the Human Protein Atlas. A list of the genes regulated by 465 

each of these genes was obtained from RegNetwork[118]. The expression patterns of the two 466 

regulatory genes and their targets were examined to develop gene co-expression networks with 467 

the goal to identify highly co-expressed genes that could be considered regulators for genes 468 

expressed in PDAC. A threshold of >0.7 was used on Pearson's correlation coefficient with a p-469 

value of <0.05 for the development of the co-expression networks. Correlation clusters were 470 

developed grouping highly correlated genes to produce the co-expression networks. Network 471 

visualization was performed in Cytoscape[119] version 3.8.2 with manual repositioning. Gene 472 

expression data was visualized with varying node sizes, and correlation coefficients between 473 

genes were visualized with edge color and thickness.   474 

 475 

Preliminary pancreas metabolic reconstruction 476 

A genome-scale metabolic model of a pancreatic cell describing reaction stoichiometry, 477 

directionality, and gene-protein-reaction (GPR) association was built by mapping these 478 

transcriptomic datasets to the latest global human metabolic model, Human1[47]. This global 479 

human model contains 13,417 reactions, 10,135 metabolites, and 3,628 genes, as of the github 480 

repository down in December 2020. This tissue-specific pancreas metabolic reconstruction was 481 

obtained from the Human1 model using the Integrative Metabolic Analysis Tool (iMAT)[53]. 482 

First, the reactions from the Human1 model were assigned artificial “expression values” (see Zur 483 

et al, 2010[53] for details) based on their associated gene and its corresponding expression 484 

values in the TCGA data. These expression values were then grouped into 3 categories: highly 485 
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expressed, moderately expressed, and lowly expressed. Expression values greater than half a 486 

standard deviation above the mean were considered highly expressed and assigned a value of 1. 487 

Expression values less than half a standard deviation below the mean were considered lowly 488 

expressed and assigned a value of -1. Expression values that fell within a half a standard 489 

deviation of the mean were considered moderately expressed and assigned a value of 0. The 490 

expression for the Human1 biomass reaction was manually set to 1 so the biomass equation and 491 

all the other necessary reactions producing biomass precursors are included in the model. The 492 

iMAT algorithm then generated a model using the reaction expression information and reactions 493 

in the Human1 model.  494 

 495 

Flux Balance Analysis 496 

Flux Balance Analysis (FBA)[120] was used to analyze the model performance during the 497 

different stages of refinement. The model was represented by a stoichiometric matrix, where the 498 

columns were representative of metabolites, and the rows representative of reactions. Constraints 499 

were imposed on the reactions given by upper and lower bounds for each based on nutrient 500 

availability and other conditions. FBA gives the flux value for each reaction in the model 501 

according to the following optimization formulation: 502 
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In this formulation, I is the set of metabolites and J is the set of reactions in the model. Sij is the 503 

stoichiometric coefficient matrix representing a model with i metabolites and j reactions, and vj is 504 

the flux value of each reaction. The objective function, vbiomass, is representative of the growth 505 

rate of an individual cell. LBj and UBj are the minimum and maximum flux values allowed for 506 

each reaction.  507 

 508 

Model curation  509 

The consensus model was curated through the classic design-build-test-refine cycle[121] to 510 

accurately reflect the metabolic capabilities of a pancreatic cell. Three reactions contained 511 
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imbalances either in their stoichiometries or molecular formulas, and these imbalances were 512 

rectified. For reactions with imbalances caused by stoichiometric inaccuracies, changes were 513 

made to the stoichiometric coefficient matrix of the model. For reactions whose imbalances were 514 

due to incorrect molecular formulas, fixes were applied to the metabolic formula section of the 515 

model (see details in Supplementary information 2).  516 

 517 

Thermodynamically infeasible cycles (TICs) are groups of reactions whose products, reactants, 518 

and directionality create a loop that allows unlimited flux to pass through each reaction, yielding 519 

no net consumption or production of metabolites. The presence of these cycles allows for many 520 

reactions in the model to occur at a very high rate even through the nutritional input to the model 521 

is negligible (or zero), which is unrealistic. These reactions are called unbounded reactions. It is 522 

important to eliminate these cycles to ensure the flux values for each reaction are 523 

thermodynamically feasible. Flux Variability Analysis (FVA) was performed on the model to 524 

identify mathematically possible flux ranges of the reactions in the model as well as identify the 525 

unbounded reactions. Unbounded reactions are characterized by flux distributions that hit the 526 

upper and/or lower bounds in FVA when all the metabolic uptake reactions are turned off. This 527 

initial analysis revealed 1444 unbounded reactions in the model, across multiple pathways 528 

including transport, fatty acid oxidation, nucleotide metabolism, and drug metabolism. The 529 

thermodynamically infeasible cycles comprising these unbounded reactions were identified using 530 

OptFill[55]. OptFill identifies TICs through iteratively identifying the smallest number of 531 

reactions with nonzero flux for which the sum of their fluxes is 0. All uptakes are turned off for 532 

OptFill so that all reactions carrying high flux are involved in a TIC. These cycles were 533 

eliminated by i) removing duplicate reactions from the model(s), ii) restricting reaction 534 

directionality if there is literature evidence of thermodynamic information, iii) removing 535 

erroneous reactions, and iv) using correct cofactors in reactions (for example NAD vs NADP) if 536 

that information is available.  (complete details in Supplementary information 2). 932 reactions 537 

were modified in total. 609 reactions were turned off because they were duplicates of other 538 

reactions or lumped reactions. 23 reactions that were initially irreversible were made reversible if 539 

there was literature evidence indicating their reversibility. 286 reactions that were initially 540 

reversible were made irreversible in the forward direction, and 14 initially reversible directions 541 
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were made irreversible in the backward direction. When turning reactions off to fix cycles, it was 542 

ensured that all essential reactions remained active in the model.  543 

 544 

Hypergeometric test for reaction enrichment analysis 545 

Hypergeometric enrichment test was used to identify reaction pathways which are 546 

overrepresented in the set of reactions with altered flux space. The list of reactions with changing 547 

flux spaces obtained from running flux variability analysis was used to conduct a two-tailed 548 

hypergeometric test. This test was used to obtain the pathways showing significant 549 

representation in the list of altered reactions.  550 
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In this equation, P(X=k) is the probability that there are k reactions by chance with altered flux 552 

space in a given subsystem. K is the total number of reactions in a given subsystem, N is the total 553 

number of reactions in the model, and n is the total number of reactions in the model with altered 554 

flux space. The hypergeometric test was conducted for overrepresentation in each pathway in the 555 

model. For P(X=k) < 0.05, it is likely that the subsystem is over-represented due to a high 556 

number of altered reactions in the pathway rather than by chance. The p-values were then 557 

subjected to multiple-hypothesis correction using Benjamini-Hochberg method[122] using False 558 

Discovery Rate with α=0.05. From this, a list of pathways in the model most affected by PDAC 559 

was obtained.  560 

 561 

Drug interaction analysis 562 

From the list of differentially expressed genes in the PDAC model, those associated with poor 563 

prognosis were identified using the Human Protein Atlas (http://www.proteinatlas.org). The 564 

differentially expressed genes associated with poor prognosis were then identified as potential 565 

therapeutic targets. For each of these genes, a list of drugs and their activation or repression 566 

effects were obtained from the DrugBank Pharmaco-transcriptomic database[98].  567 

 568 

Software and hardware resources 569 
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The General Algebraic Modeling System (GAMS)[123] version 24.7.4 was used to run FBA, 570 

FVA, and the OptFill algorithm on the model. GAMS was run on a high-performance cluster 571 

computing system at the Holland Computing Center of the University of Nebraska-Lincoln. The 572 

COBRA Toolbox[124, 125] version 3.0 in Matlab version 9.6.0.1174912 (R2019a) was used to 573 

run iMAT[53], identify essential reactions and reaction imbalances, and run FBA and FVA on 574 

the model.  575 
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