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Abstract 

Single particle tracking (SPT) enables the investigation of biomolecular dynamics at a high 

temporal and spatial resolution in living cells, and the analysis of these SPT datasets can reveal 

biochemical interactions and mechanisms. Still, how to make the best use of these tracking data 

for a broad set of experimental conditions remains an analysis challenge in the field. Here, we 

develop a new SPT analysis framework: NOBIAS (NOnparametric Bayesian Inference for 

Anomalous Diffusion in Single-Molecule Tracking), which applies nonparametric Bayesian 

statistics and deep learning approaches to thoroughly analyze SPT datasets. In particular, 

NOBIAS handles complicated live-cell SPT data for which: the number of diffusive states is 

unknown, mixtures of different diffusive populations may exist within single trajectories, 

symmetry cannot be assumed between the x and y directions, and anomalous diffusion is 

possible. NOBIAS provides the number of diffusive states without manual supervision, it 

quantifies the dynamics and relative populations of each diffusive state, it provides the transition 

probabilities between states, and it assesses the anomalous diffusion behavior for each state. We 

validate the performance of NOBIAS with simulated datasets and apply it to the diffusion of 

single outer-membrane proteins in Bacteroides thetaiotaomicron. Furthermore, we compare 

NOBIAS with other SPT analysis methods and find that, in addition to these advantages, 

NOBIAS is robust and has high computational efficiency and is particularly advantageous due to 

its ability to treat experimental trajectories with asymmetry and anomalous diffusion.  
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Introduction 

The biophysical dynamics of biomolecules reflect the biochemical interactions in the 

system, and these dynamics can be quantified within a dataset of single-particle trajectories 

obtained by tracking individual molecules. The invention of the super-resolution microscope 

(Moerner and Kador, 1989; Hell and Wichmann, 1994; Betzig et al., 2006; Hess et al., 2006; 

Rust et al., 2006) and single-particle tracking (SPT) methods (Yildiz, 2003; Deich et al., 2004; 

Elmore et al., 2005; Manley et al., 2008) have made possible investigations of biomolecular 

dynamics at a high temporal and spatial resolution both in vitro and in vivo. Moreover, 

quantitative SPT algorithms can connect the real-time dynamics from biophysical trajectories to 

biochemical roles to uncover whether a molecule interacts with other cellular components 

(Izeddin et al., 2014), freely diffuses (Badrinarayanan et al., 2012), is actively transported (Park 

et al., 2014), or is constrained to a certain region (Bayas et al., 2018).  

Conventionally, SPT trajectory datasets have been assumed to be Brownian, such that the 

mean squared displacement, MSD, of each track is linearly proportional to the time lag, 𝜏, and 

the diffusion coefficient, D, can be calculated from a linear fit to this curve (Qian et al., 1991; 

Saxton, 1997). This Brownian motion assumption works accurately for freely diffusing 

molecules in solution. Despite the accessibility of this method, it has a simplified assumption that 

the molecule is freely diffusing with a single diffusive state (a single D value) for each trajectory. 

In the complicated cellular environment, however, multiple diffusive states, each characterized 

by an average D, can exist—for instance due to binding and unbinding events— and molecules 

can transition between different states to produce heterogeneity even within single trajectories. 

To reveal these heterogeneous dynamics, probability distribution-based methods such as 

cumulative probability distribution (Schütz et al., 1997; Mazza et al., 2012), have been applied. 

Probability distribution-based models use kinetic modeling with a predetermined number of 

diffusive states and are fit to histograms of displacements calculated at different time lags. These 

probability-based kinetic models pool displacements from the SPT dataset to estimate the D and 

weight fraction for each diffusive state in the model. Probability distribution-based analytical 

tools (Rowland and Biteen, 2017; Hansen et al., 2018) have been widely applied to SPT datasets 

with extra corrections that consider the experimental microscopy data collection process. These 

corrections include localization error (Michalet and Berglund, 2012), confinement (Kusumi et 
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al., 1993), motion blur (Berglund, 2010; Deschout et al., 2012), and out-of-focus effects (Lindén 

et al., 2017) in the probability model. 

For some well-studied biological systems in which the biochemical states of molecules have 

been determined through other methods, a fixed-state number analytical tool can be suitable for 

quantifying the dynamics and weight for each state (Elf et al., 2007; Hansen et al., 2017). 

However, SPT can also be used as the beginning step to investigate biomolecule dynamics 

without prior knowledge of how many diffusive states there supposed to be Monnier et al., 2015; 

Sungkaworn et al., 2017; Biswas et al., 2021). In these cases, how to objectively determine the 

diffusive states number is a great challenge. Moreover, these models provide a D value for each 

subpopulation, but they do not assign the diffusive state to each individual single-molecule step, 

nor do they quantify the transition probability between distinct diffusive states within one 

trajectory. However, these transition probabilities can reveal important biological meaning such 

as the presence of critical biochemical intermediates (Biswas et al., 2021). 

Bayesian statistics and Hidden Markov Models (HMMs) have been applied to analyze SPT 

datasets without assuming a predetermined number of diffusive states and to access the 

probabilities of transitioning between distinct states (Persson et al., 2013; Monnier et al., 2015; 

Karslake et al., 2020; Heckert et al., 2021). vbSPT, which was one of the first applications of 

HMM for SPT analysis (Persson et al., 2013), uses a maximum-evidence criterion to select 

between models with different numbers of diffusive states; within each model, a fixed-order 

HMM is used to infer the diffusion coefficient, weight fraction, and transition probabilities for 

each state. More recently, nonparametric Bayesian models based on Dirichlet processes were 

combined with HMM to recover the number of diffusive states from SPT trajectory datasets, 

such as in SMAUG (Karslake et al., 2020) and DSMM (Heckert et al., 2021). In these models, 

the motion of the molecule is approximated to be symmetric and Brownian, which is an 

oversimplification considering the crowded environment and various interaction partners for 

biomolecules in cells. 

To move beyond Brownian motion, here we consider a more general random walk family: 

anomalous diffusion. In anomalous diffusion, MSD and 𝜏 are related by a power law distribution, 

𝑀𝑆𝐷~𝜏ఈ, where 𝛼 is the anomalous diffusion exponent (Metzler et al., 2014). Brownian motion 

is a special case of anomalous diffusion (𝛼 ൌ 1), and other cases can be further divided into 
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subdiffusion (𝛼 ൐ 1) and superdiffusion (𝛼 ൏ 1). Biomolecules have been reported to diffuse 

anomalously in many situations, such as constrained membrane protein motion (Jeon et al., 

2016) and active transportation of cargoes (Caspi et al., 2002). Different designs of neural 

networks effectively classify the diffusion type of trajectories (Bo et al., 2019; Granik et al., 

2019; Argun et al., 2021; Gentili and Volpe, 2021), however these analyses typically assume that 

each track is dynamically homogeneous and is characterized by a single type of diffusion and a 

single D value. It remains a challenge to classify the diffusion type within a trajectory when 

considering the possibility of changes in dynamics or diffusion types within a single track. 

Here we introduce the NOnparametric Bayesian Inference for Anomalous diffusion in 

Single-molecule tracking (NOBIAS) framework to address the assumptions and simplifications 

discussed above and provide a more physiologically relevant analysis algorithm to quantify the 

dynamics encoded in SPT datasets (Figure 1). In particular, NOBIAS recovers the diffusive 

states number and predict the diffusion type for each diffusive state, even in heterogeneous 

trajectories. The NOBIAS framework consists of two modules. The first module uses a 

Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) with multivariate Gaussian 

emission to recover the number of diffusive states and infer their corresponding diffusion 

coefficients and weight fractions. This module also assigns each single-molecule step a diffusive 

state label to provide the state label sequence and the matrix of transition probabilities. In the 

second module, the original trajectories are segmented by diffusive state label and a pre-trained 

Recurrent Neural Network (RNN) is used to classify these segments and assign the diffusion 

type (Brownian motion, Fractional Brownian motion, Continuous Time Random Walk, or Lévy 

Walk) for each diffusive state. We simulated trajectory datasets with mixtures of heterogeneous 

dynamics and diffusion types to validate the NOBIAS framework, and we analyzed the SPT 

dataset from experimental measurements of the SusG outer-membrane protein in living 

Bacteroides thetaiotaomicron to access its dynamics and anomalous diffusion behaviors, which 

are consistent with its role in starch catabolism in gut microbiome. This framework uses 

nonparametric Bayesian statistics and Deep learning to thoroughly analyze a single-molecule 

tracking dataset. It provides an objective method to determine the number of diffusive states in 

an SPT dataset and accesses the multidirectional dynamics of each state. A further diffusion type 

classification for each diffusive state is also included in the framework. The NOBIAS framework 

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


 

Figure 1. NOBIAS workflow. (1) Single-particle tracking (SPT) trajectory datasets are processed in the 
NOBIAS HDP-HMM module: the observed data (the displacements, ∆𝒙𝒙) are analyzed in the context of 
the emission parameters (the diffusion coefficients, D). The state sequence, 𝑧𝑧, indicates the diffusive state 
corresponding to each step, and the transition matrix, 𝝅𝝅, is estimated with a Hierarchical Dirichlet process 
prior using concentration hyperparameters a and γ and the sticky parameter, 𝜅𝜅. The HDP-HMM module 
provides D and the weight fraction for each diffusive state, the π for transition probabilities between these 
states, and a state label assignment for each SPT step. (2) In the NOBIAS RNN module, trajectory 
segments of the same diffusive state are collected and put in a pre-trained Recurrent Neural Network 
(RNN) with two long short-term memory (LSTM) layers to classify the diffusion type for each diffusive 
state. 
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overcomes some oversimplified assumptions in SPT analysis and provides a powerful tool to 

fully make use of single-molecule tracking data. 

Methods 

Hidden Markov model (HMM): 

A HMM infers a system with a discrete-valued sequence of unobservable states that can be 

modeled as a Markovian process (Rabiner, 1989). The HMM assumes that the observed data 

have a hidden discrete-valued state sequence, and at each observed time, the observed data only 

depends on its hidden state. In our NOBIAS application of the HMM model, the observed data is 

the single-molecule displacements and the hidden state is the molecule’s distinct biophysical 

diffusive state. 

Suppose 𝑧௧ is the hidden state of the Markovian chain at time t and 𝑦௧ is the observed data at 

time t, the HMM follows the following generative process: 

𝑧ଵ~𝜋ሺ଴ሻ, 𝑧௧ାଵ|𝑧௧~𝜋
ሺ௭೟ሻ, 𝑦௧|𝑧௧~𝑓ሺ𝜃

ሺ௭೟ሻሻ ሺ1ሻ 

Here, 𝜋 refers to the transition matrix of a HMM and 𝜋ሺ௭೟ሻ is the 𝑧௧ row of the transition 

matrix and is the transition distribution for state 𝑧௧. Given 𝑧௧ and the corresponding emission 

parameter 𝜃ሺ௭೟ሻ, 𝑦௧ is independently generated from the emission function 𝑓ሺ𝜃ሺ௭೟ሻሻ. In NOBIAS, 

the observed data, 𝑦௧, is the vector of single-step displacements, ∆𝒙௧, and the emission function 

is a zero-mean multivariate Gaussian distribution, and the emission parameter is the set of 

diffusion coefficients, 𝑫ሺ௭೟ሻ: 

∆𝒙௧|𝑧௧ ~ 𝑁𝑜𝑟𝑚൫0, 4𝑫ሺ௭೟ሻ𝜏൯ 

Dirichlet process for Nonparametric Bayesian: 

In NOBIAS, the Dirichlet Process (DP) is used in the prior for the parameters of a mixture 

model with an unknown number of components. A random probability measure, 𝐺଴, on a 

measurable space, Θ, is distributed according to a DP when (Ferguson, 1973): 

൫𝐺଴ሺ𝐵ଵሻ, … ,𝐺଴ሺ𝐵௡ሻ൯ห𝛾,𝐻 ~ 𝐷𝑖𝑟൫ሺ𝛾𝐻ሺ𝐵ଵሻ, … , 𝛾𝐻ሺ𝐵௞ሻ൯ ሺ2ሻ 
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Here, Dir is a Dirichlet distribution, H is a base measurement, 𝛾 is a positive concentration 

parameter, and ሼ𝐵௜ሽ௜ୀଵ
௡  is a finite partition of Θ. In this case, we write 𝐺଴~𝐷𝑃ሺ𝛾,𝐻ሻ. 

From this definition follow two properties of Dirichlet processes. First, if 𝐺଴~𝐷𝑃ሺ𝛾,𝐻ሻ, 

then 𝐺଴ is atomic and can be written as: 

𝐺଴ ൌ෍𝛽௜𝛿ఏ೔

ஶ

௜ୀଵ

ሺ3ሻ 

Here, 𝛽௜ is a weight and 𝛿ఏ೔ is a unit-mass measure at observation 𝜃௜|𝐻 ~ 𝐻.  

Second, based on the conjugacy of the finite Dirichlet distribution, given a set of 

observations 𝜃ଵ, … , 𝜃ே where 𝜃௜~𝐺଴, the posterior distribution for a Dirichlet process 𝐺଴ is: 

𝐺଴|𝜃ଵ, … ,𝜃ே,𝐻, 𝛾 ~𝐷𝑃 ൭𝛾 ൅ 𝑁,
𝛾

𝛾 ൅ 𝑁
𝐻 ൅

1
𝛾 ൅ 𝑁

෍𝛿ఏ೔

ே

௜ୀଵ

൱ ሺ4ሻ 

A stick-breaking process is used to construct the weight parameter 𝛽௜ as follows: 

𝛽௜ ൌ 𝜈௜ෑሺ1 െ 𝜈௟ሻ
௜

௟ୀଵ

 , 𝜈௟|𝛾 ~ Betaሺ1, 𝛾ሻ ,       𝑖 ൌ 1,2, … 

In this process, the weight 𝛽௜ comes from a unit stick according to a weight that is beta-

distributed based on the remaining stick length after the last breaking. The weights from this 

construction, which is denoted 𝛽~GEMሺ𝛾ሻ, have been proven (Sethuraman, 1994) to be the 

weights 𝛽௜ of a Dirichlet process as in Eq. (3). 

For each value of 𝜃௜, a random indicator variable 𝑧௜ is used to denote that 𝜃௜ ൌ 𝜃௭೔′, and then 

a predictive distribution of z can be written as: 

𝑝ሺ𝑧ேାଵ ൌ 𝑧|𝑧ଵ, … , 𝑧ே, 𝛾ሻ ൌ
𝛾

𝛾 ൅ 𝑁
𝛿ሺ𝑧,𝐾 ൅ 1ሻ ൅

1
𝛾 ൅ 𝑁

෍𝑁௞𝛿ሺ𝑧, 𝑘ሻ
௄

௞ୀଵ

ሺ5ሻ 

Where K is the current unique number of values of z and 𝑁௞ is the number of 𝑧௜ that take 

value k. This predictive distribution implies that a new observation takes the value of a seen 

observation 𝜃௭ೖ with probability proportional to 𝑁௞ or takes a unseen value 𝜃௄ାଵwith probability 
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proportional to concentration parameter 𝛾. When a seen observation 𝜃௭ೖ is chosen for the new 

observation, the indicator 𝑧ேାଵ ൌ 𝑘, or if unseen value 𝜃௄ାଵ is taken, the indicator 𝑧ேାଵ ൌ 𝐾 ൅

1. This ‘the rich get richer’ property is essential for inferring a finite generated mixture model. 

Because the DP posterior nonparametrically converges to parameters of a mixture model for a 

finite mixture dataset (Ishwaran and Zarepour, 2002), the DP is an appropriate prior for the 

parameters of a mixture model with an unknown number of components. 

Hierarchical Dirichlet Process and Sticky Extension: 

In NOBIAS, the different single-molecule trajectories of multiple molecules under different 

biological condition and from different cells, so the groups of data are related but generated 

independently. Therefore, the DP is extended to a Hierarchical Dirichlet Process (HDP) (Teh et 

al., 2006). In the HDP, a first Dirichlet process, G0, is the base measure of a new Dirichlet 

process, Gj: 

𝐺௝~𝐷𝑃ሺ𝑎,𝐻ሻ, 𝐺଴~𝐷𝑃ሺ𝛾,𝐻ሻ 

To apply a HDP as prior for a HMM model, a HDP-HMM model is generated according to: 

𝛽 ~ GEMሺ𝛾ሻ, 𝜋௝  ~ DPሺ𝑎,𝛽ሻ, 𝜃௝|𝜆 ~ 𝐻ሺ𝜆ሻ       𝑗 ൌ 1,2, … 

𝑧௧ หሼ𝜋ሽ, 𝑧௧ିଵ ~ 𝜋௭೟షభ  , 𝑦௧หሼ𝜃ሽ, 𝑧௧  ~ 𝐹൫𝜃௭೟൯      𝑡 ൌ 1,2, … ,𝑇 

In the NOBIAS parameter setting the observed data 𝑦௧ would be the single-step 

displacement ∆𝒙௧, and the emission parameter 𝜃 would be the diffusion coefficient 𝐷. 

A common issue for the HDP-HMM model is that if the algorithm artificially divides a set 

of observations into an alternating pattern of rapid switching between several different states, 

then this alternating pattern will be reinforced by the DP (Fox et al., 2008). This assignment 

would result in an artificial over-splitting of one state into multiple substates characterized by a 

high probability of transitions between the substates. Because we would not expect such rapid 

transitions back and forth between two distinct but similar dynamical states in the single-

molecule trajectory data studied here, a sticky parameter, 𝜅, is introduced which enforces self-

transitions and avoids this over-splitting of states. With this new hyperparameter, the 𝜋௝ can be 

sampled as: 
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𝜋௝ ~ DPቆ𝑎 ൅ 𝜅,
𝑎𝛽 ൅ 𝜅𝛿௝
𝑎 ൅ 𝜅

ቇ ሺ6ሻ 

Which add a self-transition bias to the jth components of the DP. 

Different sampling methods such as Direct Assignment Sampling, Beam Sampling, and 

Blocked Sampling have been developed for the HDP-HMM model (Teh et al., 2006; Van Gael et 

al., 2008; Fox et al., 2007). In NOBIAS, we apply the most computationally efficient Blocked 

Sampling method (Fox et al., 2007), which uses a fixed-order truncation with weak-limit 

approximation HDP-HMM. In this approach, the DP is L-degree approximated as: 

 𝛽 ~ GEM௅ሺ𝛾ሻ~ Dirሺ𝛾 𝐿⁄ , … , 𝛾 𝐿⁄ ሻ ሺ7ሻ 

𝜋௝  ~ DP௅ ቆ𝑎 ൅ 𝜅,
𝛼𝛽 ൅ 𝜅𝛿௝
𝛼 ൅ 𝜅

ቇ  ~ Dir൫𝑎𝛽ଵ, … , 𝑎𝛽௝ ൅ 𝜅, … , 𝑎𝛽௅ ൯ ሺ8ሻ 

with a truncation level, L, that is much larger than the expected total number of mixture 

components. 

Multivariate Normal Model 

Bayes’ rule states that the posterior distribution is proportional to the product of the prior 

probability and the likelihood, i.e., 𝑃ሺ𝜃|𝑦ሻ~𝑃ሺ𝜃ሻ 𝑃ሺ𝑦|𝜃ሻ. It is crucial to build conjugacy in 

order to elegantly and concisely express the posterior distribution. If we choose an appropriate 

prior distribution class for 𝑃ሺ𝜃ሻ given a known sampling distribution 𝑃ሺ𝑦|𝜃ሻ, then the posterior 

distribution 𝑃ሺ𝜃|𝑦ሻ will have the same distribution class as the prior distribution. This choice of 

a prior distribution is called a conjugate prior, and this property that the posterior and prior 

distributions are in the same class is called conjugacy.  

In NOBIAS HDP-HMM module, we assume 2D Brownian motion trajectories. In this case, 

the displacements follow a zero-mean 2D Gaussian and the diffusion coefficients D determine 

the variance, Σ, of the 2D Gaussian. Without loss of generality, the mean, µ, is also included in 

the model, 𝜃 ൌ ሼ𝜇, Σሽ, and the data distribution is written as: 

𝑝ሺ𝑦|𝜃ሻ ൌ
1

ሺ2𝜋ሻ|Σ|
ଵ
ଶ

exp ൜െ
1
2
ሺ∆𝒙 െ 𝜇ሻ்|Σ|ିଵሺ∆𝒙 െ 𝜇ሻൠ ሺ9ሻ 
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In the 2D case, the observed data, ∆𝒙, is a 2-column vector of the 2D displacements, 𝜇 is a 1 

× 2 vector and Σ is the 2 × 2 covariance matrix. 

As derived in reference (Gelman, 2004), the general conjugate prior model for this 

multivariate normal model is the prior for the mean and the variance of the step displacement 

follow a Normal-inverse-Wishart distribution (NIW): 

𝑝ሺ𝜇, Σሻ~ 𝑁𝐼𝑊ሺ𝜅,𝜗, 𝜈,Δሻ ሺ10ሻ 

Specifically, the variance, Σ, follows an inverse-Wishart prior distribution 𝐼𝑊ሺ𝜈,Δሻ, and the 

mean, 𝜇, has a conditional Normal distribution: 𝑝ሺ𝜇|Σሻ~ 𝑁ሺ 𝜗, Σ/𝜅ሻ. 

The posterior updates for this normal model with NIW prior follows (Gelman, 2004): 

𝑝൫𝜇ሺ௭೟ሻ, Σሺ୸౪ሻห∆𝒙ሺ௭೟ሻ൯~ 𝑁𝐼𝑊ሺ𝜅̅, 𝜗̅, 𝜈̅,Δഥሻ ሺ11ሻ 

Where ∆𝒙ሺ𝒛𝒕ሻ is the entire displacement dataset in state zt, and for each state zt, we update 

these parameters as: 

𝜅̅ ൌ 𝜅 ൅ 𝑁, 𝜅̅𝜗̅ ൌ 𝜅𝜗 ൅෍∆𝒙௡

ே

௡ୀଵ

, 

 𝜈̅ ൌ 𝜈 ൅ 𝑁, 𝜈̅Δഥ ൌ 𝜈Δ ൅ ∑ ∆𝒙௡∆𝒙௡்ே
௡ୀଵ ൅ 𝜅𝜗𝜗் െ 𝜅̅𝜗̅𝜗்̅. 

Trajectory Simulation 

A state label sequence was firstly simulated with a given transition matrix through a Markov 

chain process. Then according the state label and the D of corresponding diffusive state, the 2D 

displacement step is generated, and cumulatively summed to get a single trajectory. Standard 

trajectory datasets are simulated by generate 2D Gaussian random variable where mean is 0 and 

variance is determined by the set diffusion coefficients with symmetry and no correlation in two 

directions.  

Motion blur trajectory datasets are simulated by simulate a state label sequence that is 𝑇௘௫௣ 

times of the desired length with a transition matrix that self-transit enhanced 𝑇௘௫௣ times. Also 

according to the label of this 𝑇௘௫௣ times longer label sequence a true trajectories with 𝑇௘௫௣ times 

more steps can be generated as in the standard dataset case. A 2D localization error is added to 
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each position of the true trajectory, and the averaging position of every 𝑇௘௫௣ steps in the true 

trajectories is saved to be a motion-blur trajectory with desired length. In the Motion blur 

trajectory datasets used in this study, 𝑇௘௫௣ is set to 10. 

Anomalous Diffusion 

In the NOBIAS RNN module, trajectory segments of the same diffusive state (identified by 

the HDP-HMM module) are evaluated to classify the diffusion type for each diffusive state. In 

Brownian Motion, the mean squared displacement (MSD) is linearly proportional to the time lag, 

τ. In anomalous diffusion, MSD is related to τ according to a power law (Metzler et al., 2014):  

𝑀𝑆𝐷 ∝ 𝜏ఈ ሺ12ሻ 

Here, 𝛼 is the anomalous exponent. When 𝛼 ൌ 1, this relation describes Brownian motion; 

when 𝛼 ൐ 1, Eq. (12) describes superdiffusion; and when 𝛼 ൏ 1, Eq. (12) describes 

subdiffusion. The NOBIAS framework includes the three specific types of anomalous diffusion 

types that are most common in biology: Fractional Brownian motion (FBM) (Mandelbrot and 

Van Ness, 1968), Continuous Time Random Walk (CTRW) (Scher and Montroll, 1975), and 

Lévy Walk (LW) (Klafter and Zumofen, 1994).  

FBM is a Gaussian process with correlated increments such that MSD is related to τ 

according to: 𝑀𝑆𝐷 ൌ 2𝐷ு𝜏ଶு (Mandelbrot and Van Ness, 1968; Jeon and Metzler, 2010). Here, 

the Hurst exponent, H, is related to 𝛼 in Eq. (12) by 𝛼 ൌ 2𝐻. The 𝐷ு is the generalized 

coefficients with physical dimension 𝑚ଶ𝑠ିଶு. The correlation between two time points for FBM 

is 〈𝑥ሺ𝑡ଵሻ𝑥ሺ𝑡ଶሻ〉 ൌ 𝐷ுሺ𝑡ଵ
ଶு ൅ 𝑡ଶ

ଶு െ |𝑡ଵ െ 𝑡ଶ|ଶுሻ. When this correlation is positive, H > 0.5 and 

the motion is superdiffusive; when the correlation is negative, H < 0.5 and the motion is 

subdiffusive. 

CTRW defines a random walk family in which the particle displacement, ∆x, follows a wait 

at its current position for a random waiting time t that is a stochastic variable (Scher and 

Montroll, 1975). NOBIAS considers the case where t follows a power-law distribution, 𝜓ሺ𝑡ሻ  ∝

 𝑡ିఙ, and the following displacement is sampled from a zero-mean Gaussian with fixed variance. 

In this case, the σ in CTRW is related to α in Eq. (12), by 𝛼 ൌ 𝜎 െ 1. This CTRW can only be 

subdiffusion, i.e., 0 ൏ 𝛼 ൑ 1. 
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LW is a special case of CTRW in which the waiting time, 𝑡, still follows power law, but the 

displacement is not Gaussian, and is instead determined by the waiting time (Klafter and 

Zumofen, 1994). The displacement will have a constant speed, 𝑣 ൌ |∆𝒙|/𝑡, and this process can 

only be superdiffusive with exponent  1 ൑ 𝛼 ൑ 2. 

We simulated these three types of anomalous diffusion with the open-source Python 

package from the recent AnDi challenge (Muñoz-Gil et al., 2020). 

Recurrent Neural Network (RNN) for NOBIAS 

All segments 40 steps or greater identified in the HDP-HMM module were further analyzed 

by the NOBIAS Recurrent Neural Network (RNN) consisting of two long short-term memory 

(LSTM) layers (Hochreiter and Schmidhuber, 1997). We trained this RNN to classify trajectory 

segments identified to have the same diffusive state from the HDP-HMM module. We 

implemented this architecture, which is based on the design of the RANDI package classification 

task (Bo et al., 2019; Argun et al., 2021) with the MATLAB Deep Learning Toolbox™. The two 

LSTM layers have 100 and 50 units, respectively, and these two LSTM layers are followed by a 

fullyconnected layer, and the output classification layer order is given in Figure 1.  

The input to the network is the set of 2D coordinates from the track segments; these 

coordinates are normalized to have zero mean and unit variance. Despite a much higher 

classification performance when using tracks > 50 steps long to train and validate (Argun et al., 

2021; Gentili and Volpe, 2021; Muñoz-Gil et al., 2021), we trained two networks with 20-step 

tracks and with 40-step tracks, respectively, after considering the typical segment lengths from 

real biological trajectories. The training data of 750,000 trajectories were simulated with the 

open-source Python package from the AnDi challenge (Muñoz-Gil et al., 2020). Regression 

networks with similar 2 LSTM layers architecture were also trained for FBM and CTRW to 

estimate the anomalous exponent 𝛼 for the experimental data. The performance of classification 

network with 40-step data is shown in the confusion matrix made with 10000 test trajectories as 

shown in Figure S3. 

Single-Molecule Tracking in Living Bacteroides thetaiotaomicron Cells 

B. thetaiotaomicron cells expressing SusG-HaloTag fusions at the native SusG promoter 

were grown as previously described (Karunatilaka et al., 2014). Briefly, cells were cultured in 
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medium containing 0.5% tryptone-yeast-extract-glucose and incubated at 37 °C under anaerobic 

conditions (85 % N2, 10 % H2, 5 % CO2) in a Coy chamber. Approximately 24 h before imaging, 

cells were diluted into B. theta minimal medium (MM) (Martens et al., 2008) containing 0.25% 

(wt/vol) amylopectin. On the day of the experiment, cells were diluted into fresh MM and 

carbohydrate and grown until reaching OD600nm 0.55 – 0.60 (Tuson et al., 2018). 

Before labeling, 900 μL of cells were washed twice by pelleting (6000 G, 2 min) followed 

by resuspension in MM. Cells were then incubated in MM supplemented with 100 nM PAJF549 

dye (Grimm et al., 2016) for 15 min in the dark. Cells were then washed five times in MM, 

transferring to a new tube on every step, to remove excess dye (Lepore et al., 2019). Finally, 100 

μL cells were resuspended in MM supplemented with the appropriate carbohydrate at the 

concentration of the experiment for 30 min in the dark. 1.5 μL labeled cells were pipetted onto a 

pad of 2% agarose in MM and placed between a large and a small coverslip. The two coverslips 

were sealed together with epoxy (Devcon 31345 2 Ton Clear Epoxy, 25 mL) to keep the media 

anaerobic (Karunatilaka et al., 2014). 

Cells were imaged on an Olympus IX71 inverted epifluorescence microscope with a 1.45 

numerical aperture, 100× oil immersion phase-contrast objective (Olympus 

UPLXAPO100XOPH). Frames were collected continuously on a 512 × 512 pixel electron-

multiplying charge-coupled device camera (Photometrics Evolve 512) at 50 frames/s. In this 

microscopy geometry, 1 camera pixel corresponds to 48.5 nm. PAJF549 dyes were photo-

activated one at a time with a 200-400 ms exposure by a 406-nm laser (Coherent Cube 405-100; 

0.1 μW/μm2) and imaging with a 561-nm laser (Coherent-Sapphire 561-50; 1 μW/μm2) using 

appropriate filters as previously described (Tuson et al., 2018). 

In each movie, each cell was analyzed separately by using an appropriate mask. The 

collected frames were processed with SMALL-LABS (Isaacoff et al., 2019) to detect single 

molecules frame-by-frame and localize their position with typically ~30 nm uncertainty. Single 

molecules were identified as non-overlapping punctuate spots of diameter larger than 7 pixels 

and with pixel intensities larger than the 92nd percentile intensity of the fame. The punctate spots 

were fit to a 2D Gaussian and true single-molecule localizations satisfied the following 

conditions: (1) standard deviation > 1 pixel and (2) fit error ൑ 0.06 pixel. Localizations in each 
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cell over time were connected into trajectories using a merit value: trajectories were selected for 

further analysis based on their highest merit ranking.  

Results 

The NOBIAS HDP-HMM module recovers the number of diffusive states and the associated 

diffusion parameters 

We first validated the NOBIAS HDP-HMM module with simulated single-molecule tracks, 

beginning from the most basic case: a mixture of Brownian motion trajectories. Figure 2A-D 

depicts the results for a mixture of two distinct diffusive states with D1 = 0.135 µm2/s and D1 = 

1.8 µm2/s (Table S1). A sequence of state labels (1 or 2) was first simulated with a given 

transition matrix (probability of transitioning from state 1 to 2 or from state 2 to 1) through a 

Markov chain process (Methods). Then, according the state label and the apparent diffusion 

coefficient, D, of the corresponding diffusive state, each 2D displacement step was generated, 

and cumulatively summed to get a single trajectory. Similar state label sequences were simulated 

to generate other trajectory datasets with 4 diffusive states (Figure 2E-G, Table S2).  

The posterior results of the HDP-HMM module are shown in scatter plots of the inferred D 

and weight fraction from each iteration after the inferred number of states converges. Figure 2A 

shows the result for a dataset of 500 trajectories each with 100 steps. Here, the black crosses 

indicate the ground truth diffusion coefficient and weight fraction for each diffusive state; the 

posterior samples of the HDP-HMM model for the two states after convergence are distributed 

around the true values. Due to the posterior sample autocorrelation analysis (Figure S1), the 

posterior samples are thinned by saving every 10 iterations; this setting is the same for all results. 

The mean values and standard deviations for the estimation of D and weight fractions for the two 

states are listed in Table S1. The estimated number of unique states for this simulated dataset 

converges quickly over the course of iterations to the true number of states and remains mostly 

stable at that number (Figure S2). Next, we considered the less ideal case that often occurs 

experimentally: much shorter trajectory lengths (10 steps) and many fewer total steps (2000 10-

step trajectories). We refer to the 2000 10-step trajectories as a sparse dataset and the 500 100-

step trajectories are an abundant dataset. Figure 2B shows that the HDP-HMM model still 

successfully converges to the true number of states (two) for this dataset, and the posterior 

samples of the diffusive parameters are still distributed near the true inputs (black crosses).  
14
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Figure 2 (caption on next page) 
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Figure 2. Validation of the NOBIAS HDP-HMM module with simulated trajectories. (A-H) The 
HDP-HMM module identifies distinct mobility states (colored clusters). Each point represents the average 
apparent single-molecule diffusion coefficient vs. weight fraction in each distinct mobility state at each 
iteration of the Bayesian algorithm saved after convergence. The black crosses indicate the ground truth 
input for these simulated trajectories. (A-D) Results for two-state mixture simulated trajectories results: 
(A) Standard (no motion blur) and abundant (500 100-step trajectories) simulations, (B) Standard and 
sparse (2000 10-step trajectories) simulations, (C) Motion blur and abundant simulations, and (D) Motion 
blur and sparse simulations. (E-H) Results for four-state mixture simulated trajectories results: (E) 
Standard (no motion blur) and abundant (500 100-step trajectories) simulations, (F) Standard and sparse 
(2000 10-step trajectories) simulations, (G) Motion blur and abundant simulations, and (H) Motion blur 
and sparse simulations. (I) The normalized Hamming distance (NHD) decreases and converges with the 
number of iterations. All 100 chains use the same dataset under the settings in panel (E). (J) The final 
label assignment accuracy increases with the track length for three- and four-state mixture datasets. The 
number of trajectories decreases as the track lengths increase such that the total amount of steps is 30,000 
for all track lengths. 
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We further considered the true form of collected microscope experimental data by including 

the localization error due to finite photon counts and noise and motion blur due to the finite 

image acquisition time (Methods). We refer these datasets ‘Motion blur dataset’ in contrast with 

the more ideal ‘Standard’ dataset. In the case of motion blur, the sticky parameter is increased to 

avoid oversampling a single diffusive state into multiple state with similar dynamics. The 

hyperparameter settings for this sticky HDP-HMM model are listed in Table S3. For both the 

abundant dataset (Figure 2C: 500 100-step trajectories) and the sparse dataset (Figure 2D: 2000 

10-step trajectories), the true number of states (two) is recovered with our sticky HDP-HMM 

model, and despite these added errors, the estimated parameters deviate only slightly from the 

true inputs (black crosses).  

We extended our simulations of standard and motion blur Brownian motion track mixtures 

to a more complicated 4-state scenarios for abundant (500 100-step trajectories) and sparse (2000 

10-step trajectories) datasets (Figure 2 E-H). Even with 4 diffusive states, the performance of 

the HDP-HMM module is still excellent for the standard mixture (Figure 2E-F). For the 4-state 

mixture simulation that includes localization error and motion blur, the HDP-HMM still 

successfully recovers the true number of states, and the parameters for the four distinct states are 

still estimated well, though the posterior samples have increased variance and deviation from the 

true value (Figure 2G-H). The statistics of the posterior samples for estimated parameters of the 

4-state simulation result are listed in Table S2, and the transition matrices for all the simulations 

in Figure 2 are shown in Table S1-S2. 

The NOBIAS HDP-HMM module also assigns diffusive state labels to each single-molecule 

step within the trajectories dataset; we call this the state sequence for each track. We quantified 

the performance of the state sequence assignment relative to the ground truth simulated state 

sequence with the Hamming distance: the Hamming distance between two 1D sequences with 

equal length is the number of points where the components are different (Hamming, 1950). The 

resulting distances were normalized to the total length to demonstrate the Normalized Hamming 

Distance (NHD) convergence over iterations (Figure 2I). The NHD decreases with increasing 

iteration number and converges to approximately 0.18. This final converged NHD depends on 

the dataset size, the true transition matrix, and how separable the diffusive state are from one 

another.  
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The true number of diffusive states can be recovered for datasets of both abundant and 

sparse tracks, but the HDP-HMM module performance depends strongly on the length of the 

individual tracks. Using the overall state sequence assignment accuracy (1 െ NHD) as a 

performance evaluator for datasets with the same total amount of steps (30000), we found that 

the assignment accuracy is significantly worse for tracks shorter than 20 steps and almost 

linearly increases with the track length till asymptotes for longer tracks (> 20 steps; Figure 2J). 

This trend is shared for a 3-state and 4-state dataset, but the overall accuracy for 3-state dataset is 

higher than 4-state one for all the track length. 

The NOBIAS RNN module predicts the diffusion type for each diffusive state 

The NOBIAS HDP-HMM module identifies distinct diffusive states, each with a different 

apparent diffusion coefficient, D. In a biological system, we hypothesize that each state 

corresponds to a different biochemical state, for example bound (D ~ 0) vs. freely diffusing 

(large D). Furthermore, biochemical functions like nonspecific binding such as the facilitated 

diffusion of DNA binding protein (Bauer and Metzler, 2012) may result in more sophisticated 

dynamics and result in a multi-dynamics mixture rather a classic bound/unbound 2-state model. 

Additionally, the assumption of Brownian motion in many analysis schemes, including the 

NOBIAS HDP-HMM module, ignores the possibility of anomalous diffusion of molecules 

during binding or active transport (Park et al., 2014; Jeon et al., 2016). To address this 

complexity, NOBIAS includes a second module: we built an RNN to classify the type of motion 

(Brownian motion (BM), Fractional Brownian motion (FBM), Continuous Time Random Walk 

(CTRW), or Lévy Walk (LW)) corresponding to the track segments within each diffusive state 

identified by HDP-HMM module. The RNN consists of two LSTM layers, a fullyconnected 

layer, and data input/output layer (Methods). Although the HDP-HMM module is based on BM, 

for some anomalous diffusion types, for example FBM, if the dynamics level for each state is 

distinct, the HDP-HMM module can still be used to deal with such mixture.  

We simulated a mixture of BM and FBM with distinct apparent diffusion coefficients for the 

two states (𝐷ଵ ൌ 0.045 μmଶ/s and 𝐷ଶ ൌ 0.90 μmଶ/s) to validate the performance of NOBIAS 

on mixtures of different diffusion types. Figure 3A shows the HDP-HMM posterior results for 

this 2-state BM-FBM mixture (500 100-step trajectories) where the FBM state is anomalous 

subdiffusion with 𝛼 ൌ 0.5 (Eq. (12)) and with lower diffusion coefficient. Then, based on the 
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Figure 3. Validation of the NOBIAS-RNN module with simulated trajectories containing mixtures 
of different diffusion types. (A, C) The HDP-HMM module identifies distinct mobility states (colored 
clusters). Each point represents the average apparent single-molecule diffusion coefficient, D, vs. weight 
fraction in each distinct mobility state at each iteration of the Bayesian algorithm saved after convergence. 
The black crosses indicate the ground truth input for these simulated trajectories. (A) Two-state mixture 
comprising a subdiffusive Fractional Brownian Motion (FBM) state with lower D and a Brownian Motion 
(BM) state with higher D. (B) The NOBIAS-RNN determines the probability that the diffusion type for 
each diffusive state in (A) is classified as BM, FBM, Continuous Time Random Walk (CTRW), or Lévy 
Walk (LW). The final probability for each diffusive state is the average of the classification probability of 
its track segments weighted by the segment length. The color of each pie chart indicates the diffusive state 
corresponding to the color in (A). (C) Four-state mixture comprising a subdiffusive FBM state, two BM 
states, and a superdiffusive FBM state with D in ascending order. (D) Diffusion type classification 
probability pie chart for each diffusive state in (C). The final probability for each diffusive state is the 
average of the classification probability of its track segments weighted by the segment length and the 
color of each pie chart indicates the diffusive state corresponding to the corresponding color in (C). 

  

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


state sequence labels from the HDP-HMM module, we generated track segments for the two 

diffusive states and put them into the trained NOBIAS RNN network to predict the diffusion 

types. NOBIAS RNN successfully predicts the diffusion types for both states (Figure 3B, Table 

S4).  

We further simulated a 4-state mixture (500 100-step trajectories) corresponding to 

subdiffusive FBM, BM, BM, and superdiffusive FBM (in order of increasing D). The HDP-

HMM module still successfully recovers the 4 states and make excellent estimations for D and 

weight fraction for each state (Figure 3C). The NOBIAS RNN module also predicts the true 

diffusion type for the segments from each of the four states (Figure 3D, Table S4). Note that all 

track segments are normalized before being put into the RNN to avoid dynamics information 

bias in the diffusion type prediction (Methods). One limitation for this RNN classification 

analysis methodology is that only track segments with at least certain length (20 or 40 in our 

analysis depending on the trained network) could be classified with high accuracy; it is very 

challenging to use very short track segments to identify these modes of diffusion. Therefore, 

when the overall trajectory length is short (~10 steps), the network classification module might 

not be usable. 

Performance of NOBIAS on experimental data for the diffusion of SusG-HaloTag in Bacteroides 

thetaiotaomicron cells 

After validating the performance of the two NOBIAS modules on simulated data, we 

applied this framework to experimental single-molecule trajectories. The SusG amylase 

recognizes and binds starch on the surface of B. thetaiotaomicron cells to enable starch 

catabolism (Koropatkin and Smith, 2010). We measured the motion of 7897 trajectories 

(minimum length of 6 and average length of 64) of single SusG molecules in 226 B. 

thetaiotaomicron cells based on imaging photoactivatable fluorescently labeled SusG-HaloTag 

fusions (Methods). 

We analyzed this data with NOBIAS to infer the number of diffusive states and to estimate 

the diffusion coefficient, weight fraction, and type of motion for each state as was done for the 

simulated data (Figure 2 and 3). Additionally, NOBIAS analyzes 2D trajectories with a 2D 

Gaussian function and can therefore infer the diffusion coefficients for the x and y directions 

separately and estimate the potential correlation between the two directions. Though the 
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simulations used symmetric tracks in an unbound domain, the experiments measure motion on 

the surface of cells with a long axis and a short axis, which may create an asymmetry in the 

diffusion. We rotated the cell orientations to orient the long axis in the x direction without 

rescaling (Figure 4A). We analyzed this rotated dataset with NOBIAS and found that it 

converged to a 3-state model, with a very small (1.8%) fast state fraction (Figure 4B). 

Interestingly, we found that the 𝐷௫ and 𝐷௬ values were similar for each of the two slower states 

(Table S5), while they were significantly different for the fastest state (𝐷௫ ൌ 0.68 µm2/s vs. 

𝐷௬ ൌ 0.45 µm2/s). This asymmetry for the fast state indicates that it corresponds to free 

diffusion that is constrained by the cell shape (and therefore is more constrained in the short-axis 

y direction), while the symmetry for the two slower states implies molecules that only diffuse 

regionally and are not affected by the cell shape. 

We separated the track segments by the state sequence label from the HDP-HMM module 

and placed each group into the RNN classification module. The fastest state was predicted with 

high probability (80%) to be Brownian motion (Figure 4C, Table S4), consistent with the 

asymmetry between Dx and Dy that was attributed to free diffusion (Figure 4B). The two slower 

states were predicted to be either FBM or CTRW. We used a RNN regression network 

(Methods) to estimate the anomalous exponent 𝛼 for the track segments of the two slower states 

and both were found to be subdiffusion (𝛼ଵ ൌ 0.38,𝛼ଶ ൌ 0.46), consistent with the symmetry 

between Dx and Dy found (Table S5). This finding of subdiffusion is also consistent with the role 

of SusG in starch catabolism: we have previously found that SusG motion slows in the presence 

of its amylopectin substrate, as well as when it transiently associates other outer-membrane 

proteins, indicating starch-mediated Sus complex formation (Karunatilaka et al., 2014). 

Discussion 

Single-molecule tracking measures dynamics in biological systems at high spatial and 

temporal resolution, but how to make the best use of these tracking data for a broad set of 

experimental conditions remains an analysis challenge in the field (Shen et al., 2017; Elf and 

Barkefors, 2019). Here, we have introduced NOBIAS to quantify single-molecule dynamics and 

to associate these biophysical measurements with the underlying biochemical function and 

biological processes. NOBIAS handles complicated live-cell SPT datasets for which: (1) the 

number of diffusive states is unknown, (2) mixtures of different diffusive populations may exist, 
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Figure 4. Application of NOBIAS to single-molecule trajectories of the SusG protein in living 
Bacteroides thetaiotaomicron cells. (A) Single-molecule trajectories of SusG-HaloTag overlaid on the 
phase-contrast image of the corresponding B. thetaiotaomicron cells, scale bar: 1 μm. The long axis of the 
phase mask for each cell was detected and a rotation transform was applied to all the trajectories in each 
cell such that the x-axis is the cell long axis for all cells. (B) The NOBIAS HDP-HMM module identifies 
three diffusive states for SusG (colored clusters). Each point represents the average apparent single-
molecule diffusion coefficient vs. weight fraction in each distinct mobility state at each iteration of the 
Bayesian algorithm saved after convergence. The blue and red points clusters average the x- and y- 
diffusion coefficients as they are symmetric (Table S4); the asymmetric fast state (purple) shows a 
different 𝐷𝐷𝑥𝑥  and 𝐷𝐷𝑦𝑦 . (C) The NOBIAS-RNN determines the probability that the diffusion type for each 
diffusive state in (B) is classified as Brownian Motion (BM), Fractional Brownian Motion (FBM), 
Continuous Time Random Walk (CTRW), or Lévy Walk (LW). The color of each pie chart indicates the 
diffusive state corresponding to the color in (B). The fast state (purple) is predicted with high probability 
to be BM; the two slower states (red and blue) are predicted to be FBM or CTRW. 
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even within single trajectories, (3) symmetry cannot be assumed between the x and y directions, 

and (4) anomalous diffusion is possible. These features are enabled based on applying 

Nonparametric Bayesian statistics (Teh et al., 2006; Fox et al., 2008; Johnson and Willsky, 2013) 

to SPT datasets that have the same means but different variance with a HDP-HMM module that 

has a 2D Gaussian as the emission function and then by further investigating the anomalous 

diffusion types in the RNN module of NOBIAS. 

Compared with previous applications of nonparametric Bayesian statistics in this field 

(Persson et al., 2013; Karslake et al., 2020; Heckert et al., 2021), the NOBIAS HDP-HMM 

module is more robust and has high computational efficiency (Table S6). NOBIAS and SMAUG 

both considering motion blur effects and their estimation of D for each state is closer to the 

ground truth then other methods. As Bayesian method with similar principle NOBIAS is almost 

10 times faster than SMAUG. This HDP-HMM module also provides a multivariate output to 

quantify and correlate dynamics in multiple directions instead of assuming symmetry (Table 

S7). We observed that for asymmetric simulated trajectories, vbSPT overestimates the true 

number of states, and SMUAG could only provide the average D in two directions while 

NOBIAS provided the diffusion coefficients in both directions. The great performance step state 

sequence prediction also enables the classification of anomalous diffusion type in the NOBIAS 

RNN module. 

A further advantage of NOBIAS lies in its ability to treat sets of relatively short trajectories 

(10-step trajectories in the simulated data of Figures 2 and 3 and minimal 6-step trajectories in 

the experimental data of Figure 4). The recent AnDi (Anomalous Diffusion) Challenge (Muñoz-

Gil et al., 2021) demonstrated that Deep Learning and Neural Network methods are currently the 

most powerful tools to study anomalous diffusion (Argun et al., 2021; Gentili and Volpe, 2021). 

However, in this challenge, the target dataset was an ideal collection of simulated anomalous 

diffusion trajectories with 100-1000 steps, and only the simple case of one state transition in the 

middle part of a track was considered. To apply a deep learning-based diffusion type classifier to 

realistic simulated trajectories and real experimental trajectories, NOBIAS segments the raw 

trajectories into collections of track segments that belong to the same diffusive state (as 

identified by the HDP-HMM module) and then predicts the diffusion type of the long segments 

in the RNN module. Since different biophysical diffusive states correspond to different 
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biochemical functions which will exhibit different diffusion types due to interactions like 

confinement, binding, directional motion, NOBIAS enables a thorough investigation of these 

biochemical roles by revealing the diffusion coefficients, the transition probabilities between 

states, and the anomalous diffusion behaviors. Ultimately, NOBIAS will enable investigators to 

extract a complete information set from SPT data and to understand the role of each tracked 

molecule, even in the living cell.  

Despite its strengths, NOBIAS has several limitations. Firstly, as an HMM-based method, 

NOBIAS is limited by the length of each track. Under the extreme case where only very short 

trajectories (~2-5 steps) are available, the HDP-HMM module may fail to converge, and in these 

cases probability based models (Rowland and Biteen, 2017; Hansen et al., 2018) and the 

histogram based Bayesian method DPMM (Heckert et al., 2021). The track length also limits the 

RNN module as the trained network need tracks with at least 20 steps for good classification 

performance, and this is due to some anomalous diffusion types relies on the memory of previous 

steps (Metzler et al., 2014). Therefore the application of the RNN module is limited for short 

experimental tracks. Secondly, NOBIAS performs the diffusive state estimation based on 

apparent diffusion coefficient in the HDP-HMM module and then carries out the anomalous 

diffusion classification in the RNN module. NOBIAS therefore assumes that each biochemical 

state has a unique average apparent diffusion coefficient. Although the RNN module can classify 

the diffusion types of two different diffusive states with the same diffusion coefficient, the HDP-

HMM module would fail to separate these processes. Furthermore, for some diffusion types like 

LW, the trajectory displacements may exhibit different types of dynamics even though the 

trajectories are generated from one process. Finally, even for Brownian trajectories, a single 

biochemical state might not be represented by a single diffusion coefficient value. Thus, the 

actual number of biochemical states may not be equal to the number of diffusive states. Future 

development of NOBIAS could use spatial filtering to distinguish between these similar 

biochemical states. 

NOBIAS provides a pioneering and compatible framework for the analysis of dynamical 

mixtures that also classifies the anomalous diffusion types. Future development of NOBIAS 

could include more types of diffusion and could integrate the anomalous distributions directly 

into the Bayesian framework for more accurate prediction of the stepwise state labels and the 
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diffusion types. Furthermore, extra experimental corrections corresponding to the specific 

microscope setting (Berglund, 2010; Lindén et al., 2017; Hansen et al., 2018) could also help 

adapt NOBIAS more broadly to different types of SPT datasets. Overall, NOBIAS has provided 

a powerful framework to analyze of SPT dataset with unknown number of diffusive states and 

potential asymmetric diffusion, and to access the anomalous diffusion type for each diffusive 

state. The combination of nonparametric Bayesian statistics and Deep learning enables NOBIAS 

to fully extract the rich dynamics information from the SPT dataset. 

Supplementary Materials 

Supplementary Figures S1 – S3 and Supplementary Tables S1 – S7 are provided. Open-

source Matlab code for implementing NOBIAS (GNU General Public License) and some test 

datasets are provided at https://github.com/BiteenMatlab/NOBIAS; further development and 

expansion of the code post-publication will be hosted at that website as well. 

Author Contributions 

Z.C. and J.S.B. conceived of the idea. Z.C. developed the theory, implemented the 

algorithm, performed simulations, and analyzed simulated and experimental data. L.G. carried 

out the experiments. Z.C. and J.S.B. wrote the manuscript with input from all authors.  

Acknowledgements 

This work was supported by National Institutes of Health grant R21-GM128022 to JSB. 

Thanks to Christopher Azaldegui and Guoming Gao for helpful discussions. 

References 

Argun, A., Volpe, G., and Bo, S. (2021). Classification, inference and segmentation of 
anomalous diffusion with recurrent neural networks. J. Phys. A: Math. Theor. 
doi:10.1088/1751-8121/ac070a. 

Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C., and Sherratt, D. J. (2012). In 
Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome 
Proteins. Science 338, 528–531. doi:10.1126/science.1227126. 

Bauer, M., and Metzler, R. (2012). Generalized Facilitated Diffusion Model for DNA-Binding 
Proteins with Search and Recognition States. Biophysical Journal 102, 2321–2330. 
doi:10.1016/j.bpj.2012.04.008. 

25

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


Bayas, C. A., Wang, J., Lee, M. K., Schrader, J. M., Shapiro, L., and Moerner, W. E. (2018). 
Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus. 
Proc Natl Acad Sci USA 115, E3712–E3721. doi:10.1073/pnas.1721648115. 

Berglund, A. J. (2010). Statistics of camera-based single-particle tracking. Phys. Rev. E 82, 
011917. doi:10.1103/PhysRevE.82.011917. 

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., et al. 
(2006). Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 
1642–1645. doi:10.1126/science.1127344. 

Biswas, S., Karslake, J. D., Chen, Z., Farhat, A., Freddolino, P. L., Biteen, J. S., et al. (2021). 
Mapping biochemical states associated with HP1 target recognition at sites of 
heterochromatin formation in living cells. bioRxiv, 2021.01.26.428151. 
doi:10.1101/2021.01.26.428151. 

Bo, S., Schmidt, F., Eichhorn, R., and Volpe, G. (2019). Measurement of anomalous diffusion 
using recurrent neural networks. Phys. Rev. E 100, 010102. 
doi:10.1103/PhysRevE.100.010102. 

Caspi, A., Granek, R., and Elbaum, M. (2002). Diffusion and directed motion in cellular 
transport. Phys. Rev. E 66, 011916. doi:10.1103/PhysRevE.66.011916. 

Deich, J., Judd, E. M., McAdams, H. H., and Moerner, W. E. (2004). Visualization of the 
movement of single histidine kinase molecules in live Caulobacter cells. Proceedings of 
the National Academy of Sciences 101, 15921–15926. doi:10.1073/pnas.0404200101. 

Deschout, H., Neyts, K., and Braeckmans, K. (2012). The influence of movement on the 
localization precision of sub-resolution particles in fluorescence microscopy. J. 
Biophoton. 5, 97–109. doi:10.1002/jbio.201100078. 

Elf, J., and Barkefors, I. (2019). Single-Molecule Kinetics in Living Cells. Annu. Rev. Biochem. 
88, 635–659. doi:10.1146/annurev-biochem-013118-110801. 

Elf, J., Li, G.-W., and Xie, X. S. (2007). Probing Transcription Factor Dynamics at the Single-
Molecule Level in a Living Cell. Science 316, 1191–1194. doi:10.1126/science.1141967. 

Elmore, S., Müller, M., Vischer, N., Odijk, T., and Woldringh, C. L. (2005). Single-particle 
tracking of oriC-GFP fluorescent spots during chromosome segregation in Escherichia 
coli. Journal of Structural Biology 151, 275–287. doi:10.1016/j.jsb.2005.06.004. 

Ferguson, T. S. (1973). A Bayesian Analysis of Some Nonparametric Problems. The Annals of 
Statistics 1, 209–230. 

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2008). An HDP-HMM for systems 
with state persistence. in Proceedings of the 25th international conference on Machine 
learning - ICML ’08 (Helsinki, Finland: ACM Press), 312–319. 
doi:10.1145/1390156.1390196. 

26

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


Fox, E. B., Sudderth, E. B., and Willsky, A. S. (2007). Hierarchical Dirichlet processes for 
tracking maneuvering targets. in 2007 10th International Conference on Information 
Fusion (Quebec City, QC, Canada: IEEE), 1–8. doi:10.1109/ICIF.2007.4408155. 

Gelman, A. ed. (2004). Bayesian data analysis. 2nd ed. Boca Raton, Fla: Chapman & Hall/CRC. 

Gentili, A., and Volpe, G. (2021). Characterization of anomalous diffusion classical statistics 
powered by deep learning (CONDOR). J. Phys. A: Math. Theor. doi:10.1088/1751-
8121/ac0c5d. 

Granik, N., Weiss, L. E., Nehme, E., Levin, M., Chein, M., Perlson, E., et al. (2019). Single-
Particle Diffusion Characterization by Deep Learning. Biophysical Journal 117, 185–
192. doi:10.1016/j.bpj.2019.06.015. 

Grimm, J. B., English, B. P., Choi, H., Muthusamy, A. K., Mehl, B. P., Dong, P., et al. (2016). 
Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods 13, 985–
988. doi:10.1038/nmeth.4034. 

Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. Bell System Technical 
Journal 29, 147–160. doi:10.1002/j.1538-7305.1950.tb00463.x. 

Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., and Darzacq, X. (2017). CTCF and cohesin 
regulate chromatin loop stability with distinct dynamics. eLife 6, e25776. 
doi:10.7554/eLife.25776. 

Hansen, A. S., Woringer, M., Grimm, J. B., Lavis, L. D., Tjian, R., and Darzacq, X. (2018). 
Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 
7, e33125. doi:10.7554/eLife.33125. 

Heckert, A., Dahal, L., Tjian, R., and Darzacq, X. (2021). Recovering mixtures of fast diffusing 
states from short single particle trajectories. bioRxiv, 2021.05.03.442482. 
doi:10.1101/2021.05.03.442482. 

Hell, S. W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated 
emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780. 
doi:10.1364/OL.19.000780. 

Hess, S. T., Girirajan, T. P. K., and Mason, M. D. (2006). Ultra-High Resolution Imaging by 
Fluorescence Photoactivation Localization Microscopy. Biophysical Journal 91, 4258–
4272. doi:10.1529/biophysj.106.091116. 

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation 9, 
1735–1780. doi:10.1162/neco.1997.9.8.1735. 

Isaacoff, B. P., Li, Y., Lee, S. A., and Biteen, J. S. (2019). SMALL-LABS: Measuring Single-
Molecule Intensity and Position in Obscuring Backgrounds. Biophysical Journal 116, 
975–982. doi:10.1016/j.bpj.2019.02.006. 

27

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


Ishwaran, H., and Zarepour, M. (2002). Dirichlet Prior Sieves in Finite Normal Mixtures. 
Statistica Sinica 12, 941–963. 

Izeddin, I., Récamier, V., Bosanac, L., Cissé, I. I., Boudarene, L., Dugast-Darzacq, C., et al. 
(2014). Single-molecule tracking in live cells reveals distinct target-search strategies of 
transcription factors in the nucleus. eLife 3, e02230. doi:10.7554/eLife.02230. 

Jeon, J.-H., Javanainen, M., Martinez-Seara, H., Metzler, R., and Vattulainen, I. (2016). Protein 
Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of 
Phospholipids and Proteins. Phys. Rev. X 6, 021006. doi:10.1103/PhysRevX.6.021006. 

Jeon, J.-H., and Metzler, R. (2010). Fractional Brownian motion and motion governed by the 
fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103. 
doi:10.1103/PhysRevE.81.021103. 

Johnson, M. J., and Willsky, A. S. (2013). Bayesian Nonparametric Hidden Semi-Markov 
Models. Journal of Machine Learning Research 14, 673–701. 

Karslake, J. D., Donarski, E. D., Shelby, S. A., Demey, L. M., DiRita, V. J., Veatch, S. L., et al. 
(2020). SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian 
statistics. Methods, S1046202320300293. doi:10.1016/j.ymeth.2020.03.008. 

Karunatilaka, K. S., Cameron, E. A., Martens, E. C., Koropatkin, N. M., and Biteen, J. S. (2014). 
Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut 
Symbionts. mBio 5. doi:10.1128/mBio.02172-14. 

Klafter, J., and Zumofen, G. (1994). Lévy statistics in a Hamiltonian system. Phys. Rev. E 49, 
4873–4877. doi:10.1103/PhysRevE.49.4873. 

Koropatkin, N. M., and Smith, T. J. (2010). SusG: A Unique Cell-Membrane-Associated α-
Amylase from a Prominent Human Gut Symbiont Targets Complex Starch Molecules. 
Structure 18, 200–215. doi:10.1016/j.str.2009.12.010. 

Kusumi, A., Sako, Y., and Yamamoto, M. (1993). Confined lateral diffusion of membrane 
receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-
induced differentiation in cultured epithelial cells. Biophysical Journal 65, 2021–2040. 
doi:10.1016/S0006-3495(93)81253-0. 

Lepore, A., Taylor, H., Landgraf, D., Okumus, B., Jaramillo-Riveri, S., McLaren, L., et al. 
(2019). Quantification of very low-abundant proteins in bacteria using the HaloTag and 
epi-fluorescence microscopy. Sci Rep 9, 7902. doi:10.1038/s41598-019-44278-0. 

Lindén, M., Ćurić, V., Amselem, E., and Elf, J. (2017). Pointwise error estimates in localization 
microscopy. Nat Commun 8, 15115. doi:10.1038/ncomms15115. 

Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional Brownian Motions, Fractional Noises 
and Applications. SIAM Rev. 10, 422–437. doi:10.1137/1010093. 

28

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E., et al. (2008). 
High-density mapping of single-molecule trajectories with photoactivated localization 
microscopy. Nat Methods 5, 155–157. doi:10.1038/nmeth.1176. 

Martens, E. C., Chiang, H. C., and Gordon, J. I. (2008). Mucosal Glycan Foraging Enhances 
Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host & 
Microbe 4, 447–457. doi:10.1016/j.chom.2008.09.007. 

Mazza, D., Abernathy, A., Golob, N., Morisaki, T., and McNally, J. G. (2012). A benchmark for 
chromatin binding measurements in live cells. Nucleic Acids Research 40, e119–e119. 
doi:10.1093/nar/gks701. 

Metzler, R., Jeon, J.-H., Cherstvy, A. G., and Barkai, E. (2014). Anomalous diffusion models 
and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of 
single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164. 
doi:10.1039/C4CP03465A. 

Michalet, X., and Berglund, A. J. (2012). Optimal diffusion coefficient estimation in single-
particle tracking. Phys. Rev. E 85, 061916. doi:10.1103/PhysRevE.85.061916. 

Moerner, W. E., and Kador, L. (1989). Optical detection and spectroscopy of single molecules in 
a solid. Phys. Rev. Lett. 62, 2535–2538. doi:10.1103/PhysRevLett.62.2535. 

Monnier, N., Barry, Z., Park, H. Y., Su, K.-C., Katz, Z., English, B. P., et al. (2015). Inferring 
transient particle transport dynamics in live cells. Nat Methods 12, 838–840. 
doi:10.1038/nmeth.3483. 

Muñoz-Gil, G., Volpe, G., Garcia-March, M. A., Aghion, E., Argun, A., Hong, C. B., et al. 
(2021). Objective comparison of methods to decode anomalous diffusion. 
arXiv:2105.06766 [cond-mat, physics:physics, q-bio]. Available at: 
http://arxiv.org/abs/2105.06766 [Accessed July 12, 2021]. 

Muñoz-Gil, G., Volpe, G., Garcia-March, M. A., Metzler, R., Lewenstein, M., and Manzo, C. 
(2020). AnDi: The Anomalous Diffusion Challenge. Emerging Topics in Artificial 
Intelligence 2020, 44. doi:10.1117/12.2567914. 

Park, H. Y., Lim, H., Yoon, Y. J., Follenzi, A., Nwokafor, C., Lopez-Jones, M., et al. (2014). 
Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse. 
Science 343, 422–424. doi:10.1126/science.1239200. 

Persson, F., Lindén, M., Unoson, C., and Elf, J. (2013). Extracting intracellular diffusive states 
and transition rates from single-molecule tracking data. Nat Methods 10, 265–269. 
doi:10.1038/nmeth.2367. 

Qian, H., Sheetz, M. P., and Elson, E. L. (1991). Single particle tracking. Analysis of diffusion 
and flow in two-dimensional systems. Biophysical Journal 60, 910–921. 
doi:10.1016/S0006-3495(91)82125-7. 

29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497


Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech 
recognition. Proc. IEEE 77, 257–286. doi:10.1109/5.18626. 

Rowland, D. J., and Biteen, J. S. (2017). Measuring molecular motions inside single cells with 
improved analysis of single-particle trajectories. Chemical Physics Letters 674, 173–178. 
doi:10.1016/j.cplett.2017.02.052. 

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic 
optical reconstruction microscopy (STORM). Nat Methods 3, 793–796. 
doi:10.1038/nmeth929. 

Saxton, M. J. (1997). Single-particle tracking: the distribution of diffusion coefficients. 
Biophysical Journal 72, 1744–1753. doi:10.1016/S0006-3495(97)78820-9. 

Scher, H., and Montroll, E. W. (1975). Anomalous transit-time dispersion in amorphous solids. 
Phys. Rev. B 12, 2455–2477. doi:10.1103/PhysRevB.12.2455. 

Schütz, G. J., Schindler, H., and Schmidt, T. (1997). Single-molecule microscopy on model 
membranes reveals anomalous diffusion. Biophysical Journal 73, 1073–1080. 
doi:10.1016/S0006-3495(97)78139-6. 

Sethuraman, J. (1994). A Constructive Definition of Dirichlet Priors. Statistica Sinica 4, 639–
650. 

Shen, H., Tauzin, L. J., Baiyasi, R., Wang, W., Moringo, N., Shuang, B., et al. (2017). Single 
Particle Tracking: From Theory to Biophysical Applications. Chem. Rev. 117, 7331–
7376. doi:10.1021/acs.chemrev.6b00815. 

Sungkaworn, T., Jobin, M.-L., Burnecki, K., Weron, A., Lohse, M. J., and Calebiro, D. (2017). 
Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. 
Nature 550, 543–547. doi:10.1038/nature24264. 

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet Processes. 
Journal of the American Statistical Association 101, 1566–1581. 
doi:10.1198/016214506000000302. 

Tuson, H. H., Foley, M. H., Koropatkin, N. M., and Biteen, J. S. (2018). The Starch Utilization 
System Assembles around Stationary Starch-Binding Proteins. Biophysical Journal 115, 
242–250. doi:10.1016/j.bpj.2017.12.015. 

Van Gael, J., Saatci, Y., Teh, Y. W., and Ghahramani, Z. (2008). Beam sampling for the infinite 
hidden Markov model. in Proceedings of the 25th international conference on Machine 
learning - ICML ’08 (Helsinki, Finland: ACM Press), 1088–1095. 
doi:10.1145/1390156.1390293. 

Yildiz, A. (2003). Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm 
Localization. Science 300, 2061–2065. doi:10.1126/science.1084398. 

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452497



