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Abstract 25 

Background 26 

The contribution of microRNAs (miRNAs) to mRNA regulation has often been 27 

explored by selecting specific sets of downregulated genes and determining whether 28 

they harbor binding sites for miRNAs. One essential flaw of this approach is that it does 29 

not discriminate whether mRNA downregulation takes place at the transcriptional or 30 

post-transcriptional levels. In the current work, we aimed to overcome this limitation by 31 

performing an exon-intron split analysis (EISA) on skeletal muscle and adipose tissue 32 

RNA-seq data from two independent pig populations. 33 

Results 34 

The EISA analysis revealed that in both cases the number of genes with significant 35 

transcriptional (Tc) signals (|FC| > 2; q-value < 0.05) was substantially higher than the 36 

number of genes showing significant post-transcriptional (PTc) signals, suggesting that 37 

most changes in gene expression are driven by effectors acting at the transcriptional 38 

level. We also observed important discrepancies between the lists of differentially 39 

expressed genes and those detected with EISA, thus demonstrating that the combination 40 

of both approaches yields a more comprehensive view about the molecular processes 41 

under study. We have also explored the potential contribution of miRNAs to the post-42 

transcriptional regulation of mRNAs. A total of 43 and 25 mRNA genes showed high 43 

PTc signals in adipose and skeletal muscle tissues, respectively. From these, 25 and 21 44 

genes were predicted as mRNA targets of upregulated miRNAs in adipose (N = 4) and 45 

skeletal muscle (N = 6) tissues, respectively. Enrichment analyses of the number of 46 

targeted genes by upregulated miRNAs revealed relevant results only for the skeletal 47 

muscle dataset, thus suggesting that in this experimental system the contribution of 48 

miRNAs to mRNA repression is more prominent than in the adipose tissue 49 
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experimental system. Finally, the EISA analysis made possible to identify several genes 50 

related to carbohydrate and/or lipid metabolism, which may play relevant roles in the 51 

energy homeostasis of the pig skeletal muscle (e.g., DKK2 and PDK4) and adipose (e.g., 52 

SESN3 and ESRRG) tissues. 53 

Conclusions 54 

Overall, the use of EISA reinforced the usefulness of this approach to discern 55 

transcriptional and post-transcriptional regulatory mechanisms, as well as to disentangle 56 

miRNA-mRNA interactions using exonic and intronic fractions of commonly available 57 

RNA-seq datasets. 58 

 59 

Keywords: Exon-intron split analysis, microRNA, pigs, energy homeostasis. 60 
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Background 72 

The post-transcriptional repression of mRNA expression plays a fundamental role 73 

towards shaping fine-tuned biological responses to environmental changes [1]. Such 74 

regulation can take place at multiple levels including splicing, 3′-cleavage and 75 

polyadenylation, decay or translation, and its main effectors are RNA binding proteins 76 

and non-coding RNAs [1]. Of particular importance are microRNAs (miRNAs), which 77 

are primarily engaged in the post-transcriptional control of gene expression through 78 

inhibition of translation and/or destabilization of target mRNAs by poly(A) shortening 79 

and subsequent degradation [2].  80 

A high number of differential expression studies have been performed in pigs during the 81 

last decade [3–11], which have made possible to detect many genes that are 82 

downregulated in response to certain stimuli. One of the main limitations of these 83 

studies is that the transcriptional and post-transcriptional components of gene regulation 84 

are not independently analyzed. This means that genes that are transcriptionally 85 

upregulated and post-transcriptionally downregulated, or vice versa, might not be 86 

detected as significantly differentially expressed (DE). Another disadvantage of this 87 

approach is that it does not provide insights about the causes of the observed 88 

downregulation of RNA transcripts. For instance, research studies have typically 89 

focused on specific sets of downregulated genes harboring binding sites for DE 90 

miRNAs in order to disentangle regulatory functions driven by miRNAs [12–18]. This 91 

approach, however, is flawed by the fact that the set of downregulated genes is a 92 

mixture of loci that are repressed either at the transcriptional or post-transcriptional 93 

levels (or both). Making such distinction is essential to understand at which level of the 94 

mRNA life-cycle regulation is taking place. Besides, relevant genes are selected after 95 
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differential expression analyses and by the performance of an ad hoc search of predicted 96 

interactions between the 3’-UTRs of mRNAs and the seed regions of miRNAs.  97 

A powerful approach to overcome these difficulties was developed by Gaidatzis et al. 98 

[19], who proposed that the magnitude of the post-transcriptional component can be 99 

deduced by comparing the amounts of exonic and intronic reads. Based on this 100 

assumption, these authors devised a methodology denoted exon-intron split analysis 101 

(EISA), which separates the transcriptional and post-transcriptional components of gene 102 

regulation. By considering that intronic reads are mainly derived from heterogeneous 103 

nuclear RNAs (unprocessed mRNAs or pre-mRNAs), they assessed the magnitude of 104 

the transcriptional regulation. Such approach is based on early reports describing the 105 

intronic expression as a proxy of nascent transcription and co-transcriptional splicing 106 

events [20–22], which was later reinterpreted to infer the transcriptional fate of cells 107 

[23]. In this way, a gene showing similar levels of intronic reads in two different states 108 

but a strong downregulation of exonic reads after applying a certain treatment or 109 

challenge (nutrition, infection, temperature etc.), could be indicative of post-110 

transcriptional repression [19,24,25]. Previous reports have also explored the use of 111 

specific techniques to capture nascent mRNA transcripts before they are spliced [26–112 

28], and these have been used to account for the transcriptional activity in a similar 113 

approach to EISA [29]. 114 

The main goal of the present study was to investigate the contribution of miRNAs to 115 

post-transcriptional regulatory responses in the skeletal muscle and adipose tissue of 116 

pigs by using the EISA methodology, combined with in silico prediction of miRNA-117 

mRNA interactions and covariation analyses. To achieve this goal, we have used two 118 

different experimental systems related with porcine energy homeostasis: (1) skeletal 119 
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muscle samples from fasting and fed Duroc gilts, and (2) adipose tissue samples from 120 

Duroc-Göttingen F2 minipigs with divergent fatness profiles.  121 

 122 

 123 

Methods 124 

Experimental design, sampling and processing 125 

A description of the two experimental systems used to assess the importance of miRNA 126 

mediated regulation of mRNA expression in pigs is provided below: 127 

(i) Duroc pigs: Twenty-three gilts divided in two fasting/feeding regimes, i.e., 11 gilts 128 

(AL-T0) slaughtered in fasting condition and 12 gilts (AL-T2) slaughtered immediately 129 

after 7 h of having access to food [9,16,30]. Immediately after slaughtering, gluteus 130 

medius (GM) skeletal muscle samples were collected and snap-frozen at -80°C. 131 

(ii) Duroc-Göttingen minipig F2 inter-cross: Ten individuals fed ad libitum with 132 

divergent fatness profiles for body mass index (BMI, 5 lean and 5 obese) were selected 133 

from the UNIK resource population [31,32], as described in Jacobsen et al. 2019 [33]. 134 

Retroperitoneal adipose tissue was collected at slaughter and mature adipocytes were 135 

subsequently isolated following the protocol of Decaunes et al. 2011 [34] with 136 

modifications reported in [33].  137 

Further details about RNA-seq and small RNA-seq expression data generated from both 138 

experimental systems have been described in previous publications [9,16,33]. 139 

Sequencing reads generated in the RNA-Seq and small RNA-Seq datasets from both pig 140 

resources were trimmed with the Cutadapt software [35]. RNA-Seq reads were mapped 141 

with the HISAT2 aligner [36] using default parameters. In contrast, the Bowtie 142 

Alignment v.1.2.1.1 software [37] with small sequence reads specifications (bowtie -n 0 143 
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-m 20 -k 1 --best) was used to align small RNA-Seq reads. The Sscrofa11.1 porcine 144 

reference assembly [38] was used to map sequences. 145 

 146 

Exon/Intron quantification 147 

We generated exonic and intronic-specific annotations spanning all available genes by 148 

using the gtf formatted Sscrofa.11.1 v.103 gene annotation file (Ensembl repositories: 149 

http://ftp.ensembl.org/pub/release-103/gtf/sus_scrofa/). Overlapping intronic/exonic 150 

regions, as well as singleton positions were removed [39]. Each intronic region was 151 

trimmed by removing 10 nucleotides on both ends to avoid exonic reads mapping close 152 

to exon/intron junctions. We then used the featureCounts function included in the 153 

Rsubread package [40] to quantify gene expression profiles based on exon and intron 154 

expression patterns for each gene, independently. MiRNA expression profiles were 155 

estimated using the Sscrofa11.1 v.103 mature miRNA annotation with the 156 

featureCounts tool [41] in single-end mode and with default parameters. 157 

 158 

Exon/intron split analysis (EISA). 159 

We applied EISA to infer post-transcriptional gene regulation in our two independent 160 

porcine datasets. For this purpose, we separately estimated the exonic and intronic 161 

abundance of each annotated mRNA gene using the Sscrofa11.1 v.103 exon/intron 162 

custom annotation generated as described above. Only genes showing average 163 

expression values above 1 count-per-million in at least 50% of animals were retained 164 

for further analyses. Normalization was performed independently for exon and intron 165 

counts by multiplying each ith gene expression in each jth sample by the corresponding 166 

mean gene expression and dividing by the total number of quantified counts per sample 167 

[19]. Exonic and intronic gene abundances were subsequently log2 transformed, adding 168 
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a pseudo-count of 1 and averaged within each considered treatment groups (AL-T0 and 169 

AL-T2 for GM tissues and lean and obese for adipocyte isolates).  170 

Only genes with exonic and intronic regions showing successfully quantified read 171 

counts were considered in our analyses. Observed differences in each ith gene was 172 

expressed as the increment of exonic/intronic counts in fed (AL-T2) and obese animals 173 

with respect to fasting (AL-T0) and lean animals, respectively. In this way, the 174 

increment of intronic counts was calculated considering ΔInt = Int2i – Int1i, whereas the 175 

increment of exonic counts (ΔEx) was also calculated considering ΔEx = Ex2i – Ex1i. 176 

Consequently, the transcriptional (Tc) and post-transcriptional (PTc) components were 177 

calculated. The Tc contribution to the observed counts can be explained by ΔInt, while 178 

PTc was expressed as PTc = ΔEx – ΔInt. Both components were z-scored to represent 179 

comparable ranges between ΔEx and ΔInt estimates. We have used the intronic fraction 180 

of expressed mRNAs as a proxy of their transcriptional activity because this allows the 181 

use of RNA-seq datasets to apply EISA without the need of further experimental 182 

procedures, and it can also be applied to investigate transcriptional regulatory signals 183 

[25]. Correction for multiple hypothesis testing was implemented with the Benjamini-184 

Hochberg false discovery rate approach [42]. The statistical significance of the post-185 

transcriptional (PTc) scores was evaluated by incorporating the intronic quantification 186 

as an interaction effect for exonic abundances [19], and both transcriptional (Tc) and 187 

post-transcriptional (PTc) scores were considered significant at |FC| > 2 and q-value < 188 

0.05. Fasting Duroc gilts (AL-T0) as well as obese pigs from the Duroc-Göttingen line 189 

were classified as baseline controls, i.e., any given upregulation in ΔEx or ΔInt values 190 

represents and overexpression in fed (AL-T2) Duroc gilts or lean Duroc-Göttingen 191 

minipigs with respect to their fasting (AL-T0) and obese counterparts, respectively. 192 

 193 
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In order to obtain a prioritized list of genes showing relevant signals of post-194 

transcriptional regulation, the top 5% genes with the most negative PTc scores were 195 

retrieved (irrespective of their statistical significance after multiple testing correction). 196 

We only focused on genes showing strongly reduced ΔEx values of at least 2-fold for 197 

post-transcriptional signals in both experimental systems. All implemented analyses 198 

have been summarized in Additional file 1: Fig. S1. A ready-to-use modular pipeline 199 

for running EISA is publicly available at 200 

https://github.com/emarmolsanchez/EISAcompR.  201 

 202 

Differential expression analyses 203 

Differential expression analyses were carried out with the edgeR package [43] by 204 

considering the exonic counts of mRNAs, as well as miRNA expression profiles of the 205 

two experimental systems under study. Expression filtered raw counts for exonic reads 206 

were normalized with the trimmed mean of M-values normalization (TMM) method 207 

[44] and the statistical significance of mean expression differences was tested with a 208 

quasi-likelihood F-test [43]. Correction for multiple hypothesis testing was 209 

implemented with the Benjamini-Hochberg false discovery rate approach [42]. 210 

Messenger RNAs were considered as DE when the absolute value of the fold-change 211 

(FC) was higher than 2 (|FC| > 2) and q-value < 0.05. For miRNAs, |FC| > 1.5 and q-212 

value < 0.05 were used instead. This more lenient fold-change threshold was motivated 213 

by the fact that miRNAs are often lowly expressed and show more stable and subtle 214 

expression changes compared to mRNAs [16,45]. As defined in section 2.3, fasting 215 

Duroc gilts (AL-T0) as well as obese pigs from the Duroc-Göttingen line were classified 216 

as baseline controls in differential expression analyses. 217 

 218 
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miRNA target prediction 219 

Putative interactions between the seed regions of expressed miRNAs and the 3’-UTRs 220 

of expressed protein-coding mRNA genes were predicted on the basis of sequence 221 

identity using the Sscrofa11.1 reference assembly. The annotated 3’-UTRs longer than 222 

30 nts from porcine mRNAs and mature miRNA sequences were retrieved from the 223 

Sscrofa11.1 v.103 annotation available at BioMart (http://www.ensembl.org/biomart) 224 

and miRBase [46] databases. Redundant seeds from mature porcine microRNAs were 225 

removed. The seedVicious v1.1 tool [47] was used to infer miRNA-mRNA interactions. 226 

MiRNA-mRNA 8mer, 7mer-m8 and 7mer-A1 interactions were considered as the most 227 

relevant among the full set of potential ones [2,48,49]. 228 

Based on the study of Grimson et al. [48], the in silico-predicted miRNA-mRNA 229 

interactions matching any of the following criteria were removed: (i) Binding sites 230 

located in 3’-UTRs at less than 15 nts close to the end of the open reading frame (and 231 

the stop codon) or less than 15 nts close to the terminal poly(A) tail (E criterion), (ii) 232 

binding sites located in the middle of the 3’-UTR in a range comprising 45-55% of the 233 

central region of the non-coding sequence (M criterion), and (iii) binding sites that lack 234 

AU-rich elements in their immediate upstream and downstream flanking regions 235 

comprising 30 nts each (AU criterion). 236 

Covariation patterns between miRNAs and their predicted mRNA targets were assessed 237 

by computing Spearman’s correlation coefficients (ρ) with the TMM normalized and 238 

log2 transformed expression profiles of the exonic fractions of mRNA and miRNA 239 

genes. To determine the contribution of miRNAs to post-transcriptional regulation in 240 

the two experimental systems under study, only miRNA-mRNA predicted pairs 241 

comprising DE upregulated miRNAs (FC > 1.5; q-value < 0.05) and mRNA genes with 242 
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relevant PTc scores (see post-transcriptional signal prioritization section) were taken 243 

into consideration. 244 

 245 

miRNA target enrichment analyses 246 

We sought to determine if the overall number of mRNA genes with high post-247 

transcriptional signals (the ones with the top 5% negative PTc scores and reduced ΔEx 248 

values > 2-fold) were significantly enriched to be targets of at least one of the DE 249 

upregulated miRNAs (FC > 1.5; q-value < 0.05). That is, we predicted the overall 250 

number of targeted mRNA genes from those with high post-transcriptional signals and 251 

compared them with the number of predicted targets from the whole set of expressed 252 

mRNAs genes with available 3’-UTRs from both datasets. Enrichment analyses were 253 

carried out using the Fisher’s exact test implemented in the fisher.test R function. 254 

Significance level was set at a nominal P-value < 0.05. 255 

We also tested whether these genes were significantly enriched to be targets of at least 256 

one of the top 5% most highly expressed miRNA genes, excluding DE upregulated 257 

miRNAs, as well as of DE downregulated miRNAs (FC < -1.5; q-value < 0.05). Given 258 

the relatively low statistical significance of DE miRNAs observed in the UNIK Duroc-259 

Göttingen minipigs (lean vs obese), we considered miRNAs that were significantly (FC 260 

< -1.5; q-value < 0.05) and suggestively (FC > 1.5 and P-value < 0.01) upregulated as 261 

potential mRNA regulators. 262 

 263 

Gene covariation network and covariation enrichment score 264 

We computed pairwise correlation coefficients among the whole set of mRNA genes 265 

with q-value < 0.05 after differential expression analyses in the AL-T0 vs AL-T2 (N = 266 

454 genes) and lean vs obese (N = 299 genes). These correlations were compared with 267 
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those corresponding to the set of genes with relevant post-transcriptional signals and 268 

putatively targeted by DE upregulated miRNAs. Normalized exonic and intronic 269 

estimates in the log2 scale obtained from EISA analyses were used to compute 270 

Spearman’s correlation coefficients (ρ) for each potential pair of mRNA genes plus 271 

those showing post-transcriptional signals. Self-correlation pairs were excluded. 272 

Significant correlations were identified with the Partial Correlation with Information 273 

Theory (PCIT) network inference algorithm [50] implemented in the pcit R package 274 

[51]. Non-significant covarying pairs were set to zero, while a value of 1 was assigned 275 

to the significant ones with both positive or negative coefficients |ρ| > 0.6. 276 

The potential contribution of miRNAs to the observed covariation patterns was assessed 277 

by calculating a covariation enrichment score (CES) following Tarbier et al. 2020 [52]. 278 

Significant differences among the set of exonic, intronic and control CES values were 279 

tested with a non-parametric approach using a Mann-Whitney U non-parametric test 280 

[53]. Further details can be found in Additional file 2: Supplementary Methods. 281 

 282 

Estimating the expression levels of miRNAs and several of their predicted mRNA 283 

targets by qPCR 284 

The same total RNA extracted from adipocytes of lean and obese minipigs (according 285 

to BMI profiles, Additional file 3: Table S1), and used in the RNA-Seq experiment was 286 

subsequently employed for cDNA synthesis and qPCR verification. We chose the 287 

adipose tissue as target for qPCR analyses because the available RNA had a better 288 

quality than in skeletal muscle samples. Five mRNAs (LEP, OSBPL10, PRSS23, 289 

RNF157 and SERPINE2) among those with the top 5% post-transcriptional signal were 290 

selected for qPCR profiling. Two reference genes (TBP and ACTB, as defined by 291 

Nygard et al. 2007 [54]) were used for normalization. Accordingly, three of the most 292 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.07.14.452370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452370
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

significantly upregulated miRNAs were selected for qPCR profiling (ssc-miR-92b-3p, 293 

ssc-miR-148a-3p and ssc-miR-214-3p), plus two highly expressed non-DE miRNAs for 294 

normalization (ssc-let-7a and ssc-miR-23a-3p) from the lean vs obese small RNA-Seq 295 

dataset. Further details about qPCR experimental procedures are available in Additional 296 

file 2: Supplementary Methods. All primers for mRNA and miRNA expression 297 

profiling are available at Additional file 4: Table S2. Raw Cq values for each assay are 298 

available at Additional file 5: Table S3. 299 

 300 

 301 

Results 302 

The analysis of post-transcriptional regulation in muscle samples from fasting and 303 

fed Duroc gilts 304 

Differential expression and EISA analyses 305 

After the processing, mapping and quantification of mRNA and miRNA expression 306 

levels in GM skeletal muscle samples from Duroc gilts, an average of 45.2 million reads 307 

per sample (~93%) were successfully mapped to 31,908 genes annotated in the 308 

Sscrofa11.1 v.103 assembly (including protein coding and non-coding genes). Besides, 309 

an average of 2.2 million reads per sample (~42%) mapped to 370 annotated porcine 310 

miRNA genes. 311 

A total of 30,322 (based on exonic reads) and 22,769 (based on intronic reads) genes 312 

were successfully quantified after splitting the reference Sscrofa11.1 v.103 assembly 313 

between exonic and intronic features. The exonic fraction displayed an average of 314 

1,923.94 estimated counts per gene, whereas the intronic fraction showed an average of 315 

83.02 counts per gene. In other words, exonic counts were ~23 fold more abundant than 316 

those corresponding to intronic regions. 317 
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Differential expression analyses based on exonic fractions identified 454 mRNA genes 318 

with q-value < 0.05 (Additional file 6: Table S4). Among these, only genes with |FC| > 319 

2 were retained, making a total of 52 upregulated and 80 downregulated genes in the 320 

AL-T0 vs AL-T2 comparison (Additional file 6: Table S4 and Additional file 1: Fig. 321 

S2A). Besides, differential expression analyses on small RNA-seq data revealed 16 DE 322 

miRNAs, of which 8 were upregulated in AL-T2 pigs, representing 6 unique miRNA 323 

seeds (Additional file 7: Table S5). These non-redundant seeds of miRNAs 324 

significantly upregulated in fed animals (ssc-miR-148a-3p, ssc-miR-7-5p, ssc-miR-30-325 

3p, ssc-miR-151-3p, ssc-miR-374a-3p and ssc-miR-421-5p) were selected as potential 326 

post-transcriptional regulators of GM muscle mRNA expression in response to nutrient 327 

supply.  328 

On the other hand, EISA made possible to detect 133 genes with significant PTc scores 329 

(|FC| > 2; q-value < 0.05, Additional file 8: Table S6), of which three had at least 2-fold 330 

reduced ΔEx fractions and two out from these three had negative PTc scores among the 331 

top 5% with most negative ones (Table 1 and Additional file 8: Table S6). Among 332 

these 133 genes, only seven were also DE (5.26%, Additional files 6: Table S4 and 8: 333 

Table S6). When we analyzed the results provided by EISA regarding the 334 

transcriptional component (Tc), 344 genes displayed significant Tc scores (|FC| > 2; q-335 

value < 0.05, Additional file 8: Table S6). Among these 344 genes, 71 were also DE 336 

(20.63%, Additional files 6: Table S4 and 8: Table S6). Besides, 90 out of the 344 337 

genes (26.16%) also showed significant PTc scores (Additional file 8: Table S6), but 338 

none of them were among the mRNA genes displaying the top 5% negative PTc scores 339 

with at least 2-fold ΔEx reduction (N = 26, Table 1). 340 

 341 
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Table 1: mRNA genes with the top 5% post-transcriptional (PTc) scores and at least 2-342 

fold exonic fraction (ΔEx) reduction (equivalent to -1 in the log2 scale) of gluteus 343 

medius skeletal muscle samples from fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) 344 

Duroc gilts. 345 

ID Gene log2FCa ΔExb PTcc P-value q-value DEd 
miRNA 

target 

ENSSSCG00000032094 DKK2 -2.010 -1.431 -4.738 1.654E-05 3.830E-03  x 

ENSSSCG00000015334 PDK4 -2.108 -5.250 -4.698 4.693E-03 1.330E-01 x x 

ENSSSCG00000015037 IL18 -1.655 -1.191 -3.682 4.787E-03 1.340E-01 x x 

ENSSSCG00000005385 NR4A3 -1.337 -3.082 -3.646 4.038E-02 4.098E-01 x x 

ENSSSCG00000003766 DNAJB4 -1.391 -1.008 -3.348 8.358E-03 1.905E-01  x 

ENSSSCG00000015969 CHRNA1 -1.561 -1.339 -3.341 2.606E-03 9.406E-02 x x 

ENSSSCG00000039419 SLCO4A1 -1.055 -2.279 -3.180 2.820E-02 3.544E-01 x x 

ENSSSCG00000049158  -1.107 -1.096 -3.164 3.182E-02 3.735E-01  x 

ENSSSCG00000004347 FBXL4 -1.298 -1.126 -3.133 1.422E-03 6.520E-02 x x 

ENSSSCG00000004979 MYO9A -1.239 -1.003 -3.043 7.296E-03 1.731E-01  x 

ENSSSCG00000013351 NAV2 -1.163 -1.196 -2.863 2.605E-04 2.301E-02 x x 

ENSSSCG00000032741 TBC1D9 -0.913 -1.061 -2.736 1.534E-02 2.583E-01  x 

ENSSSCG00000031728 ABRA -1.238 -1.393 -2.704 1.295E-03 6.116E-02 x x 

ENSSSCG00000006331 PBX1 -0.891 -1.039 -2.480 1.135E-02 2.177E-01 x x 

ENSSSCG00000035037 SIK1 -1.357 -1.289 -2.475 3.999E-03 1.212E-01 x x 

ENSSSCG00000038374 CIART -1.027 -1.321 -2.052 1.543E-02 2.587E-01 x  

ENSSSCG00000023806 LRRN1 -0.776 -1.013 -1.983 1.580E-01 7.074E-01  x 

ENSSSCG00000009157 TET2 -0.381 -1.123 -1.792 4.880E-01 9.582E-01  x 

ENSSSCG00000011133 PFKFB3 -0.022 -2.256 -1.785 9.712E-01 9.987E-01 x x 

ENSSSCG00000002283 FUT8 -0.578 -1.286 -1.784 9.887E-02 6.059E-01 x x 

ENSSSCG00000023133 OSBPL6 -0.432 -1.088 -1.772 3.835E-01 9.108E-01 x  

ENSSSCG00000017986 NDEL1 -0.767 -1.644 -1.759 1.006E-02 2.081E-01 x x 

ENSSSCG00000031321 NR4A1 -0.630 -1.328 -1.720 6.298E-02 5.006E-01 x  

ENSSSCG00000035101 KLF5 -0.519 -1.487 -1.708 2.942E-01 8.488E-01 x x 

ENSSSCG00000004332 BACH2 -0.714 -2.105 -1.705 9.089E-02 5.861E-01 x x 

ENSSSCG00000017983 PER1 -0.773 -1.073 -1.627 3.000E-02 3.662E-01 x   

 346 

aLog2FC: estimated log2 fold change for mean exonic fractions from gluteus medius skeletal muscle samples of fasted 347 

AL-T0 and fed AL-T2 Duroc gilts; bΔEx: exonic fraction increment (Ex2 – Ex1) in log2 scale when comparing exon 348 

abundances in AL-T0 (Ex1) vs AL-T2 (Ex2) Duroc gilts; cPTc: post-transcriptional signal (ΔEx – ΔInt) in z-score 349 

scale. The q-value has been calculated with the false discovery rate (FDR) approach [42]. dDE: The “x” symbols 350 

indicate differentially expressed (DE) and downregulated genes (FC < -2; q-value < 0.05) according to their exonic 351 

counts, as well as those mRNA genes targeted by at least one of the upregulated miRNAs excluding redundant seeds 352 

(N = 6, Table S5). 353 

 354 
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To assess the contribution of miRNAs to the post-transcriptional regulation of mRNAs, 355 

protein-encoding genes displaying the top 5% negative PTc scores with at least 2-fold 356 

ΔEx reduction (N = 26, Table 1 and Additional file 1: Fig. S2B) were selected as 357 

putative miRNA-targets. One of them (ENSSSCG00000049158) did not have a 358 

properly annotated 3´-UTR so it was excluded from further analyses. Among this set of 359 

genes with high post-transcriptional signals (N = 25), 19 of them (76%) appeared as 360 

significantly downregulated (FC < -2; q-value < 0.05, Table 1 and Additional file 6: 361 

Table S4). 362 

 363 

Context-based pruning of predicted miRNA-mRNA interactions removes spurious 364 

unreliable target events 365 

As a first step to determine if mRNA genes with highly negative PTc scores and 366 

showing a marked reduction in exonic fractions were repressed by the 6 miRNAs 367 

upregulated in the muscle tissue of AL-T2 gilts (Additional file 7: Table S5), we 368 

investigated the accuracy and reliability of in silico predictions of miRNA binding sites 369 

in the 3’-UTRs of these mRNAs (Additional file 9: Table S7). We evaluated the 370 

enrichment in the number of genes with binding sites for at least one of the 6 miRNAs 371 

under consideration (ssc-miR-148a-3p, ssc-miR-7-5p, ssc-miR-30-3p, ssc-miR-151-3p, 372 

ssc-miR-374a-3p and ssc-miR-421-5p) over a random background of expressed genes 373 

with no context-based removal of predicted binding sites (see Methods). As depicted in 374 

Additional file 1: Figs. S3A and S3B, introducing additional context-based filtering 375 

criteria for removing spurious unreliable binding site predictions resulted in an overall 376 

increased enrichment of genes predicted to be targeted by miRNAs within the list of the 377 

top 1% (N = 12 genes, Additional file 1: Fig. S3A) and 5% (N = 25 genes, Additional 378 

file 1: Fig. S3B) genes with negative PTc scores and displaying at least 2-fold ΔEx 379 
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reduction. This significant enrichment was more evident when using the AU criterion, 380 

as shown in Additional file 1: Fig. S3A. However, we also detected a slight increment 381 

when adding the other two context-based removal criteria (M and E). These findings 382 

were more prominent when taking into consideration the list of the top 1% genes 383 

(Additional file 1: Fig. S3A) compared with that of the top 5% genes (Additional file 1: 384 

Fig. S3B). Nevertheless, an increased enrichment for targeted mRNAs by DE 385 

upregulated miRNAs was detectable for all combined filtering criteria, especially for 386 

7mer-A1 binding sites, and probably at the expense of the scarcer and more efficient 387 

8mer binding sites. 388 

 389 

Genes with relevant post-transcriptional signals detected with EISA are predicted 390 

targets of upregulated miRNAs 391 

Target prediction and context-based pruning of miRNA-mRNA interactions for mRNA 392 

genes displaying the top 5% negative PTc scores and at least 2-fold reduction in the 393 

ΔEx exonic fraction (N = 25 after excluding ENSSSCG00000049158; Table 1, Fig. 394 

1A) made possible to detect 11 8mer, 21 7mer-m8 and 22 7mer-A1 miRNA binding 395 

sites, corresponding to the six non-redundant seeds of DE miRNAs upregulated in AL-396 

T2 gilts (Additional file 7: Table S5), in 21 out of the 25 analyzed mRNAs (84%, 397 

Additional file 9: Table S7). Moreover, 15 out of these 21 genes (71.43%) were also 398 

DE (Table 1).  399 

This set of 21 mRNA genes with putative post-transcriptional repression mediated by 400 

miRNAs showed a significant enrichment in 8mer, 7mer-m8 and 7mer-A1 sites for the 401 

6 DE miRNAs upregulated in AL-T2 fed gilts, and this was especially relevant when 402 

combining these three types of binding sites (Fig. 1B). The miRNAs with the highest 403 

number of significant miRNA-mRNA correlation interactions were ssc-miR-30a-3p and 404 
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ssc-miR-421-5p, which showed nine and eight significant miRNA-mRNA interactions, 405 

followed by ssc-miR-148-3p with four significant interactions with mRNA genes 406 

displaying significant post-transcriptional signals (Additional file 9: Table S7). 407 

We also evaluated the enrichment of the mRNA genes within the list of the top 5% 408 

negative PTc scores and at least 2-fold ΔEx reduction (N = 25, Table 1) to be targeted 409 

by the following sets of miRNAs: (i) Non-redundant miRNA seeds downregulated in 410 

AL-T2 fed gilts (ssc-miR-1285, ssc-miR-758, ssc-miR-339, sc-miR-22-3p, ssc-miR-411 

296-5p, ssc-miR-129a-3p, ssc-miR-181c and ssc-miR-19b, Additional file 7: Table S5), 412 

(ii) the top 5% most expressed miRNAs, excluding those being also upregulated (ssc-413 

miR-1, ssc-miR-133a-3p, ssc-miR-26a, ssc-miR-10b, ssc-miR-378, ssc-miR-99a-5p, 414 

ssc-miR-27b-3p, ssc-miR-30d, ssc-miR-486 and ssc-let-7f-5p), and (iii), iterative (N = 415 

100) random sets of 10 expressed miRNAs, irrespective of their DE and abundance 416 

status, as a control test. None of these additional analyses recovered a significant 417 

enrichment for any type of the three considered miRNA target subtypes (Fig. 1B).  418 

The mRNA with the highest and most significant PTc score was the Dickkopf WNT 419 

Signaling Pathway Inhibitor 2 (DKK2), so this gene was a strong candidate to be 420 

repressed by miRNAs (Table 1). Indeed, DKK2 was the only gene harboring two 421 

miRNA 8mer binding sites (Additional file 9: Table S7). Interestingly, this locus was 422 

not DE according to differential expression analyses (Table 1 and Additional file 6: 423 

Table S4). The discordance between EISA and differential expression results can be 424 

fully appreciated by comparing Fig. 1A (genes with high post-transcriptional repression 425 

after EISA) and Fig. 1C (differential expression analysis), where only 19 out of the 26 426 

initial mRNA genes highlighted by EISA appeared as significantly downregulated in the 427 

differential expression analysis (Table 1). Although several of the mRNA genes shown 428 

in Table 1 were highly downregulated (Additional file 6: Table S4), e.g., pyruvate 429 
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dehydrogenase kinase 4 (PDK4), solute carrier organic anion transporter 4A1 430 

(SLCO4A1), neuron navigator 2 (NAV2) or actin binding Rho activating protein 431 

(ABRA), the remaining ones were mildly to slightly downregulated or not DE. 432 

 433 

Genes showing post-transcriptional regulatory signals predominantly covary at the 434 

exonic level 435 

To further elucidate whether mRNA genes displaying the top 5% PTc scores are 436 

putatively targeted by common miRNAs according to in silico predictions (N = 21), we 437 

evaluated the covariation patterns among them and with the whole set of 454 mRNA 438 

genes (q-value < 0.05) in the AL-T0 vs AL-T2 comparison. 439 

By calculating CES values (see Methods) for the 21 genes putatively targeted by DE 440 

upregulated miRNAs, we obtained an estimation of the fold change in their observed 441 

covariation with respect to the remaining mRNAs under consideration (N = 435, which 442 

results from removing the 19 DE downregulated mRNAs as shown in Table 1 from the 443 

initial list of 454 genes with q-value < 0.05, Additional file 6: Table S4). CEs values 444 

were measured for both exonic and intronic fractions. Our analyses revealed that 19 out 445 

of 21 genes showed an average increased covariation of approximately 2-fold in their 446 

exonic fractions when compared to their intronic fractions (Additional file 10: Table 447 

S8, Fig. 1D), and DKK2 was the gene with the strongest exonic covariation change. 448 

When we iteratively analyzed the observed fold change in covariation for random sets 449 

of genes (N = 1,000), they displayed CES ≈ 1, indicative of no covariation (Fig. 1D). 450 

The observed CES distributions of exonic and intronic sets were significantly different 451 

(P-value = 3.663E-06) after running non-parametric tests (Fig. 1D). This result supports 452 

that the genes displaying the top 5% PTc scores and predicted to be repressed by 453 

upregulated miRNAs are probably coregulated at the post-transcriptional level. 454 
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 455 

 456 

Figure 1: (A) Scatterplot depicting mRNA genes with the top 5% negative PTc scores 457 

and at least 2-fold ΔEx reduction (equivalent to -1 in the log2 scale) according to their 458 

exonic (ΔEx) and PTc (ΔEx – ΔInt) values (in purple and delimited by dashed lines) 459 

and putatively targeted by DE upregulated miRNAs (FC > 1.5; q-value < 0.05) 460 

expressed in the gluteus medius skeletal muscle of fasted (AL-T0, N = 11) and fed (AL-461 

T2, N = 12) Duroc gilts. (B) Enrichment analyses of the set of mRNA genes with the 462 

top 5% negative PTc scores and at least 2-fold ΔEx reduction putatively targeted by DE 463 

upregulated miRNAs (FC > 1.5; q-value < 0.05), DE downregulated miRNAs (FC < -464 

1.5; q-value < 0.05) and the top 5% most highly expressed miRNAs, excluding DE 465 

upregulated miRNAs. As indicated with the dashed line, a nominal P-value = 0.05 was 466 

set as a significance threshold. (C) Scatterplot depicting DE upregulated (in green) and 467 

downregulated (in red) genes (|FC| > 2; q-value < 0.05) according to their exonic (ΔEx) 468 
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and PTc (ΔEx – ΔInt) values. (D) Covariation enrichment scores (CES) for the exonic 469 

and intronic fractions of mRNA genes (N = 21) with the top 5% negative PTc scores 470 

and at least 2-fold ΔEx reduction that were putatively targeted by upregulated miRNAs 471 

(N = 6) in the gluteus medius skeletal muscle of fasted (AL-T0, N = 11) and fed (AL-T2, 472 

N = 12) Duroc gilts. The control set was defined by generating random permuted lists 473 

(N = 1,000) of 21 genes and using their exonic and intronic fractions for calculating 474 

their CES values. Statistical significance was assessed using a Mann-Whitney U non-475 

parametric test [53]. The dashed line represents a CES of 1, equivalent to an observed 476 

null fold change in covariation. 477 

 478 

Studying post-transcriptional signals in adipose tissue using a Duroc-Göttingen 479 

minipig population 480 

After pre-processing and filtering of sequenced reads from adipocytes samples, we were 481 

able to retrieve ~98.1 and ~0.87 million mRNA and small RNA reads per sample, and 482 

~96.5% and ~73.4% of these reads mapped to annotated porcine mRNA and miRNA 483 

genes, respectively. Differential expression analyses revealed a total of 299 mRNAs 484 

with q-value < 0.05, of which 52 were downregulated and 95 were upregulated (FC > 485 

|2|; q-value < 0.05) DE genes, respectively (Additional file 11: Table S9). Regarding 486 

miRNAs, only one gene (ssc-miR-92b-3p) was significantly upregulated in lean pigs, 487 

while seven additional miRNAs showed suggestive differential expression (P-value < 488 

0.01), of which three were downregulated, and four were upregulated (ssc-miR-148a-489 

3p, ssc-miR-204, ssc-miR-92a and ssc-miR-214-3p). It is worth to mention that ssc-490 

miR-92a shares the same seed sequence as ssc-miR-92b-3p (Additional file 12: Table 491 

S10). 492 
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After running EISA on the mRNA expression profiles for exonic and intronic fractions, 493 

only the sestrin 3 (SESN3) gene showed a significant PTc score. This gene was the one 494 

with the second highest negative PTc score (Table 2 and Additional file 13: Table 495 

S11). Similar to results obtained for DKK2 gene in AL-T2 gilts, the SESN3 gene was the 496 

only one showing post-transcriptional downregulation with no additional transcriptional 497 

repression detected. Moreover, SESN3 was also detected as the most significantly 498 

downregulated gene (Additional file 11: Table S9). Regarding Tc scores, a total of 195 499 

genes showed significant transcriptional signals (|FC| > 2; q-value < 0.05, Additional 500 

file 13: Table S11), and 48 of them were also DE (24.61%, Additional files 11: Table 501 

S9 and 13: Table S11). Moreover, three of them (ARHGAP27, CDH1 and LEP) were 502 

found among those with the top 5% post-transcriptional signals (Table 2 and Additional 503 

file 13: Table S11). The whole set of mRNA genes identified with EISA is available at 504 

Additional file 13: Table S11. 505 

A total of 44 downregulated mRNAs in lean pigs displayed the top 5% PTc scores with 506 

reduced ΔEx of at least 2-fold (Table 2, Fig. 2A). One of them 507 

(ENSSSCG00000016928) did not have a properly annotated 3´-UTR and was therefore 508 

excluded from further analyses. Among the remaining 43 genes with high post-509 

transcriptional signals, only 13 of them (30.23%) appeared as significantly 510 

downregulated (FC < -2; q-value < 0.05) in the differential expression analysis 511 

considering exonic fractions (Additional file 11: Table S9 and Table 2). 512 

 513 

Table 2: mRNA genes with the top 5% post-transcriptional (PTc) scores and at least 2-514 

fold exonic fraction (ΔEx) reduction (equivalent to -1 in the log2 scale) of adipocytes 515 

from lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs classified in accordance 516 

with their body mass index. 517 
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mRNA Gene log2FCa ΔExb PTcc P-value q-value DEd miRNA target 

ENSSSCG00000010814 ESRRG -0.591 -5.305 -6.425 7.364E-01 9.996E-01  
x 

ENSSSCG00000037015 SESN3 -2.000 -1.378 -5.707 2.541E-07 2.477E-03 x x 

ENSSSCG00000032452 WFS1 -2.198 -2.138 -5.510 9.509E-03 9.996E-01 x 
 

ENSSSCG00000039548 PTGFR -1.634 -1.590 -4.915 8.804E-03 9.996E-01  
x 

ENSSSCG00000013829 SYDE1 -1.670 -1.160 -4.188 5.795E-04 6.000E-01 x 
 

ENSSSCG00000002265 FAM174B -1.244 -1.726 -4.179 5.385E-02 9.996E-01  
x 

ENSSSCG00000016233 SERPINE2 -1.735 -2.060 -3.603 5.684E-02 9.996E-01 x x 

ENSSSCG00000006243 PENK -0.420 -2.104 -3.573 7.628E-01 9.996E-01   

ENSSSCG00000038879 RELB -1.272 -1.056 -3.512 3.659E-03 9.996E-01 x 
 

ENSSSCG00000023408 SAMD4A -1.328 -1.156 -3.509 4.486E-02 9.996E-01  
x 

ENSSSCG00000008449 SLC3A1 -1.014 -1.154 -3.491 5.859E-02 9.996E-01   

ENSSSCG00000014921 PRSS23 -1.141 -1.739 -3.360 2.719E-01 9.996E-01  
x 

ENSSSCG00000017186 RNF157 -1.218 -2.338 -3.317 2.413E-01 9.996E-01 x x 

ENSSSCG00000035403 RFX2 -1.109 -1.022 -2.958 1.550E-01 9.996E-01  
x 

ENSSSCG00000010893 

 

-0.655 -1.352 -2.931 4.068E-01 9.996E-01  
x 

ENSSSCG00000031819 TP53I11 -1.002 -1.711 -2.883 4.102E-01 9.996E-01  
x 

ENSSSCG00000017137 METRNL -0.674 -1.102 -2.812 2.422E-01 9.996E-01   

ENSSSCG00000032562 TMC6 -0.837 -1.152 -2.765 2.078E-01 9.996E-01   

ENSSSCG00000031261 RHOQ -0.903 -1.046 -2.750 1.839E-02 9.996E-01 x 
 

ENSSSCG00000001089 GPLD1 -0.872 -1.761 -2.723 4.302E-01 9.996E-01  
x 

ENSSSCG00000034259 PMEPA1 -0.880 -1.348 -2.720 3.583E-01 9.996E-01  
x 

ENSSSCG00000017014 PANK3 -0.614 -1.037 -2.557 2.288E-01 9.996E-01  
x 

ENSSSCG00000003377 ACOT7 -0.790 -2.688 -2.544 3.439E-01 9.996E-01 x 
 

ENSSSCG00000010079 PPM1F -0.762 -1.035 -2.473 4.967E-02 9.996E-01 x x 

ENSSSCG00000040464 LEP -0.747 -2.186 -2.463 1.880E-01 9.996E-01 x x 

ENSSSCG00000022029 RAP1GAP -0.120 -1.109 -2.418 8.822E-01 9.996E-01  
x 

ENSSSCG00000022099 TP53INP2 -0.628 -1.058 -2.403 3.683E-01 9.996E-01   

ENSSSCG00000025652 CDH1 -0.472 -2.592 -2.372 6.533E-01 9.996E-01  
x 

ENSSSCG00000027266 PNPLA3 -0.443 -1.386 -2.198 5.725E-01 9.996E-01   

ENSSSCG00000015401 PCLO -0.674 -1.492 -2.182 4.537E-01 9.996E-01  
x 

ENSSSCG00000020872 

 

-1.029 -1.128 -2.090 1.340E-01 9.996E-01   

ENSSSCG00000032633 FAM53A -0.749 -1.033 -2.066 4.576E-02 9.996E-01 x 
 

ENSSSCG00000015559 NCF2 -0.679 -1.221 -2.061 3.570E-01 9.996E-01  
x 

ENSSSCG00000015766 WDR17 -0.609 -1.139 -1.998 2.093E-01 9.996E-01   

ENSSSCG00000009761 NCOR2 -0.681 -1.421 -1.913 2.643E-01 9.996E-01   

ENSSSCG00000016928 RAB3D -0.491 -1.142 -1.888 2.953E-01 9.996E-01   

ENSSSCG00000011230 OSBPL10 -0.576 -1.594 -1.869 4.272E-01 9.996E-01  
x 

ENSSSCG00000017298 TANC2 -0.615 -1.541 -1.846 4.896E-01 9.996E-01   

ENSSSCG00000007899 

 

-0.524 -1.036 -1.814 4.500E-01 9.996E-01  
x 

ENSSSCG00000026421 PKD2L2 -0.463 -1.230 -1.800 5.098E-01 9.996E-01   

ENSSSCG00000015332 PON1 -0.626 -1.076 -1.763 2.530E-01 9.996E-01 x x 

ENSSSCG00000009215 ABCG2 -0.455 -1.446 -1.749 5.684E-01 9.996E-01   

ENSSSCG00000017328 ARHGAP27 -0.235 -2.788 -1.699 8.113E-01 9.996E-01 x x 

ENSSSCG00000017199 TRIM47 -0.362 -1.057 -1.645 6.717E-01 9.996E-01   x 

 518 
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aLog2FC: estimated log2 fold change for mean exonic fractions from adipocytes of lean and obese Duroc-Göttingen 519 

minipigs.; bΔEx: exonic fraction increment (Ex2 – Ex1) in log2 scale when comparing exon abundances in obese (Ex1) 520 

vs lean (Ex2) Duroc-Göttingen minipigs; cPTc: post-transcriptional signal (ΔEx – ΔInt) in z-score scale. The q-value 521 

has been calculated with the false discovery rate (FDR) approach [42]. dDE: The “x” symbols indicate differentially 522 

expressed (DE) and downregulated genes (FC < -2; q-value < 0.05) according to their exonic counts, as well as those 523 

mRNA genes targeted by at least one of the upregulated miRNAs excluding redundant seeds (N = 4, Additional file 524 

12: Table S10). 525 

 526 

 From the set of 43 downregulated mRNAs analyzed for miRNA binding sites, 25 of 527 

them (58.14%) were classified as putative targets of the set of miRNAs upregulated in 528 

lean pigs (N = 4, ssc-miR-92b-3p, ssc-miR-148a-3p, ssc-miR-204 and ssc-miR-214-3p; 529 

Additional file 12: Table S10). Target prediction and context-based pruning of miRNA-530 

mRNA interactions for these 25 mRNA genes made possible to detect eight 8mer, 21 531 

7mer-m8 and 24 7mer-A1 miRNA binding sites (Additional file 14: Table S12) 532 

corresponding to the non-redundant seeds of selected upregulated miRNAs (N = 4) in 533 

lean minipigs (Additional file 12: Table S10). The SESN3 gene showed the highest 534 

number of predicted putative miRNA target sites in its 3´-UTR (Additional file 14: 535 

Table S12). 536 

Enrichment analyses for the set of putative miRNA target genes with the top 5% 537 

negative PTc scores and at least 2-fold ΔEx reduction (N = 25, Table 2) revealed no 538 

significant enrichment for the three types of miRNA target sites corresponding to the 4 539 

upregulated miRNAs under investigation (ssc-miR-92b-3p, ssc-miR-148a-3p, ssc-miR-540 

204 and ssc-miR-214-3p), although a slight increase of statistical significance was 541 

obtained when considering 8mer + 7mer-m8 binding sites and all three types together 542 

(Fig. 2B). Among this set of 25 genes, only seven of them (28%) appeared as DE 543 

downregulated genes (FC < -2; q-value < 0.05) in the differential expression analysis 544 

considering their exonic fractions (Additional file 11: Table S9 and Table 2, Fig. 2C).  545 
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In agreement with results obtained for the skeletal muscle expression dataset, the exonic 546 

fraction of the mRNA genes putatively targeted by upregulated miRNAs in lean pigs 547 

showed approximately 2-fold significantly increased covariation (P-value = 2.703E-02) 548 

with regard to their intronic fraction (Fig. 2D). Besides, 18 out of these 25 mRNA genes 549 

showed an overall increased covariation in their exonic fractions compared with their 550 

intronic fractions, expressed as the increment in their CES values (ΔCES = exonic CES 551 

– intronic CES, Additional file 15: Table S13). 552 

Quantitative PCR analyses were performed to assess whether mRNAs among those 553 

highlighted by post-transcriptional signal prioritization, as well as DE miRNAs 554 

upregulated in lean pigs, displayed patterns of expression consistent with those obtained 555 

in the RNA-seq and small RNA-seq experiments, respectively. To this end, we selected 556 

five mRNAs (i.e., LEP, OSBPL10, PRSS23, RNF157 and SERPINE2) and three 557 

miRNAs (i.e., ssc-miR-148a-30, ssc-miR-214-3p and ssc-miR-92b-3p) for qPCR 558 

verification. All the analyzed mRNA genes showed a reduced expression in lean pigs 559 

compared with their obese counterparts (Fig. 2E), and the LEP gene was the most 560 

significantly downregulated gene (log2FC = -1.953; P-value = 1.120E-03). This result 561 

was in agreement with the strong downregulation observed for LEP in differential 562 

expression analyses based on RNA-Seq data (log2FC = -1.957; q-value = 3.443E-03, 563 

Additional file 11: Table S9). With regard to miRNAs, the opposite pattern of 564 

expression was observed, with all the three profiled miRNA genes being upregulated in 565 

lean pigs. Moreover, as reported in Additional file 12: Table S10, ssc-miR-92b-3p was 566 

the miRNA with the most significant upregulation, and also evidenced in qPCR 567 

analyses (P-value = 3.57E-02, Fig. 2F). 568 

 569 

 570 
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 571 

 572 

Figure 2: (A) Scatterplot depicting mRNA genes with the top 5% negative PTc scores 573 

and at least 2-fold ΔEx reduction (equivalent to -1 in the log2 scale) according to their 574 

exonic (ΔEx) and PTc (ΔEx – ΔInt) values (in purple and delimited by dashed lines) 575 

and putatively targeted by upregulated miRNAs (FC > 1.5; P-value < 0.01) from fat 576 

samples obtained from Duroc-Göttingen minipigs with lean (N = 5) and obese (N = 5) 577 

phenotypes classified according to their body mass index (BMI). (B) Enrichment 578 

analyses of the number of mRNA genes with the top 5% negative PTc scores and at 579 

least 2-fold ΔEx reduction putatively targeted by DE upregulated miRNAs (FC > 1.5; q-580 
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value < 0.05), DE downregulated miRNAs (FC < -1.5; q-value < 0.05) and the top 5% 581 

most highly expressed miRNAs, excluding DE upregulated miRNAs. As indicated with 582 

the dashed line, a nominal P-value = 0.05 was set as a significance threshold. (C) 583 

Scatterplot depicting DE upregulated (in green) and downregulated (in red) genes (|FC| 584 

> 2; q-value < 0.05) according to their exonic (ΔEx) and PTc (ΔEx – ΔInt) values. (D) 585 

Covariation enrichment scores (CES) for the exonic and intronic fractions of mRNA 586 

genes (N = 25) with the top 5% negative PTc scores and at least 2-fold ΔEx reduction 587 

that were putatively targeted by upregulated miRNAs (N = 4) from fat samples obtained 588 

from Duroc-Göttingen minipigs with lean (N = 5) and obese (N = 5) phenotypes. The 589 

control set was defined by generating random permuted lists (N = 1,000) of 25 genes 590 

and using their exonic and intronic fractions for calculating their CES values. Statistical 591 

significance was assessed using a Mann-Whitney U non-parametric test [53]. The 592 

dashed line represents a CES of 1, equivalent to an observed null fold change in 593 

covariation. (E) Barplots depicting qPCR log2 transformed relative quantities (Rq) for 594 

LEP, OSBPL10, PRSS23, RNF157 and SERPINE2 mRNA transcripts measured in 595 

adipocytes from the retroperitoneal fat of lean (N = 5) and obese (N = 5) Duroc-596 

Göttingen minipigs. (F) Barplots depicting qPCR log2 transformed relative quantities 597 

(Rq) for ssc-miR-148a-3p, ssc-miR-214-3p and ssc-miR-92b-3p miRNA transcripts 598 

measured in the isolated adipocytes from the retroperitoneal fat of lean (N = 5) and 599 

obese (N = 5) Duroc-Göttingen minipigs. 600 

 601 

 602 

Discussion 603 

Relative contributions of the Tc and PTc components of gene regulation to energy 604 

homeostasis in porcine muscle and adipose tissues 605 
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After running EISA on both muscle and adipose tissue datasets, we observed that the 606 

number of genes with significant transcriptional signals (Tc) was much higher than that 607 

of loci with significant post-transcriptional signals (PTc). Indeed, only three and one 608 

genes obtained significant PTc estimates in Duroc gilts (skeletal muscle) and 609 

intercrossed Duroc-Göttingen minipigs (adipose tissue), respectively. In contrast, 610 

several hundred genes showed significant Tc signals in both experimental systems. 611 

Such stark difference evidences that changes in gene expression induced by feeding or 612 

obesity might be mostly driven by transcriptional rather than post-transcriptional 613 

modulators. Indeed previous reports have highlighted the usefulness of EISA to predict 614 

active transcription from the analysis of intronic fractions [25]. 615 

For prioritizing putative post-transcriptionally downregulated genes, we focused on 616 

those with the strongest observed downregulation based on their ΔEx values (at least 2-617 

fold reduction) and PTc signal (top 5% negative scores). Hence, we did not consider the 618 

significance of PTc scores as a relevant criterion, as these will appear as significant only 619 

when the post-transcriptional response is not masked by the transcriptional response. 620 

This is explained by the introduction of intronic fractions as an interaction factor for 621 

modeling post-transcriptional signals in EISA [19]. Besides, the transcriptional 622 

component is modeled directly from intronic profiles [19]. In this way, strong and 623 

opposite transcriptional and post-transcriptional responses or single post-transcriptional 624 

signals would be deemed as significant. On the contrary, genes with opposite yet not 625 

sufficiently strong components and those with a coordinated downregulation (even if 626 

strong) at the transcriptional and post-transcriptional level will be classified as non-627 

significant. 628 

 629 

Differential expression analysis and EISA highlight different sets of genes 630 
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Only ~20% of genes with significant Tc and PTc components were DE according to 631 

differential expression analyses. This result evidenced that differential expression 632 

analysis only captures a fraction of the genes that change their mRNA expression in 633 

response to a specific factor under study (feeding and obesity in this case). Thus, 634 

complementing previous studies on gene regulation [12–18] with EISA might be useful 635 

to detect many additional genes that are relevant for the biological processes under 636 

investigation which, otherwise, will be missed. 637 

Importantly, discrepancies between EISA and DE analysis were reduced when we 638 

focused on genes with top 5% negative PTc scores and at least 2-fold reduction in their 639 

ΔEx values: as much as 76% (skeletal muscle) and 30.23% (adipose tissue) of genes 640 

identified with EISA were also detected in the DE analysis. The increase in concordance 641 

between the lists of genes with strong post-transcriptional signals and significant 642 

downregulation was more pronounced in the skeletal muscle experiment. This might be 643 

due to the overall stronger upregulation of miRNAs observed for this dataset when 644 

compared with the adipose tissue dataset. Nevertheless, not all of the genes highlighted 645 

by EISA which showed putative miRNA-driven downregulation were detected as DE, 646 

and among those that did, they were not always classified as the top downregulated DE 647 

loci. Such a discrepancy is in agreement with the subtle downregulatory effects elicited 648 

by miRNAs, which are dependent on their expression level and the number of available 649 

active target sites [2]. In this way, EISA might serve as a better approach to identify 650 

both strong and subtle post-transcriptional effects mediated by miRNAs. 651 

 652 

Predicting the contribution of miRNAs to the post-transcriptional regulatory 653 

response in porcine muscle and adipose tissues 654 
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Since the efficacy of miRNA-based regulation on mRNA targets depends on the context 655 

of the target site within the 3’-UTR [48], we have assessed the usefulness of introducing 656 

context-based filtering criteria for removing spurious in silico-predicted target sites for 657 

miRNAs. Using enrichment analyses, we were able to link the set of mRNAs with 658 

downregulated exonic fractions to upregulated miRNAs predicted to target them. The 659 

influence of other non-DE highly expressed miRNAs or downregulated miRNAs was 660 

ruled out by the lack of predicted targeted mRNA genes with high post-transcriptional 661 

downregulatory signals for such miRNAs. Overall, the increase of significance of 662 

enrichment analyses after applying context-based filtering for detecting miRNA target 663 

sites revealed the ability of such criteria to discriminate and remove weak or false 664 

positive target sites located within unfavored regions of mRNA 3’-UTR. However, 665 

highly efficient target sites such as the 8mer ones, although scarcer than 7mer-m8 sites, 666 

might still be functional even at unfavored positions [48,55,56]. This may partially 667 

explain the relative lack of 8mer sites found in the top post-transcriptionally regulated 668 

mRNA genes in both experimental setups. 669 

In the skeletal muscle system, miRNA target prediction on mRNA genes with the top 670 

5% post-transcriptional signals and at least 2-fold reduction in their exonic fractions 671 

revealed that the majority of these genes (84%) showed at least one binding site for the 672 

corresponding set of DE upregulated miRNAs (N = 6), thus resulting in a significant 673 

enrichment of this set of genes compared with a random background. In contrast, 674 

enrichment analyses did not provide significant results when analyzing the adipose 675 

tissue (only around half of the highlighted genes with relevant post-transcriptional 676 

signal were predicted as putative miRNA targets). This could be explained by the 677 

relatively low significance of DE upregulated miRNAs found in the adipose tissue. The 678 

observed difference between both systems is a clear reflection of the variable influence 679 
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that miRNAs might have in regulating gene expression in both tissues under different 680 

experimental conditions: from a relatively strong signal when comparing the muscle 681 

expression profiles of fasted vs fed Duroc guilts, to a more subtle yet still detectable 682 

signal in lean vs obese Duroc-Göttingen minipigs fed ad libitum with a standard 683 

production pig diet. Indeed, such divergent response might be explained by different 684 

feeding regimes in the two experimental interventions in which the muscle tissue was 685 

much more challenged. This is concurrently reflected in a more drastic gene expression 686 

regulatory response. 687 

 688 

Covariation patterns in the expression of genes predicted to be targeted by 689 

upregulated microRNAs 690 

We further hypothesized that genes showing relevant post-transcriptional 691 

downregulatory effects might be regulated by the same set of significantly upregulated 692 

miRNAs, which could induce shared covariation in their expression profiles at the 693 

exonic level. In contrast, their intronic fractions would be mainly unaffected as introns 694 

would have been excised prior to any given miRNA-driven downregulation. In this 695 

way, an increased gene covariation might be detectable within the sets of commonly 696 

targeted mRNA genes with relevant post-transcriptional signals at the exon but not at 697 

the intron level, as opposed to covariation events of these set of genes with the 698 

remaining DE genes. Our results revealed an increased degree of covariation between 699 

genes with high post-transcriptional signals at their exonic fractions, highlighting a 700 

putative coordinated downregulation by the set of significantly upregulated miRNAs. 701 

 702 
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Several genes displaying the strongest post-transcriptional signals in porcine 703 

muscle samples from fasting vs fed gilts are involved in glucose and lipid 704 

metabolism  705 

From the analysis of top mRNA genes showing the strongest post-transcriptional 706 

downregulatory effects in fasted vs fed gilts, several biological functions putatively 707 

regulated by miRNAs were revealed. The DKK2 gene was the one showing the highest 708 

negative PTc score, and its post-transcriptional regulatory signal was also significant. 709 

Moreover, this gene also showed the strongest covariation difference in its exonic 710 

fraction compared with its intronic fraction. This consistent post-transcriptional 711 

regulatory effect might be mediated by ssc-miR-421-5p and ssc-miR-30a-3p, two highly 712 

upregulated DE miRNAs. The DKK2 protein is a member of the dickkopf family that 713 

inhibits the Wnt signaling pathway through its interaction with the LDL-receptor related 714 

protein 6 (LRP6). Its repression has been associated with reduced blood-glucose levels 715 

and improved glucose uptake [57], as well as with improved adipogenesis [58] and 716 

inhibition of aerobic glycolysis [59]. These results are consistent with the increased 717 

glucose usage and triggered adipogenesis in muscle tissue after nutrient supply. Other 718 

additional relevant post-transcriptionally downregulated mRNA genes detected by 719 

EISA were: (i) pyruvate dehydrogenase kinase 4 (PDK4), which inhibits pyruvate to 720 

acetyl-CoA conversion and hinders glucose utilization promoting fatty acids oxidation 721 

in energy-deprived cells [60,61]; (ii) interleukin 18 (IL18), that controls energy 722 

homeostasis in the muscle by inducing AMP-activated protein kinase (AMPK) [62], a 723 

master metabolic regulator that is suppressed upon nutrient influx in cells [63]; (iii) 724 

nuclear receptor subfamily 4 group A member 3 (NR4A3), which activates both 725 

glycolytic and glycogenic factors [64], as well as β-oxidation in muscle cells [65]; (iv) 726 

acetylcholine receptor subunit α (CHRNA1) of muscle cells, linked to the inhibition of 727 
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nicotine-dependent STAT3 upregulation [66] that results in protection against insulin 728 

resistance in muscle [67]; (v) PBX homeobox 1 (PBX1), a regulator of adipocyte 729 

differentiation [68]; (vi) Tet methylcytosine dioxygenase 2 (TET2), linked to glucose-730 

dependent AMPK phosphorylation [69]; and (vii) BTB domain and CNC homolog 731 

(BACH2), associated with mTOR complex 2 (mTORC2) glucose-dependent activation 732 

[70,71] and the repression of forkhead box protein O1 (FOXO1) [72] and PDK4 in a 733 

coordinated manner [16,73]. Overall, these results would indicate that several mRNA 734 

genes with high post-transcriptional downregulatory signals might be targeted by 735 

upregulated miRNAs, which would hence result in modulating glucose uptake and 736 

energy homeostasis in myocytes in response to nutrient uptake. 737 

On the other hand, several genes with high post-transcriptional signals were not 738 

predicted as targets of upregulated miRNAs. For instance, two circadian clock-related 739 

genes, the circadian associated repressor of transcription (CIART) and period 1 (PER1), 740 

as well as the oxysterol binding protein like 6 (OSBPL6) and nuclear receptor subfamily 741 

4 group A member 1 (NR4A1), all showed high post-transcriptional signals. However, 742 

none of them showed binding sites for the set of upregulated miRNAs in their 3’-UTRs, 743 

while all of them were DE [9,16]. Although miRNAs are key post-transcriptional 744 

regulators, other alternative post-transcriptional effectors, such as long non-coding 745 

RNAs (lncRNAs) [74], circular RNAs (circRNAs) [75,76], RNA methylation [77] or 746 

RNA binding proteins (RBPs) [78–80] might be at play. Besides, indirect repression via 747 

upregulated miRNAs acting over regulators of these genes, such as transcription factors, 748 

could be also a major influence on their gene expression [29].  749 

 750 
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Several genes displaying the strongest post-transcriptional signals in porcine 751 

adipose tissue from lean vs obese minipigs are involved in lipid metabolism and 752 

energy homeostasis 753 

Regarding results provided by EISA using expression data from adipocytes isolated 754 

from lean vs obese Duroc-Göttingen minipigs, several of the mRNA genes that showed 755 

high post-transcriptional repression are involved in the regulation of lipid metabolism 756 

and energy homeostasis. The gene showing the highest post-transcriptional signal was 757 

the estrogen related receptor γ (ESRRG), which modulates oxidative metabolism and 758 

mitochondrial function in adipose tissue and inhibits adipocyte differentiation when 759 

repressed [81]. The second most relevant locus highlighted by EISA was SESN3, an 760 

activator of the mTORC2 and PI3K/AKT signaling pathway [82] that protects the cell 761 

from developing insulin resistance and promotes lipolysis when inhibited [83]. This 762 

gene showed the most significant downregulation in lean pigs, and gathered multiple 763 

putative binding sites for all the four upregulated miRNAs under study. Other genes 764 

showing significant post-transcriptional regulation were the following: (i) sterile α motif 765 

domain containing 4A (SAMD4A), linked to the inhibition of preadipocyte 766 

differentiation and leanness phenotype in knockdown experiments [84,85]; (ii) 767 

prostaglandin F2- receptor protein (PTGFR), associated with hypertension and obesity 768 

risk [86] and the improvement of insulin sensitivity and glucose homeostasis when 769 

repressed [87]; (iii) serine protease 23 (PRSS23), that confers protective effects against 770 

inflammation and reduces fasting glucose levels when inhibited [88]; (iv) ring finger 771 

protein 157 (RNF157), linked to decreased fatness profiles and autophagy in adipose 772 

tissue when repressed [89]; (v) silencing of oxysterol binding protein like 10 773 

(OSBPL10) gene promotes low-density lipoprotein (LDL) synthesis and inhibits 774 

lipogenesis [90]; (vi) the serum levels of glycosylphosphatidylinositol phospholipase 1 775 
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(GPLD1) are regulated by insulin [91] and linked to the development of insulin 776 

resistance and metabolic syndrome [92]; (vii) overexpression of neutrophil cytosolic 2 777 

(NCF2), the gene showing the highest increase in covariation at the exonic fraction, was 778 

described in obese humans [93]; (viii) the repression of RAP1 GTPase activating 779 

protein (RAP1GAP) protects against obesity and the development of insulin and 780 

glucose resistance [94,95]; and finally, (xix) leptin (LEP), which is mainly produced in 781 

adipose tissue [96] and regulates appetite, energy expenditure and body weight [97,98]. 782 

Despite the overall weak influence of putative miRNA-driven downregulation found in 783 

adipocytes (as evidenced by the low significance of DE upregulated miRNAs and the 784 

absence of a significant target enrichment), we were able to describe a set of genes with 785 

high post-transcriptional signals indicative of putative miRNA-derived repression and 786 

tightly related to adipose tissue metabolism regulation. However, non-miRNA 787 

transcriptional (e.g., transcription factors) and post-transcriptional (e.g., lncRNAs, 788 

circRNAs, RBPs etc) modulators, together with epigenetic mechanisms, might also 789 

contribute to a high proportion of the observed regulatory signals. 790 

 791 

 792 

Conclusions 793 

EISA applied to study gene regulation in porcine skeletal muscle and adipose tissues 794 

showed that many more genes displayed transcriptional rather than post-transcriptional 795 

signals, suggesting that changes in mRNA levels are mostly driven by factors acting at 796 

the transcriptional level in our study. Moreover, many genes had mixed regulatory 797 

signals, either cooperative (Tc and PTc signals have the same direction) or discordant. 798 

More importantly, the concordance between the sets of DE genes and those with 799 

significant Tc or PTc scores was quite limited, although such difference was reduced 800 
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(mostly in the skeletal muscle experiment) when we prioritized the downregulated 801 

genes with top post-transcriptional signals. Nevertheless, many of the genes with 802 

relevant PTc signals were not among the top DE downregulated loci, thus 803 

demonstrating the usefulness of complementing DE analysis with the EISA approach. 804 

In the skeletal muscle, we have established a clear relationship between the set of 25 805 

genes with top 5% negative PTc scores and at least 2-fold reduction in the ΔEx exonic 806 

fraction and the 6 miRNAs upregulated in fed gilts and we have detected some level of 807 

co-variation, suggesting that several mRNAs are co-regulated by a common set of 808 

miRNAs. In contrast, in the adipose tissue such relationship was more subtle, indicating 809 

that the contribution of miRNAs to mRNA repression might vary depending on the 810 

tissue and experimental challenge under consideration. Finally, EISA made possible to 811 

identify several genes related with carbohydrate and/or lipid metabolism, which may 812 

play relevant roles in the energy homeostasis of the skeletal muscle and adipose tissues. 813 

In summary, we provided compelling evidence of the usefulness of EISA to highlight 814 

relevant genes regulated at the transcriptional and/or post-transcriptional level, 815 

compared with canonical differential expression analyses. The use of EISA on 816 

commonly available RNA-seq datasets might provide novel insights into the regulatory 817 

mechanisms of the cell metabolism that previous methods were not fully able to 818 

uncover. 819 

 820 

 821 

 822 

 823 

 824 

 825 
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Additional files 1250 

Additional file 1: Figure S1: Diagram depicting the pipeline implemented for studying 1251 

miRNA-driven post-transcriptional regulatory signals applying the EISA approach and 1252 

performing additional enrichment and covariation analyses. Figure S2: Scatterplots 1253 

depicting the exonic (ΔEx) and intronic (ΔInt) fractions from gluteus medius skeletal 1254 

muscle samples of fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts. (A) 1255 

mRNA genes with the top 5% post-transcriptional (PTc) negative scores and at least 2-1256 

fold reduced exonic (ΔEx) fractions (equivalent to -1 in the log2 scale), suggestive of 1257 

miRNA-driven post-transcriptional regulation. (B) mRNA genes differentially 1258 

expressed and showing either upregulation (FC > 2; q-value < 0.05, in green) or 1259 

downregulation (FC < -2, q-value < 0.05, in red) in fed (AL-T2, N = 12) Duroc gilts 1260 

with respect to their fasted (AL-T0, N = 11) counterparts. Figure S3: Enrichment 1261 

analyses of the number of genes with the (A) top 1% and (B) top 5% negative PTc 1262 

scores and at least 2-fold reduced exonic fractions (ΔEx) putatively targeted by 1263 

upregulated miRNAs (FC > 1.5; q-value < 0.05) from gluteus medius skeletal muscle 1264 

samples of fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts. Results show 1265 

the change in enrichment significance when incorporating context-based pruning of 1266 

8mer, 7mer-m8 and 7mer-A1 miRNA binding sites. R: Raw enrichment analyses 1267 

without any additional context-based pruning. AU: Enrichment analyses removing 1268 

miRNA binding sites without AU-rich flanking sequences (30 nts upstream and 1269 

downstream). M: Enrichment analyses removing miRNA binding sites located in the 1270 

middle of the 3’-UTR sequence (45-55%). E: Enrichment analyses removing miRNA 1271 

binding sites located too close (< 15 nts) to the beginning or the end of the 3’-UTR 1272 

sequences. The dashed line represents a nominal P-value of 0.05 set as significance 1273 

threshold. 1274 
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Additional file 2: Supplementary Methods. 1276 

 1277 

Additional file 3: Table S1: Phenotypic values for 11 Duroc-Göttingen minipigs from 1278 

the F2-UNIK resource population classified as obese or lean in accordance with their 1279 

body mass index. 1280 

 1281 

Additional file 4: Table S2: Primers for qPCR validation of selected mRNAs (among 1282 

those with the top 5% negative PTc scores and at least 2-fold ΔEx reduction) and 1283 

miRNAs (DE upregulated) in the F2-UNIK Duroc-Göttingen minipig population after 1284 

comparing lean (N = 5) and obese (N = 5) individuals. 1285 

 1286 

Additional file 5: Table S3: Raw Cq values obtained in qPCR analyses measuring 1287 

adipocyte expression levels of selected mRNAs and miRNAs from lean (N = 5) and 1288 

obese (N = 5) Duroc-Göttingen minipigs. 1289 

 1290 

Additional file 6: Table S4: Genes detected by the edgeR tool as differentially 1291 

expressed when comparing gluteus medius expression profiles of fasted AL-T0 (N = 11) 1292 

and fed AL-T2 (N = 12) Duroc gilts. 1293 

 1294 

Additional file 7: Table S5: microRNAs detected by the edgeR tool as differentially 1295 

expressed when comparing gluteus medius expression profiles of fasted AL-T0 (N = 11) 1296 

and fed AL-T2 (N = 12) Duroc gilts. 1297 

 1298 
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Additional file 8: Table S6: Post-transcriptional (PTc) and transcriptional (Tc) signals 1299 

detected with EISA in genes expressed in gluteus medius skeletal muscle samples from 1300 

fasted (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts. 1301 

 1302 

Additional file 9: Table S7: Binding sites of DE upregulated miRNAs (N = 6) found in 1303 

the 3’-UTRs of mRNA genes with the top 5% negative PTc scores and at least 2-fold 1304 

reduction in the exonic fraction (ΔEx) of gluteus medius skeletal muscle samples from 1305 

fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts. 1306 

 1307 

Additional file 10: Table S8: Covariation enrichment scores (CES) for the exonic and 1308 

intronic fractions of mRNA genes with the top 5% negative post-transcriptional signals 1309 

(PTc) and at least 2-fold reduction in their exonic (ΔEx) fraction predicted to be 1310 

targeted by DE upregulated miRNAs (N = 6) of gluteus medius skeletal muscle 1311 

expression profiles from fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts. 1312 

 1313 

Additional file 11: Table S9: Genes detected by the edgeR tool as differentially 1314 

expressed when comparing adipocyte expression profiles from lean (N = 5) and obese 1315 

(N = 5) Duroc-Göttingen minipigs classified in accordance with their body mass index. 1316 

 1317 

Additional file 12: Table S10: microRNA genes detected by the edgeR tool as 1318 

differentially expressed when comparing adipocyte expression profiles from lean (N = 1319 

5) and obese (N = 5) Duroc-Göttingen minipigs classified in accordance with their body 1320 

mass index. 1321 

 1322 
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Additional file 13: Table S11: Post-transcriptional (PTc) and transcriptional (Tc) 1323 

signals detected with EISA in genes expressed in adipocytes from lean (N = 5) and 1324 

obese (N = 5) Duroc-Göttingen minipigs classified in accordance with their body mass 1325 

index. 1326 

 1327 

Additional file 14: Table S12: Binding sites of DE upregulated miRNAs (N = 4) found 1328 

in the 3’-UTRs of mRNA genes with the top 5% negative PTc scores and at least 2-fold 1329 

reduction in the exonic fraction (ΔEx) of adipocyte from lean (N = 5) and obese (N = 5) 1330 

Duroc-Göttingen minipigs classified in accordance with their body mass index. 1331 

 1332 

Additional file 15: Table S13: Covariation enrichment scores (CES) for the exonic and 1333 

intronic fractions of mRNA genes with the top 5% negative post-transcriptional signals 1334 

(PTc) and at least 2-fold reduction in their exonic (ΔEx) fraction predicted to be 1335 

targeted by DE upregulated miRNAs (N = 4) of adipocyte expression profiles from lean 1336 

(N = 5) and obese (N = 5) Duroc-Göttingen minipigs classified in accordance with their 1337 

body mass index. 1338 
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