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Abstract

Sensory inputs in nervous systems are often encoded at the millisecond scale in a
temporally precise code. There is now a growing appreciation for the prevalence of
precise timing encoding in motor systems. Animals from moths to birds control motor
outputs using precise spike timing, but we largely do not know at what scale timing
matters in these circuits due to the difficulty of recording a complete set of
spike-resolved motor signals and relatively few methods for assessing spike timing
precision. We introduce a method to estimate spike timing precision in motor circuits
using continuous MI estimation at increasing levels of added uniform noise. This method
can assess spike timing precision at fine scales for encoding rich motor output variation.
We demonstrate the advantages of this approach compared to a previously established
discrete information theoretic method of assessing spike timing precision. We use this
method to analyze a data set of simultaneous turning (yaw) torque output and EMG
recordings from the 10 primary muscles of Manduca sexta as tethered moths visually
tracked a robotic flower moving with a 1 Hz sinusoidal trajectory. We know that all 10
muscles in this motor program encode the majority of information about yaw torque in
spike timings, but we do not know whether individual muscles receive information
encoded at different levels of precision. Using the continuous MI method, we
demonstrate that the scale of temporal precision in all motor units in this insect flight
circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale
present between muscle types. This method can be applied broadly to estimate spike
timing precision in sensory and motor circuits in both invertebrates and vertebrates.

Introduction

Neurons in both sensory and motor systems convey information through the precise
timing of spikes. Although precise temporal encoding in sensory systems has been found
in many organisms [11[2], the role of temporal encoding in motor systems has been
underappreciated. While strong correlations between spike rate and muscle force
production exist [3H5], the precise timing of spikes in motor neurons also matters due to
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nonlinearities in muscle force production and mechanical interactions of musculoskeletal
systems within themselves and with the environment [6]. Motor circuits in cortex [7],
cerebellum [8], descending interneurons [9], and the periphery [10-12] carry information
in neural spike timings. This information can be encoded in the difference between
timings in two spike trains |10], the inter-spike interval [7], or temporal patterning [11],
providing motor control systems the potential for a rich, layered code with high capacity.
Neurons are capable of generating spikes with incredible precision due to biophysical
properties that reduce jitter [13], yet this precision may not be consistent with the
actual timescale used by the neuromuscular system for motor control. How precisely
must the nervous system specify the timing of spikes in the motor periphery to preserve
meaningful information about visual stimuli or to control the activation of muscles for
movement? Knowing the scale of spike timing precision would inform our understanding
of the biophysical properties of muscle and the performance constraints necessary to
preserve this precision in the motor periphery.

However, we have few methods to assess at what timescale information about motor
output is encoded in motor systems, and how much of the potential bandwidth of
temporal codes is utilized. Previous methods for estimating precision include variability
on stimulus-response curves [2], spike time jitter analysis in experimental and
computational data [14}15], and information theoretic methods using discrete
representations of motor output and response |7]. Using these methods, the precision of
firing and encoding of single neurons in some sensory systems has been estimated to
occur on the millisecond or sub-millisecond scale [2,/14H16]. In cortical motor circuits,
spike timing precision has also been estimated to the millisecond-scale in a songbird
vocalization area using a discrete information theoretic method [7]. However, the
methods used in these previous studies either do not account for whether precision gives
information about an external feature (i.e. a sensory input or motor output) [14] or
limit the motor output representation to discrete behavior states instead of utilizing the
rich variation that can be present in motor output responses |7]. Therefore, it is difficult
to compare spike timing precision in different neural circuits or muscles. Methods that
do so would help establish temporal precision in peripheral motor circuits. In motor
circuits, the difficulty of obtaining spike resolution is another hurdle to estimating
precision. EMG recordings in vertebrates either sample from too many motor units to
discriminate spikes or only sample single motor units with spike resolution instead of
the entire motor pool, and the calcium dynamics in most imaging techniques occur over
greater time-scales than the width of neural spikes.

Hawk moths provide a compelling test-bed for questions of precision due to their fast,
complex, and agile motor behaviors that require a rich motor output representation.
One hawk moth, Manduca sexta, uses a set of only 10 muscles as the primary actuators
of their wings and each of these muscles is innervated by one or very few motor neurons,
so that each muscle is often considered a single effective motor unit. Therefore, we can
record these 10 muscles simultaneously to obtain a nearly complete, or comprehensive,
spike-resolved motor program, enabling investigation of precision over a nearly complete
circuit that encodes and controls flight. We know that spike timing encodes information
about motor output in all muscles of this comprehensive, spike-resolved motor
program [12], but do not know the scale of precision utilized for encoding and whether
this scale of precision differs in different muscle types. The hawk moth motor circuit,
due to its few muscles and spike resolution, enables us not only to estimate timing
precision, but discover whether this precision changes depending on muscle type,
insertion points, or functional properties across a nearly complete motor program.
Being able to estimate precision could point to whether the nervous system encodes
movement on a consistent or changing precision scale for different types of muscles.

Here, we take an new approach to estimating spike timing precision in each of the 5
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muscle pairs in the hawk moth flight motor program. Our method utilizes the
continuous Kraskov k-nearest neighbors mutual information (MI) estimation method
with additions of uniform noise [12,/17}/18] to corrupt spike timing over progressively
larger time windows. We compare this method to a previously established method of
estimating spike timing precision using the NSB discrete entropy estimator to evaluate
how MI changes with increasingly precise representations of the spiking activity [7}/19).
Our method moves spike timing precision estimates derived from information theoretic
methods into the continuous space to give us a more accurate picture of the timescales
necessary for encoding motor output. We use this method to assess the scale of spike
timing precision in the hawk moth flight motor program, and whether that scale
changes in muscles with distinct functional roles.

Materials and Methods

Comprehensive, Spike-Resolved Motor Program Data Set

The previously published data set used in this analysis recorded the comprehensive,
spike-resolved motor program of the hawk moth, Manduca sexta (N = 7), and its motor
output in a tethered flight preparation [12,20]. EMG signals from the 10 primary
muscles actuating each moth’s wings were recorded with spike-level resolution using
implanted silver wire electrodes (Fig ,C). These muscles are treated as single motor
units, since each is innervated by one or very few, synchronously firing motor neurons.
The moths were tethered using cyanoacrylate glue to a 3D-printed ABS plastic rod
attached to a custom six-axis force/torque (F/T) transducer (ATT Nanol7Ti, FT20157;
calibrated ranges: F,, F, = £1.00 N; F, = £1.80 N; 7, 7, 7, = £6250 mN-mm).
After tethering, the moths were given thirty minutes to recover from the surgery and
adapt to dark conditions, since these are crepuscular moths that typically fly at dusk
and dawn. The moths were then presented with a 3D-printed plastic flower oscillating
horizontally in a 1 Hz sinusoidal trajectory; these flowers have been used to elicit flight
maneuvers previously and sample a wide diversity of turns (Fig[[B) [21]. The EMG
recordings were sampled at 10000 Hz, amplified using a 16 channel amplifier (AM
Systems Inc., Model 3500), and acquired using a data acquisition board (National
Instruments USB-6529 DAQ) and custom MATLAB software. The same DAQ board
was used to acquire the strain gauge voltages from the ATI F/T transducer used to
calculate the forces and torques, also sampling at 10000 Hz.

The data set reports spike counts and spike timings in segmented wing strokes as
representations of the spiking activity along with the scores of the first 2 principal
components (PCs) of the within-wing stroke yaw torque (7,) produced in those wing
strokes each individual moth (Fig —E). The wing strokes were segmented using a
previously described method [22]. The force in the z-axis (F,) was filtered with a 8-th
order Butterworth bandpass filter between 5 and 35 Hz, capturing the wing beat
frequency of the moth. A Hilbert transform was used to identify the peak downward F,
in each wing stroke to serve as the zero time point, t = 0, for each wing stroke. The
timing of spikes in each muscle within each wing stroke were aligned to these zero time
points, such that the spiking activity were represented as continuous times in ms within
each wing stroke as a matrix S (Fig 7 . The within-wing stroke yaw torque
was also segmented into wing strokes using the identified zero time points, and a
principal components analysis of the continuous yaw torque signal from t = 0 to the
maximum length L in samples of the shortest wing stroke of each individual moth was
conducted (Fig ) The scores — the projections of each wing stroke onto the first two
principal components — were used as a motor output representation M of the
within-wing stroke yaw torque, 7,. For full details on the wing stroke segmentation and
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Fig 1. Representing the spiking activity and motor output of a moth’s
comprehensive, spike-resolved motor program. A: A 3D schematic showing
approximate positions and attachments of the 5 muscle types recorded in the motor
program: the dorsolongitudinal muscle (DLM, blue), the dorsoventral muscle (DVM,
green), the third axillary muscle (3AX, orange), the basalar muscle (BA, yellow), and
the subalar muscle (SA, pink). B: Tethered preparation used to record EMG signals
from the 10 muscles in the motor program and the forces and torques produced as the
moth responded to a flower stimulus. C: Example data from 0.5 seconds of tethered
flight in a moth. The bandpass-filtered F, signal is used to segment wing strokes, with t
= 0 of every wing stroke corresponding to the peak downward force in F, (gray circle
and line). Spike timings in each muscle and the yaw torque 7, are aligned to t = 0
within each wing stroke. D: The spiking activity S for each muscle and each moth can
be represented as a N x Ci,q, matrix where N is the number of wing strokes sampled
in that moth and C,,; is the maximum spike count observed in that muscle. Where
there are fewer than C,,, spikes in a wing stroke, entries with no spikes are represented
as NaN. E: The yaw torque 7, after wing stroke segmentation can be represented as a
N x L matrix where N is the number of wing strokes sampled in that moth and L is
the length in samples of the shortest wing stroke in the data set, meaning that some
wing strokes are shortened to length L. The matrix 7, can be reduced to a N x 2
matrix using principal components analysis (PCA). The motor output M is represented
as the projection of each wing stroke onto the first two principal component (PC)
loadings that explain the variance of the fully dimensional 7,. Data shown and panels
A-B taken and adapted from Putney et al. 2019 .

PCA of the yaw torque, see the original paper [12].
To estimate spike timing precision, we first adapted a previously published discrete
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information theoretic method that utilizes the Nemenman-Shafee-Bialek (NSB) entropy
estimator to determine the mutual information (MI) between discrete probability
distributions of spike "words” and motor output states [7}[19,[23/[24] (Fig[2). Here,
spikes are represented discretely by binning the spikes within the wing stroke into
smaller and smaller bins, providing a more precise representation of where spikes occur
within the wing stroke. We then introduce a new approach that builds off the
Kraskov-Stogbauer-Grassberger (KSG) continuous mutual information estimator used
to determine the MI between spike timings and motor output to estimate spike timing
precision by adding uniform noise in varying window sizes to the spike

timings [12[17[18] (Fig . This method is only limited in its representation of the spike
timings by the sampling rate. With a sampling rate of 10000 Hz, spike timings are
represented to 0.1 ms.

Discrete Method: MI Estimation using NSB

We first attempted to estimate spike timing precision using a previously described NSB
entropy estimation method [7,[19,[23,[24]. The spiking activity was used to create
probability distributions Sy with discrete states of spike ”words” w; created by binning
the spikes in each wing stroke using different numbers of bins, b (Fig ) The number
of spikes that occur in each bin sets the value of that bin, and each unique sequence of
bin values across all wing strokes is a spike “word” w;. The prevalence of each spike
word provides a discrete probability distribution Sy = P(w;) that describes the spiking
activity in each individual muscle. The number of bins b used to create this discrete
PDF was varied; the size of each of these bins set the spike timing precision ry as:

I‘d — tmaz tmzn, (1)
b

where t,,4, is the highest spike time recorded in that muscle and t,,;, is the lowest.
This is the maximum range within a wing stroke where spikes occur. When this range is
split into b bins the size of each bin is r4 in milliseconds.

To create a discrete probability distribution for the motor output, we used the
median of the PC scores M on each axis (each column of M) to create behavioral
groups delineated by low and high states where values below the median were placed
into the “low” behavioral group and values above the median were placed into the
“high” behavioral group (Fig ) This allowed us to then create a discrete probability
distribution P(m;) of 4 motor output states where wing strokes were categorized as
being “low” or “high” on both axes, or “low” on one axis and “high” on another axis.
The motor output representation M, then is the discrete probability distribution P(m;)
where m; are each of four motor output states (¢ = 1-4). In a previous implementation
of this method to songbird motor cortex data, the motor output was divided into only 2
potential states using the method above [7]. Here, we use 4 motor output states to allow
us to draw comparisons with the continuous method described below which uses scores
from both principal components and to maintain consistency with the previously
published paper on this data set which used the scores from both principal components
to estimate the mutual information between spiking activity and motor output |12].

Using these two discrete probability distributions, we estimated the mutual
information (MI) between the spike ”words” (represented by S;) and the motor output
states (represented by My) for each muscle in each moth (Fig[2C):

lq = I(Sa,Ma) = H(Sa) — H(Sa|Ma), (2)
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Fig 2. Discrete Method: MI Estimation using NSB A: The spike train within a
wing stroke can be represented by a pure continuous code with the precise spike timings
(blue), a pure spike count code where the activity is represented just by the number of
spikes in the train (black), or binned codes that contain more precise information with
more bins (gray). The spiking activity representation S is transformed into a discrete
probability distribution Sy whose entropy can be estimated using the NSB method.
Each spike train in a wing stroke is binned into spike words w; with b bins. The
probability distribution of occurrences of each spike word w; is our representation of the
spiking activity as a discrete probability distribution. B: The motor output represention
M is transformed into a discrete probability distribution My. The scores of the first two
principal components can be used to specify four behavioral states m; where i = 1-4
categorized by low and high groups above and below the median score for each
component. Visualization of the four motor output states m; as a scatter plot of the
scores of the first two principal components, with each unique color specifying a motor
output state. C: The NSB entropy estimator is used to estimate the entropies of the
spiking activity H(Sq) and the conditional entropies H (Sq|My) at different numbers of
bins b to determine the mutual information () between the spiking activity Sy and the
motor output My.
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where the mutual information Iy = I(S4,My) between the spike word probability
distribution Sy and the motor output state probability distribution My is equal to the
entropy of the spike word probability distribution (H(S;) minus the conditional entropy
of the spike word probability distribution given knowledge of the motor output state
H(S;—M,). This conditional entropy is the sum of the entropy of the spiking activity
for wing strokes in each motor state, m;, weighted by the probability of that motor state

p(mi):

4
H(Sa/Ma) = > p(mi)H(Sq[Ma = my), (3)
i=1
Since all entropy estimates with finite data have bias, we used the NSB entropy
estimation for the entropy of the full spike word distribution H(Sg) and the conditional
entropy H(S4|M,) in this equation [7}/19,/23,24], which can estimate these entropies
with less bias even when severely undersampled as opposed to the more traditional
direct method, or maximum likelihood, estimation [1]. The NSB method uses Bayesian
estimation of the underlying probability distributions given observed events, and then
estimates the first and second posterior moments of the entropies. The reported mean
and standard deviation of these entropy estimates was calculated using the first and
second posterior moment of the entropy, respectively [24]. Estimates of I(Sq, M) were
done for spike word distributions S; defined with increasing numbers of bins b = 1 - 70,
with b = 70 being well within the sub-millisecond range in all muscles. With this
method, if a plateau in MI can be identified as b increases, a breakpoint analysis could
be used to determine the spike timing precision r4 by fitting a two-region regression to
the plateau and the region where MI is increasing with increasing b; the breakpoint
between these two regions would be the spike timing precision r4.

Continuous Method: MI Estimation using KSG and Added
Noise

Our second method of estimating the spike timing precision used a continuous Kraskov
k-nearest neighbors MI estimation [17] (Fig[3). The Kraskov k-nearest neighbors
method uses the Euclidean distances between each sampled wing stroke and its kth
nearest neighbor in a space defined by variables X and Y to estimate the joint entropy
of the two variables H(X,Y) and the mutual information between the two variables
I(X,Y). X and Y can be multidimensional, with size N x v where N is the number of
observations and v is the number of dimensions that define the variable X or Y. This
method also preserves continuous information since no discretization of the variables X
or Y is required. Here, X is a representation of our spike timings, S, which has
dimension size N x Cpq. (Fig ) Y is the scores of the two principal components of
the yaw torque (M = M,), which is a 2-dimensional continuous variable (Fig[3{C). For
the spike timings, we generated a random uniform distribution of noise U between
values of 0 and 7., where . is the upper limit of the distribution (Fig ) This adds a
window of noise equivalent to a value r., in milliseconds, shifting spike timing values S,
by U(0,r.) (Fig ) We then estimate the MI between the noise corrupted spike timing
values and M, across values of r.:

Cm,az
I. =1(S. + U(0,r¢), M) = Z p(C =9)I(S.+U(0,r.); M.|C =), (4)
i=1
where C' is the number of spikes in a wing stroke and Cj,,4, is the maximum count of
spikes in a single wing stroke for each muscle. This formulation for the information
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between spike timings and the motor output allows for a variation in the number of
spikes in each wing stroke to be correctly taken into account. The mutual information
between the spike timings with added noise S. and the scores of the first 2 PCs in each
wing stroke M, was estimated 150 times with different random noise samples for each
value of r. tested, reducing the effect any individual estimation run has on the final
mutual information value. Therefore, we report the mean and standard deviation of
these 150 estimates of I.

Continuous Method: MI Estimation using KSG and Added Noise
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Fig 3. Continuous Method: MI Estimation using KSG and Added Noise A:
Uniform noise (U(0, r.) is added to the precise spike timings. At small 7., the noise
corruption does not change the spike train representation much over 10 iterations. At
large r., significant variation between the representation of the same spike train appears
over 10 iterations. B: The representation of the spiking activity S has a uniform window
of noise defined by width r. added to it to create representations S, at varying levels of
added noise. C: The motor representation for the continuous method M, is the same as
the continuous representation described above M which is a N x 2 matrix of the scores
of the first two principal components for each wing stroke. D: Visualization of M = M,
as a scatter plot of the scores of the first two principal components, where each point is
a wing stroke.

We defined the precision as the point where the MI estimate falls below the lower
bound on the estimate of the MI (the mean minus the standard deviation) at r. = 0.00
ms (i.e. the original data) based on variance in data fractions [12,[18]. The code
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implementation of the KSG estimator we used does jitter the values of the variables,
but at several orders of magnitude below the level of uniform noise we add. We
determined the standard deviation of our MI estimates at r. by subsampling the data
sets in non-overlapping data fractions. The variance in these fractions was used to
estimate the standard deviation or uncertainty of the estimate at the full data size, as
previously [18]. To test for statistically significant differences between the spike timing
precision r. of different muscles, we used one-way ANOVA and Kruskal-Wallis tests.

Results and Discussion

The continuous method gives an improved estimate of
millisecond-scale timing precision

Here, we present an extension of a continuous MI estimation method [18] to obtain
reliable estimates of millisecond-scale timing precision (Fig. across the hawk
moth’s comprehensive motor program. The continuous method with the disrupting role
of additive noise allows us to determine a specific estimate of the spike timing precision
r. at fine resolution, giving an improved assessment of spike timing precision over the
discrete method. The value of added noise r. where the mean MI estimate dropped
below the range of error for I. at r. = 0 was chosen as the threshold for spike timing
precision.

The discrete method, which has been previously used to show spike timing precision
in motor systems [7,[24], could not provide a consistent precision estimate in all muscles.
One of the advantages of the NSB estimator over other discrete estimators is that it can
estimate probability distributions from very sparse sampling. However, in our data set,
this method fails to establish a lower bound on precision. Some estimates were unstable
at high precision, as seen in Moth 5’s LDLM (Fig ), where negative information
values were obtained at high numbers of bins. Others, even when sampling over 70 bins
in a wing stroke, did not reach the precision obtainable by the continuous estimation
method, as seen in Moth 1’s L3AX (Fig ) Still other examples never plateau at high
bin sizes . In contrast, the continuous noise addition method resulted in stable
estimates, with an expected monotonic decrease in MI as the amount of added uniform
noise increased that was consistent across all muscles in our data set (Fig 2IC-D, [S3 Fig).
Using the continuous method, we can estimate the mutual information at smaller values
of precision and have greater stability at these smaller values (Fig. .

Our implementation of the discrete method estimated mutual information for a
motor output probability distribution M, that included more motor output states m;
than its previous implementation, which only predicted between two motor output
states [7]. Simplifying My to only include two motor output states did not significantly
improve the quality of our estimates. In other motor circuits like those found in cortex,
it might be possible possible to obtain enough spike trains to produce stable estimates
by more completely sampling the range of all possible realizations of spiking activity,
since this method produced stable estimates when implemented previously |7]. Even
still, the continuous method still provides several advantages over the discrete method.
With the continuous method, we do not have to discretize the motor output and
therefore can estimate MI with a much richer representation of the motor output space.
For example, in Moth 1’s L3AX muscle (Fig ,C)7 a plateau in MI occurs at a larger
precision value in the discrete method than the continuous method; however, the motor
output representation in the discrete method is much simpler, consisting of four motor
output states. With the continuous method, we incorporate a continuous representation
of the motor output and see a much smaller precision value, highlighting the importance
of within-wing stroke features of the motor output that are not captured in the four
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motor output state space in the discrete method. Additionally, in our spiking activity
representation, we also have the advantage of being able to more finely represent
different levels of spike timing precision, especially at small values of r., whereas the
discrete method is limited to binning spike trains. This enables us to determine a
specific estimate of spike timing precision at fine scales with the continuous method.
Finally, the KSG MI estimation only includes information encoded by spike timings,
whereas the NSB MI estimation includes information about spike rate in its entropies;
this feature of KSG has been used to separate spike rate and timing information |11}[12].
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Fig 4. Comparing the two methods used to estimate spike timing precision.
A-B: MI (mean + STD) estimated using the Discrete Method for a sample L3AX
muscle (A) and a sample LDLM muscle (B). C-D: MI (mean + STD of 50 tests of
adding uniform noise) estimated using the Continuous Method at values of uniform
noise added for the same L3AX muscle as in A (C) and the same LDLM muscle as in B
(D) (red arrow: estimate of spike timing precision, 7.; purple line: error estimate of MI
at zero noise added). All values are plotted on a log scale.

The discrete method has been used to show millisecond-scale encoding in a cortical
vocal area in songbirds [7]. While this method is not fully stable or rich enough to
confidently resolve the degree of precision it is generally consistent in showing
millisecond-scale precision in hawk moth flight muscles, in that estimates of mutual
information is increasing in most cases where a smooth trend is still observed .
Our implementation of noise addition allows for more confident estimates of spike
timing precision using a continuous information theoretic method in experimental data,
especially at sub-millisecond scales. Other methods besides those presented here have
been used to estimate spike timing precision. Many experimental studies in sensory
systems have investigated the statistics of spike timing jitter as a proxy for how precise
the neural system specifies must be to encode information about a repeated
stimulus [25427]. In motor systems, however, we cannot obtain many realizations of the
same motor output to investigate jitter in spike timings because it is difficult to
constrain motor behavior. Even in well-defined tasks like reaching along a pre-defined
trajectory, variation exists in how a motor task is realized [28}/29]. Computational
studies have also used spike timing jitter to measure the reliability of neural coding
under repeated presentations of the same sensory stimulus [14,30]. For motor systems,
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however, other methods are necessary because the moth will not produce the same
motor output repeatedly to estimate spike timing jitter. Jittering methods can also fail
to address whether the neuronal precision observed is actually necessary for encoding
either the sensory stimulus or motor output. While we have known that computational
modesl! of noisy neurons in Kilinc et al. can demonstrate precisely time spikes [30] and
neural networks can learn precisely timed sequences of spikes [31], we can now assess
the degree of spike precision across the entire comprehensive motor program. The
continuous method developed here can be used for both sensory and motor systems to
determine the scale of spike timing precision at fine resolution.

One implementation of spike timing jitter used Gaussian noise windows in data from
LGN neurons to estimate mutual information between spike trains and visual stimulus
movies, which does address whether spike timing precision informs motor output [15].
Here, instead of Gaussian noise, our method uses uniform noise to evenly jitter the spike
timings over a time window that can correspond more directly to the bin sizes used in
the previously published discrete method. Additionally, our method of noise addition
preserves no information about when the spike occurred, whereas adding a Gaussian
window of noise will still preserve that information because the distribution of jittered
spike times will peak at the original spike timing. Using a uniform window of noise
corrupts information evenly across the window r, which we use to define the spike
timing precision.

Every muscle in the hawk moth flight motor system uses
millisecond-scale spike timing precision

Using the continuous method, we demonstrate spike timing precision to the
millisecond-scale across all ten muscles in the motor system as well as statistically
significant differences in the spike timing precision of functionally distinct muscle types
(Fig ) When left and right muscles are considered separately, there are marginally
statistically significant differences across the muscle groups, but all mean values across
individuals and muscles range from 0.8 to 1.8 ms. We combine left and right muscles of
each type to determine whether different muscles have statistically different spike timing
precision values (Fig[5B).

Each of the five muscle types in the hawk moth motor program — the
dorsolongitudinal (DLM), dorsoventral (DVM), third axillary (3AX), basalar (BA), and
subalar (SA) muscles (Fig. [[]A,C) — have different sizes, different attachment points,
different activation mechanisms, and different functional roles. The DLM and DVM
indirectly actuate the down stroke and up stroke of the wing, respectively, by deforming
the thorax. The 3AX, BA, and SA muscles directly attach to the base of the wing to
fine-tune the motion of the wing during flight. The DLM and DVM have been
traditionally thought of as flight power muscles, while the 3AX, BA, and SA have been
called flight steering muscles |12]. In all of muscles, the importance of spike timing for
motor output has been supported. Sub-millisecond scale timing in the DLM is linked to
power output during flight [10,[32]. Changes in the spike timing of the DVM and 3AX
in a sister species of hawk moth to the one we investigate here have been shown to
correlate with wing kinematic changes at wing stroke reversal [33]. In Manduca sexta,
changes in timing of the BA is correlated with turning behavior and changes in the
timing of the SA is correlated with wing depression, promotion, and remotion [34,35].
Because each of these muscles is functionally distinct, we investigated whether the scale
of spike timing precision differed by muscle type.

The lowest mean spike timing precision of a muscle (r.) across all moths is observed
in the subalar (SA) and dorsoventral (DVM) muscles, with mean precision values of 0.8
ms, which makes them on average sub-millisecond precise. We also found the DLM
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Fig 5. Spike timing precision estimates from the Continuous Method. A:
Spike timing precision values (r.) for all moths reported as boxplots (middle black line:
median; boxes: 25th and 75th percentiles; whiskers: all data except outliers; white
circles: 7. values for individual moths; red circles: r. values for moths that were
considered statistical outliers). Marginally statistically significant differences were found
across muscle types (one-way ANOVA, p = 0.0147; Kruskal-Wallis, p = 0.0655). B:
Spike timing precision values (r.) for all moths with left and right side muscles
combined (same data as A). The asterisk denotes groups that with statistically different
means in a Kruskal-Wallis non-parametric test. The precision values of the 3AX muscle
is significantly different from the SA and DVM muscles in a multi-comparison
Kruskal-Wallis test at significance level p j 0.05 with corrections using the Tukey’s
honestly significant difference criterion (p = 0.0057). The precision of the 3AX muscle
was significantly different from the SA and DVM muscles in a multi-comparison
two-way ANOVA with the same significance criterion as for the Kruskal-Wallis test
(two-way ANOVA for muscle type, p = 0.0012; and left /right sides of the moth, p =
0.36; with a test for interaction, p = 0.85). C: Mean spike counts for all moths with left
and right muscles combined as in B. The asterisk denotes groups with statistically
different means in a Kruskal-Wallis non-parametric test. The spike count means of the
DLM was significantly different from all other muscles in a multi-comparison
Kruskal-Wallis test at the same significance criteria as in B (p < 107%). The 3AX
muscle is significantly different from all other muscles and the DLM is significantly
different from the SA muscle in a multi-comparison two-way ANOVA with the same
significance criterion (two-way ANOVA for muscle type, p < 10~%; and left /right sides
of the moth, p = 0.62; with a test for interaction, p = 0.93).
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muscles to be sub-millisecond precise on average. Previously, bilateral timing differences
between the left and right DLMs were shown causally to have sub-millisecond precision
for producing yaw torque [10]. We can now demonstrate that both sets of flight power
muscles, the DLMs and DVMs, encode information on the sub-millisecond scale as
individual muscles, not just in relation to each other. The ability to fine-tune power
production during flight to produce yaw turns is driven by sub-millisecond changes in
these power muscles, and sub-millisecond differences in their timings relative to each
other. This rebuts the traditional view that these flight power muscles do not have
fine-tuned control of flight. Additionally, evidence of sub-millisecond scale encoding in
the SA muscles points to a precise control role for these muscles, perhaps in controlling
wing depression and promotion/remotion at its specific phase of firing [34].

The 3rd axillary (3AX) muscles have the largest mean spike timing precision at 1.6
ms and are statistically different from the SA and DVM muscles in a multi-comparison
Kruskal-Wallis test. This demonstrates the absence of a link between the level of spike
timing precision and amount of spike timing MI encoded by each muscle type, since the
muscles have been previously shown to encode about the same amount of spike timing
information [12]. While all these muscles encode the same amount of spike timing
information, they have different overall amounts of variation in spike timing during a
wing stroke (S1 Fig)). The 3AX muscle is able to encode the same amount of
information about the motor output, but does so with less spike timing precision. While
not statistically significant, the mean spike count of the 3AX muscle is higher than all
other muscle types in the motor program (Fig ) It could be that having multiple
spikes to carry motor information decreases precision requirements for each spike.
However, the DVM and SA both report lower mean precision values than the DLM
despite having more spikes. The DLM remains one of the most precise muscles in the
motor program though, which may be driven by the constraint of having only one spike
with which to encode information.

The spike timing precision of individual muscles may also enable coordination
between muscles. The studies cited above that demonstrate the importance of timing
throughout the hawk moth motor program all reported spike timings of muscles relative
to the DLM [32H35], and the study on the DLM timing investigated the relative timing
between the left and right DLMs [10]. Here, we demonstrate that all individual muscles
have precision on the sub-millisecond to millisecond-scale, which could provide the
precision necessary for this type of coordination across muscles.

Spike timing must be essential for sensorimotor integration

Because millisecond-level spike timing precision is present across the entire motor
program, not just in specialized muscles, encoding of this precision must either be
preserved throughout the nervous system from sensory inputs to interneurons then out
to the periphery, or could be accomplished entirely in the periphery via direct
sensorimotor connections. Many sensory systems are millisecond-scale precise 2], much
like the flight motor program investigated here, so sensory inputs are likely candidates
for encoding information precisely that could then be preserved in the transformations
of activity to muscles. In the hawk moth investigated here, M. sexta, it is known that
dopaminergic interneurons whose activity is correlated with visual stimulus changes
heavily innervate the pterothoracic ganglion with axon branches where the motor
neurons controlling the 5 muscles studied here originate [36}37]. These interneurons
could preserve temporally precise information about the visual scene that is passed
through synapses to produce precise spiking. Dopaminergic interneurons that synapse
directly with the motor neuron for the basalar muscle (b1) in flies enable wing
coordination during onset and termination of flight by integrating bilateral sensory
inputs [38]. Additionally, precise timing in a GF interneuron relative to parallel circuits
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has also been found to determine action selection in a Drosophila escape response [9].
This demonstrates the importance of precise timing in the central nervous system for
action selection — a direct effect on motor behavior — and may point to the preservartion
of precision throught a sensorimotor circuit since these GF interneurons receive input
from the optic lobes.

An alternative possibility is that precision arises not from precise visual encoding
preserved through descending interneurons, but from direct sensorimotor connections in
the periphery from mechanosensors. In flies, activation of haltere steering motor
neurons is known to modulate the spike timing of a basalar muscle on the
millisecond-scale [39], facilitated by a direct, monosynaptic connection between haltere
afferents and the motor neuron of that muscle |[40]. Haltere mechanosensors are
typically campaniform sensilla, which have been shown to encode lateral displacements
using precise spike timing [41]. While moths do not have halteres, they do have
campaniform sensilla on their wings that respond within milliseconds to mechanical
stimulation |42, which could dictate temporally precise responses in muscles. Flight
posture reflexes have been activated by stimulating these wing mechanosensors [43],
which may indicate the presence of analogous direct monosynaptic connections between
wing mechanosensors and motor neurons in the hawk moth. It is likely that both these
peripheral sensorimotor connections as well as descending inputs carrying visual
information play a role in preserving spike timing precision in the motor periphery that
is necessary for the robust, agile execution of flight.

While previously sub-millisecond precision had only been demonstrated in a bilateral
pair of muscles in the hawk moth flight motor program, we now have shown at least
millisecond-level encoding precision in each individual muscle that the moth uses to
control its wings during flight. The presence of highly temporally precise coding is not a
special case reserved for certain functionalities, but rather a pervasive encoding strategy
used by the nervous system. Precision is likely necessary due to large changes in power
output driven by millisecond-scale changes, which belies the assumption that muscle can
be treated merely as a low pass filter on motor neuron activity, where spike rate is
proportional to force produced. Millisecond changes in spike triplets in motor units of
song bird breathing muscles causally change pressure production in their lungs [11]. The
biomechanical and molecular properties of muscle change throughout their cycle of
activation, and the millisecond scale timing of activation during these state changes
could cause muscle to produce different forces. While hawk moth flight is a relatively
“fast” behavior, with wing strokes elapsing 40 to 50 milliseconds, temporal encoding
should not be assumed to only occur in insects or other animals with fast frequency
behaviors. Walking or running can be a much lower frequency behavior, but bipedal
foot strikes — which occurs on a similar timescale to a moth wingstroke — may use
precisely timed motor signals [44]. Slower time scale behaviors, like breathing in
songbirds, have also been shown to encode on the millisecond scale [11]. Other motor
behaviors in vertebrates also can occur on fast timescales, like eye movements, finger
snapping, and typing. Additionally, neural mechanisms in vertebrates could be used to
encode and preserve spike timing precision across synapses. As an example, stretch
reflexes use direct sensory-to-motor connections that could be analogous to the highly
specialized circuits in insect flight, and may serve as sources of precision in vertebrate
motor units. The spike timing precision of motor neuron activity in a variety of
behaviors and species can be assessed using the method presented here, which provides
a specific estimate of the scale of precision for encoding a motor output.

Supporting information

S1 Fig. Raster plots from five muscles along with corresponding PC
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scores. Timing of the L3AX, LBA, LSA, LDVM, and LDLM muscle spikes for 200
example wing strokes in an individual moth (scale bar = 20.0 ms). Spikes are
color-coded by their order in each wing stroke. The corresponding values in arbitrary
units of the PC scores in each wing stroke are displayed in the far right panel.

S2 Fig. Examples of estimates of I; from the Discrete Method using NSB
with four motor states m; where i = 1 — 4. Log plots of I; at different values of rg4
for three moths and three muscle types. The axes here should correspond to the ones in

for comparison of the methods.

S3 Fig. Examples of estimates of /. from the Continuous Method using
KSG. Log plots of I. at different values of r. for three moths and three muscle types.
The axes here should correspond to the ones in for comparison of the methods.

Acknowledgments

This material is based upon work supported by a NSF Graduate Research Fellowship
(DGE-1650044) awarded to J.P., an NSF Faculty Early Career Development Award
(Award no. 1554790) to S.S., and a Klingenstein-Simons Fellowship in the Neurosciences
to S.S.

References

1. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W. Entropy and
information in neural spike trains. Physical Review Letters. 1998;80(1):197-200.

2. Lestienne R. Spike timing, synchronization and information processing on the
sensory side of the central nervous system. Progress in neurobiology.
2001;65(6):545-591.

3. Biilbring E. Correlation between membrane potential, spike discharge, and tension
in smooth muscle. Journal of Physiology. 1955;128:200-221.

4. Milner-Brown HS, Stein RB, Yemm R. Changes in firing rate of human motor
units during linearly changing voluntary contractions. The Journal of Physiology.
1973;230(2):371-390. doi:10.1113/jphysiol.1973.sp010193.

5. Enoka RM, Duchateau J. Rate Coding and the Control of Muscle Force. Cold
Spring Harbor Perspectives in Medicine. 2017;7(10).
d0i:10.1101/cshperspect.a029702.

6. Sober SJ, Sponberg S, Nemenman I, Ting LH. Millisecond spike timing codes for
motor control. Trends in Neurosciences. 2018;41:644-648.
doi:10.1016/j.tins.2018.08.010.

7. Tang C, Chehayeb D, Srivastava K, Nemenman I, Sober SJ. Millisecond-scale
motor encoding in a cortical vocal area. PLoS Biology. 2014;12(12):e1002018.
doi:10.1371/journal.pbio.1002018.

8. Suvrathan A, Payne HL, Raymond JL. Timing rules for synaptic plasticity
matched to behavioral function. Neuron. 2016;92(5):959-967.
d0i:10.1016/j.neuron.2016.10.022.


https://doi.org/10.1101/2021.07.14.452403
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452403; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

9. von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, et al. A
spike-timing mechanism for action selection. Nature Neuroscience.
2014;17(7):962-970. doi:10.1038/nn.3741.

10. Sponberg S, Daniel TL. Abdicating power for control: a precision timing strategy
to modulate function of flight power muscles. Proceedings of the Royal Society B:
Biological Sciences. 2012;279(1744):3958-3966. doi:10.1098/rspb.2012.1085.

11. Srivastava KH, Holmes CM, Vellema M, Pack A, Elemans CPH, Nemenman I,
et al. Motor control by precisely timed spike patterns. Proceedings of the National
Academy of Sciences of the United States of America. 2017;114(5):1171-1176.
doi:10.1101/056010.

12. Putney J, Conn R, Sponberg S. Precise timing is ubiquitous, consistent, and
coordinated across a comprehensive, spike-resolved flight motor program.
Proceedings of the National Academy of Sciences. 2019;116(52):26951-26960.
doi:10.1073 /pnas.1907513116.

13. Grothe B, Klump GM. Temporal processing in sensory systems. Current opinion
in neurobiology. 2000;10(4):467-473.

14. Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ. A new
correlation-based measure of spike timing reliability. Neurocomputing.
2003;52-54:925-931. doi:https://doi.org/10.1016,/S0925-2312(02)00838-X.

15. Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, et al. Temporal
precision in the neural code and the timescales of natural vision. Nature.
2007;449(7158):92-95.

16. Bair W, Koch C. Temporal precision of spike trains in extrastriate cortex of the
behaving macaque monkey. Neural computation. 1996;8(6):1185-1202.

17. Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics. 2004;69:066138.

18. Holmes CM, Nemenman I. Estimation of mutual information for real-valued data
with error bars and controlled bias. Phys Rev E. 2019;100:022404.
doi:10.1103/PhysRevE.100.022404.

19. Nemenman I. Coincidences and estimation of entropies of random variables with
large cardinalities. Entropy. 2011;13(12):2013-2023.

20. Putney J, Conn R, Sponberg S. Data from: Precise timing is ubiquitous,
consistent and coordinated across a comprehensive, spike-resolved flight motor
program; 2019. Available from:
http://datadryad.org/stash/dataset/doi:10.5061/dryad.r4xgxd280.

21. Sponberg S, Dyhr JP, Hall RW, Daniel TL. Luminance-dependent visual
processing enables moth flight in low light. Science. 2015;348(6240):1245-1248.
doi:10.1126 /science.aaa3042.

22. Sponberg S, Daniel TL, Fairhall AL. Dual dimensionality reduction reveals
independent encoding of motor features in a muscle synergy for insect flight control.
PLoS Computational Biology. 2015;11(4):1-23. doi:10.1371/journal.pcbi.1004168.

23. Nemenman I, Shafee F, Bialek W. Entropy and inference, revisited. In: Advances
in neural information processing systems; 2002. p. 471-478.


http://datadryad.org/stash/dataset/doi:10.5061/dryad.r4xgxd280
https://doi.org/10.1101/2021.07.14.452403
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452403; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

24. Nemenman I, Bialek W, Van Steveninck RDR. Entropy and information in
neural spike trains: Progress on the sampling problem. Physical Review E.
2004;69(5):056111.

25. Berry MJ, Warland DK, Meister M. The structure and precision of retinal spike
trains. Proceedings of the National Academy of Sciences. 1997;94(10):5411-5416.

26. DiCaprio RA, Billimoria CP, Ludwar BC. Information Rate and Spike-Timing
Precision of Proprioceptive Afferents. Journal of Neurophysiology.
2007;98(3):1706-1717. doi:10.1152/jn.00176.2007.

27. Cui Y, Prokin I, Mendes A, Berry H, Venance L. Robustness of STDP to spike
timing jitter. Scientific reports. 2018;8(1):1-15.

28. Georgopoulos A, Kalaska J, Caminiti R, Massey J. On the relations between the
direction of two-dimensional arm movements and cell discharge in primate motor
cortex. Journal of Neuroscience. 1982;2(11):1527-1537.
doi:10.1523/JNEUROSCI.02-11-01527.1982.

29. Wu HG, Miyamoto YR, Castro LNG, Olveczky BP, Smith MA. Temporal
structure of motor variability is dynamically regulated and predicts motor learning
ability. Nature neuroscience. 2014;17(2):312-321.

30. Kilinc D, Demir A. Spike timing precision of neuronal circuits. Journal of
computational neuroscience. 2018;44(3):341-362.

31. Memmesheimer RM, Rubin R, 01veczky BP, Sompolinsky H. Learning Precisely
Timed Spikes. Neuron. 2014;82(4):925-938. do0i:10.1016/j.neuron.2014.03.026.

32. Tu MS, Daniel TL. Submaximal power output from the dorsolongitudinal flight
muscles of the hawkmoth Manduca sexta. Journal of Experimental Biology.
2004;207(26):4651-4662. doi:10.1242/jeb.01321.

33. Wang H, Ando N, Kanzaki R. Active control of free flight manoeuvres in a
hawkmoth, Agrius convolvuli. Journal of Experimental Biology.
2008;211(3):423-432.

34. Kammer AE. The motor output during turning flight in a hawkmoth, Manduca
sexta. Journal of Insect Physiology. 1971;17(6):1073—-1086.
doi:10.1016/0022-1910(71)90011-4.

35. Kammer AE, Nachtigall W. Changing phase relationships among motor units
during flight in a saturniid moth. Journal of Comparative Physiology.
1973;83(1):17-24. doi:10.1007/BF00694569.

36. Rind FC. A directionally sensitive motion detecting neurone in the brain of a
moth. Journal of Experimental Biology. 1983;102(1):253-271.

37. Rind FC. The organization of flight motoneurones in the moth, Manduca sexta.
Journal of Experimental Biology. 1983;102(1):239-251.

38. Sadaf S, Reddy OV, Sane SP, Hasan G. Neural Control of Wing Coordination in
Flies. Current Biology. 2015;25(1):80-86.
doi:https://doi.org/10.1016/j.cub.2014.10.069.

39. Dickerson BH, de Souza AM, Huda A, Dickinson MH. Flies Regulate Wing
Motion via Active Control of a Dual-Function Gyroscope. Current Biology.
2019;29(20):3517-3524.e3. doi:https://doi.org/10.1016/j.cub.2019.08.065.


https://doi.org/10.1101/2021.07.14.452403
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452403; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

40. Fayyazuddin A, Dickinson MH. Haltere afferents provide direct, electrotonic
Input to a steering motor neuron in the blowfly, Calliphora. Journal of
Neruoscience. 1996;16:5225-5232.

41. Yarger AM, Fox JL. Single mechanosensory neurons encode lateral displacements
using precise spike timing and thresholds. Proceedings of the Royal Society B:
Biological Sciences. 2018;285(1887):20181759.

42. Pratt B, Deora T, Mohren T, Daniel TL. Neural evidence supports a dual
sensory-motor role for insect wings. Proceedings of the Royal Society B: Biological
Sciences. 2017;284:20170969.

43. Dickerson BH, Aldworth ZN, Daniel TL. Control of moth flight posture is
mediated by wing mechanosensory feedback. Journal of Experimental Biology.
2014;217(13):2301-2308.

44. Daley MA. Understanding the agility of running birds: sensorimotor and
mechanical factors in avian bipedal locomotion. Integrative and comparative
biology. 2018;58(5):884-893.


https://doi.org/10.1101/2021.07.14.452403
http://creativecommons.org/licenses/by-nc-nd/4.0/

