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 6 

Replay, the sequential reactivation of a neuronal ensemble, is thought to play a central 7 
role in the hippocampus during the consolidation of a recent experience into a long-term 8 
memory. Following a contextual change (e.g. entering a novel environment), hippocampal 9 
place cells typically modulate their in-field firing rate and shift the position of their place 10 
field, providing a rate and place representation for the behavioral episode, respectively. 11 
However, replay has been largely defined by only the latter- based on the fidelity of 12 
sequential activity across neighboring place fields. Here we show that dorsal CA1 place 13 
cells in rats can modulate their firing rate between the replay of two different contexts, 14 
mirroring the same pattern of rate modulation observed during behavior. This context-15 
driven rate modulation within replay events was experience-dependent, observable 16 
during both behavioral episodes and throughout the subsequent rest period, but not prior 17 
to experience. Furthermore, we demonstrate that both the temporal order and firing rate 18 
of place cells can independently be used to decode contextual information within a replay 19 
event, revealing the existence of two separable but complementary neural representations 20 
available for memory consolidation processes. 21 

 22 

A key function of the hippocampus is the initial encoding and subsequent consolidation of 23 
episodic memories. Hippocampal place cells are activated in sequential patterns during 24 
behavioral episodes (e.g. a rodent running towards a goal), with each neuron’s activity 25 
modulated by the animal’s position within an environment (i.e. a place field) (1, 2). During 26 
offline periods such as sleep, place cells spontaneously reactivate, replaying the same 27 
sequential pattern previously activated during the behavioral episode (3–6). This phenomenon 28 
of neural replay is postulated to drive systems-level memory consolidation (7–11). 29 
Hippocampal replay has largely been defined by the sequential patterns of place cells (12, 13), 30 
which depends on the location of each neuron’s place field in the environment (here referred 31 
to as place representation). Yet, place cells also carry additional information in the magnitude 32 
of their place field’s activity (here referred to as rate representation). The magnitude of a place 33 
field’s activity (e.g. peak in-field firing rate) is modulated by both local and global contextual 34 
cues (14–17), as well as behavioral variables (e.g. animal’s acceleration during locomotion) 35 
(18, 19), and cognitive events (e.g. animal’s attention and perception) (20–23). However, we 36 
do not know whether the hippocampus is capable of reinstating this rate modulation in place 37 
cells during offline replay. 38 
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To address this question, we recorded extracellularly from the dorsal CA1 of rats (n= 3, male 39 
Lister-hooded), trained to run back and forth along two novel linear tracks (2m) to collect a 40 
liquid reward at each end (Fig. 1A, Fig. S1A, Table S1, see Methods). A view-obstructing 41 
divider was placed between tracks and distinguishing visual cues were present within each 42 
environment to facilitate contextual discrimination (and in turn, hippocampal remapping). 43 
Additionally, rats rested in a quiet remote location, both before (PRE) and after (POST) the 44 
exploration of the two tracks.  45 
 46 
We observed global remapping of place cells between the two linear tracks [Pearson correlation 47 
coefficient (r) between tracks population vectors, r = 0.04 ± 0.11], such that the majority of 48 
place fields shifted their location along the track and/or modulated their firing rate (i.e. changed 49 
to higher or lower peak in-field firing rate) (Fig. S1B). Both the context (which linear track) 50 
and current position (location of the animal on the linear track) could be inferred from place 51 
cell activity with high accuracy using a naïve Bayes decoder (Fig. 1B, Fig.S1C). Track 52 
detection accuracy exceeded 89% during RUN periods on both tracks [all sessions: 89 ± 5 %] 53 
with an average median error of 5cm [all sessions: 5.17 ± 0.69 cm], while a population vector 54 
analysis showed high correlation between the ratemaps of the first and second half of running 55 
within each track [Pearson correlation coefficient (r) within track population vectors, r= 0.83 56 
± 0.04]. We also used Bayesian decoding to detect replay sequences of each linear track (Fig. 57 
1B), with statistically significant replay trajectories identified by comparing the weighted 58 
correlation score obtained from the posterior probabilities of each decoded event to three types 59 
of event shuffles [Total replay events = 2805, PRE: Track1= 35±20, Track2= 37±15, POST: 60 
Track1= 138±61, Track2= 156±34, RUN: Track1= 98±20, Track2= 95±31, Fig. S2, see 61 
Methods].  62 
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 63 
 64 
Figure 1. Rate coding in wake and rest. (A) Experimental design. Each recording session, the rats 65 
rested (PRE), ran back and forth on two different linear tracks (RUN), and then rested again (POST) 66 
(left to right). An example of LFP activity in each behavioral state is displayed [RUN-theta, PRE/POST-67 
sharp wave ripples (SWR)] (B) Raster plots of spiking activity of cells sorted by their peak firing rate 68 
on the track (top: Track 2, bottom: Track 1), and the associated decoded positions for a single exemplar 69 
lap (first two columns) and replay event (last two columns), for each track (top: Track 2; bottom: Track 70 
1). Example from Rat 3, session 2. (C) Two example neurons (highlighted in B) that changed their peak 71 
instantaneous firing rate (bottom) during two example replay events (displayed in B) in the same 72 
direction as their peak in-field firing rate difference (top). The activity and properties of the example 73 
neurons are color coded throughout all the panels. (D) The peak in-field firing rate difference (Track1-74 
Track2) significantly predicts the average peak instantaneous replay rate difference (Track1-Track2) in 75 
POST rest, but not PRE rest. Each data point is a neuron active on both tracks (PRE: n = 106 cells, 76 
POST: n = 123 cells).  77 

 78 

First, we sought to investigate whether the contextually-driven place fields’ rate modulation 79 
between tracks is conserved during offline replay. Using all place cells active on both tracks 80 
and stable across the whole run (Fig.S1B, see Methods), we regressed the place fields’ peak 81 
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in-field firing rate differences between tracks (Track1-Track2) against the difference (Track1-82 
Track2) in average peak instantaneous rate of those same cells during significant replay events 83 
(Fig. 1C). For replay events during POST (but not PRE), the difference in peak in-field firing 84 
rate between tracks was predictive of the difference in average peak instantaneous rates during 85 
replay events from both tracks [PRE: β= .06, F(1,104)=0.75, P = 0.39, R2= .007; POST: β= 86 
.04, F(1,121)= 36.95, P < 0.001, R2= .23; Fig. 1D]. In other words, if a place field had a higher 87 
firing rate on Track 2 (compared to Track 1), it also tended to have a higher mean firing rate 88 
across all Track 2 replay events (compared to Track 1 events) during POST, but not during 89 
PRE. This suggests that any contextually-driven rate modulation between two behavioral 90 
episodes is maintained during offline replay. This observation was consistent when using a 91 
more selective criteria of place field activity (e.g. place fields with higher minimum peak firing 92 
rate or place cells with a single field) (Fig. S3, S4) as well as for alternative metrics for both 93 
replay firing rate (e.g. mean number of spikes per replay event and median replay rate) (Fig. 94 
S4) and place fields firing rate (e.g. place field’s area under the curve) (Fig. S4). Furthermore, 95 
as expected, selecting only cells that were classified as significantly rate modulated led to an 96 
even stronger effect (Fig. S4).  97 
 98 

  99 

Figure 2. The reinstatement of rate modulation during rest replay is observed using replay 100 
detection methods insensitive to firing rate. (A-C) Three methods of replay detection that are 101 
insensitive to firing rate: (A) Track rate shuffle (PRE: n = 106 cells, POST: n = 123 cells), (B) Replay 102 
rate shuffle (PRE: n = 69 cells, POST: n = 117 cells), (C) Spearman correlation (PRE: n = 111 cells, 103 
POST: n = 123 cells).  (A-B)  Example of the original rate (in black) randomly scaled up (in red) or 104 
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down (in blue). (D-F) Regression of peak-in-field firing rate vs. peak replay rate difference (Track 1-105 
Track 2) for PRE replay events with modified detection method: (D) Track rate shuffle, (E) Replay rate 106 
shuffle, (F) Spearman correlation.  (G-I) Regression of peak-in-field firing rate vs. peak replay rate 107 
difference (Track 1-Track 2) for POST replay events with modified detection method (G) Track rate 108 
shuffle, (H) Replay rate shuffle, (I) Spearman correlation.   109 

 110 

Replay detection methods generally detect the statistical significance of cells sequences based 111 
on templates derived from the behavioral episode, which are sensitive to the order of place field 112 
activation (during RUN and replay). However, because Bayesian decoding can also be 113 
influenced by firing rate, we next tested whether firing rate differences between tracks may 114 
bias the selection of the replay events used in the regression analysis. To remove the influence 115 
of firing rate in the replay event selection, we employed two independent types of shuffles 116 
before repeating the detection of replay events: 1) randomizing the overall firing rate of place 117 
fields within a track (Track rate shuffle, Fig.2A) and 2) randomizing the cell’s firing rate during 118 
replay events (Replay rate shuffle) (Fig. 2B). For both shuffles, each place cell’s firing rate was 119 
scaled based on a value randomly drawn from the corresponding rate distribution obtained from 120 
all cells. These significant replay events were then used to repeat the regression analysis using 121 
their original content (i.e. the original replay spike train, instead of the shuffled one) against 122 
the original differences in the place fields’ in-peak firing rate. For both shuffles, we observed 123 
a significant contextual rate modulation of replay, where track differences in the place fields’ 124 
in-peak firing rate remained predictive of track differences in the average peak instantaneous 125 
rates during replay events in POST, but not PRE [PRE: Track rate shuffle P = .68, Replay rate 126 
shuffle: P = .84, POST: Track rate shuffle P < .001, Replay rate shuffle: P < .001; Fig. 127 
2D,E,G,H]. As an additional control, we detected replay events using a rank order correlation 128 
method independent of Bayesian decoding, which relies only on comparing the median spike 129 
times (across place cells) within a replay event compared to the sequential order of place field 130 
activity along the track (Fig. 2C). Repeating the regression analysis based on the track 131 
differences in the place fields’ in-peak firing rate against the replay events detected using a 132 
Spearman correlation still resulted in a significant contextual rate modulation of the replay 133 
events rate in POST, but not PRE [PRE: β= .002, F(1,111)= .08, P = .78, R2= .0007,  POST: 134 
β= .03, F(1,121)= 51.99, P < .001 , R2= 0.3; Fig. 2F,I]. Overall, these results indicate that the 135 
contextual rate modulation observed during replay is not a result of a bias within the replay 136 
detection analysis (namely, Bayesian decoding). Importantly, we did not observe any 137 
significant track differences in place field or replay properties (Fig. S5, including the place 138 
fields’ peak in-field firing rate [two-sided two-sample KS test, P = .62] and replay average 139 
peak instantaneous rate [two-sided two-sample KS test, P = .79], and confirmed that our 140 
regression analysis was not influenced by any intrinsic biases between tracks by remeasuring 141 
the statistical significance relative to a shuffled distribution (Fig. S6). 142 
 143 
The phenomenon of replay has also been reported during awake quiescent states (e.g. while 144 
pausing on the track), and it is thought to serve different functional roles, ranging from planning 145 
to memory consolidation (24–27). We observed that during the behavioral episode on the 146 
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tracks, contextual rate modulation was expressed across local awake replay events [RUN: β= 147 
.05, F(1,120)= 197.02, P < .001 , R2= .61; Fig. 3A]. The rate modulation during RUN was 148 
stronger than the one observed in rest replay events during POST [β= .04, F(1,121)= 36.95, P 149 
< .001, R2= .23; Fig. 1D]. Place cells during RUN already showed evidence of contextual rate 150 
modulation during awake local replay events within the first 2 laps of experience [2 laps: β= 151 
.06, F(1,8)= 5.91, P = .04, R2= .42; Fig. 3B]. Furthermore, place cells expressing rate 152 
modulation during RUN replay events were also likely to show a similar direction of contextual 153 
rate modulation (e.g. Track 1 > Track 2) during POST replay events [β= .78, F(1,168)= 95.36, 154 
P < .001, R2= .36, Fig. 3C], but not PRE [β= .02, F(1,143)= 1.25, P = .2, R2= .008, Fig S7]. 155 
Contextual rate modulation during replay was significantly expressed throughout the entire rest 156 
period during POST (at least 1 hour cumulatively, limited only by the maximum time period 157 
tested), with the strongest effect observed in the earliest portion of POST rest (Fig. 3D).   158 
 159 

 160 
 161 

Figure 3. Rate modulation during replay is observed from the beginning of RUN and continues 162 
throughout the entire RUN and POST epochs. (A) Regression of peak in-field firing rates against 163 
peak replay rates (track differences) for all local RUN replay events. (B) Lap by lap emergence of rate 164 
modulation for RUN local replay events. F-statistic of regression - peak in-field firing rate vs. peak 165 
replay rate (track difference) - for replay events occurring both prior to and including the specified lap 166 
(lap ID). The p-value of each regression is indicated by color. The number of cells and number of data 167 
sessions contributing in each regression are indicated with the green and grey line, respectively.  (C) 168 
Peak replay rate difference for replay events (RUN vs. POST), color coded by peak in-field rate 169 
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differences. (D) Temporal dynamics of rate modulation during POST. The regression’s F statistic (y-170 
axis) and the corresponding p-value (marker color), analyzed in non-overlapping blocks of 70 171 
consecutive replay events (per session).   172 

 173 

Our data suggest that both place (i.e. sequences) and rate information is embedded within 174 
hippocampal replay events. If this is the case, then the spatial context (i.e. track identity) 175 
associated with a replay event should be identifiable using either the place or rate 176 
representations alone. To address this question, we modified the current Bayesian framework 177 
such that it would rely on either or both place and rate information. For each decoded replay 178 
event, we measured the probabilistic bias towards one of the two tracks using the z-scored log 179 

odd(28), (log ∑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇1)
∑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇2)) . This method summed the decoded posterior probabilities for 180 

each track within a replay event, quantified the log of the between track ratio, and then z-scored 181 
this ratio relative to a shuffled distribution (Ratemap track label shuffle, see Methods). For 182 
example, a more positive z-scored log odd would indicate a greater probabilistic bias towards 183 
Track 1. Therefore, if the content of a replay event was detected for Track 1 (based on a 184 
statistically significant sequence), the z-scored log odd for this event replay event would reflect 185 
how well a place and/or rate representation could be used to correctly classify this replay event 186 
as Track 1 (rather than Track 2). 187 

In particular, we used two measurements to assess the replay track identity classification 188 
performance when using either the rate and/or place representation: 1) the log odd difference 189 
between two tracks compared to a Replay track identity shuffled distribution (see Methods) 190 
and 2) the binary discriminability of a replay event’s track identity using Receiver Operator 191 
Characteristic (ROC) curves, in which the area under the ROC curve (AUC) of 0.5 indicates 192 
chance discriminability (and an AUC of 1 indicates perfect discriminability). For both 193 
measurements, only replay events with a statistically significant replay sequence were used. 194 
When both place and rate information were unaltered, the z-scored log odd difference and the 195 
track discriminability were significantly positive and highest for RUN [Δ(z-scored log odd)= 196 
2.77, P < .001, AUC= .98], significant but marginally lower for POST [Δ(z-scored log odd)= 197 
1.29, P < .001, AUC= .80], but indistinguishable from the null distribution and at chance levels 198 
for PRE [Δ(z-scored log odd)=  .08 , P = .22, AUC= 0.52] (Fig. 4A, Table S2). 199 

We then proceeded to selectively remove either the place or firing rate information available 200 
to the Bayesian decoder and assess its ability to determine the track being replayed. First, we 201 
removed the firing rate information by setting each place field’s in-field peak firing rate to its 202 
average across both tracks, and by rescaling each cell’s replay spike trains to its average firing 203 
rate across all replay events (Fix rate manipulation). We found that place information alone 204 
was sufficient to correctly classify replay events to each track, although both the z-scored log 205 
odd difference and the AUC were slightly lower than when both place and firing rate 206 
information were available [AUC difference < -0.1 compared to the original for all task periods, 207 
Fig. 4B,F-H, Table S2]. 208 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452506doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452506
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

 209 
Figure 4. Contextual information can be decoded from either place or rate representations during 210 
replay.  (A-E) The decoding performance for context (Track 1 or Track 2) for each manipulation, 211 
restricting the information (rate and/or place) available to the decoder. (Main plots) Mean z-scored log 212 
odd difference between tracks for replay during PRE (black), RUN (blue) and POST (red). Each data 213 
point is the mean of an individual session, while the horizontal line indicates the mean across all sessions 214 
(*P < 0.05, **P < 0.01, ***P < 0.001, one-tailed). The filled box indicates the SEM from the Replay 215 
track identity shuffles. (Inset) ROC curves of Track1/Track2 binary discrimination for replay events 216 
during PRE, RUN and POST. The dashed line along the diagonal indicates chance performance (AUC 217 
= 0.5). The shaded region indicates the bootstrapped SE of the ROC curves. (A) Original (rate and 218 
place information intact) (B) Fix rate manipulation (only place information available) (C) Remove 219 
place manipulation (only rate information available) (D) Fix rate manipulation with place information 220 
additionally randomized (no rate or place information available). (E) Remove place manipulation with 221 
rate information additionally randomized (no rate or place information available). (F) Summary of 222 
mean AUC under each condition, for PRE, RUN, and POST (G) Mean AUC difference between 223 
original and each decoding manipulation. (H) Mean AUC difference between negative control and other 224 
conditions For G and H, * indicates where the 98.75% confidence interval of the bootstrapped AUC 225 
difference distribution does not overlap with 0 (see Table S3, S4). Similar results were obtained using 226 
an alternative approach (Delong method) for measuring significance (Table S5, S6, see Methods). 227 

 228 

Next, we selectively removed place information without altering rate information, by 229 
expanding the size of our position and time bin for decoding: a single position bin spanning the 230 
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entire track and a single time bin spanning the entire replay event (Remove place manipulation, 231 
Fig. 4C, F-H). This manipulation led to a significant log odd difference towards the correct 232 
track and a high track discriminability for RUN [Δ(z-scored log odds)= 1.14, P < .001, AUC= 233 
.79], POST [Δ(z-scored log odds)= .53, P < .001, AUC= .70],  but not PRE (Δ(z-scored log 234 
odds)= -.04, P = 0.63, AUC= .58], supporting the finding that rate modulation is reinstated 235 
during replay and is experience-dependent. Finally, as a negative control for both 236 
manipulations, where rate and place representations were disrupted, each remaining non-237 
manipulated representation (place or rate) was then randomized (Rate fixed place randomized 238 
manipulation and Place removed rate randomized manipulation, respectively). Removing both 239 
place and rate representations resulted in chance level discriminability for both conditions (Fig. 240 
4D-H, Table S2).  241 

Here we have shown that contextually driven place and rate representations used by the 242 
hippocampus during behavior are reinstated during replay, with either representation being 243 
sufficient to successfully decode the context being replayed. This phenomenon was experience-244 
dependent, as rate modulation within replay was only observed during and after a behavioral 245 
episode, but not prior to it. While place cell sequences are generally stable across a behavioral 246 
episode within a single environment, in-field firing rates can still increase (or decrease) with 247 
minor contextual changes (29) a phenomenon referred to as rate remapping (19, 22, 30). Our 248 
results suggest that during replay, firing rate modulation could allow the hippocampus to 249 
discriminate between two marginally similar contexts even if they share an identical sequential 250 
pattern of place cell activity. 251 

Computational models of replay have commonly used modified synfire chains, sequentially 252 
connected neurons that are often embedded within distinct recurrent networks (31–33). While 253 
these models aim to replicate the sequential nature of replay, it remains to be seen whether they 254 
can also reinstate experience-dependent rate modulation, or if additional mechanisms may need 255 
to be considered. Compelling evidence suggests a key role for neocortical activity preceding a 256 
hippocampal replay event, in determining its content (10, 34, 35).  If cortical inputs to the 257 
hippocampus during behavior underlie rate modulation (36), a reinstatement of these same 258 
inputs prior to replay may be necessary for the subsequent rate modulation of hippocampal 259 
place fields during offline states.   260 

  261 
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SUPPLEMENTARY FIGURES 376 

 377 

 378 

Figure S1. experimental setup, remapping and field stability. (A) Layout of the recording 379 
room - two linear tracks, each surrounded by visual cues and visually occluded from each other. (B) 380 
Ratemaps for Track 1 (left column) and Track 2 (right column) in an example session (rat 3, session 2) 381 
computed for the first 50% of laps (left half) and last 50% of laps (right half) and sorted by the ordered 382 
position of place fields on Track 1 (bottom) and Track 2 (top).  (C) Confusion matrix for decoded 383 
position (posterior probability normalized over both tracks) for an example session (rat 3, session 2). 384 
Distribution of peak posterior probabilities (y-axis) is plotted at each True position during the behavioral 385 
episode (x-axis).  386 

 387 

 388 
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 389 

Figure S2. Analysis pipeline for detection of significant replay events. Detected replay spike 390 
trains were decoded using a Bayesian framework. Each track’s ratemaps obtained during RUN were 391 
used to calculate the decoded posterior probabilities for each replay sequence (top left). In addition, all 392 
replay events were split into two shorter events based on the minimum in the MUA during the middle 393 
third of the replay event (bottom left, Segment analysis). For each replay event, weighted correlations 394 
were calculated on decoded posterior probability from both the whole replay sequence and each 395 
segment, and the three scores were compared to three different shuffles (ratemap circular shift, spike 396 
train circular shift, and decoded position bin circular shift, 1000 shuffles performed for each type).  Only 397 
events with weighted correlation scores higher than 95% for every shuffle distribution (97.5% for split 398 
replay events) were considered statistically significant. 399 

 400 
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 401 

Figure S3. Significance of regression analysis using a stricter criterion of place cell 402 
activity.  F-statistic of regression - peak in-field firing rate vs. peak replay rate (track difference) - for 403 
replay events occurring during POST rest, as the criterion for place cell activity (peak in-field firing 404 
rate) is progressively increased from 1 Hz. All regressions are statistically significant (up to and 405 
including using a threshold of 10 spk/s) The p-value of each regression is indicated by color. The 406 
number of cells used in each regression is indicated by the green line. 407 

 408 
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 409 

Figure S4. Significance of regression analysis with alternative place field and replay rate 410 
metrics, and stricter criteria for cell selection. F-statistic of regression - peak in-field firing rate 411 
vs. peak replay rate (track difference) - for replay events occurring during PRE (left column) and POST 412 
(right column) using alternative metrics and cell selection criteria. (A) Place field area under the curve 413 
(new x-axis, PRE: n = 106 cells, POST: n = 123 cells), (B) Median replay rate (new y-axis, PRE: n = 414 
106 cells, POST: n = 123 cells), (C) Mean number of spike per event (new y-axis, PRE: n = 106 cells, 415 
POST: n = 123 cells), (D) Rate modulated cells (new criteria for cell selection, PRE: n = 97 cells, POST: 416 
n = 112 cells), (E) Single place field cells (new criteria for cell selection, PRE: n = 64 cells, POST: n = 417 
77 cells).  418 
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 419 

Figure S5. Between track comparison of place field and replay properties. (A) Number of 420 
replay events (left) and replay event rate (right) for each track during PRE, RUN, and POST. The 421 
differences between tracks for any of these comparisons were not statistically significant (Wilcoxon 422 
sign rank, P > 0.05). (B) Distribution of Peak firing rate on track (top left), mean firing rate on track 423 
(top center), place field AUC (top right), median replay rate (bottom left), replay involvement (bottom 424 
center) and peak instantaneous replay rate (bottom right) for tracks 1 and 2, and for individual session 425 
distributions (inset) (K-S test, n.s. P > 0.05). 426 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452506doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452506
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 427 

Figure S6.  Re-computing the statistical significance of regression analysis relative to a 428 
shuffled distribution. A Track rate shuffle (A) and Replay rate shuffle (B) were used to randomize 429 
the x-axis and y-axis respectively and create F-Statistic distributions for measuring significance of the 430 
regression. (C-F) Distribution of shuffle, dashed gray line: P < 0.05, red line: F-Statistic of original data 431 
(main plot). One example of a regression plot within the shuffle distribution (inset plot). (C) PRE: Track 432 
rate shuffle. (D) PRE: Replay rate shuffle. (E) POST: Track rate shuffle. (F) POST: Replay rate shuffle. 433 

 434 

 435 
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 437 

Figure S7. Between track differences in replay rate during PRE is not predictive of replay 438 
rate differences observed during RUN local replay events. Peak replay rate difference for 439 
replay events (RUN vs. PRE), color coded by peak in-field rate differences. A linear regression was not 440 
statistically significant (P > 0.05). 441 

 442 
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SUPPLEMENTARY TABLES 460 

Table S1: Overview of behavior, number of recorded cells and decoding accuracy for all sessions and rats.  461 

SESSION TRACK NUMBER OF 
LAPS 

TIME RESTING 
  (min) CELLS DECODING QUALITY (%) 

PRE POST 

Total 
number of 

cells on 
track 

Number of 
cells common 
to T1 and T2 

Included cells 
in replay 
analysis 

Classification 
accuracy 

Local 
decoding 
accuracy 

Rat 1 1 30 72 76 42 27 27 91 81 

Rat 1 2 20 72 76 44 27 27 97 82 

Rat 2, session 1 1 15 59 125 70 40 40 87 86 

Rat 2, session 1 2 59 59 125 63 40 40 80 89 

Rat 2, session 2 1 22 54 104 49 28 28 92 82 

Rat 2, session 2 2 33 54 104 43 28 28 90 79 

Rat 3, session 1 1 34 49 123 59 33 33 94 85 

Rat 3, session 1 2 27 49 123 51 33 33 94 80 

Rat 3, session 2 1 36 69 137 72 46 46 94 85 

Rat 3, session 2 2 38 69 137 57 46 46 97 86 
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Table S2: Summary statistics of the z-scored log odd difference per session and across sessions for PRE, RUN and POST  462 

 463 

  Original Rate fixed Place removed Rate fixed, Place 
randomized 

Place removed, Rate 
randomized 

  Session Mean  SE P value Mea
n  SE P value Mean  SE P value Mean SE P value Mean SE P 

value 

PR
E

 

1 -0.11   0.73 -0.02   0.56 -0.02   0.57 0.45   0.05 -0.30   0.92 

2 0.21   0.15 0.32   0.07 0.03   0.39 -0.21   0.80 -0.16   0.77 
3 -0.33   0.88 -0.54   0.96 -0.35   0.96 0.03   0.46 0.02   0.46 
4 0.15   0.32 -0.21   0.82 0.08   0.24 0.03   0.45 -0.15   0.73 
5 0.50   0.07 0.65   0.02 0.01   0.49 0.46   0.12 -0.25   0.73 

Mean 0.08 0.14 0.22 0.04 0.21 0.37 -0.05 0.08 0.64 0.15 0.13 0.11 -0.17 0.05 0.91 

R
U

N
 

1 2.51   7.57×10-27 2.13   9.24×10-26 1.15   6.41×10-19 0.01   0.48 -0.19   0.87 
2 3.22   9.61×10-36 2.37   9.01×10-28 1.39   2.05×10-28 0.48   0.01 0.22   0.10 
3 2.55   5.93×10-23 2.37   2.93×10-22 1.27   5.08×10-18 -0.19   0.78 0.12   0.22 
4 2.50   1.14×10-22 2.44   1.38×10-22 0.37   6.25×10-06 -0.11   0.76 -0.15   0.79 
5 3.09   1.31×10-29 2.26   4.38×10-25 1.52   2.17×10-20 0.20   0.16 0.09   0.29 

Mean 2.78 0.16 1.08×10-121 2.31 0.06 1.03×10-101 1.14 0.20 9.23×10-29 0.08 0.12 0.18 0.02 0.08 0.43 

PO
ST

 

1 0.84   5.39×10-11 0.43   1.09×10-05 0.32   2.44×10-05 0.17   0.09 0.15   0.18 
2 1.53   9.90×10-35 1.03   1.96×10-24 0.45   7.34×10-19 0.33   0.003 0.10   0.15 
3 1.63   3.82×10-19 1.44   3.30×10-16 0.84   4.52×10-18 -0.14   0.74 -0.25   0.98 
4 0.70   3.47×10-08 0.78   5.46×10-11 0.20   6.32×10-06 0.20   0.03 0.09   0.20 
5 1.79   1.22×10-34 1.59   9.58×10-30 0.89   1.15×10-21 -0.12   0.87 0.06   0.30 

Mean 1.30 0.22 1.03×10-91 1.05 0.21 1.98×10-74 0.54 0.14 8.12×10-15 0.09 0.09 0.06 0.03 0.07 0.30 
Bold values statistically significant 464 

 465 
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Table S3: Summary statistics of the 98.75% confidence interval for the AUC difference between the original and the manipulated 466 
condition 467 

  VS Original 98.75% confidence interval 
BOLD values statistically significant from zero 

  PRE RUN POST 

Original VS rate 
fixed 

Mean AUC Diff -0.04 -0.02 -0.05 
SEM AUC Diff 0.04 0.01 0.02 

Lower CI -0.15 -0.03 -0.09 
Upper CI 0.06 0.001 -0.01 

Original VS Place 
removed 

Mean AUC Diff 0.06 -0.19 -0.10 
SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.04 -0.23 -0.14 
Upper CI 0.17 -0.15 -0.06 

Original VS Rate 
fixed Place 
randomized 

Mean AUC Diff 0.003 -0.45 -0.27 
SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.10 -0.51 -0.31 
Upper CI 0.11 -0.40 -0.23 

Original VS Place 
removed rate 
randomized 

Mean AUC Diff -0.01 -0.45 -0.24 
SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.12 -0.50 -0.28 
Upper CI 0.09 -0.40 -0.19 

 468 

 469 
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Table S4: Summary statistics of the 98.75% confidence interval for the AUC difference between the negative control (Rate fixed place 470 
randomized manipulation) and the other conditions 471 

  VS Negative Control 98.75% confidence interval 
BOLD values statistically significant from zero 

  PRE RUN POST 

Rate fixed VS  
Rate fixed Place 

randomized 

Mean AUC Diff -0.003 0.45 0.27 
SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.11 0.40 0.23 
Upper CI 0.10 0.51 0.31 

 Place removed 
VS Rate fixed 

Place randomized 

Mean AUC Diff -0.05 0.44 0.22 
SEM AUC Diff 0.04 0.02 0.01 

Lower CI -0.15 0.38 0.17 
Upper CI 0.06 0.49 0.27 

 Place removed 
VS Rate fixed 

Place randomized 

Mean AUC Diff 0.06 0.26 0.17 
SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.05 0.20 0.12 
Upper CI 0.17 0.33 0.22 

Rate fixed, Place 
randomized VS 
Place removed 

rate randomized 

Mean AUC Diff -0.02 0.001 0.03 
SEM AUC Diff 0.04 0.03 0.02 

Lower CI -0.11 -0.08 -0.02 

Upper CI 0.09 0.08 0.08 
 472 

  473 
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Table S5: Summary statistics of the DeLong Test comparing the ROC curves between the original and the manipulated condition 474 

 475 

 DeLong Test versus Original  (significance = 0.05/4 = 0.0125) (Bonferroni corrected) 
BOLD values statistically significant 

 Original VS Rate fixed Original VS Place removed Original VS Rate fixed place 
randomized 

Original VS Place removed rate 
randomized 

PRE 0.15 0.15 0.91 0.78 
RUN 0.007 5.56×10-34 2.28×10-98 6.92×10-100 
POST 8.15×10-08 6.33×10-12 2.65×10-55 4.39×10-43 

 476 

  477 
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Table S6: Summary statistics of the DeLong Test comparing the ROC curves between the original and the manipulated condition 478 

 479 

 DeLong Test versus Negative control (significance = 0.05/4 = 0.0125) (Bonferroni corrected) 
BOLD values statistically significant 

 Rate information fixed VS Rate 
fixed place randomized 

 Place removed VS Rate fixed 
place randomized 

 Place information removed VS 
Rate fixed place randomized 

Rate fixed, Place randomized VS 
Place removed rate randomized 

PRE 0.91 0.23 0.18 0.70 
RUN 2.28×10-98 7.14×10-88 1.17×10-23 0.96 
POST 2.65×10-55 1.15×10-35 2.03×10-20 0.09 

480 
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METHODS 481 

Animals  482 

Three male Lister-Hooded rats (350-450g) were implanted with a microdrive with 24 483 
independently moveable tetrodes. Prior to surgery, rats were kept at 90% of their free-feeding 484 
weight and housed in pairs on a 12-hour light/dark cycle, with 1 hour of simulated dusk/dawn. 485 
All experimental procedures and postoperative care were approved and carried out in 486 
accordance with the UK Home Office, subject to the restrictions and provisions contained 487 
within the Animal (Scientific Procedures) Act of 1986. 488 

 489 

Surgery 490 

Animals were deeply anaesthetized under isoflurane anesthesia (1.5-3% at 2L/min) and 491 
implanted with a custom-made microdrive array carrying 24 independently moveable tetrodes 492 
(modified from microdrive first published by (12)). Each tetrode consisted of a twisted bundle 493 
of four tungsten microwires (12µm diameter, Tungsten 99.95% CS, California Fine Wire), 494 
gold-plated to reduce impedance to < 200kΩ. One rat was implanted with a dual-hippocampal 495 
microdrive targeting both dorsal hippocampal CA1 areas (AP: -3.48mm, ML: +/-2.4mm from 496 
Bregma), each output carrying 12 tetrodes. The two remaining rats were implanted with a 497 
microdrive targeting the right dorsal hippocampal CA1 area (AP: 3.72mm, ML: 2.5mm from 498 
Bregma) and the left primary visual cortex (AP: -5.76mm, ML: -3.8mm from Bregma), using 499 
16 and 8 tetrodes respectively. After surgery, animals were housed individually and allowed to 500 
recover with food and water ad libitum for a week before returning to being kept at 90% of 501 
their free-feeding weight. 502 

 503 

Experimental design 504 

A given recording session started with a 1-hour rest period in which the rats were placed in a 505 
quiet, remote location (rest pot), to which they had been previously habituated. The rest pot 506 
consisted of a black circular enclosure of 20cm of diameter, surrounded by a 50cm tall black 507 
plastic sheet that isolated them from the surroundings. Following the rest period, the rats were 508 
exposed to two novel 2m linear tracks in which they were allowed to run back and forth for 15 509 
min, except for one session in which the animal ran for 30 min in the second track. Liquid 510 
reward was dispensed at each end of the track (0.1mL chocolate flavored soy milk) to 511 
encourage the animals to traverse the entirety of the track. In all except one session, the 512 
exposures to the two tracks were separated by a 10min rest period in the rest pot. The recording 513 
session finished with a final 2-hours rest period inside the rest pot. 514 

To simulate novel environments, the shape of the tracks was changed between recording 515 
sessions and their surfaces covered with different textured fabrics. In each session, the room 516 
was surrounded by black curtains with different high contrast visual cues. The tracks were 517 
separated using view-obstructing dividers. 518 
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 519 

Spike detection and unit isolation 520 

Spiking data was sorted using the semi-automatic clustering software KlustaKwik 2.0 521 
(K.Harris, http://klustakwik.sourceforge.net/) and then manually curated with either Phy-GUI 522 
(https://github.com/kwikteam/phy) or Klustaviewa (https://github.com/klusta-team/klustaviewa). 523 
Putative single units were discriminated based on the spike waveform, a clean inter-spike interval, 524 
and their stability across the recording session. The rest of the clustered activity was classified in 525 
either multi-unit activity or noise. 526 

 527 

LFP analysis 528 

The power spectral density (PSD) of the LFP was calculated using Welch’s method (pwelch, 529 
MATLAB) to identify the channels with higher power for theta (4-12Hz) and ripple (125-530 
300Hz) oscillations, as well as the channel with the largest difference in normalized theta to 531 
ripple power. The LFP of selected channels was next downsampled from 30 kHz to 1 kHz and 532 
band-passed filtered (MATLAB command filtfilt). The instantaneous phases were estimated 533 
using Hilbert transform.  534 

 535 

Criteria for Place cell selection 536 

Putative principal cells were identified by selecting units with a Half Width Half Max 537 
(HWHM) larger than 500µs and mean firing rate <5Hz across the entire recording session. For 538 
place cell classification, spike trains were speed-filtered to only include the spiking activity 539 
between 4cm/s and 50cm/s. A principal cell was classified as a place cell according to the 540 
following criteria: (1) the minimum peak firing rate was >1Hz in the unsmoothed ratemap and 541 
(2) a stable spiking activity across the first half and second half of the exploration on the track. 542 
Only place cells satisfying these two criteria for each linear track independently, were included 543 
in the regression analysis (Fig. 1-3) and log odd analysis (Fig. 4). 544 

To generate firing ratemaps (the spike histogram divided by the total dwell time at each position 545 
bin), the position data was discretized in 2cm bins for visualization and plotting, and 10 cm 546 
bins for Bayesian decoding. Only raw (unsmoothed) ratemaps were used for all Bayesian 547 
decoding analyses.  548 

 549 

Population vector analysis (PPV) 550 

A population vector analysis was used to assess the ratemap stability for each track as well as 551 
the degree of between track remapping (29). For each session, the linearized ratemaps of all 552 
recorded pyramidal cells with a firing rate > 1Hz were stacked into a 20 position bins x N cells 553 
matrix for each track. To assess remapping between tracks, the ratemaps computed from the 554 
entire track experience were used, while to assess ratemap stability within a track, the middle 555 
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lap was used as a reference to compute separate ratemaps for the first and second half of the 556 
behavioral episode. The population vector of rates at each position bin was then correlated with 557 
its counterpart vector: either on the other track or during the other half of the experience. The 558 
mean Pearson correlation value was first averaged across position bins and then across 559 
sessions. 560 

 561 

Bayesian Decoding 562 

A naïve Bayesian decoding algorithm was applied to reconstruct the animal’s spatial trajectory 563 
during both behavior and replay events from CA1 hippocampal spiking activity (Zhang et al., 564 
1998):  565 

𝑃𝑃(𝑥𝑥|𝑛𝑛) = 𝐶𝐶𝑃𝑃(𝑥𝑥)��𝑓𝑓𝑖𝑖(𝑥𝑥)𝑛𝑛𝑖𝑖
𝑁𝑁

𝑖𝑖=1

� 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝜏𝜏�𝑓𝑓𝑖𝑖(𝑥𝑥)
𝑁𝑁

𝑖𝑖=1

� 566 

where P is the probability of the animal being at a specific position given the observed spiking 567 
activity, C is a normalization constant, x is the subject's position, fi(x) is the firing rate of the 568 
ith place field at a given location x, and n is the number of spikes in the time window τ. The 569 
normalization constant was re-defined as the summed posterior probabilities across both tracks. 570 
The maximum probability of the subject’s position was decoded using 250ms and 20ms time 571 
bin during behavior and replay, respectively.  572 

The decoding error was defined as the differences between the real location of the animal and 573 
the estimated position with maximum-likelihood. 574 

 575 

Candidate replay event detection 576 

Candidate replay events were detected based on MUA and ripple power. MUA was first 577 
smoothed with a Gaussian Kernel (sigma = 5 ms) and binned into 1 ms steps. Only MUA bursts 578 
with a maximum duration of 300 ms and z-scored activity over 3 were selected.  Ripples LFP 579 
signal was smoothed with a 0.1 s moving average filter and a threshold over 3 was set for the 580 
z-scored ripple power. 581 

Candidate replay events passing both thresholds were next speed-filtered (above 5 cm/s), and 582 
discarded if their sequence had less than 5 different units active or if their duration was below 583 
100 ms or over 750 ms (thus, candidate events had at least 5 consecutive 20 ms bins). Events 584 
detected within 50 ms were combined. In an effort to optimize detection of replay events and 585 
avoid a minority of events that were discarded due to noisy probability decoding at the 586 
beginning or the end of the event, candidate replay events were split in half. To do so, the 587 
minimum MUA activity in the middle third of the candidate replay event was used determine 588 
a natural midpoint to split the event in two segments. Both segments were decoded and tested 589 
for significance independently following the same procedure as the ’intact’ candidate replay 590 
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events (i.e., same criteria including minimum duration, etc.), for the exception of an adjusted 591 
p-value threshold (P<0.025).  592 

Replay events were classified as rest or awake local replay. Awake replay was defined as replay 593 
events occurring while the animals were running on either of the tracks and classified as local 594 
if the content of the replay event reflected the current track on which the animal was running. 595 
Replay events detected during sleep or rest periods within the rest pot were classified as rest 596 
replay events.  597 

 598 

Replay events scoring and significance  599 

Replay events were scored using weighted correlation between decoded posterior probabilities 600 
across position and time. 601 

Weighted mean: 602 

𝑚𝑚(𝑥𝑥;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝) =
∑ ∑ 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑀𝑀
𝑖𝑖=1

∑ ∑ 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1

 603 

Weighted covariance: 604 

𝑐𝑐𝑝𝑝𝑐𝑐(𝑥𝑥, 𝑡𝑡;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝) =
∑ ∑ 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑚𝑚(𝑥𝑥;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝))(𝑡𝑡𝑖𝑖 − 𝑚𝑚(𝑦𝑦;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝))𝑁𝑁

𝑖𝑖=1
𝑀𝑀
𝑖𝑖=1

∑ ∑ 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑀𝑀
𝑖𝑖=1

 605 

Weighted correlation: 606 

𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑡𝑡;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝) =
𝑐𝑐𝑝𝑝𝑐𝑐(𝑥𝑥, 𝑡𝑡;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝)

�𝑐𝑐𝑝𝑝𝑐𝑐(𝑥𝑥, 𝑥𝑥;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝)𝑐𝑐𝑝𝑝𝑐𝑐(𝑡𝑡, 𝑡𝑡;𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝)
 607 

Where 𝑥𝑥𝑖𝑖 is the ith position bin, 𝑡𝑡𝑖𝑖 is the jth time bin and 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖is the probability at the position 608 
bin i and time bin j. 609 

 610 

The statistical significance of the weighted correlation for each candidate replay event was 611 
assessed by comparison with three different 1000 shuffle distributions:  612 

1) Spike train circular shift, in which the spike count vectors for each cell were independently 613 
circularly shifted in time within each replay event, prior to decoding.  614 

2) Place field shift, in which each ratemap was circularly shifted in space by a random amount 615 
of position bins prior to decoding.  616 

3) Circular shift of position, in which posterior probability vectors for each time bin were 617 
independently circularly shifted by a random amount. 618 

If the score of the candidate event was greater than the 95th percentile of the distribution for 619 
all three shuffles then the event was considered to be significant. 620 
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 621 

Reinstatement of rate modulation analysis 622 

Linear regression was used to measure the reinstatement of rate modulation between place 623 
fields on the track and replay events (MATLAB function fitlm). For each place cell active in 624 
both tracks, rate modulation on the track was measured by calculating (1) the difference in peak 625 
in-field rate across tracks, and (2) the difference in the area under the curve (AUC; MATLAB 626 
function trapz). Place fields with a peak in-field rate < 1 Hz on either track were excluded. As 627 
a control, a variation of the analysis was done by excluding all cells with multiple place fields 628 
on the same track. Multiple peaks for a single cell were considered to be different place fields 629 
when their peak firing rate > 1 Hz, each place field width was over 2 spatial bins (20 cm) and 630 
the distance between the peaks was of 4 spatial bins (40 cm).  631 

Rate modulation during replay events was calculated as the change in each cell’s firing activity 632 
between the replay events encoding for each track. Included cells had to participate in at least 633 
one replay event for each track. The firing rate change was measured as (1) the difference in 634 
the average peak instantaneous rate across tracks, (2) the difference in the median rate across 635 
replay events, and (3) the difference in the mean number of spikes across replay events. 636 

To obtain the peak instantaneous rate of each event, each cell’s spike train was binned into 1ms 637 
steps, filtered with a 100ms long Gaussian window with σ=20ms (MATLAB command filter), 638 
and the peak amplitude of the resulting signal measured.  639 

 640 

Controls for replay detection analysis  641 

Two types of shuffles were applied to the data before repeating the detection of replay events 642 
using Bayesian decoding: a Track rate shuffle and Replay rate shuffle. The Track rate shuffle 643 
consisted in the randomization of the firing rate of the place fields within a track, while the 644 
Replay rate shuffle randomized the cells’ firing rate during the replay events. For both shuffles, 645 
each place cell’s firing rate was scaled based on a value randomly drawn from a distribution of 646 
firing rates obtained from the analyzed place cells on the track (for the Track rate shuffle) or 647 
during the replay events (for the Replay rate shuffle). The shuffled data was then used to repeat 648 
the detection of replay events, and the newly identified significant replay events were used in 649 
a linear regression comparing their original spike content (instead of the shuffled one) against 650 
the original differences in the peak in-field rate.  651 

 652 

Remapping classification 653 

A bootstrapping procedure was used to identify the rate and place modulation properties of 654 
each cell. Modulation was defined when the track difference in a place field’s specific 655 
parameter (e.g. peak in-field firing rate or peak location) exceeded the intrinsic variability of 656 
such parameter on a single track. The distribution of each parameter was computed for both 657 
tracks by calculating firing ratemaps from a randomly sampled N out of N laps (1000 iterations, 658 
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with replacement). The median value of a track distribution was then compared to the 5th/95th 659 
percentiles of the other track, and vice versa. If either median exceeded either percentile, the 660 
cell was classified as being modulated between tracks for that parameter. 661 

 662 

Sequenceless Bayesian Decoding 663 

The sequenceless Bayesian decoding was modified from Carey et al., (2019). Only cells with 664 
stable place fields on the track in the first and second half of the behavioral episode (peak rate 665 
> 1Hz) were included in our sequenceless decoding analysis.  666 
 667 
Before Bayesian decoding, ratemaps for Track 1 and Track 2 were concatenated as a single 668 
matrix [nCell x (nPosition(T1) + nPositions(T2))]. Unless otherwise mentioned, 20ms time 669 
bins and 10cm position bins were used for decoding. After decoding, the posterior probabilities 670 
for each time bin were normalized across all position bins on both tracks to sum to 1. Then, the 671 
summed posterior probability across all time bins within each replay event was computed, and 672 
the probabilistic bias towards Track 1 or Track 2 for each replay event was quantified as 673 

log(∑𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇1)
∑𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇2)

) (log odds), where ∑𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇𝑐𝑐𝑇𝑇1) and ∑𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇𝑐𝑐𝑇𝑇2) referred to the 674 

summed posterior probabilities for Track 1 and Track 2 respectively. To remove any intrinsic 675 
probabilistic bias, each raw log odd calculation was then z-scored relative to a shuffled log odd 676 
distribution (Ratemap track label shuffle), obtained by randomly permuting each cell's Track 1 677 
and Track 2 ratemaps (either keeping a cell’s ratemap unaltered or performing a between track 678 
swap) 1000 times for each replay event. 679 
 680 
To test decoding using place or rate representation alone, the original data were manipulated 681 
as the following: 682 
- Rate fixed manipulation: Rate information was fixed by rescaling each cell’s peak in-field 683 
firing rate to the mean value across both tracks, and its spike count in each replay event to the 684 
average firing rate across all replay events. 685 
- Place removed manipulation: The place (and sequence) information was removed by 686 
decoding with only a single position bin, which encompassed the entire track (mean firing rate 687 
on each track when speed is above 5cm/s) and a single time bin, which spanned the entire 688 
replay event. 689 
 690 
Two negative controls were included to disrupt both rate and place information: 691 
- Rate fixed place randomized manipulation: After fixing rate information, place information 692 
was randomized using cell ID shuffle in which all cells were randomly reassigned to a different 693 
cell's ratemap for each replay event.  694 
- Place removed rate randomized manipulation: After removing place information, rate 695 
information was randomized by scaling the firing rate on each track based on a value 696 
randomly drawn from a distribution of firing rates obtained from the analyzed place cells on 697 
the track. 698 
 699 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452506doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452506
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

 700 
ROC analysis 701 
 702 
The ‘ground truth’ track identity for each replay event was assigned based on the sequenceness 703 
of the replay determined by weighted correlation and compare to three shuffled distributions. 704 
The binary discriminability of a replay event’s identity (Track1 or Track 2) during PRE, POST 705 
or RUN was quantified using the Receiver Operative Characteristic (ROC) curve. By 706 
systematically shifting the discrimination threshold along the z-scored log odd distributions for 707 
Track 1 replay events and Track 2 replay events, a range of true positive rates and 708 
corresponding false positive rates at each threshold was used to construct the ROC curve. A 709 
trapezoidal approximation was used to estimate the area under each ROC curve (MATLAB 710 
function perfcurve for both constructing ROC curve and estimating area under the curve). The 711 
bootstrapped distributions of ROC curves and the area under the corresponding ROC curves 712 
were produced by resampling with replacement 1000 times. 713 
 714 

Statistics 715 

Z-scored Log Odd significance 716 

The statistical significance of the z-scored log odd difference between Track 1 and Track 2 was 717 
determined by comparison with a shuffled distribution in which replay events were resampled 718 
with replacement 1000 times and their track identities were randomly assigned. The single z-719 
scores were computed relative to the shuffled distributions, after which the associated one 720 
tailed p-value was calculated. The log odd difference was considered significantly different 721 
from the shuffled distribution at the significance level of 0.05. 722 

Bootstrapping for ROC significance 723 

To determine if rate and/or place representation manipulations significantly changed the area 724 
under the curve (AUC) of the ROC curves, we calculated the confidence interval for the 725 
difference between each condition’s bootstrapped AUC distribution and that of the original 726 
data. This was repeated later replacing the original data by one of the negative controls (rate 727 
fixed or place randomized manipulation). The 98.75% confidence interval was used to account 728 
for four comparisons (1-(alpha/n), where alpha=0.05 and n = 4) within the same behavioral 729 
epochs. The mean difference between two bootstrapped AUC distributions were only 730 
considered statistically significant when the confidence interval did not overlap with 0.  731 

Delong Test for ROC 732 

To determine if rate and/or place manipulations statistically significantly changed the AUC of 733 
ROC curves within the same behavioral epochs, the AUC of each condition was compared with 734 
the AUC of the original data or the negative control (rate fixed, place randomized). The 735 
DeLong Test (37) was employed to perform pair-wise comparisons between two ROC curves, 736 
a non-parametric test that accounted for the correlated nature of the data from the same epoch. 737 
The DeLong variance-covariance matrix for two ROC curves was computed using MATLAB-738 
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based algorithm [https://github.com/PamixSun/DeLongUI] developed by Sun and Xu (2014) 739 
(36).  740 

A z-score was calculated based on the following equation: 741 

𝑧𝑧 =  
|𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴  −  𝐴𝐴𝐴𝐴𝐶𝐶𝐵𝐵|

�𝑐𝑐𝑇𝑇𝑝𝑝(𝐴𝐴) + 𝑐𝑐𝑇𝑇𝑝𝑝(𝐵𝐵)  −  2𝑐𝑐𝑝𝑝𝑐𝑐(𝐴𝐴,𝐵𝐵) 
  742 

The p value threshold for the statistical significance of the z-score was Bonferroni corrected to 743 
account for multiple comparisons. 744 

 745 

Code Availability 746 

All analysis was carried out using MATLAB (Mathworks, Natick MA) and all code is available 747 
from the authors upon reasonable request.  748 
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