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Abstract

Symbiotic bacteria are responsible for the majority of complex carbohydrate digestion in
the human colon. Since the identities and amounts of dietary polysaccharides directly impact the
gut microbiota, determining which microorganisms consume specific nutrients is central to
defining the relationship between diet and gut microbial ecology. Using a custom phenotyping
array, we determined carbohydrate utilization profiles for 354 members of the Bacteroidetes, a
dominant saccharolytic phylum. There was wide variation in the numbers and types of substrates
degraded by individual bacteria, but phenotype-based clustering grouped members of the same
species indicating that each species performs characteristic roles. The ability to utilize dietary
polysaccharides and endogenous mucin glycans was negatively correlated, suggesting exclusion
between these niches. By analyzing related Bacteroides ovatus/xylanisolvens strains that vary in
their ability to utilize mucin glycans, we addressed whether gene clusters that confer this
complex, multi-locus trait are being gained or lost in individual strains. Pangenome
reconstruction of these strains revealed a remarkably mosaic architecture in which genes
involved in polysaccharide metabolism are highly variable and bioinformatics data provide
evidence of interspecies gene transfer that might explain this genomic heterogeneity. Global
transcriptomic analyses suggest that the ability to utilize mucin has been lost in some lineages of
B. ovatus and B. xylanisolvens, which still harbor residual gene clusters that are involved in
mucin utilization by strains that still actively express this phenotype. Our data provide insight
into the breadth and complexity of carbohydrate metabolism in the microbiome and the

underlying genomic events that shape these behaviors.
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Introduction

Microbial communities in the distal intestines of humans and other mammals play critical
roles in the digestion of dietary polysaccharides (1-3). Unlike proteins, lipids and simple sugars,
which can be assimilated in the small intestine, the vast majority of non-starch polysaccharides
(fibers) transit undegraded to the distal gut due to a lack of requisite enzymes encoded in the
human genome (4). Microbial transformation of dietary fiber polysaccharides into host-
absorbable organic and short chain fatty acids is a beneficial process that unlocks otherwise
unusable calories from our diet (5), shapes the composition and behavior of the gut microbial
community (6-8), provides preferred nutrients directly to the colonic epithelium (9-11) and
shapes the development of immune cell populations (12, 13).

The abundance of dietary fiber in the mammalian diet, and the substantial chemical
diversity within this class of molecules, provides a prominent selective pressure that drives
genome evolution and diversification within symbiotic bacterial populations. The genomes of
individual human gut bacteria frequently encode dozens-hundreds more polysaccharide-
degrading enzymes than human secrete into the gastrointestinal tract, reflecting gut microbial
adaptations to degrade dietary fibers (3, 4). As examples, the genomes of a few well-studied
Gram-negative Bacteroides (B. thetaiotaomicron, B. ovatus and B. cellulosyliticus) encode
between 250 and over 400 CAZymes that collectively equip them to target nearly all commonly
available dietary polysaccharides (14-16). However, none of these three species is by itself
capable of degrading all available polysaccharides, a conclusion that was supported by early
phenotypic surveys of cultured human gut bacteria that encompassed species from other phyla
(17, 18). These findings suggest that individual microbes fill multiple, specific carbohydrate

degradation niches and that a diverse community is required to ensure degradation of the entire
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repertoire of dietary fibers. Given that hundreds of different microbial species typically coexist in
an individual over long time periods (19), it is important to understand how many different
polysaccharide metabolism pathways are present within the individual microbial species that
compose a community and how these traits are represented across strains and species. If some
species possess very similar phenotypic abilities, they may be functional surrogates or compete
for similar niches and therefore seldom co-occur.

Members of the Bacteroidetes are often among the most numerous bacteria in the colonic
microbiota of people from industrialized countries (19-21). These bacteria are well appreciated
for their abilities to degrade a broad range of polysaccharides (16-18, 22, 23) and modify disease
states in a bacterial species-specific fashion (24-26). In this study, we empirically measured the
abilities of members of 29 different Bacteroidetes species to grow on a custom panel of
carbohydrates that span the diversity of plant, animal and microbial polysaccharides. Our results
reveal a wide range of metabolic breadth between different species, indicating that some have
evolved to be carbohydrate generalists while others have become metabolically specialized to
target just one or a few nutrients. Pangenome analysis of several related strains provides insight
into the evolutionary events that shape carbohydrate utilization among these important symbionts
and reveals a dizzying mosaic of heterogeneity at the level of discrete gene clusters mediating
polysaccharide metabolism. Based on analysis of several variable loci, we provide evidence to
support a mechanism of lateral gene transfer that may account for this mosaic architecture. Our
results provide a glimpse into the metabolic breadth and diversity of an important group of
human gut bacteria towards polysaccharide metabolism. Given the large amount of genomic and

metagenomic sequence information that has been generated from the human microbiome,
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phenotypic studies such as the one presented here represent important next steps in deciphering

the functionality of these organisms in their native gut habitat.

Results

Phenotypes are the ultimate measures of biological function. However, large-scale
phenotypic analyses are still uncommon in surveys of the human gut microbiome, which have
instead relied on sequence-based approaches to infer function, often with substantial uncertainty.
This lack of phenotypic information is partly due to a lack of high-density (e.g., strain level)
culture representation for the dominant taxa combined with a lack of defined growth conditions
to measure behavior of these organisms. With the resurgence of gut microbial culturing, both of
these gaps have begun to close (27-30), revealing an urgent need for scalable platforms to define
the actual behavior of these organisms. To address this gap, we assembled a collection of human
and animal gut Bacteroidetes and constructed a custom anaerobic phenotyping platform centered
around carbohydrate metabolism, a key function that symbiotic gut microorganisms contribute to
mammalian digestion (4). This array consists of 45 different carbohydrates (30 polysaccharides
and 15 monosaccharides) that span the repertoire of common sugars and linkages present in
dietary plants and meat, as well as host mucosal secretions and some rare nutrients consumed in
regional populations or as food additives (see Fig. S1 for a summary of polysaccharide

structures).

The carbohydrate utilization abilities of 354 different human and animal Bacteroidetes
strains were measured by individually inoculating each into this custom growth array and

automatically monitoring anaerobic growth every 10-20 min for four days (see Materials and
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131  Methods). Based on 16S rRNA gene sequence for each strain, this collection encompasses 29
132 different species based on the requirement that each strain possesses >98% 16S rRNA gene

133 identity to a named type strain in a given species (Table S1, note that all but three strains, which
134 were all related to each other and to Bacteroides uniformis, met this criterion). The resulting

135 31,860 individual growth curves were first inspected manually and then subjected to automated
136  analysis to quantify total growth and growth rate parameters for each substrate (see Materials
137  and Methods). A normalization scheme was employed to compensate for general growth

138  differences in the two different defined medium formulations employed (see Table S1 for a full
139  list of strains assayed and all raw and normalized growth measurements, Fig. S2 for analysis of

140  replicates).

141  Members of the same species possess similar carbohydrate utilization profiles

142 Growth results are summarized in Figs. 1, 2 and S3. Whether considered from the

143 perspective of how many species degrade a particular polysaccharide (Fig. 1A), or how many
144 individual polysaccharides are targeted by members of a particular species (Fig. 1B), there was
145  substantial variability in carbohydrate utilization among the organisms surveyed (range, 1-28
146  polysaccharides degraded per strain; mean, 15.6). Some polysaccharides like soluble

147  starch/glycogen were degraded by a majority of the species tested, yet others like the edible
148  seaweed polysaccharides carrageenan and porphyran were used by just one or two strains.

149 Given the diversity in observed carbohydrate utilization phenotypes, we wished to

150  address if closely related strains display similar abilities or instead if strains of the same species
151  have diverged from one another. To assist in visualizing the overall trends in carbohydrate

152 utilization across this phylum, we performed unsupervised clustering of the strains based on their

153  carbohydrate utilization profiles. While many species are not deeply represented by multiple
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strains, clustering based on a combination of normalized growth and rate measurements largely
grouped strains of the same species together (Fig. 2) and, as expected, this was driven mostly by
polysaccharide utilization abilities (Fig. S4).

Our data reveal that strains belonging to several individual species possess more similar
polysaccharide degrading abilities to each other compared to their more distant relatives, a
finding that has importance for interpreting or predicting function based on community
sequencing data. As examples, all 56 strains of B. fragilis clustered together, reflecting their
generally restricted abilities to utilize forms of soluble starch/glycogen, inulin and mucus O-
glycans. Likewise, all 36 strains of B. uniformis, a species with broader metabolic capacity that
includes digestion of plant cell wall hemicelluloses, were also grouped together into a single
branch. The inclusivity of these groupings was generally independent of the time period when
strains were isolated or whether they were isolated from humans or other mammals (Fig. 2).

Another important feature of the observed species clustering is that the grouping does not
mirror the overall phylogeny of the gut Bacteroidetes. Rather, phylogenetically separated species
often group adjacent to one another based on similarities in carbohydrate metabolism (e.g., B.
ovatus/xylanisolvens and B. cellulosilyticus, and B. vulgatus/dorei and B. fragilis; see Fig. 3A
for a phylogenetic tree based on conserved housekeeping genes) (31, 32). In the latter case, it is
interesting to directly compare B. fragilis and B. vulgatus/dorei, two groups with deep strain
representation (Fig. 2). Despite being phylogenetically more distant, these species possess very
similar phenotypic patterns that reflect degradation of soluble starch and similar molecules
(glycogen, pullulan), inulin and mucin O-glycans. The major distinguishing feature between
these groups is the presence of some, often-weak, pectin utilization among strains of B.

vulgatus/dorei.
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Some polysaccharides, especially those present in the cell walls of dietary plants, occur in
the same physical context and presumably traverse the gut together, potentially exerting selective
pressure for bacteria to use them simultaneously. To test for co-occurrence of traits, we
performed a pairwise correlation analysis to determine the extent to which any two
polysaccharides were co-utilized by the same strain (Fig. S5). The presence of two different
soluble starches (potato and maize amylopectin) and two starch-like glycans (glycogen and
pullulan) provide an internal control since they are essentially identical in their sugar and linkage
chemistry but vary in the proportion and placement of branches as well as polymer length,
crystallinity and solubility (Fig. S1). These four molecules are utilized through a single
degradation/transport system in the type strain of B. thetaiotaomicron, which was included in our
study (33). As expected, the abilities to use these four polysaccharides were among the strongest
positive correlations (between 44-75%); although, there was not a perfect correlation suggesting
that some finer adaptation may exist even for different structural forms of a chemically similar
molecule.

We also observed positive correlations in the ability to use components of two different
groups of plant cell wall polysaccharides (pectins and hemicelluloses), as well as animal tissue
glycosaminoglycans, despite the fact that the polysaccharides within each of these groups often
possess different chemical structures (Fig. S1). In the case of the hemicelluloses, there was even
some apparent separation based on dicotyledonous vs. monocotyledonous sources. The
predominantly dicot hemicelluloses (Fig. 2, blue labels) and monocot hemicelluloses (Fig. 2,
green labels) show some exclusivity with respect to the bacteria that utilize them. Many B.
ovatus/B. xylanisolvens strains lack the ability to utilize the three dicot hemicelluloses (GalM,

GlcM, XyQG); whereas the ability to degrade those from monocots (OSX, WAX, BBG) is more
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200  evenly distributed. B. uniformis has a partially opposite pattern, preferring substrates from dicots,
201  while only degrading one of the two major monocot structures (BBG) and poorly degrading the
202  two xylans tested (OSX, WAX). Similar observations were also made for pectins and GAGs and
203  could reflect adaptations to simultaneously harvest different nutrients from digesta particles

204  derived from dicot plant cell walls or animal tissue ingested in a carnivorous diet.

205

206  Specialization for mucus O-linked glycans

207 The most noteworthy correlation between polysaccharide utilization traits was observed
208  between utilization of host-produced mucin O-glycans and many of the other polysaccharides
209  tested. Growth on a total of 19/30 polysaccharides showed negative correlations with the ability
210  to utilize O-glycans, with the strongest negative correlations being between O-glycans and the
211  seven different hemicelluloses (Fig. S5). This negative correlation is easily observed by

212 comparing the rightmost column in Fig. 2 (O-glycan utilization) with the respective columns for
213 hemicellulose degradation. Because this trend was observed across several species, it suggests
214  that there could be a more general exclusive relationship between the two niches associated with
215  foraging on mucus and hemicellulose. This idea is further supported by experiments described
216  below, which suggest that isolates of B. ovatus and B. xylanisolvens, both adept hemicellulose
217  consumers, are in the process of losing the ability to degrade O-glycans, relative to an ancestor
218  that contained multiple gene clusters involved in the metabolism of these structures.

219 Interestingly, the mucin O-glycan mixture was the only substrate for which we observed
220  absolute metabolic specialization among the substrates tested. A single, and only available strain
221  of Barnesiella intestinihominis exhibited the ability to exclusively utilize mucin O-glycans, along

222 with a subset of the sugars that are contained in these structures (Table S1). Three strains of
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Bacteroides massiliensis exhibited similar behavior with very strong growth on mucin O-glycans
and only weak growth on soluble starches and a few other polysaccharides (Table S1). These
three B. massiliensis strains were also restricted in the repertoire of simple sugars they could
metabolize with this list being limited to those found in mucin and other host glycans (galactose,
N-acetylgalactosamine, N-acetylglucosamine, N-acetylneuraminic acid and L-fucose; weak
fructose utilization by one strain was the only exception). Members of these two species are
poorly represented in culture collections and remain lightly studied. However, their specific
adaptations for host mucin glycans may render them important members of the microbiota,
potentially thriving at the interface between the gut lumen and host tissue and relying exclusively
on the host to be sustained. The continuous supply of mucin in vivo could explain why some
species have become specialized for it as a nutrient, whereas dietary fiber degraders may need to

be more generalist since the substrates available to them change with the host’s meals.

Pangenome reconstruction reveals extensive genetic diversification among related
Bacteroides

With a view of the carbohydrate utilization traits present in our gut Bacteroidetes
collection, we next sought to determine if certain variable traits were being gained or lost within
strains of certain species and if available genomes provide insight into the mechanisms driving
genomic adaptations to particular nutrients. Connections between polysaccharide utilization
phenotypes and the underlying genes involved have been systematically explored for a few
Bacteroides species (B. thetaiotaomicron, B. ovatus and B. cellulosilyticus) with partial analyses
in others (6, 16, 22, 23, 34-37). These studies have revealed that, in essentially all cases, the

ability to degrade a particular polysaccharide is conferred by one or more clusters of co-
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expressed genes termed polysaccharide utilization loci (PULSs) (38). PULs share defining
features such as genes encoding homologs of outer membrane TonB-dependent transporters
(SusC-like), surface glycan-binding proteins (SGBPs; or SusD- and SusE/F-like), usually an
associated sensor/transcriptional regulator and one or more degradative CAZymes (glycoside
hydrolase, GH; polysaccharide lyase, PL; carbohydrate esterase, CE), as well as other enzymes
like sulfatases or proteases. Since the presence of one or more cognate PULSs is required to utilize
a given polysaccharide and these genes typically exhibit large increases in gene expression in
response to their growth substrate, we rationalized that we could focus on traits that were
variable in closely related strains and locate the associated PULs by transcriptomic analysis to
gain insight into the basis of their acquisition or loss.

To test this, we focused on members of two closely related species, B. ovatus (Bo) and B.
xylanisolvens (Bx), for which there is noticeable inter-strain variation in the ability to use mucin
O-glycans (Figs. 2, 3). Investigation of these two species also benefits from substantial culture
depth and many strains with available sequences. The O-glycans attached to mucins represent a
diverse family of over one hundred different structures (39), albeit with common linkage patterns
(Fig. S1). Correspondingly, the ability to utilize these glycans is a complex trait, involving
simultaneous expression of at least 6-13 different O-glycan inducible PULSs in B.
thetaiotaomicron, B. massiliensis, B. fragilis and B. caccae (6, 22, 35). Quantification of O-
glycan growth for individual Bo and Bx strains was widely variable (Fig. 3B). One hypothesis to
explain this variability is that some Bo and Bx strains have gained the ability to utilize O-glycans
relative to an ancestor that lacked this phenotype. If so, the PULs they express during O-glycan
degradation might be unique to their genomes and may indicate lateral gene transfer (LGT) as

has been the case for acquisition of phenotypes such as porphyran, agarose and A-carrageenan
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utilization in gut Bacteroides, which are all components of integrative conjugative elements or
mobilizable plasmids (31, 40). An alternative hypothesis is that some Bo and Bx strains are in the
process of losing this ability from a common ancestor. If so, the genomes of non-degraders may
still contain some PULSs that are homologous to those present in more proficient O-glycan-
degrading strains, but these strains may have lost a key step(s) that has eroded their ability to
express this phenotype.

To distinguish these hypotheses, we selected seven strains (black arrows in Fig. 3B) that
vary in their ability to degrade O-glycans and for which genome sequences exist. Note that three
strains that degrade O-glycans were initially chosen because they were among the strongest
degraders in our dataset with sequenced genomes when we initiated these experiments. We later
identified strains with better O-glycan growth abilities and address one of these (strain H59)
separately below. Four of the selected strains were Bo (two positive and two negative for O-
glycan degradation); three strains were Bx (one weakly positive and two negative for O-glycan
degradation). One of these strains (B. xylanisolvens XB1A) has a finished circular genome and
was used as a scaffold to align the remaining six draft genome sequences, with manual curation
(see Material and Methods), resulting in a nearly contiguous pangenome sequence that captures
the spatial arrangement of homologous and variable genes that are present in these seven strains
(Table S2, Fig. S6).

Analysis of the Bo/Bx pangenome revealed remarkable variability in gene content among
just the seven strains used. A total of 12,960 different genes were delineated based on >90%
identity in their translated amino acid sequence (Table S2). Remarkably, only 2,264 (17.5%) of
these genes were shared among all seven strains. The largest proportion of genes (7,244; 55.9%)

was only present in one of the seven strains. Separating two major classes of core PUL functions,
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SusC/D homologs and degradative CAZymes (GH, PL and CE), revealed that these key
components of Bacteroidetes polysaccharide metabolism were also heavily represented in the
“accessory gene” pool that is not common to all strains (Fig. 4A).

Through informatics-based and manual annotation of gene clusters containing typical
PUL functions, we delineated between 180-236 different PULs in the reconstructed pangenome
(ambiguity is caused by many PULs occurring adjacent to each other; although in many cases
separation of adjacent PULs according to individual genomes allowed us to make more precise
delineations, Table S3). Direct comparison of the O-glycan-degrading and non-degrading strains
revealed that there was a substantial number of genes (3,351) that were unique to the three O-
glycan degrading strains, including genes belonging to 51 PULs (Fig. 4B). However, such a
distribution in gene content might be expected given the overall large proportion of non-core
genes in these seven strains and there was correspondingly no indication that all three O-glycan-
degrading strains shared overlapping PULs with each other: no PULs were common to all three
O-glycan degraders and only five PULs were shared by any two strains (Fig. 4C). Considering
that there are 51 total PULs that are unique to the mucin-degrading strains, if these strains have
gained the ability to degrade O-glycans from an ancestral lineage that lacked this ability it likely
occurred by acquisition of separate gene clusters. To more directly distinguish between the two
hypotheses given above, we performed transcriptional profiling on all three O-glycan degrading
strains to determine if the PUL genes that they express during O-glycan degradation are indeed
unique to these strains.

Compared to reference growth in minimal medium containing glucose (MM-glucose), the
Bx D22, Bo 3-1-23 and Bo D2 strains activated expression of 196, 227 and 359 total genes more

than 10-fold and these gene lists included components of 14, 19, and 42 different PULs,
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respectively (Tables S4-6). As expected from studies in other Bacteroides, these PULs were
scattered throughout the genome (Fig. S7), suggesting that they are autonomously regulated in
response to glycan cues present in the O-glycan mixture. Strikingly, the majority of PULs that
contained O-glycan-activated genes (63/75, 84%) were not unique to the O-glycan degrading
strains (Tables S4-S6, Fig. S7). Moreover, in each of the three strains analyzed, the most highly
upregulated PULs were also often shared with non-mucin degrading strains. These observations
lend support to the hypothesis that strains of Bo and Bx are in the process of losing the ability to
utilize O-glycans relative to a common ancestor that possessed a more expansive gene repertoire
to successfully access these nutrients. However, we cannot rule out that individual non-degrading
strains are separately acquiring PULs that are associated with mucin degradation and retaining
them without the full benefit that presumably occurs with the ability to fully execute this growth
phenotype. This latter idea is consistent with inter-species PUL exchange observations
elaborated on below.

Finally, because we subsequently identified a B. ovatus strain (NLAE-zI-H59, red arrow
in Fig. 3B.) with a substantially higher ability to use O-glycans relative to the strains used for
pangenome construction, we performed additional RNA-seq analysis on this strain. Compared to
a glucose reference, this strain activated 373 total genes in response to O-glycans, including
genes from 30 different PULs (Table S7). Among these, 26 activated PULs were also present in
one of the seven strains in our pangenome and 24 were homologous to PULs in strains that did
not degrade O-glycans. However, this strain did activate expression of genes within four PULs
that were completely unique to its genome compared to the seven strains used for pangenome
reconstruction, suggesting that it could possess additional genes that augment its ability to grow

on mucin O-glycans. This increased PUL expression could be responsible for the enhanced
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growth of the H59 strain on O-glycans, especially if genes included within these unique PULs

are responsible for key metabolic steps required for efficient O-glycan utilization.

Evidence that intergenomic recombination has driven Bacteroides pangenome evolution

Similar to other bacteria, we observed that many accessory genes in the Bo and Bx
pangenome are located in contiguous clusters or “islands” often involving PULs or capsular
polysaccharide synthesis gene cluster (Fig. S6, Table S2). In contrast to previously identified
Bacteroides PULs that have more obviously been subjects of lateral transfer (31, 40, 41) and are
associated with integrative and conjugative elements (ICEs), most of the variable genomic
regions that we identified were not associated with functions indicative of mobile DNA. Instead,
these regions are often precisely located in between one or more core genes (i.e., those common
to all seven strains; herein referred to as “genomic nodes”) that flank each side of the variable
gene segment (Fig. SA,B).

Several intergenomic transfer mechanisms might cause the observed mosaic structure of
the Bo-Bx pangenome. The first possibility is movement of variable genes into a recipient
genome by direct conjugation of individual, mobile ICEs. While such events would be expected
to leave behind residual genes involved in mobilization and transfer, which were not observed,
these DNA vehicles are known to target a subset of core genes, such as tRNAs (41), and may
have undergone subsequent genomic deletion events that eliminated the mobile DNA. Two other
known mechanisms of bacterial LGT are natural competence and phage transduction, neither of
which has been observed in members of the Bacteroidetes.

A final potential mechanism is direct conjugation of the chromosome from a donor

bacterium into a related recipient, followed by subsequent homologous recombination between


https://doi.org/10.1101/2021.07.15.452266
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452266; this version posted July 15, 2021. The copyright holder for this preprint (which

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

flanking nodes to add or delete intervening DNA in the recipient genome (Fig. 5C). A
mechanism that is conceptually similar to high-frequency recombination (Hfr) transfer in E. coli
has been described for B. thetaiotaomicron and B. fragilis and involves chromosomal ICEs,
which may have lost their ability to transfer autonomously by circularizing from the genome and
instead act as transfer initiation points to conjugate a donor genome into a recipient (42-44). If
such a mechanism was more broadly active in LGT between Bacteroides, we would expect that
some of the core/node genes involved would reflect sequence identities that were more similar to
the donor and this difference would be more easily detectable if the transfer was between
members of different species like Bo and Bx. Moreover, such transfer events could either result
in introduction of new genes into the recipient or elimination of genes depending on the genetic
content in between recombination nodes from the donor chromosome.

To test this hypothesis, we took a bioinformatics approach aimed at first identifying high-
confidence examples of inter-species recombination involving core genes and then assessed
whether those genes were associated with co-transfer of adjacent accessory genes (Fig. 6A). We
collected a dataset of 33 Bo and Bx genomes, which represent a subsample of the isolates for
which we generated phenotypic data. We identified a set of 1,384 core genes—expectedly
smaller than the core genome of the seven strains used above due to additional strains being
added—that are present as a single copy in all members of both species. To identify cases of
putative inter-species LGT via homologous recombination at core genes, we searched for
instances in which a core gene sequence was more similar to the corresponding sequence from
the other species than to sequences of the species to which a strain belonged. To this end, for
each allele of each core gene, we calculated the median distance to all other alleles of both

species (Fig. 6B). We identified instances where the median distance to the same species was
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384  high and median distance to the opposite species was low and used these genes as markers for
385  putative LGT core loci. To identify additional accessory genes that may have been

386  simultaneously transferred, we searched for instances in which genes were perfectly syntenic and
387  collinear between each genome with a putative LGT core gene and genomes of the opposite

388  species. Among these candidate LGT loci, we then investigated if any of these transfer events
389  have resulted in pan-genome diversification, which we defined as the presence of any accessory
390  gene(s) that was only observed adjacent to a core gene with evidence of LGT based on the above
391  criteria.

392 In total, we identified 29 different loci at which exchange of core genes appeared to have
393  occurred and LGT accessory genes were identified, including seven that appeared to involve

394  transfer of PULs (Fig. 6C, Fig. S8). Similar numbers of potentially transferred loci were

395  identified for each species, with 16 loci in Bx and 13 loci in Bo. Within the identified HGT

396  events, variable numbers of HGT accessory genes were found within the loci ranging from one
397  to thirteen genes (Fig. 6C, Fig. S8). More genes (57 total) appeared to be transferred into Bo

398  than into Bx (36 total).

399 Finally, we determined if any of the identified LGT events could explain differential

400  phenotypes measured by our high throughput growth assay by modifying the complement of
401  PULs in individual genomes. As a specific example, we focused on a PUL that was previously
402  associated with B-mannan degradation (23, 45) that was among our candidate loci with evidence
403  of transfer from a Bx ancestor into two Bo strains. The presence of this PUL (PUL-A in Fig. 6C,
404  Fig. S9A) was observed in all strains with the ability to grow on the B-mannan galactomannan
405  (GalM), including two strains of Bo (ATCC8483 and CL02T12C04) for which the flanking node

406  regions were more similar to Bx. We previously showed that deletion of this PUL from B. ovatus
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ATCC8483 eliminated growth on GalM and glucomannan (GluM) (45), suggesting that it was
both acquired from a Bx strain and conferred growth on these two B-mannans. However, the
presence of this PUL was not perfectly correlated with growth on GalM and several strains that
lacked PUL-A still exhibited robust growth. Thus, we searched for other PULs that harbor GH26
family enzymes and determined that all of the other strains that grow on GalM, but lack PUL-A,
harbor another candidate GalM PUL (PUL-B, Fig. S9A) at a different genomic location and
some strains possess both (Fig. 6C). Gene expression analysis by qPCR revealed that PUL-B
was highly expressed in strains that lacked PUL-A during growth in GalM (Fig. S9B) and every
strain that grew robustly on GalM had at least one of these two PULs. While we had previously
shown that PUL-A was required for GluM growth in B. ovatus ATCC8483, there were a number
of other strains (red “+” symbols in Fig. 6C) that displayed some ability to grow only on GlcM,
while lacking both of the GalM-associated PULSs, suggesting the presence of additional, partially
orthogonal PULSs that confer the ability to grow on variant B-mannans. Such a presence of
multiple orthologous PULs that confer the same or similar functions, and some which may be
moving between genomes of related species by the putative LGT mechanisms noted above,
complicates the process of understanding the genotype-phenotype relationships in human gut
Bacteroidetes, but will need to be resolved to make better functional predictions from sequence-

based data.

Discussion
In this study we leveraged a scalable, high-throughput quantitative growth platform to
characterize the phenotypic abilities that are present in a sample of hundreds of Bacteroidetes

strains from the human and animal gut. Our anaerobic screening technique is directly applicable
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to other bacterial phyla from the human gut and other environments. Moreover, it can be adapted
to include new polysaccharides or to focus on different nutrient utilization or chemical resistance
phenotypes. The current study, in concert with future applications of phenotypic screening, will
help close the gap between our largely sequence-based view of the human gut microbiota and the
functions that its members provide. However, instances like the ones investigated here for mucin
glycan and -mannan utilization by Bacteroides serve as a warning that the presence or absence
of genes that are experimentally associated with a particular function do not always indicate that
the phenotype is expressed or not.

Pangenome reconstruction for Bo and Bx revealed extensive variability between strains of
these closely related species, which is not unexpected for bacteria that engage in LGT. However,
the lack of mobile DNA signatures for the majority of accessory genes and evidence of inter-
genomic recombination between species at core genes provides new insight into what may be a
prominent mechanism of genome diversification in members of this phylum. The previously
described intergenomic transfer mechanisms in B. thetaiotaomicron and B. fragilis required the
presence of active or inactive ICEs, highlighting the potential roles for these mobile elements in
not just shaping genomes directly but also indirectly through their ability to catalyze exchange of
broader genomic segments. In B. thetaiotaomicron, genome transfer was determined to initiate at
genomically-integrated ICEs of which there are four in the type strain of B. thetaiotaomicron
(VPI-5482). These have not been shown to be fully functional for circularization and
mobilization. However, introduction and activation of an additional, excision-proficient
conjugative transposon (either cTnDOT or cTnERL) (42), which share common features with the
genomic ICEs, catalyzed expression of genes in the genomic ICEs and transfer of parts of the

genome in a manner that requires recA and homologous DNA to be present in the recipient (42).
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An additional study in B. fragilis showed that conjugation from a strain with multiple genomic
ICEs, with one or more presumably retaining transfer activity, results in transfer of up to 435Kb
of chromosome into a recipient that initiates near genomic ICEs, with individual transfer events
being of variable size. The latter observation suggests that intergenomic recombination could
then occurs at different homologous regions (i.e., the core gene nodes observed in the
pangenome), which could depend on the amount of genomic DNA transferred and the
length/homology of available recombination sites. Given that the number of ICEs in individual
genomes is variable, and their ability to be activated by functional conjugative transposons that
are circulating in the ecosystem may also vary, it will be interesting to determine in future work
if there are hotspots for genome transfer or if certain strains/species are dominant genome donors
that could play a disproportionate role.

The phenotypic similarity between members of the same species (e.g., Bo and Bx) and the
large amount of gene diversity, including genes involved in carbohydrate metabolism, presents a
paradox and raises the question of why the genome diversification observed in strains of Bo and
Bx has not pushed members of these species to behave more differently and cluster based on
phenotype with members of other species. One answer may be the apparent exclusion of some
traits, such as mucin O-glycan/hemicellulose metabolism, which may limit the fitness advantage
associated with acquiring new phenotypes. A second emerges from the proposed genome-
exchange mechanism for which we offer new experimental support. Since this intergenomic
exchange relies on homologous recombination, its frequency should decrease between genomes
that are more divergent. Thus, this strategy may be one mechanism through which only closely
related bacteria can share traits that are advantageous with other close relatives. The presence of

orthologous PULs that confer the same function (e.g., GluM and GalM utilization), some of
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which appear to be subjected to LGT, further complicates interpretations of genotype-to-
phenotype relationships in these bacteria. Notably, the genome transfer mechanism proposed
here does not account for how new genes can be incorporated between conserved nodes. Rather,
this variability must pre-exist among different strains and therefore be created by different inter-
and intragenomic diversification mechanisms. Nevertheless, the data that we report here
underscore the notion that individual gut symbiont genomes are not just highly variable, but also

dynamically so.

Materials and methods
Bacterial strains and growth conditions

A total of 354 human and animal gut Bacteroidetes were included in this study. A
complete list is provided in Table S1, along with species designation based on 16S rRNA gene
sequencing and associated meta-data. Dr. Abigail Salyers (University of Illinois, Urbana-
Champagne) kindly provided many of the strains and two large portions of this collection were
isolated over several decades: 99 strains with “WH” designations were collected from fecal
samples of healthy human volunteers as part of the Woods Hole Summer Course on Microbial
Diversity in the late 1990s; 95 additional strains with “VPI” designations were collected from
human samples at the Virginia Polytechnic Institute in the 1960s-1970s. Species classifications
were made based on alignment of a minimum of 734 bp of 16S rRNA gene sequence to a
database containing the type strains of >29 named human gut Bacteroidetes species using the
classify.seqs command with Bayesian settings in the program mothur (46); assignment for each
strain was also manually checked by Blast (47). Isolates with >98% 16 rDNA gene sequence

identity to the type strain of a named species were labeled with that species designation. This
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classification strategy included all except for three of the 354 strains examined, which ranged
between 96.6 to 96.7% sequence identity to the B. uniformis ATCC type strains and based on
sequential isolate numbers might be clones from the same individual (see WH15, WH16, WH17
entries in Table S1). Because of the small number of strains that did not satisfy our 98% cutoff,
we grouped these unclassified strains with their nearest relative and label them as more divergent
in Table S1; although, in most cases the carbohydrate phenotypes of these strains were very
similar to other members of the B. uniformis group.

All strains were routinely grown in an anaerobic chamber (Coy Lab Products, Grass
Lake, MI) at 37°C under an atmosphere of 5% Hz, 5% CO», and 90% N on brain-heart infusion
(BHI, Beckton Dickinson) agar that included 10% defibrinated horse blood (Colorado Serum
Co.) and gentamicin (200 pg/ml). A single colony was picked into either tryptone-yeast extract-
glucose (TYG) media (48) or modified chopped-meat carbohydrate broth (Table S8) and then
sub-cultured into a minimal medium (MM) formulation that contained a mixture of
monosaccharides, vitamins, nucleotides, amino acids and trace minerals (Table S2 provides

components and a complete recipe).

Carbohydrate growth array setup and data collection

Two different minimal medium formulations were used in the carbohydrate growth
arrays (Table S1 lists the formulation used for each isolate). The simpler of the two formulations
(medium 1) was identical to the above MM, except that no carbohydrates were included and the
medium was prepared at 2X concentration. The second minimal medium formulation (medium
2) was identical to medium 1, but included beef extract (0.5% w/v final concentration) as an

additional supplement. We initially attempted to cultivate all of the species tested using only
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medium 1, but determined that beef extract was specifically required to allow growth of some
species, especially Parabacteroides spp., Barnesiella intestinihominis, Odoribacter splanchnicus
and the branch of Bacteroides that includes B. plebeius and B. massiliensis. Growth in the
absence of an added carbohydrate source was generally not observed ot very low, except with
Parabacteroides that may be able to grow to a low level on the added 0.5% beef extract. The
corresponding negative control wells for each strain assayed were averaged and this value
subtracted from the total growth calculation of the corresponding to strain on other carbohydrates
tested. Despite several attempts to supplement minimal media with different components or
employ more stringent anaerobic methods, we were unable to cultivate several common
Bacteroidetes genera/species (Prevotella spp., Paraprevotella spp., Alistipes spp., and
Bacteroides coprocola and Bacteroides coprophilus) in these two MM formulations and
therefore did not include them in this study. All of these isolates readily grew in rich medium,
suggesting that they have specific nutritional requirements that were not met in the MM
formulations used.

Carbohydrate growth arrays were run as described previously (23) using a list of 45
carbohydrates (Table S9) that were present in duplicate, non-adjacent wells of a 96-well plate;
two additional wells contained no carbohydrate and served as negative controls. Each MM was
prepared as a 2X concentrated stock without carbohydrates (MM-no carb). An aliquot of each
strain was taken from a MM-monosaccharides culture (grown for 16-20 h) and was centrifuged
to pellet cells. Bacteria were resuspended in the same volume of 2X MM-no carb and then
centrifuged again prior to suspension in a volume of 2X MM-no carb that was equal to the
original volume. These washed bacterial cells were then inoculated at a 1:50 ratio into 2X MM-

no carb and the suspension was added in equal volume (100ul/well) to the 96 wells of the
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545  carbohydrate growth array. Each well of the carbohydrate growth array contained 100pl of 2X
546  carbohydrate stock (10-20mg/ml); thus, when diluted 2-fold resulted in 1X MM containing a
547  unique carbohydrate and a bacterial inoculum that was identical to other wells. Growth arrays
548  were monitored at kinetic intervals of 10-20 minutes using a microplate stacking device and
549  coupled absorbance reader (Biotek Instruments; Winooski, VT) and data recorded for 4 d

550  (variable kinetic interval times reflect variations in the number of microtiter plates present in a
551  given batch).

552

553  Carbohydrate growth array data processing

554 Growth data were processed according to the following workflow: 1. data for each strain
555  were exported from Gen5 software (Biotek Instruments; Winooski, VT) into Microsoft Excel
556  and a previously described automated script was employed to call the points at which growth
557  began (min) and ended (max) (23); 2. Each file was manually checked to validate that

558  appropriate calls were made and the min and max values edited if needed (generally, only due to
559  obvious baselining artifacts or erroneously high calls caused by temporary bubbles or

560  precipitation); 3. “total growth” (4e0o max — Aeoo min) and “growth rate” [(4soomax — Asoo min) /
561 (¢ max — ¢ min) were calculated for each strain on each substrate (400 is the absorbance value at
562 600 nm that corresponds to each min and max point; ¢ is the corresponding time values in

563  minutes); 4. Individual cultures in which total growth was < 0.1 were scored as “no growth” and
564  their 4eo0 values converted to 0. Only assays in which both replicates showed an increase in 400
565 >0.1 were considered as growth; if the two replicate assays were discordant (one positive, one

566  negative), then both values were converted to zero.
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567 To normalize the results for each strain, the substrate(s) that provided maximum total
568  growth and growth rate values were determined and these were set to 1.0. All other growth

569  values for a given strain were normalized to this maximum value, providing a range of values
570  between 0 and 1.0. We next normalized growth ability across individual substrates using the
571  previously normalized values for each individual strain: the strain with the maximum total

572 growth and growth rate values were identified (many of these were already set to 1.0). Then, the
573  corresponding values for each other species on that particular substrate were calculated as a

574  fraction of the maximum value for that substrate, yielding a range of values between 0 and 1.0
575  for each substrate. These values were used to create the heat map shown in Figs. 2 and S3 and all
576  raw and normalized values are provided in Table S1.

577

578  Data clustering and statistics

579 Heatmaps and corresponding dendrograms were generated using the “heatmap” function
580  in the “stats” package of R (version 3.4.0) which employs unsupervised hierarchical clustering
581  (complete linkage method) to group similar carbohydrate growth profiles. Pearson Correlation
582  was used to calculate co-occurrence of the ability to grow on each pair of different substrates.
583  The normalized growth value for each substrate was compared to the corresponding growth

584  values on all other substrates using the Pearson correlation test in R and these values are

585  displayed in the Pearson correlation plot in Figure S5.

586

587  Pangenome reconstruction for B. ovatus and B. xylanisolvens strains

588 Since one of the seven strains used for pangenome reconstruction (B. xylanisolvens

589  XBI1A) was assembled into a single circular chromosome, we used this genome as a scaffold for
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the contigs representing the remaining six strains. Contigs from the six unfinished strains were
aligned against the XB1A genome using a combination of Mauve (50), to align and orient larger
contigs, and reciprocal best Blast-hit analysis using >90% amino acid identity to identify likely
homologs, to provide finer resolution. Contigs from draft genome assemblies or Bx XB1A were
broken as needed to accommodate the inclusion of unique accessory genes, but only in
circumstances where genes on both sides of the break could be aligned to homologs in one or
more genomes with a contig that spanned that break point. After constructing a preliminary
assembly, we analyzed the size distribution of putative homologous ORFs as a measure of
assembly accuracy and to identify variations in genetic organization that might be attributable to
real genetic differences such as frame shifts, which would result in two homologous gene calls of
smaller size in the genome containing the frameshift. Any variation >50% of homologous ORF
size was inspected manually using the “orthologous neighborhood viewer, by best Blast hit”
function in the U. S. Dept. of Energy Integrated Microbial Genomes (IMG) website. Introduced
contig breaks are documented in Table S2 and Fig. S6. GenVision software (DNAstar, Madison,
WI) was used to visualize and label selected functions in the pan-genome assembly and also

display RNAseq data as a function of shared and unique PULs.

RNAseq analysis

For RNAseq, B. xylanisolvens and B. ovatus cells were grown to mid-exponential phase
on either purified mucin O-linked glycans (purified in house from Sigma Type III porcine gastric
mucin) or glucose as a reference as previously described (22). Total RNA was extracted using an
RNeasy kit (Qiagen), treated with Turbo DNase I (Ambion), and mRNA was enriched using the

Bacterial Ribo-Zero rRNA removal kit (Epicentre). Residual mRNA was converted to
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sequencing libraries using TruSeq barcoded adaptors (Illumina) and sequenced at the University
of Michigan Sequencing Core in an Illumina HiSeq instrument with 24 samples multiplexed per
lane. Bar-coded data were demultiplexed and analyzed using the Arraystar software package
with Qseq (DNAstar). All RNAseq data are publicly available from the National Institutes of
Health Gene Expression Omnibus Database under accession numbers GSM4714867-

GSM4714890.

Core gene determination and detection of LGT events between Bo and Bx strains

The core gene alignment was generated with cognac (51). The alignment was then
partitioned into the individual component genes and approximate maximum likelihood gene trees
were generated with fastTree (52). Co-phylogenetic distances were calculated with APE (53). A
distance threshold of greater than 0.1 to the same species and less than 0.1 to the opposite species
was used to identify alleles bearing signatures of HGT. All analyses were performed in R
(version 3.6.3) (54). All code developed for this project are available at

https://github.com/rdcrawford/bacteroides hgt.
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Figure legends

Figure 1. Glycan degradation abilities among gut Bacteroidetes. (A.) The number of species
out of 29 tested that degrade each polysaccharide is listed in order of decreasing degradation
frequency from left to right. Since not all strains within a given species necessarily have the
metabolic potential to utilize each polysaccharide, colors illustrate the percentage of strains
within each degrading species that possess the indicated ability. (B.) The number of
polysaccharides that a given species degrades in decreasing order. The number of strains tested
for each species is listed in parentheses and colors represent the percentage of strains in each

indicated species that degrade each glycan counted towards the total.

Figure 2. Heat map of individual polysaccharide utilization traits. Species are clustered by
glycan utilization phenotype based on normalized total growth level (Fig. S4B). The magnitude
of growth is indicated by the heatmap scale at the bottom right. Columns at the left indicate the
source (human, animal) and time period of isolation. The cladogram at the far left shows the

results of unsupervised clustering of the data based the normalized growth data shown. The
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species designations at the right are the results of 16S rRNA gene sequencing (>98% identity to
the species type strain was used to assign species). All raw and normalized growth and rate data
for individual strains may be found in Table S1 see Fig. S3 for an expanded heatmap with

monosaccharide data and individual strain names labels.

Figure 3. Host mucin O-glycan metabolism within the Bacteroides. (A.) A phylogenetic tree
based on housekeeping genes that compares mucin O-glycan utilization across species. The
diameter of the black circles represents the number of strains tested within each species (sample
depth), whereas the size of the overlaid red circle corresponds to the number of strains exhibiting
O-glycan metabolism. Note that some species have either full or no penetrance of this
phenotypic trait yet others like B. ovatus/B. xylanisolvens have more extensive variability among
strains. (B.) Strains of B. ovatus (blue) and B. xylanisolvens (green) that show variable growth
abilities on mucin O-glycan (n=2 growth assays per bar, error bars are range between values).
Gray histogram bars are total growth controls on an aggregate of the monosaccharides that all
strains of these two species grow on (Table S1) and are provided as a reference for overall
growth ability on a non O-glycan substrate. Data from two established O-glycan degraders, B.
massiliensis and B. thetaiotaomicron, are also shown for reference. Species with black arrows
were used for pangenome analyses to compare genetic traits associated with mucin O-glycan
metabolism. We performed RNA-seq on three strains included in this pangenome analyses
(black boxes) positive for O-glycan utilization and an additional strain, B. ovatus NLAE-zI-H59
(red arrow, box), to see if there were unique genes/PULSs present in strains that have the ability to

grow on mucin O-glycans.
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Figure 4. Distribution of all genes as well as core polysaccharide utilization functions in the
Bo/Bx pangenome. (A.) The left panel shows the number of core genes (i.e., those present in all
seven strains used for pangenome construction) compared to genes present in 2-7 of the
individual strains. The right panel shows the same distribution of genes assigned to PULs or
particular degradative CAZyme families (GH, PL, CE, see Tables S2 and S3 for more detailed
assignments. (B.) The distribution of genes between mucin-degrading (n=3) and non-degrading
(n=4) strains used to construct the pangenome. Top numbers indicate total genes, while numbers
in parentheses indicate the number of PULs (not individual PUL genes) in each category. (C.)
Distribution of the genes that are unique to the three mucin-degrading strains within each
genome. Genes/PULs are numbered as described for B. Note that no PULs are shared by all three

strains.

Figure 5. (A.) A higher-resolution view of a region of the Bo/Bx pangenome shows the variable
presence of at least six different PULs occurring between three genomic nodes (nodes 33-35 in
this quarter of the total pangenome. Segment 2 of the physical pangenome map was selected
because the first segment initiated with numerous small contigs and this segment contained
previously validated genes for xyloglucan metabolism (49). Node genes are colored red, while
susC-like and susD-like genes are colored purple and orange, respectively, and glycoside
hydrolase genes in light blue. GH family numbers are given below select PULSs starting from the
top to indicate potential specificity and new numbers are only added going down the schematic if
the family assignments are different, indicating a different PUL. A well-studied B. ovatus PUL
for xyloglucan degradation (49) is shown in the center and occurs variably between two nodes
and also has variable gene content. The two bottom genomes are from different species,

Bacteroides finegoldii (Bfin) and Bacteroides fragilis (Bfra) and show less complex genome
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architecture with the Bfra region possessing no PULs. (B.) A broader view of the genome region
shown in A. showing that the same mosaic pattern is common across the pangenome. Only PULs
are illustrated, although many other genes were also variable in these regions. The numbers at
the bottom delineate the presence of 35 different core gene nodes (as in A. some nodes contain
multiple core genes) in this section of the genome and the presence of homologous or unique
PULSs is illustrated according to the color code at right (see Fig. S6 for high resolution physical
maps of the pan-genome with PUL annotations). Note that in some cases up to five different
PULSs were located at one location (C.) A schematic showing the proposed mechanism of
genome exchange based on previous studies (42-44) and observations presented here. Genomic
ICE:s that are either partially active (excision deficient, but capable of initiating DNA strand
breakage and conjugation) or activated in trans by the presence of an exogenous conjugative
transposon, initiate genome mobilization from a donor into a recipient. If sufficient homology
between node genes exists in the recipient, homologous recombination between two nodes can
replace a section of the recipient with a segment from the donor. Note that genomic regions are

shown as linear fragments for simplicity, but would be circular.

Figure 6. (A.) Schematic of the workflow to identify putative LGT core genes: align genes and
build corresponding trees for each core gene,determine the median substitution distances
distances for each allele of a core gene in a given strain to both species, and identify loci with
an identical conserved structure between isolates of opposite species. (B.) Plot of median
distances for all core genes identified in the 33 genomes analyzed. The boxes show the regions
containing genes for which the median distance was > 0.1 to the assigned species for a given
strain and < 0.1 for the opposite species to which a strain is assigned. These genes were

determined to be high-confidence examples of core/node genes that had been replaced by an
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726  allele from the other species. (C.) A region of the Bo/Bx pangenome that contains a PUL

727  involved in galactomannan (GalM) and glucomannan (GluM) degradation. This PUL is present
728  in six strains of Bx and two strains of Bo and in the latter cases flanking node genes exhibit

729  signatures of being derived from LGT with a Bx donor (the yellow box highlights potential

730  recombination region). The columns at the left indicate the growth of each strain on GalM or

731  GluM. The ability to grow on GalM is fully correlated with the presence of one of two different
732 PULs, or both, that are transcriptionally activated during growth on this substrate (Fig. S9) (23).
733 Notably, some strains (red “+”) are able to grow weakly on GluM but do not possess either of the
734 identified PULs, suggesting that additional, partially orthologous PULs exist that confer the

735  ability to use only GluM.

736

737  Supplementary Figure and Table Legends

738  Figure S1. Schematics of the polysaccharides used in this study with sugar composition and

739  linkages schematized according to the “Symbol nomenclature for glycans” standard format and
740  based on the symbol key provided at the right. Linkages are labeled as a or B and the number
741  provided represents the carbon position in the recipient sugar. The carbon in the donor sugar is
742  carbon-1 in all cases except N-acetyl neuraminic acid and is not shown. Note that pectic galactan
743 (potato and lupin), xylan (oat spelt and wheat arabinoxylan) and amylopectin (potato and maize)
744  can have variable structures based on plant source. Abbreviations for several polysaccharides are

745  provided in parentheses and used throughout the text and figures.
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Figure S2. Correlation of replicate growth and rate measurements. Two replicate
measurements were made for each of the two parameters recorded, total growth (A.) and growth
rate (B.) for each species on each carbohydrate substrate. Data points are color-coded based on
whether the two replicates exhibited variation between 0-5% (black), 5-10% (blue), 10-20%
(green), >20% (orange) or growth in one assay and no growth in the other (red). (C.) A linear
function was fitted (with red points omitted) to calculate an r* value for the data set associated
with utilization of each individual substrate. Measurements on some substrates were more
variable than on others due, at least in part, to the tendency of these substrates to partially

precipitate or retrograde during growth, which yielded variable levels of background absorbance.

Figure S3. A heatmap identical to the one shown in Fig. 2 main text, except that
monosaccharide growth data is included. Strain names are also noted at the far right (best viewed

in electronic PDF form with magnification) and animal strains are labeled in red font.

Figure S4. (A.) A scheme for evaluating which aspects of growth phenotype data are most
influential for clustering strains that belong to the same species using hypothetical B. theta data
as an illustrative example. A quantitative index was used in which the number of strains tested is
divided by the minimum number of branches needed to encompass all of the strains for that
species, with a perfect score being “1” (e.g., eight B. theta strains divided by the minimum of
eight branches needed to encompass all strains in the top example). (B.) Actual clustering index
data for the raw and normalized growth and rate data gathered for 354 different Bacteroidetes
strains. M and P stand for “monosaccharide” and “polysaccharide” growth, respectively. One of
the two most optimal conditions, which incorporates normalized growth data on polysaccharides

only, was used to construct Figs. 2 and S3.
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Figure S5. A Pearson correlation plot to determine if individual growth abilities co-occur in the

same strains. Positive or negative correlations that are >0.40 are shown in the colors indicated.

Figure S6. High-resolution maps of the entire reconstructed pangenome. These maps are
provided in four separate parts due to their large size (labeled as Fig. S6a, b, ¢, d) and
correspond to the data table provided in Table S2. Note that a 5" file is provided with

information about the gene, locus and strand breaking legend data.

Figure S7. Circular pangenome and corresponding mucin O-glycan transcriptomics from Bx

D22,Bo 3_1_23 and Bo D2 .

Figure S8. Individual maps of high-confidence inter-genomic exchange events between Bo and

Bx strains.

Figure S9. (A.) Schematics of PUL-A and PUL-B associated with GalM and GlcM utilization.
In Bo ATCC8384, elimination of PUL-A eliminates both of these growth abilities. (B.).
Expression analysis by qPCR of two sentinel genes from PUL-B in Bo strain D2 that lacks PUL-

A but still exhibits robust growth on GalM.

Table S1. Strain designations, growth levels, growth rates, host species, isolation periods,
growth media, 16S rRNA similarities and, if applicable, public genome sequence references for

all Bacteroidetes strains used in this study.

Table S2. Data table of the reconstructed pangenome of seven Bo/Bx strains. Additional notes

are provided directly on the table.
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789  Table S3. PULs that were delineated in the seven strain pangenome with annotations based on
790  whether they were unique to mucin non-degrading strains, unique to mucin-degraders or shared
791  between strains in both categories. Additional notes are provided directly on the table.

792

793  Table S4. Gene expression changes detected using whole-genome transcriptional profiling by
794  RNA-seq of B. xylanisolvens D22 grown on mucin O-glycan as a sole carbon source compared
795  to glucose reference. Additional notes are provided directly on the table.

796

797  Table S5. Gene expression changes detected using whole-genome transcriptional profiling by
798  RNA-seq of B. ovatus 3-1-23 grown on mucin O-glycan as a sole carbon source compared to
799  glucose reference. Additional notes are provided directly on the table.

800

801  Table S6. Gene expression changes detected using whole-genome transcriptional profiling by
802 RNA-seq of B. ovatus D2 grown on mucin O-glycan as a sole carbon source compared to

803  glucose reference. Additional notes are provided directly on the table.

804

805  Table S7. Gene expression changes detected using whole-genome transcriptional profiling by
806 RNA-seq of B. ovatus NLAE-zI-H59 grown on mucin O-glycan as a sole carbon source

807  compared to glucose reference. Additional notes are provided directly on the table.

808

809  Table S8. Liquid media recipes (sheet A) and components (sheet B) for growing the

810  Bacteroidetes used in this study.

811
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812  Table S9. Mono- and polysaccharides used in the phenotypic growth arrays and corresponding
813  supplier or purification details.

814
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BBG 0.95 0.70 Glc 0.69
carr 0.93 0.96 GIcA 0.87
Cell 0.96 0.81 GlcNAc 0.72
CS 0.96 0.91 GIcNH3 0.93
dex 0.96 0.87 Man 0.88
GalM 0.96 0.98 NeuNAc 0.86
GlcM 0.93 0.85 Rha 0.96
glyc 0.96 0.94 Rib 0.94
hep 0.96 0.85 Xyl 0.85
hya 0.91 0.88
inulin 0.92 0.89
lam 0.96 0.96
levan 0.96 0.88
lich 0.80 0.45
MOG 0.98 0.97
OSX 0.93 0.83
PGA 0.97 0.89
PGI 0.95 0.96
PGp 0.92 0.92
por 0.85 0.85
pull 0.84 0.78
RGI 0.96 0.98
WAX 0.97 0.42
XyG 0.92 0.72
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A. Example of Cluster scoring scheme B. Normalized data
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Please note that Figure S6 is provided as a zipped folder containing 4 separate quarters of
the pangenome assembly along with a corresponding legend that explains the color coding
scheme. The four maps correspond to Table S2.

Each map contains 5 vertically stacked panes of pangenome map starting in the upper left. Each
horizontal pane has 8 rows with the top row representing the pangenome and the corresponding

7 individual genome regions shown below.

The example below shows a small region of pangenome section 2 in which Bo 3-1-23 is missing an
ECF-o regulated PUL. The small text above genes in individual genomes correspond to the contig and
the green dashed line represents a region that was broken to accomodate accessory genes.
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Figure S7

Transcriptome ™ ‘ \
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Non PUL genes
=== Jnique PUL genes in mucin degraders
=== Shared PUL genes between at least one mucin degrader and one non-degrader
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Figure S8. Bacteroides LGT Loci

HGT gene
. Present
Absent

Allele more like B. ovatus

Allele more like B. xylanisolvens
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B. xylanisolvens PUL LGT Event 2

species species
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Ribosomal RNA large subunit methyltransferase K/L I Bx
Serine acetyltransferase Bo
Sensor histidine kinase YpdA
Transcriptional regulatory protein YehT
hypothetical protein
DNA polymerase |
All-trans-nonaprenyl-diphosphate synthase (geranyl-diphosphate specific)
hypothetical protein
hypothetical protein
Deoxyribose-phosphate aldolase
MazG nucleotide pyrophosphohydrolase domain protein
D-tyrosyl-tRNA(Tyr) deacylase
UvrABC system protein C
Adenine phosphoribosyltransferase
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG
Bacterial DNA-binding protein
DUF based on B. Theta Gene description
RNA polymerase sigma factor SigX
fec operon regulator FecR
TonB-dependent Receptor Plug Domain protein

SusD family protein

hypothetical protein

hypothetical protein

Prolyl tripeptidyl peptidase precursor
Prolyl tripeptidyl peptidase precursor
Prolyl oligopeptidase family protein
Lipocalin-like protein
Endoribonuclease YbeY

Spore maturation protein A

Holliday junction ATP-dependent DNA helicase RuvB
esterase

Polysaccharide biosynthesis protein

hypothetical protein

Peptidase S46
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B. xylanisolvens PUL LGT Event 3
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Vitamin B12 dependent methionine synthase%2C activation domain
Uroporphyrinogen decarboxylase

Ribose-5-phosphate isomerase B

Transketolase

Intracellular exo-alpha-L-arabinofuranosidase 2
hypothetical protein

Xylulose kinase

L-arabinose isomerase

L-ribulose-5-phosphate 4-epimerase UlaF

bifunctional nicotinamide mononucleotide adenylyltransferase/ADP-ribose pyrophosphatase
Sodium/glucose cotransporter

Aldose 1-epimerase precursor

Extracellular exo-alpha-L-arabinofuranosidase precursor
Galactokinase

L-fucose-proton symporter

Aldose 1-epimerase precursor

putative mannose-6-phosphate isomerase GmuF
Tyrosine recombinase XerD

transcriptional activator RfaH

Polysaccharide biosynthesis/export protein
N-acetylmuramoyl-L-alanine amidase

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein VirE N-terminal domain

hypothetical protein
UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferase
Polysaccharide biosynthesis/export protein
Tyrosine-protein kinase ptk

putative glycosyltransferase EpsJ

hypothetical protein

putative acyl transferase
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non-PUL LGT Events

B. ovatus non-PUL LGT Event 1
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Exoenzyme S synthesis regulatory protein ExsA Bx

TonB dépendent receptor B

SusD family protein 0

Glycosyl hydrolase family 92

Glycosyl hydrolase family 92

Plant Basic Secretory Protein

Glycosyl hydrolase family 92
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hypothetical protein

hypothetical protein .

ATP-dependent RecD-like DNA helicase L .

hypothetical protein Bacteroidetes-Associated Carbohydrate-binding Often N-terminal
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hypothetical protein
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usd and R%QB outer membrane lipoprotein

TonB-dependent Receptor Plug Domain protein

hypothetical protein

hypothetical protein e
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ECF RNA polymerase sigma factor Sig\W

Glycosyl h'xdrolase family 92

Alanine--tRNA ligase,
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HTH-type transcriptional repressor YC%E

Guanosine-3'%2C5'-bis(diphosphate) 3'-pyrophosphohydrolase
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hy{)ot_hehcal protein . K
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hypothetical protein

5%-nucleotidase SurE
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Phosphatidate cytidylyltransferase
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ytosol non-specific dipeptidase
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B. ovatus non-PUL LGT Event 2
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Thiol-disulfide oxidoreductase ResA
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Redox-sensm? transcriptional repressor Rex
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hypothetical protein .
ABC-2 family transporter protein
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Multidrug export protein EmrA
outer membrane channel protein
Malate dehydrogenase
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B. ovatus non-PUL LGT Event 3
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ﬁutative amino-acid-binding protein YxeM precursor
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Benzoyl-CoA oxygenase component A
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Ribose-5-phosphate isomerase B
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B. ovatus non-PUL LGT Event 4
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Exo-beta-D-glucosaminidase precursor
Beta-1%2C4-mannooligosaccharide phosphorylase
Exo-beta-D-glucosaminidase precursor

hypothetical protein

hypothetical protein

hypothetical protein

SusD family protein

TonB dependent receptor
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Extracellular exo-alpha-(1->5)-L-arabinofuranosidase ArbA precursor
hypothetical protein
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hypothetical protein
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TonB-dependent Receptor Plug Domain protein
Thiamine biosynthesis lipoprotein ApbE precursor
hypothetical protein

Inositol 2-dehydrogenase

hypothetical protein

Inositol 2-dehydrogenase

Extracellular exo-alpha-(1->5)-L-arabinofuranosidase ArbA precursor
Sensor histidine kinase TodS
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Methionine--tRNA ligase

Lipopolysaccharide biosynthesis protein WzxC
hypothetical protein
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hypothetical protein

Glycosyl transferases group 1
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B. ovatus non-PUL LGT Event 5

species species
Leucine--tRNA ligase Bx
Bo

hypothetical protein

Non-canonical purine NTP pyrophosphatase
Motility protein B

Quinolinate synthase A

Putative TrmH family tRNA/rRNA methyltransferase
hypothetical protein

Helix-hairpin-helix motif protein

RNA polymerase sigma factor

fec operon regulator FecR

TonB-dependent Receptor Plug Domain protein
SusD family protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

Radical SAM superfamily protein

NA

Sensor histidine kinase TodS

hypothetical protein

TonB dependent receptor

SusD family protein

Heparinase II/11-like protein

Heparinase II/11-like protein

Unsaturated chondroitin disaccharide hydrolase
hypothetical protein

hypothetical protein

hypothetical protein

anaerobic benzoate catabolism transcriptional regulator
hypothetical protein

Serine/threonine-protein kinase HipA
DNA-binding transcriptional regulator AraC
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Efflux pump membrane transporter BepE

Outer membrane protein OprM precursor
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B. ovatus non-PUL LGT Event 6

species species
Bx
ATP-dependent RecD-like DNA helicase Bo

Aconitate hydratase

NA

Isocitrate dehydrogenase [NADP]

Citrate synthase

3-oxo-5-alpha-steroid 4-dehydrogenase
NADPH dehydrogenase

Fatty acyl-CoA reductase

Vitamin B12 transporter BtuB precursor
hypothetical protein

PepSY-associated TM helix
6-phosphofructokinase isozyme 1
4-hydroxy-3-methylbut-2-enyl diphosphate reductase
Cytidylate kinase

Gram-negative bacterial tonB protein
(2E%2CB6E)-farnesyl diphosphate synthase
hypothetical protein

putative deoxyribonuclease YcfH
biopolymer transport protein ExoB
hypothetical protein

Biopolymer transport protein ExbD/TolR

Biopolymer transport protein ExbD/TolR
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B. ovatus non-PUL LGT Event 7

species
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vitamin B12/cobalamin outer membrane transporter

hypothetical protein

hypothetical protein

Tryptophanase 1

hypothetical protein

hypothetical protein

holo-(acyl carrier protein) synthase 2

Magnesium and cobalt efflux protein CorC

Single-stranded DNA-binding protein

putative A/G-specific adenine glycosylase YthQ

DNA-binding protein HU

Ribonuclease E

putative AAA-ATPase

hypothetical protein

Bovatus_NLAE-zI-H361
Bovatus_NLAE-zI-H304
Bacteroides_ovatus_SD_CMC_3f
Bacteroides_3_1_23

Bacteroides_ovatus_3_8 47FAA
Bovatus_CL02T12C04
Bacteroides_ovatus_ ATCC_8483
Bovatus_NLAE-zI-H73

Bovatus_ NLAE-zI-H59
Bacteroides_ovatus_CL03T12C18
Bovatus_NLAE-zI-C34
Bovatus_NLAE-zI-C11
Bacteroides_D2
Bacteroides_2 2 4

Bxylanisolvens_NLAE-zI-C339
Bxylanisolvens_NLAE-zI-C182
Bxylanisolvens_NLAE-zI-G421
Bxylanisolvens_NLAE-zI-G310
Bxylanisolvens_NLAE-zI-H194
Bxylanisolvens_NLAE-zI-C29
Bacteroides_D22
Bacteroides_xylanisolvens_SD_CC_1b
Bacteroides_ovatus_SD_CC_2a
Bacteroides_D1
Bacteroides_2_1_22
Bacteroides_xylanisolvens_XB1A
Bacteroides_1_1_30
Bxylanisolvens_CL03T12C04
Bxylanisolvens_NLAE-zI-P732
Bxylanisolvens_NLAE-zI-P352
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Oxygen regulatory protein NreC

Putative thiazole biosynthetic enzyme
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Long-chain-fatty-acid--CoA ligase FadD15
Threonylcarbamoyladenosine tRNA methylthiotransferase MtaB
Lipid A biosynthesis lauroyl acyltransferase
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase
Methylglyoxal synthase

Dihydroneopterin aldolase

Acyltransferase family protein
4-alpha-glucanotransferase
Ribonucleoside-diphosphate reductase NrdZ

FMN reductase [NAD(P)H]

Chromosomal replication initiator protein DnaA

mce related protein

N-acetylmuramoyl-L-alanine amidase AmiA precursor
hypothetical protein
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NADH pyrophosphatase Ex
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hypothetical protein

Phosphoglucomutase

Dipeptidase

Glycyl-glycine endopeptidase ALE-1 precursor
hypothetical protein

TonB-dependent Receptor Plug Domain protein
SusD family protein

hypothetical protein

KWG Leptospira

Alanine dehydrogenase

Nitronate monooxygenase

hypothetical protein

hypothetical protein

hypothetical protein

ECF RNA polymerase sigma factor Sig\W
putative nicotinate-nucleotide pyrophosphorylase [carboxylating]
hypothetical protein

Ribosomal RNA large subunit methyltransferase H
.l . hypothetical protein

putative hydrolase

NADPH-dependent 7-cyano-7-deazaguanine reductase
7-cyano-7-deazaguanine synthase

hypothetical protein

hypothetical protein

ECF RNA polymerase sigma factor SigR

hypothetical protein

hypothetical protein

Outer membrane protein transport protein (OMPP1/FadL/TodX)
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Unsaturated chondroitin disaccharide hydrolase :X
o

Arylsulfatase
Chondroitin sulfate ABC exolyase precursor

Cysteine--tRNA ligase

Sugar phosphatase YidA
. hypothetical protein
hypothetical protein
ATP-dependent helicase HepA
tRNA-specific 2-thiouridylase MnmA
GH3 auxin-responsive promoter
6-phosphofructokinase
Ribonuclease 3
3-oxoacyl-[acyl-carrier-protein] synthase 2
Acyl carrier protein
Phosphoribosylglycinamide formyltransferase
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hypothetical protein
lipopolysaccharide core biosynthesis protein
D-inositol-3-phosphate glycosyltransferase
Lipopolysaccharide core heptosyltransferase RfaQ
3-deoxy-D-manno-octulosonic-acid kinase
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Alpha-D-kanosaminyltransferase
LicD family protein
Bifunctional IPC transferase and DIPP synthase
Histidinol-phosphate aminotransferase
Chondroitin synthase

Chondroitin synthase
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SusD family protein Bx
Bo

TonB dependent receptor
Arylsulfatase precursor
Sensor histidine kinase TodS

Cephalosporin-C deacetylase

hypothetical protein

SusD family protein

TonB-dependent Receptor Plug Domain protein

SusD family protein

TonB-dependent Receptor Plug Domain protein

Leucine Rich repeats (2 copies)

Alpha-galactosidase

Alpha-galactosidase

putative nitrate transporter NarT

hypothetical protein

Phosphoheptose isomerase

Glucokinase

Exo-beta-D-glucosaminidase precursor

Bacterial alpha-L-rhamnosidase

hypothetical protein

Catabolite control protein A

hypothetical protein
Acyl-[acyl-carrier-protein]--UDP-N-acetylglucosamine O-acyltransferase
Outer membrane protein OprM precursor

Efflux pump membrane transporter BepE

Multidrug resistance protein MdtE precursor

Beta-galactosidase
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bifunctional 3-demethylubiquinone-9 3-methyltransferase/ 2-octaprenyl-6-hydroxy phenol methylase Bo

Cell division protein FtsX

hypothetical protein

Undecaprenyl-diphosphatase

tRNA pseudouridine synthase B
S-adenosylmethionine:tRNA ribosyltransferase-isomerase
Bifunctional folate synthesis protein

hypothetical protein

S-adenosylmethionine synthase

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein
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Positive regulator of sigma(E)%2C RseC/MucC I :2
Electron transport complex protein rnfB
Electron transport complex protein RnfC
Electron transport complex protein RnfD
Electron transport complex protein RnfG
Electron transport complex protein RnfE
Electron transport complex protein RnfA
UDP-glucose 4-epimerase
mRNA interferase HigB

Helix-turn-helix

4-diphosphocytidyl-2-C-methyl-D-erythritol kinase

Replicative DNA helicase

1 i

S R R R R L R A AR AR R R A
SSSS550568506808SSSSSs 0052855258803 3%
£558555c202000088558588 9082202202200 z=7
7222229223333 338aas 9966966030236 6
gggcc09022888889990090 Z2RBLBILEERIIS
333330000000 333300 COPCCOPCEPECCCEL
P33P FR~XNULXUBBBBRS NIMEMIAMLNe®e AH
D Y I - T N O - A S A S R S
EEEEERL, 2y E2 EEEEEE . LoErrtRENLETT
7] [
EEEAEHEECEN 08 EREEEREA Q82 FLP QP B F 5
AR L - < 0wz - R QQOW>XRW® 0w oo
NNNRRN D U3 NNMARNN = 37 &=
~RRRES 98 Ce ooRnnr |
3383338 P QP QTNQQH 9 o s 9
NROawR x Oy 02N — o N =
N wR R @ o O Ao NO® N X O ‘O
= o]
> Vg ® © Fow
o)
I_A
o


https://doi.org/10.1101/2021.07.15.452266
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452266; this version posted July 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Figure S9

A. GalM, GluM PUL-A

sensor/regulator GH26 GH26

susC/D-like GH36 GH130
binding & transport

GalM, GluM PUL-B

GH26 GH26 sensor/regulator

GH130 susC/D-like
binding & transport

B. pPuL-B expression during GalM growth

Fold difference in expression
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