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Abstract

Significance: Estimating neighboring cells by using only nuclear markers is crucial in many biological applications.
Although several strategies have been used for this purpose, most published methods lack a rigorous
characterization of their efficiencies. Remarkably, previously described methods are not automatic and depend only
on cell-cell distance, neglecting the importance of pair-neighborhood interaction.

Aim: To develop a robust and automatic method for assessing cell local neighborhood, while analyzing the impact
of the physical variables involved in this task.

Approach: We inferred neighbors from images with nuclei labeling by approximating the cell-cell interaction graph
by the Delaunay triangulation of nuclei centroids. Each edge of this graph was filtered by thresholding in cell-cell
distance and the maximum angle that each pair subtends with shared neighbors (pair-neighborhood interaction).
Thresholds were calculated by maximizing a new robust statistic that measures the communicability efficiency of
the cell graph. Using a variety of images of diverse tissues with additional membrane labeling to find the ground
truth, we characterized the assessment performance.

Results: On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Even though
our method’s performance and tissue regularity are correlated, it works with performance metrics over 86% in very
different organisms, including Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans.

Conclusions: We automatically estimated neighboring relationships between cells in 2D and 3D using only nuclear
markers. To achieve this goal, we filtered the Delaunay triangulation of nuclei centroids with a new measure of
graph communicability efficiency. In addition, we found that taking pair-neighborhood interactions into account, in
contrast to considering only cell-cell distances, leads to significant performance improvements. This becomes more
notorious when the number of cells is low or the geometry of the cell graph is highly complex.
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1 Introduction

Understanding the emergence of tissue organization requires quantifying the local and global

signaling cues that each cell perceives from the environment. Among these cues, cell-cell

interaction is one of the strongest to determine cellular fate during development and maintain

homeostasis in adult life. For example, cell-cell contact has an important role during cell
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migration. A cell in a migrating tissue can change the direction of its movement after direct

contact with another cell, in a process that is known as contact inhibition of locomotion (CIL).

The number of neighboring cells can alter the outcome of CIL: in a sheet of cells with a free

edge, only the cells at the free edge produce lamellipodia, which in turn induces a collective and

directed migration of the whole tissue [1]. The number of neighboring cells in a tissue also plays

an important role in proliferation. When normal, noncancerous cells are in crowded conditions,

they cease proliferation and cell division. This characteristic is lost when cells undergo malignant

transformation, resulting in uncontrolled proliferation and tumor formation [2].

At the molecular level, cell-cell interaction is also crucial in a plethora of biological

processes. For example, the Notch signaling pathway is highly conserved and plays a key role in

cell-cell communication. Since most of this pathway’s ligands are transmembrane proteins,

signalling is restricted to neighboring cells [3]. In vertebrate embryonic development, the

morphological segments—termed somites—that prefigure the bones and muscles of the adult are

formed at the posterior end of the elongating body axis. A highly conserved biological clock

consisting of an oscillatory gene regulatory network rhythmically differentiates cells into somites

[4]. Here, the Notch signaling pathway plays a key role at synchronizing oscillations between

neighboring cells [5]. Disruption of the Notch pathway during development causes severe somite

malformation in zebrafish, chick and mouse embryos [6–11].

Thus, knowledge of neighbor relations between cells in tissues is crucial to understand the

emergent collective behaviours that arise from individual cell-cell interactions. Assessing

neighborhood in tissues using fluorescence microscopy, i.e. precisely identifying which cells

share a border, requires labeling cellular membranes. While this is routinely done in a variety of

experiments, it is also many times put aside for technical reasons or convenience. In contrast,
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nuclei labeling is ubiquitously found in literature as it is routinely used to count cells and identify

seed points from which segmentation begins [12–14]. A variety of nuclear labels exist both for

fixed and live-cell imaging, being DAPI and H2B-FP among the most common. Due to its

brightness, nuclear labels are also used to perform autofocus routines and track cell movements

over time [15–18].

In this work, we developed a fast, automatic and easy to implement method to find the first

neighbors of cells in tissues using only a nuclear marker. To validate our method, we applied it to

datasets containing both a nuclear and a membrane marker from a variety of organisms such as

Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. These

datasets were manually analyzed to generate ground truth images, which were in turn used to

compare our automatically-found results against. We found that our method is robust and precise

for all the test datasets we used, covering 95% of true neighboring relationships with 94%

precision, on average.

2 Methods

2.1 Delaunay triangulation approximates neighboring cells

The goal of our method is to estimate which cells are in contact based only on the

positions of nuclei centroids (Fig 1a-b). Considering this restriction, we define neighboring cells

as those which are (1) close together and (2) not interfered by any other cell. This implies that

the building blocks of the cell graph are not edges but triangles, because they are the minimal

structures that can provide information about the influence of the graph over a given pair of

nodes. Consequently, a triangulation of nuclei centroids could be a good approximation of the

neighboring cells network (Fig. 1c). In particular, a Delaunay triangulation
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Fig. 1 Overview of the proposed method. (a) System of touching cells, showing membranes and nuclei. Cell i and its

neighbors j are highlighted (red). (b) Nuclei corresponding to the cells shown in (a). (c) Triangulation of nuclei

centroids, including neighboring cells (gray) and typical errors (green, dashed lines). (d) Final result obtained by

filtering the triangulation shown in (b).

is outstanding for this task due to its special properties, which result from being the dual of the

Voronoi diagram [19]. The latter divides a set of points S into touching convex regions, each of

which contains only one point in S. If two regions are in contact in the Voronoi diagram, they are

linked in the Delaunay triangulation. As a result of this, the Delaunay triangulation includes the

nearest neighbor graph, which is a necessary (but not sufficient) requirement for any

approximation of cell-cell physical interactions. In addition to this, given that Voronoi cells are

geometrically stable with respect to small changes of the points in S, so the edges of the

Delaunay triangulation are [20]. This property ensures that small displacements of cells do not
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affect the results, distinguishing this triangulation from others. Another essential feature in planar

spaces is that the Delaunay triangulation maximizes the minimum angle in any triangle, avoiding

sharp structures that would appear if distant cells were assumed to be connected [21].

2.2 Automatic communicablity efficiency filter

By virtue of these attributes, we designed a method to find the first neighbors of cells

within tissues using only nuclear markers, based on an implementation of Delaunay

triangulations present in the open-source library SciPy [22]. As mentioned before, the Delaunay

triangulation is necessary but not sufficient to determine true neighboring relations and,

therefore, a filtering procedure is needed (Fig. 1d). To achieve this goal, we characterized each

pair of nuclei (i, j) by their distance and the maximum angle subtended with other nuclei𝑟
𝑖𝑗

Θ
𝑖𝑗

(Fig. 2a). The latter measures the interplay between (i, j) and its neighborhood, as it informs

about how other cells might be blocking the path connecting i and j.

Fig. 2 Characterization of the neighboring cells network. (a) Nuclei (red) are connected by solid edges representing

cell membrane physical contact. Edge (i, j) is characterized by nucleus-nucleus distance and the maximum angle𝑟
𝑖𝑗

subtended with nearby nuclei . (b) Small-angle limit, showing i and j close together while k is far away. As aΘ
𝑖𝑗

result of this, (i, j) are neighbors and k is isolated from both i and j, which is indicated by dashed edges. (c)

Large-angle limit, in which k is potentially blocking the connection between i and j.
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To understand the role of , it is instructive to analyze the possible outcomes for a set ofΘ
𝑖𝑗

three cells (i, j, k) in two extreme scenarios. If (i, j) are close to each other while k is very distant,

is very small, indicating that (i, j) cannot be interfered by k (Fig. 2b.). On the other hand,Θ
𝑖𝑗

when k is near to the midpoint of the pair, it will be very unlikely that (i, j) get in contact, no

matter how close they are (Fig. 2c). Here, the relevance of can be appreciated: its valueΘ
𝑖𝑗

depends on the local spacing between cells, ranging from 0°, when (i, j) are isolated, to 180°,

when there is a neighbor in between. Accordingly, (i, j) are said to be neighbors if and𝑟
𝑖𝑗

≤ 𝑟*

, where and are the maximum values of distance and angle determined by theΘ
𝑖𝑗

≤ Θ* 𝑟* Θ*

preference of the biological system towards a particular spatial organization. To estimate these

parameters, and based on a previous work that introduced the concept of communicability angle

between a pair of nodes in a graph [23], we developed a new statistic that measures cell-cell

communicability efficiency, defined as

, (1)𝐸(𝑟,  Θ) = 𝐹(𝑟,  Θ) − 𝐿(𝑟,  Θ)

where F is the fraction of connected pairs and L is the communicability efficiency loss given that

the thresholds are r and . Consistently, the maximum communicability efficiency would beΘ

achieved by connecting the maximum number of cells at the minimum cost. The proposed

critical values are those that maximize the communicability efficiency of the cell graph, i.e.

thresholds are obtained by

arg max . (2)(𝑟*,  Θ*) = 𝐸(𝑟,  Θ)

In the extreme case where there are no losses, the thresholds correspond to the minimum

values of distance and angle, and . However, this goes in detriment of the𝑟
𝑚𝑖𝑛

Θ
𝑚𝑖𝑛

communicability efficiency, as the number of connected pairs would be at most one. Conversely,
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when the thresholds are and , then L=1 and F=1, leading to null𝑟
𝑚𝑎𝑥

Θ
𝑚𝑎𝑥

= 180°

communicability efficiency. For this reason, maximizing the communicability efficiency

provides a good thresholding criteria, as it balances out the benefits and costs of increasing the

critical values of distance and angle.

It is worth noticing that F is simply calculated as the Empirical Cumulative Distribution

Function (ECDF) of r and , which corresponds to the fraction of pairs with andΘ 𝑟
𝑖𝑗

≤ 𝑟 Θ
𝑖𝑗

≤ Θ

. On the other hand, L is not unequivocally determined by r and . The only constraint on theΘ

loss function is that it must be an increasing function of both r and . In this paper, we show thatΘ

measuring loss as

(3)𝐿
𝑚𝑒𝑎𝑛

(𝑟,  Θ) = 1
2

𝑟 − 𝑟
𝑚𝑖𝑛

𝑟
𝑚𝑎 𝑥

− 𝑟
𝑚𝑖𝑛

+
θ − θ

𝑚𝑖𝑛

θ
𝑚𝑎𝑥 

− θ
𝑚𝑖𝑛

( )
yield accurate predictions on the neighbor graph. Mathematically, is the mean of the𝐿

𝑚𝑒𝑎𝑛

normalized distance and angle. This normalization corresponds to the CDF of a random

organization, in which all values of r and are equally probable. Therefore, measures theΘ 𝐿
𝑚𝑒𝑎𝑛

communicability efficiency loss as the average probability of randomly choosing thresholds r

and .Θ

Remarkably, our method is scale invariant and it does not depend on knowing the typical

distance between neighboring cells, as this is inferred from the image itself. In the next section,

we show that neighboring cells can be precisely inferred with this method in very diverse tissues.

3 Results

3.1 Delaunay triangulation-based method can be applied to diverse tissues

7

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.14.452382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452382
http://creativecommons.org/licenses/by-nc/4.0/


As a proof of concept, we applied the proposed method to images containing both nuclear

and membrane fluorescent markers available in the literature. The analyzed samples included (i)

Drosophila1: a sample of intestinal epithelium from the adult midgut of Drosophila

melanogaster immuno-stained for the cell periphery (bPS integrin) and nuclei (DAPI) [24] (Fig.

3a), (ii) Drosophila2: a Drosophila embryo imaged with SiMView microscopy (Fig. 3b) [25],

(iii) Tribolium: an average intensity projection of a uniform blastoderm of Tribolium castaneum

embryo with H2B-RFP-labeled nuclei and GAP43-YFP-labeled membranes (Fig. 3c) [26] and

(iv) Arabidopsis: a confocal micrograph showing the expression of different fluorescent proteins

in the stem of Arabidopsis thaliana (Fig. 3d) [27]. The double staining present on all datasets

allowed us to manually create the neighboring cells graph of each dataset, which we used to

validate our estimation from only nuclei information. Edges from the estimated graph that

matched the ground truth were labelled as true positive (TP). On the contrary, all pairs connected

by the algorithm that were not actual neighbors were recorded as false positives (FP). Finally,

false negatives (FN) were assigned to touching cells that the algorithm did not detect [28]. For

details about each dataset, refer to Fig. S1 (Drosophila1), Fig. S2 (Drosophila2), Fig. S3

(Tribolium) and Fig. S4 (Arabidopsis) in the Supplemental Materials.

Given that only a few of all possible pairs are neighbors, there are many more negatives than

positives. Accordingly, performance evaluation was carried out using metrics that are focused on

positives, as true negative (TN)-dependent metrics are highly biased when negatives are

dominant [28]. In particular, we analyzed the True Positive Rate (TPR, also called sensitivity),

Positive Predictive Value (PPV or precision) and Jaccard Index (JI). TPR measures the coverage

of positives, while PPV indicates the fraction of true neighbors among all predictions. Finally, JI

reports the overlap between the method and the ground truth. None of these metrics depend on
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the number of true negatives (TN), as they were omitted because of the imbalanced data

scenario.

As it is shown in Fig. 3, TPR was over 90% in all cases, supporting the idea that the

Delaunay triangulation of nuclei provides a good estimation of neighboring cells. In addition to

this, PPV was 94.6% on average and a maximum of 100% was reached in a Drosophila embryo

tissue with highly regular spatial distribution (Fig. 3b). This indicates that the more regular the

tissue, the better the method’s performance. However, its range of application has proven wider

as results were satisfactory in irregular tissues, such as the one from the Arabidopsis dataset (Fig.

3d). Even in this case, the poorest performance was 80% in JI.
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Fig. 3 Neighboring cells estimation based on Delaunay triangulation. (a) Sample of intestinal epithelium from the

adult midgut of Drosophila melanogaster immuno-stained for the cell periphery (N=27, TPR=0.902, PPV=0.948,

JI=0.859). Adapted from O’Brien and Bilder 2012 [24]. (b) Drosophila embryo imaged with SiMView microscopy

(N=93, TPR=0.988, PPV=1.0, JI=0.988). Adapted from Stegmaier et al. 2016 [25], (c) Average intensity projection

of a uniform blastoderm of Tribolium castaneum embryo with H2B-RFP-labeled nuclei and GAP43-YFP-labeled

membranes (N=36, TPR=0.952, PPV=0.976, JI=0.93). Adapted from Benton et al. 2013 [26]. (d) Confocal
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micrograph showing the expression of different fluorescent proteins in the stem of Arabidopsis thaliana (N=105,

TPR=0.927, PPV=0.86, JI=0.806). Adapted from Federici & Haseloff 2011 [27]. First column: Original sample.

Second column: filtered Delaunay triangulation of nuclei. Third column: performance metrics calculated by

comparing the final result to the manually created ground truth. TPR: True Positive Rate. PPV: Positive Predictive

Value. JI: Jaccard Index.  Scale is not shown for images as the method is scale invariant.

3.2 Our method is easily extensible to 3D datasets

As Delaunay triangulations exist in all n-dimensional spaces, the proposed algorithm can

be easily extended to 3D stacks. In contrast to the planar space, the basic structure of the 3D

Delaunay network is not a triangle but a tetrahedron. Therefore, before applying the proposed

method, each tetrahedron is decomposed in four triangles. Following steps in the method’s

pipeline have no differences with those described in previous sections. To show the usefulness of

this pipeline, we estimated the neighboring cells of a 3D stack of a Caenorhabditis elegans

embryo (Fig. 4a and Video S1), whose nuclei and membranes were stained with mCherry and

GFP, respectively [29]. As shown in Fig. 4b, our method was successful in all performance

metrics ( ), with a remarkable TPR of 97.6%.≥ 90%
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Fig. 4 Proposed method’s results in 3D. (a) Planar views of a 3D stack of a C. elegans embryo, showing cell

membranes (green) and nuclei (N=24). Colors were chosen so that the embryo was divided in 8.83μm (red:𝑧 = 𝑧 <

8.83μm; blue: 8.83μm). Detected neighbors of the cell with the maximum x-position are highlighted (yellow).𝑧 ≥

Adapted from Azuma and Onami 2017 [29]. (b) Final results: 3D view of the analyzed specimen (left), estimated

cell graph (center) and performance metrics (right; TPR=0.976, PPV=0.92, JI=0.9). TPR: True Positive Rate. PPV:

Positive Predictive Value. JI: Jaccard Index. Scale is not shown for images as the method is scale invariant.

4 Discussion

We developed an automatic and robust method for estimating neighboring relationships

between cells using only the information provided by nuclear markers. This is a remarkable

feature because membrane staining is not always possible nor convenient in many applications,

ranging from cell signalling to tissue development. The robustness of our method is mostly
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determined by making an educated guess of neighbor relationships between cells via a Delaunay

triangulation, which makes results stable against small displacements of cells. In particular, this

property is useful in cell tracking, as it is expected that small fluctuations in the positions of cells

between timepoints do not affect their connection. Regardless of being designed for nuclear

markers, it is worth noticing that this method can also be applied to cell centroids whenever

cytosolic or cytoplasmic fluorescent markers are available.

Although similar strategies have been used before [15,30,31], previous works were not

focused on neighboring relationships detection and, therefore, didn’t analyze the performance of

the methods directly. In addition, Delaunay edges were only filtered by distance, omitting

potential interferences in cell-cell interactions that come from the presence of other cells in the

neighborhood [31]. Furthermore, the distance threshold was an input of the algorithm, so that

both its reusability and generalization were user-dependent. To our knowledge, we developed the

first assessment of cell neighborhoods that is (i) fully automatic and (ii) based not only on

cell-cell distances, but also on pair-neighborhood interactions. The latter were quantified by

measuring the angle that each pair subtended with shared neighbors. The automation of our

method was achieved by maximizing a new robust statistic that assigns a communicability

efficiency to each edge of the Delaunay triangulation (Fig. S5).

On the other hand, incorporating relevant biological structure to the model improved the

performance, as it can be seen by comparing our method’s results to those obtained by filtering

the Delaunay graph only by distance (Fig. S6). Remarkably, this contribution improved PPV by

+11.5% in Drosophila1. On average, JI and PPV were increased by +4.2% and +5.6%,

respectively, while TPR did not change significantly (-0.09%). Performance differences seem to

be more noticeable when the image contains a low number of cells (Drosophila1) or the
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distribution of cells is more complex (C. elegans). These aspects could be relevant, for instance,

when tracking cell-cell interactions during early stages of embryonic development in 3D.

Importantly, we observed that tissue regularity affects the performance of our method. This

may be due to the correspondence between the Delaunay triangulation and the Voronoi diagram.

Since Voronoi cells are convex polygons, neighboring relations betweens highly irregular cells,

such as dendritic cells or neurons, might not be well approximated by the Delaunay triangulation.

A solution to this problem could be replacing nuclei centroids by a more representative set of

points, determined by non-convex structures [32]. This analysis is beyond the scope of this work

and could be the purpose of future research. However, the validation of our method showed that

it is highly accurate and versatile, working with similar performance in diverse tissues both in 2D

and 3D.
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