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Abstract— The automated feature extraction capabilities of 

deep learning classifiers have promoted their broader application 

to EEG analysis. In contrast to earlier machine learning studies 

that used extracted features and traditional explainability 

approaches, explainability for classifiers trained on raw data is 

particularly challenging. As such, studies have begun to present 

methods that provide insight into the spectral features learned by 

deep learning classifiers trained on raw EEG. These approaches 

have two key shortcomings. (1) They involve perturbation, which 

can create out-of-distribution samples that cause inaccurate 

explanations. (2) They are global, not local. Local explainability 

approaches can be used to examine how demographic and clinical 

variables affected the patterns learned by the classifier. In our 

study, we present a novel local spectral explainability approach. 

We apply it to a convolutional neural network trained for 

automated sleep stage classification. We apply layer-wise 

relevance propagation to identify the relative importance of the 

features in the raw EEG and subsequently examine the frequency 

domain of the explanations to determine the importance of each 

canonical frequency band locally and globally. We then perform a 

statistical analysis to determine whether age and sex affected the 

patterns learned by the classifier for each frequency band and 

sleep stage. Results showed that δ, β, and γ were the overall most 

important frequency bands. In addition, age and sex significantly 

affected the patterns learned by the classifier for most sleep stages 

and frequency bands. Our study presents a novel spectral 

explainability approach that could substantially increase the level 

of insight into classifiers trained on raw EEG. 

Keywords— Explainability, Spectral Analysis, Automated Sleep 

Staging, Electrophysiology 

I. INTRODUCTION 

The frequency domain of electroencephalograms (EEG) is a 
rich source of information on brain function and has played a 
vital role in EEG analyses over previous decades. Many studies 
have used traditional machine learning approaches to gain 
insight into EEG data. These studies have often used spectral 
features and standard explainability methods or interpretable 
classifiers [1]. The growth of deep learning has presented new 
opportunities for EEG analysis and automated feature extraction 

[2]. However, the use of automated feature learning with raw 
EEG data complicates the problem of explainability. 

Training neural networks on raw data makes explainability 
difficult because typical deep learning explainability methods 
like layer-wise relevance propagation (LRP) [3] find the 
importance of each time point [4]. An importance value for each 
time point is too complicated to draw useful conclusions. There 
is thus a great need for approaches to gain insight into spectral 
features learned by deep learning models trained on raw EEG.  

Strategies to do this include: (1) interpretable classifiers and (2) 
post-hoc explainability methods. Interpretable classifiers use 
specialized filters that restrict the domain of learnable features 
to only spectral features [5][6]. This restriction is problematic if 
one desires to learn more than just spectral features. Post-hoc 
approaches do not have the same restrictions as interpretable 
classifiers [7]–[9]. However, they have key shortcomings. (1) 
Most approaches have used frequency domain perturbation. (2) 
Most approaches are global, not local, explainability methods.  

Perturbation methods can create out-of-distribution samples that 
may prevent them from accurately explaining a classifier [10]. 
All but one approach has used frequency domain perturbation 
[7]–[9]. In that study, the authors combined activation 
maximization and LRP [9]. Global methods show the relative 
importance of each frequency band to the overall performance 
of the classifier. Local methods explain the importance of each 
frequency band to the classification of individual samples. They 
can also be used to form a global estimate of feature importance 
[11]. Local methods have a key advantage over global methods. 
They can be used for insight into how demographic and clinical 
variables affect the patterns learned by the classifier for different 
frequency bands and different classes [11]. Most post-hoc 
spectral explainability studies have used global approaches [7], 
[8]. Only one study has presented a local approach [12]. 

Gradient-based feature attribution (GBFA) methods offer an 
alternative that addresses the shortcomings of existing studies 
[13]. GBFA methods provide local explanations and do not 
perturb samples. They give importance values for each point in 
an input sample based upon the importance of the features that 
those points compose. As such, periodic features like sinusoids 
of a particular frequency should have reoccurring explanations, 
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and an analysis of the frequency domain of the explanations 
should indicate the relative importance of each frequency. 

In our study, we present a novel spectral explainability approach 
that addresses the key shortcomings of existing methods. We 
train a convolutional neural network (CNN) for automated sleep 
stage classification. We apply LRP, a popular GBFA method 
and perform a Fast Fourier Transform (FFT) of the explanations 
to estimate frequency band importance. We then perform a 
statistical analysis of the local spectral explanations to determine 
whether participant age and sex affected the patterns learned by 
the classifier for each sleep stage and canonical frequency band. 

II. METHODS 

Here we describe the data, preprocessing, classifier, 

explainability approach, and statistical analyses of our study. 

A. Description of Data 

We used the Sleep Cassette subset of the Sleep-EDF dataset 
[14] on Physionet [15]. The dataset was originally used in [16] 
to examine the effects of age and sex upon sleep. It had 153 
approximately 20-hour recordings from 78 participants (41 
female and 37 male). Participants varied in age from 25 to 101 
years with a mean (μ) of 58.79 years and a standard deviation 
(σ) of 22.15 years. We analyzed the EEG Fpz-Cz electrode. The 
data were recorded at a sampling frequency of 100 Hertz (Hz). 
Technicians annotated each 30-second segment as Unmarked, 
Movement, Awake, Rapid Eye Movement (REM), non-REM 1 
(NREM1), NREM2, NREM3, and NREM4. 

B. Description of Data Preprocessing 

We separated each recording into 30-second samples. We 
removed Unmarked and Movement samples and removed all 
Awake samples from the start of each recording. We combined 
NREM3 and NREM4 into NREM3 [17]. To ensure that Awake 
had the same number of samples as NREM2 (i.e., the other 
majority class), we removed some Awake samples at the end of 
the recordings. We z-scored each recording. Our final dataset 
had 215,668 samples and was imbalanced with Awake, NREM1, 
NREM2, NREM3, and REM composing 39.43%, 9.98%, 
32.05%, 6.05%, and 22.98% of the data, respectively. 

C. Description of Classifier 

 We used a CNN architecture developed in [18]. Figure 1 
shows the architecture. We used 10-fold cross-validation with 
training, validation, and test sets having 63,7, and 8 randomly 
assigned participants, respectively. We used categorical cross-

entropy loss with class-based weighting to account for data 
imbalance. We used Adam with an adaptive learning rate 
starting at 0.001 and decreasing by an order of magnitude after 
each five epochs without an increase in validation accuracy. To 
assess classifier performance, we computed the μ and σ of the 
precision, recall, and F1 score for each class across folds. 

D. Description of Explainability Approach 

 We used LRP in our study [3]. LRP was first developed for 
image analysis but has been applied to electrophysiology [4]. 
We used the Innvestigate toolbox to implement LRP [19]. In 
LRP, a sample is fed to a classifier and the output node for the 
top class is assigned a total relevance value of 1. Based upon 
relevance rules, portions of that relevance are iteratively 
assigned to each previous layer until they are propagated to the 
input layer of the network. Relevance can be positive or 
negative. Positive and negative relevance identify features that 
support the classification of a sample as its assigned class and as 
a class other than its assigned class, respectively. We used 2 
relevance rules: the ε-rule and αβ-rule. The ε-rule has a 
parameter (ε) that filters smaller relevance values during 
propagation when increased. The αβ-rule has parameters α and 
β that control the portion of positive and negative relevance that 
are propagated, respectively. We used the ε-rule with values of 
0.01 and 100 and the αβ-rule (α = 1, β = 0). After applying LRP 
to each raw EEG test sample, we performed an FFT of the 
relevance assigned to each sample and averaged the power of 
the relevance assigned to each frequency bin. We used δ (0 – 4 
Hz), θ (4 – 8 Hz), α (8 – 12 Hz), β (12 – 25 Hz), and γ (25 – 50 
Hz). The values for each particular frequency band reflected the 
relative importance of each frequency bin. We displayed the 
local results for each sample over time for the ε-rule (ε = 100). 
We also computed the mean absolute relevance for each 
frequency band and classification group across folds to 
approximate the global importance of each frequency band. 

E. Description of Statistical Analyses 

 To examine the effects of sex and age upon patterns learned 
by the classifier for each sleep stage and correct classification 
group, we trained an ordinary least squares regression model 
with age and sex as independent variables and the relevance of 
a frequency band as the dependent variable. This enabled us to 
control for the effects of each variable when examining the 
relationship of the other variable with the local explanations. We 
analyzed the explanations for the ε-rule (ε = 100). We repeated 
the regression analysis for each frequency band. We then used 

 
Fig. 1. CNN Architecture. i) had 6 1D convolutional (conv1d) layers. The first repeat had two conv1d layers with 16 filters and a kernel size of 5, a max 

pooling layer with a pool size of 2, and a spatial dropout layer with a rate = 0.01. The second repeat had two conv1d layers with 32 filters and a kernel size 
of 3, a max pooling layer with a pool size of 2, and a spatial dropout layer with a rate of 0.01. The third repeat had 2 conv1d layers with 32 filters and a 

kernel size of 3, max pooling with a pool size of 2, and spatial dropout with a rate of 0.01. In ii), the last two conv1d layers had 256 filters with a kernel 

size of 3 and were followed by global max pooling and dropout with a rate of 0.01. The first dense layer had 64 nodes and a dropout layer with a rate of 
0.1, and the second dense layer had 64 nodes and a dropout layer with a rate of 0.05. The last dense layer had 5 nodes. Layers with an “R” or “S” were 

followed by ReLU or Softmax activation functions, respectively. 
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false discovery rate correction with the sex p-values and with the 
age p-values to account for multiple comparisons (α = 0.05). 

III. RESULTS AND DISCUSSION 

We describe and discuss the results for the spectral LRP and 
statistical analyses. We also discuss the study limitations and 
potential future work. 

A. Performance Results 

Table 1 shows the CNN’s performance results. The classifier 
performed most effectively for Awake and least effectively for 
NREM1. This is interesting given that Awake and NREM1 are 
the largest and nearly the smallest classes, respectively. NREM1 
performance may have also been particularly low because 
NREM1 and REM are similar and have been combined into a 
single class in some previous studies [20]. The model performed 
well for NREM2, NREM3, and REM, obtaining best F1 and 
precision for NREM2 and best recall for NREM3. 

B. Global Approximation of Frequency Band Importance 

 Figure 2 shows the results for our global approximation of 
frequency band importance. Overall, δ, β, and γ seemed to be the 
most important frequency bands for the correct classification 
groups. For correctly classified Awake, the results differed 
slightly across LRP rules. For the ε-rule (ε = 0.01 and 100), γ 
was the most important frequency band, though γ was not as 
important as δ for the αβ-rule. Both the ε-rule (ε = 100) and αβ-
rule identified δ as more important than β, and all three relevance 
rules identified γ as more important than β. For NREM1, all three 
relevance rules identified γ as most important, and the ε-rule (ε 
= 0.01 and 100) identified β as more important than δ. The ε-
rule (ε = 100) and αβ-rule identified δ as the most important 
frequency bin for NREM2, and all three relevance rules found β 
more important than γ. For NREM3, the ε-rule (ε = 100) and αβ-
rule found δ to be most important. The ε-rule (ε = 0.01) and αβ-
rule found β to be second most important for NREM3. 
Interestingly, the ε-rule (ε = 100) indicated that θ might have 
been more important than γ. For REM, γ was the most important 
frequency band for the ε-rule (ε = 0.01 and 100). Based upon the 
ε-rule (ε = 100) and αβ-rule, δ was the second most important 
frequency band for REM. β was the third most important, 
followed by θ and α. It is probable that instances in which the ε-
rules disagreed with the αβ-rule that there were particularly large 
amounts of negative relevance, and in instances where the ε-rule 
(ε = 100) and αβ-rule disagreed with the ε-rule (ε = 0.01), it is 
likely that the noisiness of ε-rule (ε = 0.01) was problematic. 

Across classes incorrect classification groups had slight 
differences relative to correct classification groups in how the 
mean absolute power of the relevance was distributed across 
folds for nearly all frequency bands. In some cases, incorrect 
classification groups had different levels of variance in their 
importance distributions across folds (e.g., the ε-rule with ε = 

0.01 and 100 for NREM3 classified as NREM2 in γ and δ in REM 
classified as Awake). In instances, where incorrect classification 
groups had higher variance than correct classification groups, 
that could indicate that the incorrect patterns learned related to a 
particular class varied across folds while the correct patterns 
remained more consistent across folds.  

C. Frequency Band Importance Over Time 

 Figure 3 shows the importance of each frequency band for a 
120-minute segment of a recording from Participant 7. The 
importance of some frequency bands seems to vary throughout 
the recording. The δ importance increased from 0 to 60 minutes, 
held a consistent level of peak importance from 60 to 80 minutes 
during REM, decreased again at around 85 minutes, increased 
up to around 110 minutes, and decreased again. Most of the 
increases in δ importance were associated with increases in δ 
activity. In contrast, γ began with a peak level of importance that 
waned from 0 to 20 minutes during the transition from NREM1 
to NREM2. Early in the recording θ transitioned from a state of 
low importance to a state of oscillating relatively high and low 
importance. The α importance was consistently low. The β 
importance started at higher levels and remained high until 
NREM3 onset at around 45 minutes. 

D. Effects of Age and Sex On Local Explanations 

 Figure 4 shows the results for the statistical analysis that we 
performed to identify the effects of age and sex on the local 
explanations. Most frequency bands and classification groups 
had significant relationships with age and sex, which is not 
unexpected given that the dataset was collected to study the 
effects of age and sex upon sleep [16].  

For age, a red coefficient value in Figure 4 indicated that 
importance for that frequency band and class increased with age. 
Age had a mix of positive and negative relationships with 
frequency band class importance. The largest magnitude effects 
of age were found for δ, β, and γ, though age did have a moderate 
effect on θ for NREM2. Interestingly, in NREM1, γ importance 
decreased with age, which corresponded with more importance 
for all other frequency bands with increased age. For NREM2, β 
and γ importance decreased with age, which corresponded with 
increased importance for all other frequency with age. NREM3 
δ importance also decreased with age, while β and γ importance 
increased with age. In contrast, REM δ importance increased 
with age while β and γ importance decreased with age.  

For sex, a red coefficient in Figure 4 indicated that males had 
more importance for that frequency band and class than females. 
Sex had a mix of positive and negative effects upon frequency 
band importance across classes. The strongest effects were in δ, 
β, and γ and θ to a lesser degree. There were some instances in 
which sex seemed to have no significant effect (e.g., REM δ, 
NREM1 α, and NREM3 γ). In a few cases, frequency bands 
demonstrated opposite changes in importance based upon sex. 

TABLE I.  CLASSIFICATION PERFORMANCE RESULTS 

 Awake NREM1 NREM2 NREM3 REM 

F1 91.28±02.53 41.94±03.07 77.38±03.32 66.59±11.32 68.71±05.97 

Precision 96.82±01.44 36.10±05.23 84.97±04.09 57.45±11.33 64.88±10.75 

Recall 86.45±04.27 52.04±08.26 71.66±07.23 80.66±14.96 74.57±02.58 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452360
http://creativecommons.org/licenses/by-nc-nd/4.0/


Males had more Awake γ importance than females and less δ and 
θ than females. Males also had more NREM3 β than females but 
less δ than females. In some minor cases, there were 
corresponding changes in frequency band importance (e.g., 
NREM1 δ and θ importance was greater in females while β and 
γ importance were greater in males). 

E. Limitations and Future Work 

 In this study, we applied three LRP relevance rules 
individually. Using different relevance rules for different parts 
of the network might improve the explanation quality [21]. 
Additionally, other GBFA methods that might provide better 

explanations [22]. For our statistical analysis of the effects of 
age and sex upon the classifier, we only examined correct 
sample groups. Future studies might examine the effects of age 
and sex upon explanations for incorrect classification. While the 
focus of our paper was on our novel explainability approach 
rather than our classifier, other deep learning architectures have 
obtained higher classification performance than the architecture 
that we used. The use of state-of-the-art classifiers might enable 
the use of our approach for automated biomarker identification. 

 
Fig. 2. Global Approximation of Frequency Band Importance. Plot shows results for all folds. From left to right in each group of boxes are results for the 
LRP ε-rule (0.01), ε-rule (100), and α-β-rule. The title of each panel shows the number of samples in each classification group. Correct and incorrect 

classification groups are shown in the panels on the left-to-right diagonal and off the left-to-right-diagonal, respectively. The y-axis is the mean absolute 

power of the relevance. The x-axis indicates the frequency bands analyzed. Interestingly, δ, β, and γ were the most important frequency bands overall. 
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IV. CONCLUSION 

In this study, we trained a classifier for automated sleep stage 

classification and presented a novel approach for local spectral 

insight into deep learning classifiers trained on raw EEG data. 

In contrast to the majority of existing approaches that require 

the ablation or modification of the spectral domain of data and 

risk creating out-of-distribution samples, our approach avoids 

that problem altogether. We then performed a statistical 

analysis that enabled us to examine the effects of age and sex 

upon the patterns learned by the classifier for each frequency 

band and sleep stage. Our results indicated that δ, β, and γ were 

the most important frequency bands across most sleep stages. 

We further found that age and sex significantly affected the 

patterns learned by the classifier for most sleep stages and 

frequency bands. Our study offers a novel approach with the 

potential to significantly improve the insight that can be gained 

for classifiers focused on EEG classification. 
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Fig. 4. The Effect of Age and Sex on Frequency Band Importance for ε = 100. Panels A and B show the effects of age and sex on frequency band importance, 
respectively. The x-axis of each panel shows the class corresponding to each column, and the y-axes show the frequency band corresponding to each row. 

The heatmaps indicate the coefficients resulting from the regression analysis. White blocks indicate frequency bands and classes that are not significantly 

affected by the demographic variable (i.e., p > 0.05). Colored blocks indicate coefficients with corresponding significant p-values (p < 0.05) following 
correction. Asterisks * and ** indicate coefficients with corresponding significant p-values at p < 0.01 and p < 0.001 after FDR correction, respectively. 

For age, a red coefficient indicates that importance for that frequency band and class increased with age. For subject sex, a red coefficient indicates that 

importance for that frequency band and class was higher in males than females. 
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