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Little is known about the genomic diversity of raw municipal wastewater (sewage) 24 

microbial communities, including to what extent sewage-specific populations exist and how they 25 

can be used to improve source attribution and partitioning in sewage-contaminated waters. 26 

Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) as 27 

inoculum in multiple controlled laboratory mesocosms to simulate sewage contamination events 28 

and followed these perturbed freshwater microbial communities with metagenomics over a 7-day 29 

observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled 30 

genomes (MAGs) ubiquitous within all sewage inoculum yet absent from the unperturbed 31 

freshwater control at our analytical limit of detection. Tracking the dynamics of populations 32 

represented by these MAGs revealed varied decay kinetics, depending on (inferred) phenotypes, 33 

e.g., anaerobes decayed faster under the well-aerated incubation conditions. Notably, a portion of 34 

these populations show decay patterns similar to common markers, Enterococcus and HF183. 35 

Comparisons against MAGs from different sources such as human and animal feces, revealed 36 

low cross-reactivity, indicating how genomic collections could be used to sensitively identify 37 

sewage contamination and partition signal among multiple sources. Overall, our results indicate 38 

the usefulness of metagenomic approaches for assessing sewage contamination in waterbodies 39 

and provides needed methodologies for doing so. 40 

 41 

Introduction 42 

Wastewater collection systems (or simply, collection systems) represent an important 43 

engineering control for the collection of human feces, commercial or industrial wastewaters, and 44 

sometimes stormwater, particularly in certain urban settings. The operation and maintenance of 45 

collection systems pose unique challenges, often due to their size, complexity, and capital costs 46 
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(1-3). Population growth and distribution changes – especially growing urbanization trends – 47 

highlight the importance of maintaining and expanding efficient collection systems for an 48 

increasing fraction of the global population (4). Severe weather, pipe blockages, aging, and other 49 

issues of system failure can lead to the accidental release of untreated wastewater (sewage) from 50 

collection systems into waterways or floodwaters (1-3,5). As sewage is a significant reservoir of 51 

both chemical and biological pollutants, its release into the environment poses serious 52 

environmental and human health risks, including potential exposure to human pathogens (6-9) 53 

and possible dissemination of antimicrobial resistance genes (ARGs) among microbial 54 

populations (10-12). 55 

Microbial source tracking (MST) refers to a collection of forensic tools developed to 56 

identify the presence and source of contamination among multiple probable fecal sources, 57 

including sewage (13). In large part, the technical approaches behind MST methods have been 58 

developed in response to both the difficulty of assaying for the diverse array of relevant human 59 

pathogens as well as the practical need to keep MST methods relatively rapid and inexpensive. 60 

Existing approaches have relied on indicator organisms to imply the presence of fecal pollution 61 

and sometimes as proxies for the presence of human pathogens in fecal contaminated waters. 62 

Specifically, fecal indicator bacteria (FIB) include an aggregation of bacterial populations 63 

considered representatives of microbial communities inhabiting the guts of warm-blooded 64 

animals. Widely used indicator organisms include Escherichia coli and Enterococcus spp. More 65 

recently, MST genetic markers from distinct bacterial lineages have been used that leverage 66 

known host specificity of distinct populations for source attribution (14). Some markers (e.g., 67 

HF183 assay targeting a human-associated Bacteroides clade) have found effective use in 68 

environmental management strategies as the basis for inferring the amount of sewage present and 69 
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thereby, a potential array of pathogen concentrations for iterative risk assessment simulations 70 

(15). Yet, the use of FIB and MST gene markers has had challenges: most notably, that the 71 

concentration of most markers are rarely found to co-vary with pathogen concentrations, marker 72 

concentrations fluctuate with sewage age and the capability of FIB to adapt to environmental 73 

conditions can all combine to confound results interpretation (13,16-18).  74 

Within recent years, targeted metabarcoding methods have examined sewage and 75 

sewage-contaminated waters via the 16S rRNA gene or the internal transcribed spacer (ITS) for 76 

prokaryotes and fungi, respectively (17,19-21). These studies have revealed a distinct sewage 77 

“microbiome” dominated by taxa that proliferate in collection systems, sometimes far beyond the 78 

abundance of human gut associated populations (22-24). However, these single-gene assays offer 79 

limited resolution to distinguish between environmental or non-environmental strains of the 80 

same species due to the high sequence conservation of the rRNA gene or the ITS region. 81 

Likewise, these methods do not provide information about the gene content associated with 82 

important populations (e.g., emergent pathogens, ARGs) or resolve finer community-wide 83 

compositional shifts (17,25). Therefore, rRNA gene-based approaches are limited with respect to 84 

quantifying health risks associated with the detection of biomarkers or guide the development of 85 

more holistic environmental management criteria (e.g., site specific criteria).  86 

Whole genome shotgun sequencing (or metagenomics), which recovers fragments of the 87 

genomes in a sample, have revealed that bacteria and archaea predominantly form sequence-88 

discrete populations with intra-population genomic sequence relatedness typically ranging from 89 

~95% to ~100% average nucleotide identity (or ANI) depending on the population considered 90 

(26). Metagenomic approaches offer unique advantages for environmental health monitoring 91 

tasks including: 1) extensive gene content information of abundant populations, 2) precise 92 
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ecological estimates of relative abundance at the species level and 3) examination of intra-93 

species diversity (27). Despite its potential for circumventing some of the challenges facing 94 

existing MST and metabarcoding methods, whole genome shotgun sequencing has not been fully 95 

utilized in monitoring municipal sewage pollution. To date, most applications have focused on 96 

understanding the microbiology of biological wastewater treatment, treated effluents and their 97 

receiving waters, or viral populations (12,28,29). In part, this is because it remains unclear how 98 

to best merge the methods and bioinformatics behind metagenomic practices with existing MST 99 

and environmental monitoring paradigms (30). Widespread application of this technology in the 100 

field requires that several outstanding issues be resolved, including the detection limits of 101 

metagenomic analyses, whether whole and/or metagenome-assembled genomes (MAGs) can 102 

serve as source-specific fecal contamination markers and how metagenomic approaches can infer 103 

the relative contribution of various fecal inputs (referred to hereafter as “source partitioning”). 104 

Here, we offer a genome-centric view of sewage-related bacterial populations and 105 

explore their relationships with culture and PCR-based markers during a simulated failure of a 106 

collection system (e.g., an overflow event). Specifically, we simulated sewage contamination 107 

events in lake water obtained from a local drinking and recreational use reservoir, Lake Lanier 108 

(GA, USA), within dialysis bag mesocosms that were incubated in darkness for one week. 109 

Shotgun metagenomic sequencing was performed to search for potential sewage-specific 110 

biomarkers, test the effectiveness of genome collections for fecal source attribution and 111 

partitioning, and directly screen for both pathogens and antimicrobial resistance genes. Lastly, 112 

we propose a theoretical analytical limit of detection for metagenomics that could help guide the 113 

future application and interpretation of whole genome shotgun sequencing to these issues. 114 

 115 
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 6 

Methods 116 

Sample collection, mesocosm setup, and sample processing 117 

Samples were collected in sterile glass 1 L bottles from the primary influent of three 118 

WWTPs located in the Atlanta Metropolitan region of Georgia (USA) to serve as representatives 119 

of sewage across three different sewersheds. Each sewershed was comprised of collection 120 

systems with separate stormwater and wastewater conveyance (i.e., separate sewers). 121 

Approximately 50 L of surface water from Lake Lanier, Georgia was also collected concurrently. 122 

Hereafter, these sample groups are referred to as sewersheds A, B, and C. All sewage and water 123 

samples were immediately transported to the lab and stored in darkness at 4 °C until mesocosm 124 

setup, which occurred within 24 hours. For mesocosm setup, 40 L tanks were filled with lake 125 

water and a pump installed for aeration. Experimental dialysis bags were prepared with 110 mL 126 

10% (v/v) sewage and lake water mixture and control bags were filled with 110 mL uninoculated 127 

lake water and closed on both ends using polypropylene Spectra/Por clamps (Spectrum 128 

Laboratories). Both experimental (n=12 x 3 sewersheds = 36 bags) and control (n=12 bags) 129 

dialysis bags were then added to the tank. A small headspace of air was left in each bag when 130 

sealing with clamps so that they could float freely in the tank. Dialysis bag pore sizes (6-8 kDa 131 

molecular weight cutoff) permit the transport of small molecules and ions, but bacterial and viral 132 

particles are contained within the bags. Mesocosms were kept in darkness at 22°C throughout the 133 

duration of the experiment. Sampling occurred at 1, 4, and 7 days by retrieving experimental and 134 

control bags from the mesocosm for destructive processing. 135 

Mesocosm sampling, DNA extraction and subsequent qPCR analysis occurred as 136 

described previously in Suttner et al (35). Briefly, water samples were passed through 0.45 μm 137 

poly-carbonate (PC) membranes and stored at -80 °C in 2 mL screw cap bead tubes until 138 
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processed (within 1-3 months). EPA Method 1600 (31) was followed for enumerating volumetric 139 

Enterococcus CFUs. DNA was extracted from PC membranes using the Qiagen PowerFecal kit 140 

and following the manufacturer’s instructions with only one exception: mechanical cell lysis was 141 

performed by bead beating in two 1-minute intervals using the Biospec Mini-Beadbeater-24 with 142 

icing between intervals. These DNA extractions were used for qPCR with the HF183/BFDRev 143 

assay (32) and a universal 16S rRNA gene qPCR assay (GenBac16S) to quantify 16S rRNA 144 

gene copies across samples (34). Metagenomic sequencing was performed using the Illumina 145 

Nextera XT kit with library average insert size determined on an Agilent 2100 instrument using a 146 

HS DNA kit and library concentrations determined using the Qubit 1 X dsDNA assay. Samples 147 

were then pooled and sequenced on the HiSeq 2500 instrument as described previously (33). 148 

All qPCR reactions were run using an Applied Biosystems 7500Fast thermocycler and 149 

the cycling parameters were as follows: 2 min at 50 °C, 10 min at 95 °C, and 40 cycles of 15 sec 150 

at 95 °C and 60 sec at 60 °C. Assay reactions used 2 μL of template DNA in 20 μL qPCR 151 

reactions with the TaqMan Universal PCR Master Mix (Applied Biosystems). The primer and 152 

probe concentrations were 0.25 µM for HF183 assay and 0.3 µM for the GenBac16S assay. 153 

Template DNAs were run undiluted or diluted 5-fold (to remove the effect of PCR inhibitors) 154 

depending on the expected marker concentration and quality of each sample. Further details on 155 

qPCR reaction set up and standard plasmids for absolute quantification are provided in Suttner et 156 

al. (35) and reiterated within the supplement here (Supplement Table S1). To test for extraneous 157 

DNA and potential contamination from sample handling, 50 mL of sterile PBS was also filtered 158 

onto PC membranes and processed following the same DNA extraction at every sampling time 159 

point as described above. 160 

 161 
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Bioinformatics sequence processing and population genome binning. 162 

Short reads were quality trimmed and Nextera adapters removed with Trimmomatic 0.39 163 

(36). Quality trimming was performed to remove poor quality bases along both ends of 164 

sequences and subsequent removal of any sequences below 50 bp in length. k-mer based 165 

operation of Nonpareil 3.304 (-T kmer) was used to estimate the fraction of alpha diversity 166 

covered by the sequencing effort of each metagenome (37). Beta diversity across trimmed short 167 

reads was assessed with the default settings of simka 1.5.1 based on Bray-Curtis dissimilarity 168 

values and visualized by principal coordinate analysis (PCoA) (38). Kraken2 was used to assign 169 

taxonomy and estimate simple relative abundance against a custom library, including bacteria, 170 

archaea, viruses, protozoa, human, and fungal reference genomes at the rank of class (39). 171 

Trimmed short reads were assembled individually with IDBA (UD) 1.1.3 and SPAdes (“--meta”) 172 

3.14.0 using k-mer sizes between 20 and 127 (40,41). Contigs shorter than 3Kbp were removed 173 

prior to population genome binning, which was performed with MaxBin 2.2.7 and MetaBAT 174 

2.12.1 (42,43). Additionally, in a parallel workflow, trimmed short reads were normalized via the 175 

BBNorm function of the BBtools suite (version 38) to bring read depths between 10-30X 176 

sequencing depth and then subsequently assembled and binned as described above (44). All 177 

resulting metagenome-assembled genomes (MAGs) from both regular and depth-normalized 178 

short read assemblies were dereplicated using MiGA 0.7.24.0 via the derep_wf function (45). 179 

Groups of MAGs sharing ANI ≥ 95% were clustered into species-like populations (hereafter, 180 

“populations”) with representative MAGs for each population selected by highest completeness 181 

and lowest redundancy. Populations with no representative MAG having a MiGA quality score 182 

above 30% and/or redundancies below 5% were excluded from further analysis. Both Traitar 183 

1.1.2 and MicrobeAnnotator were used with default settings to infer potential phenotypes and 184 
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annotate draft genomes, respectively (46,47).  Lastly, MAGs were screened for cross-reactivity 185 

using the FastANI tool to search for other genomes with ANI ≥ 95% across a suite of reference 186 

databases (48). 187 

 188 

Annotation of sequence data 189 

From the PATRIC database, version 3.6.9, 1097 pathogenic bacterial genome accession 190 

IDs were recovered by querying for host name "Human, homo sapiens" and "good" quality. This 191 

included both genomes tagged as "Reference" (n=28) and "Representative" (n=1069) (49). Of 192 

these, 1076 genomes were recoverable from NCBI for use in this study.  Abundance estimates of 193 

pathogen genomes were assessed by short read mapping with Magic-BLAST 1.4.0 (-splice F) 194 

(50). Resulting alignments were filtered using minimum cut-off of 70 bp alignment length, 95% 195 

query coverage by alignment and 95% identity to avoid spurious matches. Additionally, for 196 

virulence gene detection, only experimentally verified nucleotide entries in the Virulence Factor 197 

Database (51) were used. Evaluating MAG abundance across the time series was accomplished 198 

similarly using Magic-BLAST 1.4.0, where MAGs were concatenated into a single library to 199 

which reads were competitively mapped. Additionally, DIAMOND 2.0.1 (blastx --ultra-200 

sensitive) was used to search short reads against the reference gene sequences of pre-compiled 201 

150 bp β-lactamase ROCker models to reliably identify short reads belonging to β-lactamase 202 

encoding genes (52,53). Reads mapping to these reference sequences were selected for best bit-203 

score alignment and subsequently filtered by ROCker v1.5.2 as described previously (54).  204 

 205 

Estimation of limit of detection, and relative or absolute abundance 206 
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For a reference genome, MAG, or gene to be considered detected in a sample, at least 207 

10% of the target sequence was required to be covered by reads (i.e., breadth of coverage: 208 

hereafter, C), as proposed previously for robust detection of targets in metagenomic datasets 209 

(55). Or, as written, the analytical limit of detection (LOD) used here: 210 

Eqn 1: 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝐿𝑂𝐷:   𝐶 ≥ 0.1 211 

The LOD was automatically implemented by calculating sequencing depth and breadth 212 

similarly to Rodriguez-R et al (56) for estimating “Truncated Average Depth” at 80% (hereafter, 213 

the function TAD80). Python scripts used for this approach are available online at: 214 

https://github.com/rotheconrad/00_in-situ_GeneCoverage. In short, the TAD80 function 215 

estimates sequencing depth by first sorting genomic positions according to their sequencing 216 

depth and then removing the upper 10% and lower 10% of positions before averaging the 217 

sequencing depth along the remaining 80% of positions. Since truncation of targets with breadth 218 

of coverage near the detection limits (e.g., C ≈ 0.1) could introduce artificially lower values, a 219 

quantification threshold was also necessary to avoid systemic underestimation of abundance for 220 

targets near LOD. From Lander and Waterman (57), breadth of coverage (C) is related to 221 

sequencing depth (ρ) by the following: 222 

Eqn 2: 𝐶 = 1 − 𝑒−𝜌 223 

Thus, for the analytical LOD defined above, the expected sequencing depth (ρ) is simply 224 

-ln(0.9) for targets at detectable limits. We formalize a quantification threshold which measures 225 

whether a target is quantifiable following application of the truncation function (TAD80) with: 226 

Eqn 3: 𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:   𝑇𝐴𝐷80(𝜌) ≥ −ln (0.9) 227 
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For simplicity in our metagenomic results, we describe those targets which satisfied the 228 

LOD condition but were below the quantification threshold as targets that were “detected but not 229 

quantifiable” (DNQ). 230 

To convert coverage of detected target genomes to absolute abundances (e.g., cells/mL), 231 

the following approach was used. Single copy gene coverage or genome equivalents (GEQ) and 232 

average genome size (AGS) of metagenomes were evaluated using MicrobeCensus 1.1.0 (58). 233 

The 16S rRNA gene-carrying reads were identified and extracted using sortmeRNA 4.2.0 and 234 

the average 16S rRNA gene coverage was estimated as the sum of extracted read lengths divided 235 

by 1540 bp, the average length of the bacterial 16S rRNA gene (59,60). Average 16S rRNA gene 236 

copy number (16S ACN) for each metagenome was determined by the ratio between 16S rRNA 237 

sequencing depth (ρ16S) and GEQ: 238 

Eqn 4: 16𝑆 𝑟𝑅𝑁𝐴 𝐴𝐶𝑁 =
𝜌16𝑠

𝐺𝐸𝑄
  239 

The copy number of the 16S rRNA gene per mL as quantified by qPCR was divided by 240 

the 16S rRNA ACN to obtain an estimate for the number of cells in each sample, assuming that 241 

one prokaryotic genome was approximately equivalent to one prokaryotic cell: 242 

Eqn 5: 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑡𝑖𝑐 𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
) =

16𝑆 𝑟𝑅𝑁𝐴 (
𝑐𝑜𝑝𝑖𝑒𝑠

𝑚𝐿
)

16𝑆 𝑟𝑅𝑁𝐴 𝐴𝐶𝑁
 243 

These measures were taken to help control for bias in relative abundance estimation due 244 

to changes in overall microbial load (cells per volume) and 16S rRNA gene ACN variation 245 

throughout the experiment (61,62).  Finally, absolute abundances were estimated by multiplying 246 

a population’s genome equivalents by the estimate for the number of cells in a sample. This was 247 

accomplished using the following equation for a given population via the truncated average 248 

sequencing depth [TAD80(ρi)], GEQ and total estimated prokaryotic cell density: 249 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452399doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452399
http://creativecommons.org/licenses/by-nc/4.0/


 12 

Eqn 6: 𝐸𝑠𝑡. 𝑃𝑜𝑝. 𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
) =

𝑇𝐴𝐷80(𝜌)

𝐺𝐸𝑄
∗ 𝐸𝑠𝑡. 𝑃𝑟𝑜𝑘. 𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (

𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
) 250 

Further, an extension of our definitions of LOD was used in tandem with cell density 251 

estimations for theorizing the smallest abundance detectable as a function of GEQ and cell 252 

density via: 253 

Eqn 7: 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑃𝑜𝑝. 𝑆𝑖𝑧𝑒 (
𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
) ≥

− ln(0.9)

𝐺𝐸𝑄
∗ 𝐸𝑠𝑡. 𝑃𝑟𝑜𝑘. 𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (

𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
) 254 

 255 

Results:  256 

Culture and qPCR Data 257 

Both fecal indicators (Enterococcus and HF183) were in the same order of magnitude across the 258 

sewage samples gathered as inoculum for the mesocosms. Sewage from sewersheds A and B 259 

contained counts with averages of 3.7E+04 and 3.1E+04 Enterococci CFUs/100mL and 2.4E+06 260 

and 3.6E+06 HF183 copies/mL, respectively. Within sewershed C, counts were lower having 261 

1.3E+04 Enterococci CFUs/100mL and 1.5E+06 HF183 copies/mL. Similarly, quantification of 262 

the 16S rRNA gene copy number within the inoculum indicated that overall, microbial loads 263 

were lower in sewershed C than sewersheds A and B (Supplement Figure S1). Monitoring 264 

Enterococci and HF183 qPCR markers across the mesocosm timeseries revealed that the markers 265 

decreased throughout the experiment in all replicates but were still detectable at day 7 and 266 

remained higher than the established or recommended water quality criteria for recreational use 267 

waters (i.e., 36 CFUs/100mL and 41 HF183 copies/mL). Only the HF183 marker within 268 

sewershed C mesocosm decreased below detection on Day 7 (Figure 1). Neither marker was 269 

detected in the (un-inoculated) freshwater sample serving as control at any time point during 270 

mesocosm operation. 271 

 272 
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Estimated Microbial Load 273 

Prokaryotic cell density of the inoculum varied per mesocosm based on quantification of 274 

the 16S rRNA gene (see Methods for details): 1.1E+09, 2.0E+09, and 1.8E+08 cells/mL were 275 

estimated for sewersheds A, B and C, respectively. Following dilution and mixing of the 276 

inoculum into the mesocosms, day 0 estimates for cell densities were 2.0E+07, 1.7E+08, and 277 

2.5E+07 cells/mL. Thereafter, cell density in both sewershed A and sewershed C mesocosm 278 

increased considerably in the first 24 hours to 1.8E+08 and 6.9E+07 estimated cells/mL (a 924% 279 

and 275% increase) while sewershed B decreased to (an estimated) 1.5E+08 cells/mL. 280 

Subsequent time points revealed steady decreases in cell densities approaching the control cell 281 

density at day 7 of 7.9E+05 estimated cells/mL (Supplement Table S2).  282 

 283 

Metagenomic-based Coverage and Compositional Shifts of the Mesocosms Over Time 284 

Between 1.5 Gbp to 3.5 Gbp of data per sample remained following read quality 285 

trimming and adapter removal, which corresponded to a range of 9 to 27 million reads. 286 

Sequencing effort covered between 36 to 67% of expected nucleotide diversity (Nd) across all 287 

samples based on the Nonpareil algorithm, which estimates sequence coverage based on the 288 

degree of redundancy among the metagenomic reads available for each dataset (36). This level of 289 

coverage is adequate for comparing the abundance of features (e.g., genomes, genes) across 290 

samples (63). Nd estimations of the inoculum and control samples were similar, and day 0 values 291 

closely followed that of their respective sources. A decrease in Nd occurred within the first 24 292 

hours for all three biological replicates; lower diversities were observed in day 1 samples 293 

compared to those for the inoculum, day 0 samples and the control. The sewershed B series 294 
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increased in diversity for the remaining days while both sewersheds A and C vacillate thereafter 295 

(Supplement Table S2). 296 

Observations of beta diversity revealed that the earlier timeseries samples (day 0 and day 297 

1) remained quite similar to the inoculum. By day 4, considerable shifts in community 298 

composition were observed driving the sewage contaminated waters closer to the control 299 

(Supplement Figure S2). k-mer mapping to characterize these community-wide shifts using 300 

Kraken2 at the class level showed the depletion of Bacteroidia, Epsilonproteobacteria, and 301 

Clostridia following inoculation. None of these classes were detectable in the control samples. 302 

An increase of Gammaproteobacteria abundance occurred within the first 24 hours across all 303 

replicates after which this class gradually decreased in abundance with time. Additionally, 304 

increases in Alphaproteobacteria and Cytophagia occurred in later time points (day 4 and day 7), 305 

far beyond the increase observed in the control, suggesting that the later timepoint samples had 306 

not yet fully recovered from perturbation. Class level relative metagenome-based abundances, 307 

qPCR, culture, and cell density estimation results are summarized on Figure 1. 308 

 309 

Sewage-associated Population Genome Binning 310 

Seven hundred twenty MAGs were recovered from inoculum and timeseries sample 311 

assemblies. The 720 MAGs were dereplicated at the ANI ≥ 95% level, resulting in 49 MAGs 312 

representing sequence discrete populations (hereafter, simply “populations”). Competitive read 313 

mapping to the representative MAG of these populations revealed two groupings delineated by 314 

their presence or absence in the inoculum. Of the total 49, 33 populations were detected within 315 

sewage inoculum samples with varying degrees of prevalence across replicates. We selected a 316 

subset of 15 of these 33 populations that were above the quantification threshold in each 317 
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inoculum sample, which we refer to as “sewage-associated populations”. This selection process 318 

was motivated twofold: First, to focus only on core populations shared between the inoculum 319 

recovered from each sewershed examined herein. Second, as an effort to exclude potentially 320 

noisy, nonspecific, or transient populations from further analysis. The sewage-associated 321 

populations and their representative MAGs are summarized in Table 1. Additionally, we 322 

validated our analytical detection and quantification limits using mock data of known 323 

composition to ensure these criteria were suitable for identifying sewage-associated populations 324 

(Supplement Table S3.A) (64). We found our approach, as described in Methods (Eqn. 1 and 325 

2), was robust for reducing quantification error and detected targets of known relative abundance 326 

as expected according to sequencing effort and target genome size, except on very limited 327 

occasions when close relatives were present in the sample at frequencies many times greater than 328 

the target genome. (Supplement Table S3.B,C).  329 

Our collection of ubiquitous sewage-associated populations in sewersheds A, B, and C 330 

inoculum metagenomes were represented by respectively 9.5%, 5.7%, and 13.3% reads and 331 

15.9%, 8.8%, and 19.6% of GEQ. Estimated absolute abundances of these populations varied 332 

across the samples, from a maximum of 4.4E+07 cells/mL (Pop.01, sewershed B) to a minimum 333 

of 2.3E+05 cells/mL (Pop.04, sewershed C). Within the inoculum, the median and mean absolute 334 

abundances of an individual sewage-associated population was 5.3E+06 and 8.4E+06 cells/mL, 335 

respectively. Overall, sewershed C had substantially lower population densities due to the 336 

difference in total microbial load compared to sewersheds A and B, as noted above. Consistently, 337 

the sewage-associated populations presented here capture a larger portion of the metagenomic 338 

samples associated with sewershed C (compared to A or B), further indicating that the sewershed 339 

C samples may have simply had more dilute microbial load at the time of sampling. Overall, 340 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452399doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452399
http://creativecommons.org/licenses/by-nc/4.0/


 16 

these results reveal that this collection of populations consistently represent highly abundant 341 

members of the sewage microbiome across biological replicates and a substantial part of the total 342 

sewage microbial community. 343 

Comparison of the corresponding representative MAG sequences against type material in 344 

the MiGA “TypeMat” database (45) revealed several entries with close matches to previously 345 

described taxa at the species level (e.g., >95% ANI) including Aeromonas caviae (Pop.15), 346 

Acidovorax temperans (Pop.30), Prevotella copri (Pop.43), Bacteroides vulgatus (Pop.44), and 347 

Rivicola pingtungensis (Pop.49). Of the remaining, six populations matched known genus 348 

representatives, potentially representing a novel species of the matching genera. Two populations 349 

matched members of a known family, one to members of a known order, and one to members of 350 

a known class (Table 1). The population with the most distant match in the database (Pop.13, 351 

matching class Bacteroidia) with 55.1% average amino acid identity (AAI) to Paludibacter 352 

propioncigenes.  353 

Collections of bacterial isolate genomes and/or MAGs from freshwater (56), activated 354 

sludge (65), anaerobic digestors (66), the human gut environments (67), and the broad general-355 

purpose GEMs catalog (68), were examined to assess specificity between these 15 sewage-356 

associated populations and other microbiomes. Of these sewage-associated populations, some 357 

(n=11) may belong to species with members also inhabiting non-sewage microbiomes such as 358 

biological wastewater treatment processes or the human gut (Supplement Table S4). 359 

Importantly, only a single population, Moraxella (Pop.29), was found via these database searches 360 

to match (95.1-95.0% ANI, borderline of universal species cutoff) genomes recovered from 361 

aquatic environments (both marine and freshwater) (47). This finding suggests Population 29 362 
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could be less effective as an entry in a sewage-specific genomic library utilized for MST 363 

approaches if other Moraxella are in high abundance within the pristine environment.   364 

 365 

Sewage-associated Population Decay and Putative Phenotyping 366 

Overall, all populations experienced rapid decline in estimated cell densities across the 367 

timeseries with most populations below detection limits following day 4. Acinetobacter sp., 368 

Cloacibacterium sp., Acidovorax temperans, and Flavobacterium sp. (Pop.03, Pop.18, Pop.30 369 

and Pop.33, respectively) were detectable in at least one biological replicate at day 7 but most of 370 

these observations were below quantification. Signal from sewershed A had the greatest 371 

persistence; of the four mesocosms with quantifiable levels of a sewage-associated population by 372 

day 7, three belonged to the series of sewershed A. Notably, Acidovorax temperans (Pop.30) was 373 

the only population detected at day 7 in all three sewersheds (Figure 2). 374 

All populations remaining detectable at day 7 were putatively phenotyped as aerobic or 375 

facultatively anaerobic by Traitar analysis except for Cloacibacterium sp. (Pop.18), which could 376 

not be confidently classified. Nonetheless, Cloacibacterium sp. belongs to a genus of facultative 377 

anaerobes (Cloacibacterium), suggesting that it likely is a facultative population and that the 378 

representative MAG did not contain the necessary genes for confident phenotyping due to 379 

incompleteness. No population – regardless of (predicted) preference for oxygen – showed an 380 

increased estimated cell density outside the first 24 hours of the incubation. All sewage-381 

associated populations were likely gram negative, rod or oval-shaped bacteria as predicted by 382 

Traitar (Supplement Figure S4).  383 

MicrobeAnnotator indicated Acinetobacter sp. (Pop.03) and Acidovorax temperans 384 

(Pop.30) contained modules for aromatic carbon degradation which were rare genomic features 385 
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among the representative MAGs. Acinetobacter sp. (Pop.03) was reported to contain complete 386 

benzoate degradation and catechol ortho-cleavage modules, while Acidovorax temperans 387 

(Pop.30) contained complete catechol ortho-cleavage and incomplete catechol meta-cleavage 388 

modules but none for benzoate degradation (Supplement Figure S5). 389 

 390 

Human Markers vs Sewage-associated Populations 391 

Our results suggested that several of the sewage-associated populations are possibly 392 

linked to the human gut microbiome (Supplement Table S4). Based on AAI values, Pop.43 and 393 

Pop.44 were assigned to Bacteroidales lineages but likely represent a different lineage than that 394 

represented by HF183 based on the 16S rRNA genes carried on these populations’ closest 395 

complete genome matches from a cultured representative (See Table 1). Modelling the linear 396 

relationship between either HF183 or Enterococcus concentrations against the estimated cell 397 

densities of the sewage-associated populations revealed divergent results for both markers. 398 

HF183 had excellent correlations against some populations (i.e., anaerobic Pop.43 and Pop.44, 399 

and aerobic Pop.30 and Pop.28) but highly variable correlations overall (R2 between 0.35 to 400 

0.97) while Enterococcus had worse correlations but with a tighter range (R2 between 0.5 to 0.8) 401 

(Figure 3). As noted above, not all the sewage-associated populations highlighted as potentially 402 

co-habiting the human gut co-varied in abundance as well with HF183 concentrations. For 403 

example, correlations with HF183 concentrations were moderate with the presumed aerobes of 404 

Pop.03 (R2 = 0.69) and Pop.29 (R2 = 0.75) but poor for the facultative Pop.15 (R2 = 0.35).  405 

 406 

Genome-based Source Tracking 407 
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We aimed to demonstrate how read mapping metagenomic data to genome collections 408 

can perform differential source attribution of the fecal contamination within our single input 409 

mesocosm experiments. Our goal was to construct libraries of genomes representing the 410 

microbial pollutants expected to belong to a specific fecal source. To accomplish this, we 411 

downloaded MAGs, isolate genomes, and other reference genomes from several largescale 412 

studies of host microbiomes to create a library for determining source attribution with whole-413 

genome sequences (67, 69-71) The collected data included genomic entries representing the fecal 414 

microbiomes of humans (n=4644), pigs (n=1667), and chickens (n=5675) and the rumen 415 

microbiome of cows (n=2124). Using MiGA, we dereplicated entries from each collection to 416 

obtain representative genomes with the highest quality for groups of genomic entries with ANI ≥ 417 

95% to each other to reduce both the size of the dataset and redundant entries representing highly 418 

similar populations within a collection of host-associated genomes. This approach was the same 419 

as described in our methods for processing and selecting the MAGs described above and shown 420 

on Table 1. Using these dereplicated genomes and including the 15 representative MAGs we 421 

produced herein, we searched for and removed any instances of ANI ≥ 95% matches across these 422 

collections of host-associated genomes to control for potential cross-reactivity. One exception for 423 

which we did not remove matching genomes was between matching human and sewage genomes 424 

since they represent the same fecal source and would not complicate interpretation of results 425 

(Supplement Table S4). Our library construction and curation efforts are summarized in Figure 426 

4. 427 

 Next, we aimed to use our host-specific source libraries to perform source attribution and 428 

partitioning as if our mesocosm data represented metagenomes recovered from a waterbody 429 

contaminated by a single unknown source. Thus, we performed competitive read mapping of the 430 
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metagenomic data to the finalized non-redundant genomic library using Magic-BLAST and 431 

custom scripts for TAD80 calculation as described above for tracking the sewage-associated 432 

populations individually. Resulting TAD80 values were summed within each source category 433 

and normalized to GEQ to allow interpretation of these results as the percentage of contribution 434 

from each fecal source in the form of % GEQ (e.g., percentage of prokaryotic genomes) 435 

belonging to a source (Figure 5, A). No source category was detected in the control samples and 436 

signal from our collection of sewage MAGs dominated the timeseries across all sewersheds but 437 

rapidly disappeared after day 4. The combined human signal followed a similar pattern as the 438 

sewage though usually at about 10% less GEQ. The pig, cow, and chicken source categories 439 

were usually not detected or were consistently <0.1% GEQ. Hence, this approach provides the 440 

means to assess contamination at the metagenomic read level, circumventing a substantial 441 

computational burden to assemble, bin and obtain de-replicated MAGs. 442 

 443 

Pathogen and Virulence Genes Assessment 444 

To assess the ability of the metagenomic approach to provide insights into the health risk 445 

associated with bacterial pathogens introduced by sewage contamination during mesocosm 446 

operation, we recruited metagenomic short reads to 1076 pathogenic bacterial genomes 447 

recovered from the PATRIC webserver (Supplement, Table S5). Results revealed that 63, 38, 448 

and 129 pathogen genomes from sewersheds A, B, and C, respectively within the inoculum had 449 

sequencing depths at or above our established LOD after read mapping (see Methods, Eqn. 1) 450 

(Supplement, Table S6). In contrast, immediately following inoculation on day 0 many 451 

reference genomes were no longer detectable, with a total of 61, 25, and 20 pathogenic genomes 452 

detected from sewersheds A, B, and C, respectively. It should be mentioned, for many of these 453 
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organisms, pathogenicity is a function of genotype (e.g., the E. coli pathotypes) and the methods 454 

used herein were developed for species-level detection and not optimized for distinguishing 455 

between closely related genotypes of the same species at low abundances (55).  456 

Therefore, due to the low relative abundances of these pathogens that we observed and 457 

the need to assess the actual genetic content present within these populations, we examined the 458 

relative abundance of experimentally verified genes within the Bacterial Virulence Factor 459 

Database (VFDB) as proxies for key bacterial pathogens (Figure 5, B). The virulence signal 460 

within inoculum metagenomes primarily comprised those belonging to Aeromonas, Klebsiella, 461 

and Shigella pathogenic genera, consistent with the whole-genome detection results above. 462 

Sewage from both sewershed A and C appeared to have greater virulence factor signals 463 

compared to sewage from sewershed B, which had drastically lower detected levels of 464 

Aeromonas VFs and no detection of Klebsiella, Shigella or Escherichia VFs. Within the 465 

sewershed A and C timeseries, average virulence abundance was lower on day 0 than in the 466 

inoculum but quickly reached a maximum in 24 hours before substantially decreasing by day 4 467 

and being below detection by day 7. The increase was primarily due to substantial increase in the 468 

abundance of Aeromonas hydrophila VFs. This trend was consistent among genes encoding for 469 

hlyA (hemolysin), aerA (aerolysin) and act (Aeromonas enterotoxin), essential cytotoxins for 470 

Aeromonas spp. pathogenicity, across the timeseries. Alignment of these three cytotoxin genes to 471 

the MAG representing Pop. 15 revealed that it likely carries a gene encoding for hlyA but aerA 472 

and act were either not binned with the draft genome or truly not carried by this population. 473 

Upon further inquiry, the closest matching entry on NCBI’s Genome database was Aeromonas 474 

caviae NZ_AP022214 (ANI = 98.0%), which represents a strain isolated from a Japanese 475 

wastewater treatment plant that has not been implicated in disease or designated as an obligate 476 
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pathogen. Hence, to what extent the MAG identified represents a pathogenic or opportunities 477 

pathogenic population remains somewhat speculative. 478 

 479 

β-lactam Resistance Gene Assessment 480 

Several classes representing the breadth of β-lactamase-encoding gene diversity were 481 

present in the metagenomes from all samples. The uninoculated lake water (control) sample 482 

showed very low abundance of β-lactamase encoding genes across each class (sum of classes 483 

was 0.078 total β-lactamase encoding genes/genome equivalent) – though a subset of metallo-β-484 

lactamase encoding genes (MBLS3) were noticeably pronounced (0.06 gene copies/genome 485 

equivalent). In the inoculum samples, total observed β-lactamase signal was much greater in 486 

sewersheds A and C (1.07 and 1.14 total gene copies /genome equivalent, respectively) 487 

compared to sewershed B (0.51 total β-lactamase encoding genes/genome equivalent), but the 488 

relative contribution of each class was consistent, with genes encoding for BlaA, BlaC and OXA 489 

dominating. In contrast, by day 4 and to a greater extent by day 7, the frequency of genes 490 

encoding for BlaA, BlaC and OXA decreased consistently while those encoding for MBLs 491 

increased (Figure 5, C). Along with a shift in prominence of these β-lactamase gene classes, 492 

both sewersheds A and C showed steep decreases in the relative number of β-lactamase encoding 493 

genes/genome equivalent between day 0 and day 7. Sewershed C showed the same shifts in 494 

prominence between classes, yet total signal remained consistent with 0.55 and 0.54 total β-495 

lactamase gene copies/genome equivalent on day 0 and 7, respectively. 496 

 497 

Discussion:  498 

Sewershed Microbial Diversity 499 
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Collection systems represent a key component of modern sanitation infrastructure. 500 

Despite the importance of sewage as a reservoir for human pathogens and antimicrobial 501 

resistance genes, the sewage microbiome remains relatively understudied at the whole genome 502 

level. Our results indicated that the sewage samples we collected from three separate collection 503 

systems across the Atlanta Metropolitan region were dominated by what have been aptly named 504 

microbial “weeds” in literature and which we have observed as belonging to several sewage-505 

associated populations which appear quite prolific (21,22). Others have reported many of these 506 

populations are also present at high relative abundances within sewersheds spanning another 507 

urban landscape (72). Our resulting analysis expanded our understanding of these bacterial 508 

populations and their fate during a simulated contamination event by recovering representative 509 

draft genomes (MAGs) for these ubiquitous populations and tracking their abundances over time 510 

with controls in place for microbial load fluctuations. Specifically, we found primary sewage-511 

associated populations to represent clades within the classes Gammaproteobacteria (e.g., 512 

Acinetobacter, Aeromonas), Betaproteobacteria (e.g., Acidovorax, Rivicola) and 513 

Epsilonproteobacteria (e.g., Arcobacter) (Figure 1,A).  514 

These sewage-associated populations showed different preference for oxygen, appearing 515 

to span strict anaerobic, facultative, and aerobic metabolic phenotypes. Notably, the signal 516 

associated with these populations in the metagenomic datasets decayed non-uniformly during 517 

mesocosm operation, though the most persistent populations were aerotolerant, acetate-utilizing 518 

populations which contained genes related to aromatic degradation and/or nitrogen metabolism. 519 

Depending on additional inquiry, it may be possible to leverage the ratio between abundances of 520 

anaerobic and aerobic (or facultatively anaerobic) sewage-associated populations in future work 521 

for inferring the date of pollution events linked to sewage contamination. For all 15 populations 522 
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described here, their linear relationship with HF183 and Enterococci had a combined R2 of 0.6 523 

(Figure 2), revealing overall consistent results for different markers under the conditions tested 524 

here. However, these correlations were drawn from the limited number of mesocosm incubations 525 

and in situ population dynamics are likely to differ according to varying environmental and 526 

biological factors which were not controlled for herein. 527 

Our dataset is of limited size and scope considering that, on a global scale, we examined 528 

sewage from collection systems in essentially equivalent geographies. The assortment of sewage-529 

associated populations described here, although ubiquitous across the sewersheds we sampled, 530 

likely maintain differing prevalence across time or space. Furthermore, many draft genomes we 531 

produced are not complete,so further work will be needed to establish a more practical view of 532 

both the range of these populations and their genomic content and diversity. Yet, we see 533 

advancing our knowledge of sewage-associated populations as a potential contribution towards 534 

newly developing forensic approaches that help monitor, manage, and repair these essential 535 

infrastructures (73).  For example, we observed several highly abundant populations with a range 536 

restricted to only one or two of the three sewersheds. It would be important to gauge whether 537 

populations (or genotypes within a population) exist that are specific to individual sewersheds, 538 

and how the physicochemical characteristics (e.g., municipal vs. industrial waste, flow rates) of 539 

different waste streams might drive the formation of these distinctions. Further inquiry in this 540 

direction may also lead to strategies for resolving source attribution inquiries when multiple 541 

collection systems with differing catchment compositions are all possible sources of 542 

contamination in the same water environment.   543 

 544 

Source Attribution and Partitioning with Host-Specific Genomic Libraries 545 
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Several of the abundant sewage-associated populations identified above appear closely 546 

related (likely at the species level) to members of human or chicken fecal microbiomes (Figure 547 

4). Regardless, it appears populations specific to municipal sewage likely exist and represent a 548 

contingent of the sewage microbiome which – if better catalogued – may be useful for 549 

identifying and quantifying sewage pollution in natural ecosystems independent of human-550 

associated markers. We have demonstrated, through a proof-of-concept workflow, the capacity 551 

for read mapping metagenomic datasets to host-specific genomic libraries for performing both 552 

source attribution and partitioning (Figure 5, A). Although source attribution has been well-553 

developed in existing metagenomic approaches, no metagenomic methods have been developed 554 

which are also capable of simultaneous source partitioning. Here, we have performed source 555 

partitioning for each entry within a host-specific genomic library to a metagenome’s GEQ, which 556 

yields a relatively easy-to-interpret metric describing the percentage of genomes within a 557 

metagenome that belong to a given host or source specific library. We see this as a promising 558 

avenue for metagenomic-based MST methods and believe the approach could eventually be 559 

utilized in the field pending further testing and refinement by mixed input experiments. 560 

β-lactamase Encoding Genes Surveillance 561 

Additionally, we leveraged our metagenomes to survey for β-lactamase genes across the 562 

inoculum and timeseries. The abundance of β-lactamases across the inoculum samples was 563 

substantially higher (7-15 times) compared to the control (Figure 5). This result was consistent 564 

with both our expectations and the literature regarding heightened ARG abundance within 565 

collection systems (74). Specifically, others have reported substantial abundances of β -566 

lactamase OXA genes on both Campylobacteraceae and Aeromonadaceae clades in sewage (75). 567 

Indeed, the abundance of reads belonging to β-lactamase encoding genes, especially of the OXA-568 
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encoding class, were the most abundant in the inoculum and early time points where these 569 

sewage-associated clades (e.g., Pop.01, Pop.19) persisted in the lake water. Overall, these results 570 

indicated that sewage contamination imparted a substantial and lasting increase to the abundance 571 

of genes encoding β-lactamases even after 7 days following the contamination event. More work 572 

is needed to elucidate the genomic context of this increased β-lactamase encoding gene 573 

abundance (e.g., whether they belong to or have been transferred to organisms capable of driving 574 

clinically relevant cases of antimicrobial resistance). Nonetheless, our results allow for a 575 

quantitative view of the abundance of these genes relative to the natural environment where the 576 

freshwater used in the mesocosm incubations originated, which is relevant for assessing the 577 

associated public health risk. 578 

 579 

Pathogen and Virulence Gene Surveillance 580 

Importantly, although Sewershed A and B showed what appears to be similar 581 

concentrations of human input according to HF183 concentrations within the inoculum 582 

(Supplement Figure S1), the pathogen detection results revealed via the sequence data were 583 

quite varied (Figure 4B, Supplement Table S6). Results from both read mapping to bacterial 584 

pathogen genomes and the experimentally verified VFDB collection were consistent in 585 

suggesting that bacterial virulence was more elevated in the Sewershed A inoculum compared to 586 

Sewershed B. This contrast between sewersheds with equal human marker concentrations yet 587 

apparently unequal bacterial pathogen load illustrates how shotgun sequence data can facilitate 588 

perspectives on the actual co-variance of marker and pathogen. Yet these insights clearly depend 589 

on sufficient sequencing effort and/or relatively high pathogen concentrations to avoid the 590 

possibility of false negative results.  591 
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In particular, the estimated smallest detectable population size associated with our 592 

analysis and sequencing effort ranged between approximately 2E+05 to 1E+02 cells/mL based 593 

on qPCR-based cell count normalization and the sequencing effort applied (Methods, 594 

Supplement Table S2). Approaches for estimating analytical LOD within metagenomic based 595 

analysis remain rare within the literature especially as it relates to work done in the environment 596 

as opposed to clinical settings (76,77). Yet, the concept of detection and quantification limits in 597 

metagenomics is a major challenge to its thorough incorporation into environmental monitoring 598 

approaches because 1) it is necessary to track biomarkers or pathogens down to quite low 599 

relative abundance in the field (i.e., <1E-09 target basepairs/total basepairs), and 2) leveraging 600 

extraordinary sequencing effort is currently expensive and not practical when limitations of 601 

expertise and computational resources exist. Our approach provides the means to establish 602 

theoretical analytical LOD for metagenomic analyses based on sequencing effort which is useful 603 

for determining and interpreting the meaning of “non-detects”. 604 

Using AGS and total cell density estimates within the inoculum, we estimate 605 

approximately 3.5Tb of sequencing effort is necessary for detecting a population with 606 

concentration of 1E+02 cells/mL within the high microbial loading conditions observed in the 607 

inoculum. In contrast, following the decline in cell density and increase in AGS across the 608 

timeseries, the estimated sequencing effort required to detect a population of 1E+02 cells/mL 609 

drops to 10Gb in day 7 conditions. Therefore, our approach and results reported here for 610 

sequencing effort estimation may be helpful for informing the planning and execution of future 611 

environmental monitoring work utilizing metagenomic approaches (Supplement Table S7). 612 

Though, crucial to note is the fact that our approaches for analytical LOD, and sequencing effort 613 

estimation assumes unbiased sequencing and does not consider sampling or processing 614 
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recoveries – where the latter limitation is obviously broadly applicable to all molecular methods. 615 

Total detection limits, in the context of analytical limits as well as both sequencing bias and 616 

sampling/processing recoveries, will be important caveats to consider for future metagenomic 617 

workflows aiming to surveil pathogens in sewage collection systems or their releases into the 618 

environment (78). 619 

While we do not envision that PCR and culturing will be replaced by metagenomics for 620 

routine monitoring because the former techniques are cheaper, easier to analyze, and have a 621 

greater dynamic range of detection – our results do show how metagenomics can provide unique 622 

insights into sewage pollution events such as differential pathogen content of different sewage or 623 

possibly distinguishing between different sewersheds potentially contributing to contamination. 624 

Further, we have shown how metagenomics could track a broad range of population sizes – 625 

about six orders of magnitude (from about 1E+01 to 1E+07 cells/mL) – which is adequate for 626 

certain applications and/or high-volume pollution events. 627 

 628 

Conclusions 629 

Our efforts have shown how metagenomic datasets can provide insights on multiple 630 

questions critical to environmental monitoring and water quality: pathogen detection, source 631 

attribution and partitioning, and ARG persistence in the environment. In our view, confident and 632 

direct detection of pathogens within metagenomic datasets will remain primarily a logistical 633 

challenge due to the large amount of sequencing effort required to reliably detect bacterial 634 

pathogens at concentrations that are very low yet still quite relevant to protecting public health. 635 

Thus, when performed alone, metagenomic approaches are unlikely to be the most prudent 636 

technology for routine monitoring and directly informing health risks associated with sewage 637 
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contamination, especially when pathogen or virulence genes are at these relatively low 638 

abundances (e.g., below 1E+02 features/mL). This issue is also compounded by the large 639 

contribution of non-bacterial pathogens (e.g., viruses and protozoa) to illness risk in 640 

contaminated waters. In contrast, metagenomic approaches are increasingly poised to resolve 641 

questions related to source attribution and partitioning by improving our understanding (and the 642 

size of our databases) of the genomes maintained by source-specific microbial populations. 643 
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Table 1. Summary of representative MAGs recovered in this study representing sewage-

associated populations.  
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Figure 1. Panel A: Class level abundances across control, inoculum and timeseries for 

sewersheds A, B and C based on kmer classification by Kraken2 against a custom-built database 

of reference genomes. Total height of bars represents the percentage of kmers confidently 

classified to the corresponding taxon (Figure key). The maximum and minimum percentages of 

kmers confidently classified were 69.0% from Sewershed A day 1 and 8.9% from the control, 

respectively. Panel B: Estimated cell density, estimated HF183 copy concentration and 

Enterococci colony forming units (CFU) for the same samples. The dashed lines indicate the 

estimated cell density range for the control sample. HF183 was detected but not quantifiable 

(DNQ) for Sewershed C on day 7.  
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Figure 2. Estimated cell densities of sewage-associated populations across inoculum and 

timeseries samples. Cell densities (absolute abundances) were estimated as described in the 

Materials and Methods section. 
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Figure 3. Log-log scatter plots of estimated population densities across inoculum and timeseries 

samples against HF183 and Enterococci concentrations. Lines of best fit are shown dashed with 

their associated coefficients. Panel A: HF183 copy number versus the concentration of sewage-

associated populations likely to also be enteric (n=8). Panel B: HF183 copy number versus the 

concentration of all sewage-associated populations (n=15). Panel C: Enterococci concentration 

versus the concentration of sewage-associated populations likely to also be enteric (n=8). Panel 

D: Enterococci concentration versus the concentration of all sewage-associated populations 

(n=15). 
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Figure 4. Overview of the curated genomic library for source attribution. Nodes represent sets of 

genomes recovered from public datasets of a given host microbiome, either “human”, “pig”, 

“cow”, and “chicken”. The “sewage” genomes shown here are those MAGs produced in this 

study. The radius of a node is proportional to the square root of the number of dereplicated 

genomes (d) remaining in the set following processing as described in the Methods section. 

Edges connecting nodes represent the amount of potentially cross-reactive genomes at the ANI ≥ 

95% threshold level, and the line weights are drawn proportional to the square root of the largest 

number of these potentially cross-reactive matches (r). Ratios between nodes represent the 

number of matching genomes, with the value nearest a particular node representing the number 

of genomes from that dataset which matched across libraries.  
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Figure 5. Abundance patterns of Source Tracking libraries, virulence factors and -lactamase 

encoding genes across inoculum and timeseries metagenomes. All normalization was performed 

against genome equivalents (GEQ). Panel A: Source attribution and partitioning results based on 

reads mapped against MAGs curated for different fecal sources. Percentages represent estimates 

of the fraction of the prokaryotic population specifically belong to one of the fecal sources. 

Panel B: Virulence Factor (VF) gene abundance dynamics based on short reads mapping on 

experimentally verified VF reference nucleotide sequences (Figure key). Panel B: -lactamase 

gene abundance dynamics across inoculum, timeseries and control metagenome based on 

Diamond --blastx searches of reads against reference ARG sequences and ROCker model 

filtering of the resulting matches. Relative abundance is calculated by normalizing the average 

sequencing depth of each gene to GEQ after ROCker filtering. 
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