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Abstract 

Replay, the sequential reactivation of a neuronal ensemble, is thought to play a central role in the 

hippocampus during the consolidation of a recent experience into a long-term memory. 

Following a contextual change (e.g. entering a novel environment), hippocampal place cells 

typically modulate their in-field firing rate and shift the position of their place field, providing a 

rate and place representation for the behavioral episode, respectively. However, replay has been 

largely defined by only the latter- based on the fidelity of sequential activity across neighboring 

place fields. Here we show that dorsal CA1 place cells in rats can modulate their firing rate 

between the replay of two different contexts, mirroring the same pattern of rate modulation 

observed during behavior. This context-driven rate modulation within replay events was 

experience-dependent, observable during both behavioral episodes and throughout the 

subsequent rest period, but not prior to experience. Furthermore, we demonstrate that both the 

temporal order and firing rate of place cells can independently be used to decode contextual 

information within a replay event, revealing the existence of two separable but complementary 

neural representations available for memory consolidation processes. 
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Main Text:  

A key function of the hippocampus is the initial encoding and subsequent consolidation of 

episodic memories. Hippocampal place cells are activated in sequential patterns during 

behavioral episodes (e.g. a rodent running towards a goal), with each neuron’s activity 

modulated by the animal’s position within an environment (i.e. a place field) (1). During offline 

periods such as sleep, place cells spontaneously reactivate, replaying the same sequential pattern 

previously activated during the behavioral episode (2, 3). This phenomenon of neural replay is 

postulated to drive systems-level memory consolidation (4–6). Hippocampal replay has largely 

been defined by the sequential reactivation of place cell ensembles (3, 7–9), driven by both 

where and when each place field is activated during a behavioral episode (here referred to as 

place representation). Yet, place cells also carry additional information in the magnitude of their 

place field’s activity (here referred to as rate representation). The magnitude of a place field’s 

activity (i.e. peak in-field firing rate) is modulated by both local and global contextual cues (10–

12), as well as behavioral variables (e.g. animal’s speed during locomotion) (13), and cognitive 

events (e.g. animal’s attention and perception) (14, 15). However, we do not know whether the 

hippocampus is capable of reinstating this rate modulation in place cells during offline replay. 

To address this question, we recorded extracellularly from the dorsal CA1 of rats (n= 3, male 

Lister-hooded), trained to run back and forth along two novel linear tracks (2m) to collect a 

liquid reward at each end (Fig. 1A, fig. S1A, table S1, and supplementary methods). A view-

obstructing divider was placed between tracks and distinguishing visual cues were present within 

each environment to facilitate contextual discrimination and, in turn, hippocampal remapping. 

Additionally, rats rested in a quiet remote location, both before (PRE) and after (POST) the 

exploration of the two tracks. 

We observed global remapping of place cells between the two linear tracks [Pearson correlation 

coefficient (r) between tracks population vectors, r = 0.04 ± 0.11], such that the majority of place 

fields shifted their location along the track and/or modulated their firing rate (i.e. changed to 

higher or lower peak in-field firing rate) (fig. S1B). Both the context (which linear track) and 

current position (location of the animal on the linear track) could be inferred from place cell 

activity with high accuracy using a naïve Bayes decoder (Fig. 1B and fig.S1C). Track detection 

accuracy exceeded 89% during RUN periods on both tracks [all sessions: 89 ± 5 %] with an 

average median error of 5cm [all sessions: 5.17 ± 0.69 cm]. A population vector analysis showed 

high correlation between the ratemaps of the first and second half of running within each track 

[Pearson correlation coefficient (r) within track population vectors, r= 0.83 ± 0.04], suggesting 

high place field stability over run. We also used Bayesian decoding to detect replay sequences of 

each linear track (Fig. 1B), with statistically significant replay trajectories identified by 

comparing the weighted correlation score obtained from the posterior probabilities of each 

decoded event to three types of event shuffles [Total replay events = 2805, PRE: Track1= 35±20, 

Track2= 37±15, POST: Track1= 138±61, Track2= 156±34, RUN: Track1= 98±20, Track2= 

95±31; fig. S2 and supplementary methods].  
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Fig. 1. Rate coding in wake and rest. (A) Experimental design. Each recording session, the rats 

rested (PRE), ran back and forth on two different linear tracks (RUN), and then rested again 

(POST) (left to right). An example of LFP activity in each behavioral state is displayed [RUN-

theta, PRE/POST-sharp wave ripples (SWR)]. (B) Raster plots of spiking activity of cells sorted 

by their peak firing rate on the track (top: Track 2, n = 57 cells; bottom: Track 1, n = 72 cells), 

and the associated decoded positions for a single exemplar lap (first two columns) and replay 
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event (last two columns), for each track (top: Track 2; bottom: Track 1). Example from Rat 3, 

session 2. (C) Two example neurons (highlighted in B) that changed their peak instantaneous 

firing rate (shaded areas, cartoon depictions of instantaneous firing rates) during two example 

replay events (displayed in B) in the same direction as their peak in-field firing rate difference 

(unshaded areas, actual ratemaps). The activity and properties of the example neurons are color 

coded throughout all the panels. (D) The peak in-field firing rate difference (Track1-Track2) 

significantly predicts the average peak instantaneous replay rate difference (Track1-Track2) in 

POST rest, but not PRE rest. Each data point is a neuron active on both tracks (PRE: n = 106 

cells, POST: n = 123 cells).  

 

First, we sought to investigate whether the contextually-driven place fields’ rate modulation 

between tracks is conserved during offline replay. Using all place cells active on both tracks and 

stable across the whole run (fig.S1B and supplementary methods), we compared the place fields’ 

peak in-field firing rate differences between tracks (Track1-Track2) to the difference (Track1-

Track2) in average peak instantaneous rate of those same cells during significant replay events 

(Fig. 1C). For replay events during POST, the difference in peak in-field firing rate between 

tracks was predictive of the difference in average peak instantaneous rates during replay events 

from both tracks [POST: β= .04, F(1,121)= 36.95, P < 0.001, R2= .23; Fig. 1D]. In other words, 

if a place field had a higher firing rate on Track 2 (compared to Track 1), it also tended to have a 

higher mean firing rate across all Track 2 replay events (compared to Track 1 events) during 

POST. This was not the case during PRE [PRE: β= .06, F(1,104)=0.75, P = 0.39, R2= .007; Fig. 

1D]. This suggests that any contextually-driven rate modulation between two behavioral 

episodes is maintained during offline replay. This observation was consistent when using a more 

selective criteria of place field activity (e.g. place fields with higher minimum peak firing rate or 

place cells with a single field) (figs. S3 and S4A), as well as for alternative metrics for both 

replay firing rate (e.g. mean number of spikes per replay event and median replay rate) (fig. S4, 

B and C) and place fields firing rate (e.g. place field’s area under the curve) (fig. S4D). 

Furthermore, as expected, selecting only cells that were classified as significantly rate modulated 

led to an even stronger effect (fig. S4E).  
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Fig. 2. The reinstatement of rate modulation during rest replay is observed using replay 

detection methods insensitive to firing rate. Three methods of replay detection that are 

insensitive to firing rate: (A) Track rate shuffle (PRE: n = 106 cells, POST: n = 123 cells), (D) 

Replay rate shuffle (PRE: n = 69 cells, POST: n = 117 cells). (A and D) Example of the original 

rate (right plot, in black) randomly scaled up (right plot, in red) or down (right plot, in blue), 

after drawing a random value from the rate distribution (left plot). (G) Spearman correlation, 

where black circles indicate median spike times (PRE: n = 111 cells, POST: n = 123 cells). (B, 

E, H) Regression of peak-in-field firing rate vs. peak replay rate difference (Track 1-Track 2) for 

PRE replay events with modified detection method: (B) Track rate shuffle, (E) Replay rate 

shuffle, (H) Spearman correlation. (C, F, I) Regression of peak-in-field firing rate vs. peak 

replay rate difference (Track 1-Track 2) for POST replay events with modified detection method 

(C) Track rate shuffle, (F) Replay rate shuffle, (I) Spearman correlation.   

 

Replay detection methods generally detect the statistical significance of cells sequences based on 

templates derived from the behavioral episode, which are sensitive to the order of place field 

activation (during RUN and replay). However, because Bayesian decoding can also be 

influenced by firing rate, we next tested whether firing rate differences between tracks may bias 

the selection of the replay events used in the regression analysis. To remove the influence of 

firing rate in the replay event selection, we employed two independent types of shuffles before 
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repeating the detection of replay events: 1) Track rate shuffle, which randomizes the overall 

firing rate of place fields within a track (Fig. 2, A to C) and 2) Replay rate shuffle, which 

randomizes the cell’s firing rate during replay events (Fig. 2, D to F). For both shuffles, each 

place cell’s firing rate was scaled based on a value randomly drawn from a distribution of firing 

rates obtained from the analyzed place cells on the track (for the Track rate shuffle) or during the 

replay events (for the Replay rate shuffle). These re-identified significant replay events were then 

used to repeat the regression analysis but using the original data (i.e. the original replay spike 

train and place fields, instead of the shuffled ones). For both shuffles, we observed a significant 

contextual rate modulation of replay, where track differences in the place fields’ in-peak firing 

rate remained predictive of track differences in the average peak instantaneous rates during 

replay events in POST [POST: Track rate shuffle P < .001, Replay rate shuffle: P < .001; Fig. 2, 

C and F], but not PRE [PRE: Track rate shuffle P = .68, Replay rate shuffle: P = .84; Fig. 2, B 

and E]. As an additional control, we detected replay events using a rank order correlation method 

independent of Bayesian decoding (i.e. Spearman correlation), which relies only on comparing 

the median spike times across the place cells of a replay event compared to the sequential order 

of place field activity along the track (Fig. 2, G to I). Repeating the regression analysis based on 

the track differences in the place fields’ in-peak firing rate against the replay events detected 

using a Spearman correlation still resulted in a significant contextual rate modulation of the 

replay events rate in POST, but not PRE [PRE: β= .002, F(1,111)= .08, P = .78, R2= .0007,  

POST: β= .03, F(1,121)= 51.99, P < .001 , R2= 0.3; Fig. 2,H and I]. Overall, these results 

indicate that the contextual rate modulation observed during replay is not a result of a bias within 

the replay detection analysis (namely, Bayesian decoding). Importantly, we did not observe any 

significant track differences in place field or replay properties (fig. S5), including the place 

fields’ peak in-field firing rate [two-sided two-sample KS test, P = .62, fig. S5B] and the replay 

average peak instantaneous rate [two-sided two-sample KS test, P = .79, fig. S5B], and 

confirmed that our regression analysis was not influenced by any intrinsic biases between tracks 

by remeasuring the statistical significance relative to a shuffled distribution (fig. S6). 

 

The phenomenon of replay also occurs during awake quiescent states (e.g. while pausing on the 

track), and has been proposed to serve different functional roles, ranging from planning to 

memory storage (9, 16–19). We observed that during the behavioral episode on the tracks, 

contextual rate modulation was expressed across local awake replay events [RUN: β= .05, 

F(1,120)= 197.02, P < .001 , R2= .61; Fig. 3A]. Rate modulation during replay was even more 

closely aligned with behavior during RUN, compared to POST [RUN: F(1,120)= 197.02, POST: 

F(1,121)= 36.95; Fig. 1D]. Place cells during RUN already showed evidence of contextual rate 

modulation during awake local replay events within the first 2 laps of experience [2 laps: β= .06, 

F(1,8)= 5.91, P = .04, R2= .42; Fig. 3B]. Furthermore, place cells expressing rate modulation 

during RUN replay events were also likely to show a similar direction of contextual rate 

modulation (e.g. Track 1 > Track 2) during POST replay events [β= .78, F(1,168)= 95.36, P < 

.001, R2= .36; Fig. 3C], but not PRE [β= .02, F(1,143)= 1.25, P = .2, R2= .008, fig. S7]. 

Contextual rate modulation during replay was significantly expressed throughout the entire rest 

period during POST (at least 1 hour cumulatively, limited only by the maximum time period 

tested), with the strongest effect observed in the earliest portion of POST rest (Fig. 3D).   
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Fig. 3. Rate modulation during replay is observed from the beginning of RUN and 

continues throughout the entire RUN and POST epochs. (A) Regression of peak in-field 

firing rates against peak replay rates (track differences) for all local RUN replay events. (B) Lap 

by lap emergence of rate modulation for RUN local replay events. F-statistic of regression - peak 

in-field firing rate vs. peak replay rate (track difference) - for replay events occurring both prior 

to and including the specified lap (lap ID). The p-value of each regression is indicated by color. 

The number of cells and number of data sessions contributing in each regression are indicated 

with the green and grey line, respectively.  (C) Peak replay rate difference for replay events 

(RUN vs. POST), color coded by peak in-field rate differences. (D) Temporal dynamics of rate 

modulation during POST. The regression’s F-statistic (y-axis) and the corresponding p-value 

(marker color), analyzed in non-overlapping blocks of 70 consecutive replay events (per 

session). The number of cells and number of data sessions contributing in each regression are 

indicated with the green and grey line, respectively. 

Our data suggest that both place (i.e. sequences) and rate information is embedded within 

hippocampal replay events. If this is the case, then the spatial context (i.e. track identity) 

associated with a replay event should be identifiable using either the place or rate representations 

alone. To address this question, we modified the current Bayesian framework such that it would 

rely on either or both place and rate information. For each decoded replay event, we measured 

the probabilistic bias towards one of the two tracks using the z-scored log odd (20), 

(log
∑ 𝑝𝑟𝑜𝑏(𝑇𝑟𝑎𝑐𝑘1)

∑ 𝑝𝑟𝑜𝑏(𝑇𝑟𝑎𝑐𝑘2)
) . Thus, for a given replay event, this method summed the decoded posterior 
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probability for each track, quantified the logarithmic ratio between the two tracks, and then z-

scored this ratio relative to a shuffled distribution (Ratemap track label shuffle, fig. S8 and 

supplementary methods). For example, a higher positive z-scored log odd would indicate a 

greater probabilistic bias towards Track 1. Therefore, if the content of a replay event was 

detected for Track 1 (based on a statistically significant sequence), the corresponding z-scored 

log odd would reflect how well a place and/or rate representation could be used to correctly 

classify this replay event as Track 1 (rather than Track 2). 

In particular, we used two measurements to assess the replay track identity classification 

performance when using either the rate and/or place representation (fig. S8 and supplementary 

methods): 1) the log odd difference between two tracks compared to a Replay track identity 

shuffled distribution  and 2) the binary discriminability of a replay event’s track identity using 

Receiver Operator Characteristic (ROC) curves, in which the area under the ROC curve (AUC) 

of 0.5 indicates chance discriminability (and an AUC of 1 indicates perfect discriminability). For 

both measurements, only replay events with a statistically significant replay sequence were used. 

When both place and rate information were unaltered, the z-scored log odd difference and the 

track discriminability were highest for RUN [Δ(z-scored log odd)= 2.77, P < .001, AUC= .98], 

significant but marginally lower for POST [Δ(z-scored log odd)= 1.29, P < .001, AUC= .80], but 

indistinguishable from the null distribution and at chance levels for PRE [Δ(z-scored log odd)=  

.08 , P = .22, AUC= 0.52] (Fig. 4A and table S2). 

We then proceeded to selectively remove either the firing rate or place information available to 

the Bayesian decoder and assess its ability to determine the track being replayed. First, we 

removed the firing rate information by both setting each place field’s in-field peak firing rate to 

its average across both tracks and rescaling each cell’s replay spike trains to its average firing 

rate across all replay events (Rate fixed manipulation). We found that place information alone 

was sufficient to correctly classify replay events to each track, although both the z-scored log 

odd difference and the AUC were slightly lower than when both place and firing rate information 

were available [AUC difference < -0.1 compared to the original for all task periods, Fig. 4, B and 

F to H, and table S2]. 
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Fig. 4. Contextual information can be decoded from either place or rate representations 

during replay.  (A to E) The decoding performance for context (Track 1 or Track 2) for each 

manipulation, restricting the information (rate and/or place) available to the decoder. (Main 

plots) Mean z-scored log odd difference between tracks for replay during PRE (black), RUN 

(blue) and POST (red). Each data point is the mean of an individual session, while the horizontal 

line indicates the mean across all sessions (*P < 0.05, **P < 0.01, ***P < 0.001, one-tailed). The 

filled box indicates the SEM from the Replay track identity shuffles. (Insets) ROC curves of 

Track1/Track2 binary discrimination for replay events during PRE, RUN and POST. The dashed 

line along the diagonal indicates chance performance (AUC = 0.5). The shaded region indicates 

the bootstrapped SE of the ROC curves. (A) Original (rate and place information intact), (B) 

Rate fixed manipulation (only place information available), (C) Place removed manipulation 

(only rate information available), (D) Rate fixed manipulation with place information 

additionally randomized (no rate or place information available), and (E) Place removed 

manipulation with rate information additionally randomized (no rate or place information 

available). (F) Summary of mean and SEM AUC under each manipulation condition, for PRE, 

RUN, and POST. (G) Mean AUC difference between each manipulation and the corresponding 

negative control. (H)  Mean AUC difference between original and Rate fixed and Place removed 

manipulation. For (G and H), asterisks (*) indicate where the 95% confidence interval of the 

bootstrapped AUC difference distribution does not overlap with 0 (tables S3 and S4). Similar 

results were obtained using an alternative approach (Delong method) for measuring significance 

(tables S5 and S6, and supplementary methods). 
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Next, we selectively removed place information without altering rate information, by expanding 

the size of both the position and time bins during the decoding: a single position bin spanning the 

entire track and a single time bin spanning the entire replay event (Place removed manipulation, 

Fig. 4, C and F to H). This manipulation led to a significant log odd difference towards the 

correct track and a high track discriminability for RUN [Δ(z-scored log odds)= 1.14, P < .001, 

AUC= .79], POST [Δ(z-scored log odds)= .53, P < .001, AUC= .70],  but not PRE (Δ(z-scored 

log odds)= -.04, P = 0.63, AUC= .58], supporting the finding that rate modulation is reinstated 

during replay and is experience-dependent. Finally, as a negative control for both manipulations, 

where rate and place representations were disrupted, each remaining non-manipulated 

representation (place or rate) was then randomized (Rate fixed place randomized manipulation 

and Place removed rate randomized manipulation, respectively). Removing both place and rate 

representations resulted in chance level discriminability for both conditions (Fig. 4, D to H, and 

table S2).  

Here we have shown that contextually driven place and rate representations used by the 

hippocampus during behavior are reinstated during replay, with either representation being 

sufficient to successfully decode the context being replayed. Building on previous work 

supporting the contribution of firing rate (10, 13, 21–23) in the encoding of behavioral episodes, 

we demonstrate that this phenomenon is experience-dependent, as rate modulation within replay 

was only observed during and after a behavioral episode, but not prior to it. While place cell 

sequences are generally stable across a behavioral episode within a single environment, in-field 

firing rates can still increase (or decrease) with minor contextual changes, a phenomenon 

referred to as rate remapping (12). Our results present a possible solution to this problem for the 

brain, as two marginally similar contexts producing identical sequential patterns during replay 

are still potentially separable due to their rate modulation differences. 

Computational models of replay have commonly used modified synfire chains, sequentially 

connected neurons that are often embedded within distinct recurrent networks (24–26). While 

these models aim to replicate the sequential nature of replay, it remains to be seen whether they 

can also reinstate experience-dependent rate modulation, or if additional mechanisms may need 

to be considered. Compelling evidence suggests a key role for neocortical activity preceding a 

hippocampal replay event in determining its content (27–29). If cortical inputs to the 

hippocampus during behavior underlie rate modulation (30), a reinstatement of these same inputs 

prior to replay may be necessary for the subsequent rate modulation of hippocampal place fields 

during offline states.   
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Materials and Methods 

Animals  

Three male Lister-Hooded rats (350-450g) were implanted with a microdrive with 24 

independently moveable tetrodes. Prior to surgery, rats were kept at 90% of their free-feeding 

weight and housed in pairs on a 12-hour light/dark cycle, with 1 hour of simulated dusk/dawn. 

All experimental procedures and postoperative care were approved and carried out in accordance 

with the UK Home Office, subject to the restrictions and provisions contained within the Animal 

(Scientific Procedures) Act of 1986. 

 

Surgery 

Animals were deeply anaesthetized under isoflurane anesthesia (1.5-3% at 2L/min) and 

implanted with a custom-made microdrive array carrying 24 independently moveable tetrodes 

(modified from microdrive first published by (31)). Each tetrode consisted of a twisted bundle of 

four tungsten microwires (12µm diameter, Tungsten 99.95% CS, California Fine Wire), gold-

plated to reduce impedance to < 200kΩ. One rat was implanted with a dual-hippocampal 

microdrive targeting both dorsal hippocampal CA1 areas (AP: -3.48mm, ML: +/-2.4mm from 

Bregma), each output carrying 12 tetrodes. The two remaining rats were implanted with a 

microdrive targeting the right dorsal hippocampal CA1 area (AP: 3.72mm, ML: 2.5mm from 

Bregma) and the left primary visual cortex (AP: -5.76mm, ML: -3.8mm from Bregma), using 16 

and 8 tetrodes respectively. After surgery, animals were housed individually and allowed to 

recover with food and water ad libitum for a week before returning to being kept at 90% of their 

free-feeding weight. 

 

Experimental design 

A given recording session started with a 1-hour rest period in which the rats were placed 

in a quiet, remote location (rest pot), to which they had been previously habituated. The rest pot 

consisted of a black circular enclosure of 20cm of diameter, surrounded by a 50cm tall black 

plastic sheet that isolated them from the surroundings. Following the rest period, the rats were 

exposed to two novel 2m linear tracks in which they were allowed to run back and forth for 15 

min, except for one session in which the animal ran for 30 min in the second track. Liquid 

reward was dispensed at each end of the track (0.1mL chocolate flavored soy milk) to encourage 

the animals to traverse the entirety of the track. In all except one session, the exposures to the 

two tracks were separated by a 10min rest period in the rest pot. The recording session finished 

with a final 2-hours rest period inside the rest pot. 

 

To simulate novel environments, the shape of the tracks was changed between recording sessions 

and their surfaces covered with different textured fabrics. In each session, the room was 

surrounded by black curtains with different high contrast visual cues. The tracks were separated 

using view-obstructing dividers. 

 

Spike detection and unit isolation 

Spiking data was sorted using the semi-automatic clustering software KlustaKwik 2.0 

(K.Harris, http://klustakwik.sourceforge.net/) and then manually curated with either Phy-GUI 

(https://github.com/kwikteam/phy) or Klustaviewa (https://github.com/klusta-team/klustaviewa). 

Putative single units were discriminated based on the spike waveform, a clean inter-spike 
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interval, and their stability across the recording session. The rest of the clustered activity was 

classified in either multi-unit activity or noise. 

 

LFP analysis 

The power spectral density (PSD) of the LFP was calculated using Welch’s method 

(pwelch, MATLAB) to identify the channels with higher power for theta (4-12Hz) and ripple 

(125-300Hz) oscillations, as well as the channel with the largest difference in normalized theta to 

ripple power. The LFP of selected channels was next downsampled from 30 kHz to 1 kHz and 

band-passed filtered (MATLAB command filtfilt). The instantaneous phases were estimated 

using Hilbert transform.  

 

Criteria for Place cell selection 

Putative principal cells were identified by selecting units with a Half Width Half Max 

(HWHM) larger than 500µs and mean firing rate <5Hz across the entire recording session. For 

place cell classification, spike trains were speed-filtered to only include the spiking activity 

between 4cm/s and 50cm/s. A principal cell was classified as a place cell according to the 

following criteria: 1) the minimum peak firing rate was >1Hz in the unsmoothed ratemap and 2) 

a stable spiking activity across the first half and second half of the exploration on the track. Only 

place cells satisfying these two criteria for each linear track independently were included in the 

regression analysis (Figs. 1, 2 and 3) and log odd analysis (Fig. 4). 

 

To generate firing ratemaps (the spike histogram divided by the total dwell time at each position 

bin), the position data was discretized in 2cm bins for visualization and plotting, and 10 cm bins 

for Bayesian decoding. Only raw (unsmoothed) ratemaps were used for all Bayesian decoding 

analyses.  

 

Population vector analysis (PPV) 

A population vector analysis was used to assess the ratemap stability for each track as 

well as the degree of between track remapping (12). For each session, the linearized ratemaps of 

all recorded pyramidal cells with a firing rate > 1Hz were stacked into a 20 position bins x N 

cells matrix for each track. To assess remapping between tracks, the ratemaps computed from the 

entire track experience were compared, while to assess ratemap stability within a track, a 

ratemap was computed for both the first and second half of the behavioral episode. The 

population vector of rates at each position bin was then correlated with its counterpart vector: 

either on the other track or during the other half of the experience. The mean Pearson correlation 

value was first averaged across position bins and then across sessions. 

 

Bayesian Decoding 

A naïve Bayesian decoding algorithm was applied to reconstruct the animal’s spatial 

trajectory during both behavior and replay events from CA1 hippocampal spiking activity (7): 

 

𝑃(𝑥|𝑛) = 𝐶𝑃(𝑥) (∏ 𝑓𝑖(𝑥)𝑛𝑖

𝑁

𝑖=1

) 𝑒𝑥𝑝 (−𝜏 ∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1

) 

 

where P is the probability of the animal being at a specific position given the observed spiking 

activity, C is a normalization constant, x is the subject's position, fi(x) is the firing rate of the ith 
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place field at a given location x, and n is the number of spikes in the time window τ. The 

normalization constant was re-defined as the summed posterior probabilities across both tracks. 

The maximum probability of the subject’s position was decoded using 250ms and 20ms time bin 

during behavior and replay, respectively. 

 

The decoding error was defined as the differences between the real location of the animal and the 

estimated position with maximum-likelihood. 

 

Candidate replay event detection 

Candidate replay events were detected based on MUA and ripple power. MUA was first 

smoothed with a Gaussian Kernel (sigma = 5 ms) and binned into 1 ms steps. Only MUA bursts 

with a maximum duration of 300 ms and z-scored activity over 3 were selected.  Ripples LFP 

signal was smoothed with a 0.1 s moving average filter and a threshold over 3 was set for the z-

scored ripple power. 

 

Candidate replay events passing both thresholds were next speed-filtered (above 5 cm/s), and 

discarded if their sequence had less than 5 different units active or if their duration was below 

100 ms or over 750 ms (thus, candidate events had at least 5 consecutive 20 ms bins). Events 

detected within 50 ms were combined. In an effort to optimize detection of replay events and 

avoid a minority of events that were discarded due to noisy probability decoding at the beginning 

or the end of the event, candidate replay events were split in half. To do so, the minimum MUA 

activity in the middle third of the candidate replay event was used to determine a natural 

midpoint to split the event in two segments. Both segments were decoded and tested for 

significance independently following the same procedure as the ’intact’ candidate replay events 

(i.e., same criteria including minimum duration, etc.), for the exception of an adjusted p-value 

threshold (P < 0.025).  

 

Replay events were classified as rest or awake local replay. Awake replay was defined as replay 

events occurring while the animals were running on either of the tracks and classified as local if 

the content of the replay event reflected the current track on which the animal was running. 

Replay events detected during sleep or rest periods within the rest pot were classified as rest 

replay events.  

 

Replay events scoring and significance  

Replay events were scored using weighted correlation between decoded posterior 

probabilities across position and time. 

Weighted mean: 

𝑚(𝑥; 𝑝𝑟𝑜𝑏) =
∑ ∑ 𝑝𝑟𝑜𝑏𝑖𝑗𝑥𝑖

𝑁
𝑗=1

𝑀
𝑖=1

∑ ∑ 𝑝𝑟𝑜𝑏𝑖𝑗
𝑁
𝑗=1

𝑀
𝑖=1

 

Weighted covariance: 

𝑐𝑜𝑣(𝑥, 𝑡; 𝑝𝑟𝑜𝑏) =
∑ ∑ 𝑝𝑟𝑜𝑏𝑖𝑗(𝑥𝑖 − 𝑚(𝑥; 𝑝𝑟𝑜𝑏))(𝑡𝑗 − 𝑚(𝑦; 𝑝𝑟𝑜𝑏))𝑁

𝑗=1
𝑀
𝑖=1

∑ ∑ 𝑝𝑟𝑜𝑏𝑖𝑗
𝑁
𝑗=1

𝑀
𝑖=1

 

Weighted correlation: 

𝑐𝑜𝑟𝑟(𝑥, 𝑡; 𝑝𝑟𝑜𝑏) =
𝑐𝑜𝑣(𝑥, 𝑡; 𝑝𝑟𝑜𝑏)

√𝑐𝑜𝑣(𝑥, 𝑥; 𝑝𝑟𝑜𝑏)𝑐𝑜𝑣(𝑡, 𝑡; 𝑝𝑟𝑜𝑏)
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Where 𝑥𝑖 is the ith position bin, 𝑡𝑗 is the jth time bin and 𝑝𝑟𝑜𝑏𝑖𝑗is the probability at the position 

bin i and time bin j. 

 

The statistical significance of the weighted correlation for each candidate replay event was 

assessed by comparison with three different 1000 shuffle distributions:  

1) Spike train circular shift, in which the spike count vectors for each cell were 

independently circularly shifted in time within each replay event, prior to decoding.  

2) Place field shift, in which each ratemap was circularly shifted in space by a random 

amount of position bins prior to decoding.  

3) Circular shift of position, in which posterior probability vectors for each time bin were 

independently circularly shifted by a random amount. 

If the score of the candidate event was greater than the 95th percentile of the distribution for all 

three shuffles then the event was considered to be significant. In a few occasions, replay events 

were found to be significant for both tracks. Those events were assigned to one of the tracks by 

computing the “Bayesian bias” score for each track. Each score was calculated as the sum of the 

posterior probability matrix for one track, normalized by the total sum across tracks. To assign 

the replay event to a specific track the Bayesian bias score had to be greater than 60%, otherwise 

the event was discarded. 

 

Reinstatement of rate modulation analysis 

Linear regression was used to measure the reinstatement of rate modulation between 

place fields on the track and replay events (MATLAB function fitlm). For each place cell active 

on both tracks, rate modulation on the track was measured by calculating 1) the difference in 

peak in-field firing rate across tracks, and 2) the difference in the area under the curve (AUC; 

MATLAB function trapz). Place fields with a peak in-field firing rate < 1 Hz on either track 

were excluded. As a control, a variation of the analysis was done by excluding all cells with 

multiple place fields on the same track. Multiple peaks for a single cell were considered to be 

different place fields when their peak firing rate was > 1 Hz, each place field width was over 2 

spatial bins (20 cm), and the distance between the peaks was of 4 spatial bins (40 cm).  

 

Rate modulation during replay events was calculated as the change in each cell’s firing activity 

between the replay events encoding for each track. Included cells had to participate in at least 

one replay event for each track. The firing rate change was measured as 1) the difference in the 

average peak instantaneous rate across tracks, 2) the difference in the median rate across replay 

events, and 3) the difference in the mean number of spikes across replay events. 

 

To obtain the peak instantaneous rate of each event, each cell’s spike train was binned into 1ms 

steps, filtered with a 100ms long Gaussian window with σ=20ms (MATLAB command filter), 

and the peak amplitude of the resulting signal measured.  

 

Controls for replay detection analysis  

Two types of shuffles were applied to the data before repeating the detection of replay 

events using Bayesian decoding: a Track rate shuffle and Replay rate shuffle. The Track rate 

shuffle consisted in the randomization of the firing rate of the place fields within a track, while 

the Replay rate shuffle randomized the cells’ firing rate during the replay events. For both 

shuffles, each place cell’s firing rate was scaled based on a value randomly drawn from a 
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distribution of firing rates obtained from the analyzed place cells on the track (for the Track rate 

shuffle) or during the replay events (for the Replay rate shuffle). The shuffled data was then used 

to repeat the detection of replay events, and the newly identified significant replay events were 

used in a linear regression comparing their original spike content (instead of the shuffled one) 

against the original differences in the peak in-field rate.  

 

Remapping classification 

A bootstrapping procedure was used to identify the rate and place modulation properties 

of each cell. Modulation was defined when the track difference in a place field’s specific 

parameter (e.g. peak in-field firing rate or peak location) exceeded the intrinsic variability of 

such parameter on a single track. The distribution of each parameter was computed for both 

tracks by calculating firing ratemaps from a randomly sampled N out of N laps (1000 iterations, 

with replacement). The median value of a track distribution was then compared to the 5th/95th 

percentiles of the other track, and vice versa. If either median exceeded either percentile, the cell 

was classified as being modulated between tracks for that parameter. 

 

Sequenceless Bayesian Decoding 

The sequenceless Bayesian decoding was modified from Carey et al. (2019) (20). Only 

cells with stable place fields on the track in the first and second half of the behavioral episode 

(peak in-field firing rate > 1Hz) were included in our sequenceless decoding analysis.  

 

Before Bayesian decoding, ratemaps for Track 1 and Track 2 were concatenated as a single 

matrix [nCell x (nPosition(T1) + nPositions(T2))]. Unless otherwise mentioned, 20ms time bins 

and 10cm position bins were used for decoding. After decoding, the posterior probabilities for 

each time bin were normalized across all position bins from both tracks to sum to 1. Then, the 

summed posterior probability across all time bins within each replay event was computed, and 

the probabilistic bias towards Track 1 or Track 2 for each replay event was quantified as 

log(
∑ 𝑃𝑟𝑜𝑏(𝑇𝑟𝑎𝑐𝑘1)

∑ 𝑃𝑟𝑜𝑏(𝑇𝑟𝑎𝑐𝑘2)
) (log odds), where ∑ 𝑃𝑟𝑜𝑏(𝑇𝑟𝑎𝑐𝑘1) and ∑ 𝑃𝑟𝑜𝑏(𝑇𝑟𝑎𝑐𝑘2) referred to the 

summed posterior probabilities for Track 1 and Track 2, respectively. To remove any intrinsic 

probabilistic bias, each raw log odd calculation was then z-scored relative to a shuffled log odd 

distribution (Ratemap track label shuffle), obtained by randomly permuting each cell's Track 1 

and Track 2 ratemaps 1000 times for each replay event. The permutation was done by either 

keeping a cell’s ratemap unaltered or performing a between track swap. 

 

To test the decoding when only using place or rate information, the original data were 

manipulated as the following: 

- Rate fixed manipulation: Rate information was fixed both by rescaling each cell’s peak in-

field firing rate to the mean value across both tracks, and by rescaling its spike count in each 

replay event to the average firing rate across all replay events. 

- Place removed manipulation: The place (and sequence) information was removed by 

decoding with only a single position bin, which encompassed the entire track (mean firing rate 

on each track when speed is above 5cm/s) and a single time bin, which spanned the entire replay 

event. 

 

Two negative controls were used to disrupt both rate and place information: 
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- Rate fixed place randomized manipulation: After the Rate fixed manipulation, place 

information was randomized using a cell ID shuffle in which all cells were randomly reassigned 

to a different cell's ratemap for each replay event.  

- Place removed rate randomized manipulation: After Place removed manipulation, rate 

information was randomized by scaling the firing rate on each track based on a value 

randomly drawn from a distribution of firing rates obtained from the analyzed place cells on the 

track. 

 

ROC analysis 

The ‘ground truth’ track identity for each replay event was assigned based on the 

sequenceness of the replay, which was determined by comparing the event’s weighted 

correlation score to three shuffled distributions. The binary discriminability of a replay event’s 

identity (Track 1 or Track 2) during PRE, POST or RUN was quantified using the Receiver 

Operative Characteristic (ROC) curve. To ROC curve was constructed based on a range of true 

and false positive rates obtained by systematically shifting the discrimination threshold along the 

z-scored log odd distributions, for both Track 1 and Track 2 replay events. A trapezoidal 

approximation was used to estimate the area under each ROC curve (MATLAB function 

perfcurve for both constructing ROC curve and estimating area under the curve). The 

bootstrapped distributions of ROC curves and the area under the corresponding ROC curves 

were produced by resampling with replacement 1000 times. 

 

Statistics 

Z-scored Log Odd significance 

The statistical significance of the z-scored log odd difference between Track 1 and Track 

2 was determined by comparison with a shuffled distribution in which replay events were 

resampled with replacement 1000 times and their track identities were randomly assigned. The 

single z-scores were computed relative to the shuffled distributions, after which the associated 

one tailed p-value were calculated. The log odd difference was considered significantly different 

from the shuffled distribution at the significance level of 0.05. 

 

Bootstrapping for ROC significance 

To determine if rate and/or place representation manipulations significantly changed the 

area under the curve (AUC) of the ROC curves, we calculated the confidence interval for the 

difference between each condition’s bootstrapped AUC distribution and that of the original data. 

This was repeated in an additional analysis by replacing the original data by one of the negative 

controls (Rate fixed place randomized manipulation and Place removed rate randomized 

manipulation). The mean difference between two bootstrapped AUC distributions were only 

considered statistically significant when the 95% confidence interval did not overlap with 0.  

 

Delong Test for ROC 

To determine if rate and/or place manipulations statistically significantly changed the 

AUC of ROC curves within the same behavioral epochs, the AUC of both manipulations (i.e. 

Rate fixed or Place removed) were compared with the AUC of the original data or their 

corresponding negative controls (i.e. Rate fixed Vs Rate fixed place randomized and Place 

removed Vs Place removed rate randomized). The DeLong Test (32) was employed to perform 

pair-wise comparisons between two ROC curves. The DeLong variance-covariance matrix for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.07.15.452506doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452506
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

two ROC curves was computed using MATLAB-based algorithm 

[https://github.com/PamixSun/DeLongUI] developed by Sun and Xu (2014) (32).  

A z-score was calculated based on the following equation: 

 

𝑧 =  
|𝐴𝑈𝐶𝐴  −  𝐴𝑈𝐶𝐵|

√𝑣𝑎𝑟(𝐴) + 𝑣𝑎𝑟(𝐵) −  2𝑐𝑜𝑣(𝐴, 𝐵) 
  

 

where AUC referred to the area under the ROC curve, var(X) referred to the variance of ROC 

curves from the 1000 bootstrapped distribution, and cov(X) referred to the covariance of ROC 

curves from the 1000 bootstrapped distribution. 

The z-score for each pair of comparisons was subsequently used to calculate the two-tailed p-

value. Two AUC distributions were considered significantly different when P ≤ 0.05. 

 

Code Availability 

All analysis was carried out using MATLAB (Mathworks, Natick MA) and all code is 

available from the authors upon reasonable request.  
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Fig. S1. Experimental setup, remapping and field stability. (A) Layout of the recording room - two linear 

tracks, each surrounded by visual cues and visually occluded from each other. (B) Ratemaps for Track 1 

(left column) and Track 2 (right column) in an example session (rat 3, session 2) computed for the first 50% 

of laps (left half) and last 50% of laps (right half) and sorted by the ordered position of place fields on Track 

1 (bottom) and Track 2 (top). (C) Confusion matrix for decoded position (posterior probability normalized 

over both tracks) for an example session (rat 3, session 2). Distribution of peak posterior probabilities (y-

axis) is plotted at each True position during the behavioral episode (x-axis).  
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Fig. S2. Analysis pipeline for detection of significant replay events. Detected replay spike trains were decoded 

using a Bayesian framework. Each track’s ratemaps obtained during RUN were used to calculate the 

decoded posterior probabilities for each replay sequence (top left). In addition, all replay events were split 

into two shorter events based on the minimum in the MUA during the middle third of the replay event 

(bottom left, Segment analysis). For each replay event, weighted correlations were calculated on decoded 

posterior probability from both the whole replay sequence and each segment, and the three scores were 

compared to three different shuffles (Place field shift, Spike train circular shift, and Circular shift of 

position, 1000 shuffles performed for each type).  Only events with weighted correlation scores higher than 

95% for every shuffle distribution (97.5% for split replay events) were considered statistically significant. 
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Fig. S3. Significance of regression analysis using a stricter criterion of place cell activity. F-statistic of 

regression - peak in-field firing rate vs. peak replay rate (track difference) - for replay events occurring 

during POST rest, as the criterion for place cell activity (minimum peak in-field firing rate) is progressively 

increased from 1 Hz to 10 Hz. All regressions are statistically significant (up to and including using a 

threshold of 10 spk/s). The p-value of each regression is indicated by color. The number of cells used in 

each regression is indicated by the green line. 
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Fig. S4. Significance of regression analysis with alternative place field and replay rate metrics, and stricter 

criteria for cell selection. F-statistic of regression - peak in-field firing rate vs. peak replay rate (track 

difference) - for replay events occurring during PRE (left column) and POST (right column) using 

alternative metrics: (A) Place field area under the curve (new x-axis, PRE: n = 106 cells, POST: n = 123 

cells), (B) Median replay rate (new y-axis, PRE: n = 106 cells, POST: n = 123 cells), and (C) Mean number 

of spike per event (new y-axis, PRE: n = 106 cells, POST: n = 123 cells). And using new criteria for cell 

selection: (D) Rate modulated cells (PRE: n = 97 cells, POST: n = 112 cells) and (E) Single place field cells 

(PRE: n = 64 cells, POST: n = 77 cells).  
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Fig. S5. Between track comparison of place field and replay properties. (A) Number of replay events (left) 

and replay event rate (right) for each track during PRE, RUN, and POST. The differences between tracks 

for any of these comparisons were not statistically significant (Wilcoxon sign rank, P > 0.05). (B) 

Distribution of Peak firing rate on track (top left), mean firing rate on track (top center), place field AUC 

(top right), median replay rate (bottom left), replay involvement (bottom center) and peak instantaneous 

replay rate (bottom right) for tracks 1 and 2, and for individual session distributions (inset) (K-S test, n.s. P 

> 0.05). 
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Fig. S6. Re-computing the statistical significance of regression analysis relative to a shuffled distribution. A 

Track rate shuffle (A) and Replay rate shuffle (B) were used to randomize the overall firing rate of place 

fields within a track (x-axis) and the cell’s firing rate during replay events (y-axis), respectively. An F-

Statistic distributions was then calculated to measure significance of the regression. (A and B) Example of 

the original rate (right plot, in black) randomly scaled up (right plot, in red) or down (right plot, in blue), 

after drawing a random value from the rate distribution (left plot). (C to F) F-statistic distributions obtained 

from shuffle (black), dashed gray line indicates P < 0.05, and red line indicates F-Statistic of original data 

(main plot). One example of a regression plot within the shuffle distribution (inset plot). (C) PRE: Track 

rate shuffle. (D) PRE: Replay rate shuffle. (E) POST: Track rate shuffle. (F) POST: Replay rate shuffle. 
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Fig. S7. Between track differences in replay rate during PRE is not predictive of replay rate differences 

observed during RUN local replay events. Peak replay rate difference for replay events (RUN vs. PRE), color 

coded by peak in-field rate differences. A linear regression was not statistically significant (P > 0.05). 
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Fig. S8. Schematic of modified Bayesian decoding framework. The concatenated Track 1 and Track 2 ratemap (top 

first column) and spike counts during each replay event (top second column) are used for Bayesian decoding. This 

produces a posterior probabilistic distribution for each replay event, which is normalised across all position bins from 

both tracks to sum to 1 (Original, top row). Then, the relative probabilistic bias between Track 1 and Track 2 (Log 

odd) is computed. As control conditions, the original ratemap and replay spike counts are selectively modified such 

that only place information (Rate fixed manipulation, second row) or rate information (Place removed manipulation, 

third row) is available for Bayesian decoding. For Rate fixed manipulation, rate information is fixed by 1) rescaling 

each cell’s peak in-field firing rate to the mean value across both tracks, and 2) rescaling its spike count during each 

replay event to the average firing rate across all replay events. For Place removed manipulation, the place and sequence 

information is removed by decoding using only a single position bin covering the entire track (when the animal’s 

moving speed is above 5cm/s) and a single time bin spanning the entire replay event. For both control conditions, the 

manipulated replay events are next decoded using the original decoding pipeline, including a Track 1 and Track 2 

Ratemap Track label shuffle, obtained by randomly permuting each cell’s Track 1 and Track 2 ratemaps 1000 times 

for each replay event (bottom left). The permutation is done by either keeping a cell’s ratemap unaltered or performing 

a between track swap. The z-scored log odd for each replay event is obtained by comparing the raw log odd relative 

to the shuffled log odd distribution. For each behavioral epoch (i.e PRE, RUN and POST), Track 1 and Track 2 z-

scored log odd distributions are obtained by classifying each replay event according to the track identity determined 

by the sequenceness of the replay (bottom right). The track discrimination performance is quantified using two 

measurements. The first method quantifies binary discriminability using receiver operative characteristic curve (ROC 

curve). In brief, the ROC curve is constructed by plotting the true positive rate against false positive rates obtained by 

shifting discrimination threshold across the two z-scored log odd distributions. The area under the ROC curve (AUC) 

would thereby indicate the performance of binary discriminability where AUC = 1 indicates perfect discrimination 

and AUC = 0.5 indicates chance level discrimination (right, top plot). The second method quantifies the mean 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.07.15.452506doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452506
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

difference between Track 1 and Track 2 z-scored log odd distributions. The mean z-scored log odd track difference 

for each behavioural epoch is obtained by taking the average of the z-scored log odd track difference across all replay 

events within each session and then across all five sessions. The statistical significance for this measurement is 

quantified using one-tailed p-value in which the z-scored log odd track difference is compared relative to a shuffled 

difference distribution where the track identity assigned to each replay event is randomized (right, bottom plot). 
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Table S1. Overview of behavior, number of recorded cells and decoding accuracy for all sessions and rats. 

  

SESSION TRACK 
NUMBER OF 

LAPS 

TIME RESTING 

  (min) 
CELLS DECODING QUALITY (%) 

PRE POST 

Total 

number of 

cells on 

track 

Number of 

cells 

common to 

T1 and T2 

Included 

cells in 

replay 

analysis 

Classification 

accuracy 

Local 

decoding 

accuracy 

Rat 1 1 30 72 76 42 27 27 91 81 

Rat 1 2 20 72 76 44 27 27 97 82 

Rat 2, session 

1 
1 15 59 125 70 40 40 87 86 

Rat 2, session 

1 
2 59 59 125 63 40 40 80 89 

Rat 2, session 

2 
1 22 54 104 49 28 28 92 82 

Rat 2, session 

2 
2 33 54 104 43 28 28 90 79 

Rat 3, session 

1 
1 34 49 123 59 33 33 94 85 

Rat 3, session 

1 
2 27 49 123 51 33 33 94 80 

Rat 3, session 

2 
1 36 69 137 72 46 46 94 85 

Rat 3, session 

2 
2 38 69 137 57 46 46 97 86 
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  Original Rate fixed Place removed 
Rate fixed, Place 

randomized 

Place removed, Rate 

randomized 

  Session Mean  SE P value 
Mea

n  
SE P value Mean  SE P value Mean SE P value Mean SE 

P 

value 

P
R

E
 

1 -0.11   0.73 -0.02   0.56 -0.02   0.57 0.45   0.05 -0.30   0.92 

2 0.21   0.15 0.32   0.07 0.03   0.39 -0.21   0.80 -0.16   0.77 

3 -0.33   0.88 -0.54   0.96 -0.35   0.96 0.03   0.46 0.02   0.46 

4 0.15   0.32 -0.21   0.82 0.08   0.24 0.03   0.45 -0.15   0.73 

5 0.50   0.07 0.65   0.02 0.01   0.49 0.46   0.12 -0.25   0.73 

Mean 0.08 0.14 0.22 0.04 0.21 0.37 -0.05 0.08 0.64 0.15 0.13 0.11 -0.17 0.05 0.91 

R
U

N
 

1 2.51   7.57×10-27 2.13   9.24×10-26 1.15   6.41×10-19 0.01   0.48 -0.19   0.87 

2 3.22   9.61×10-36 2.37   9.01×10-28 1.39   2.05×10-28 0.48   0.01 0.22   0.10 

3 2.55   5.93×10-23 2.37   2.93×10-22 1.27   5.08×10-18 -0.19   0.78 0.12   0.22 

4 2.50   1.14×10-22 2.44   1.38×10-22 0.37   6.25×10-06 -0.11   0.76 -0.15   0.79 

5 3.09   1.31×10-29 2.26   4.38×10-25 1.52   2.17×10-20 0.20   0.16 0.09   0.29 

Mean 2.78 0.16 1.08×10-121 2.31 0.06 1.03×10-101 1.14 0.20 9.23×10-29 0.08 0.12 0.18 0.02 0.08 0.43 

P
O

S
T

 

1 0.84   5.39×10-11 0.43   1.09×10-05 0.32   2.44×10-05 0.17   0.09 0.15   0.18 

2 1.53   9.90×10-35 1.03   1.96×10-24 0.45   7.34×10-19 0.33   0.003 0.10   0.15 

3 1.63   3.82×10-19 1.44   3.30×10-16 0.84   4.52×10-18 -0.14   0.74 -0.25   0.98 

4 0.70   3.47×10-08 0.78   5.46×10-11 0.20   6.32×10-06 0.20   0.03 0.09   0.20 

5 1.79   1.22×10-34 1.59   9.58×10-30 0.89   1.15×10-21 -0.12   0.87 0.06   0.30 

Mean 1.30 0.22 1.03×10-91 1.05 0.21 1.98×10-74 0.54 0.14 8.12×10-15 0.09 0.09 0.06 0.03 0.07 0.30 

 

Table S2. Summary statistics of the z-scored log odd difference per session and across sessions for PRE, RUN and POST.  
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VS Original 95% confidence interval 

BOLD values statistically significant from zero 

  PRE RUN POST 

Original VS Rate 

fixed  

Mean AUC Diff -0.04 -0.02 -0.05 

SEM AUC Diff 0.04 0.007 0.02 

Lower CI  -0.12 -0.03  -0.08 

Upper CI  0.04  -0.002  -0.02 

Original VS Place 

removed 

Mean AUC Diff 0.06 -0.19 -0.10 

SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.02 -0.22 -0.13 

Upper CI 0.14 -0.15 -0.07 

 
Table S3. Summary statistics of the 95% confidence interval for the AUC difference between the original and 

the manipulated conditions. 
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Table S4. Summary statistics of the 95% confidence interval for the AUC difference between the manipulated 

conditions and their respective negative controls. 

  

  
VS Negative Control 95% confidence interval 

BOLD values statistically significant from zero 

  PRE RUN POST 

Rate fixed VS  

Rate fixed + 

Place 

randomized 

Mean AUC Diff -0.005 0.44 0.22 

SEM AUC Diff 0.04 0.02 0.02 

Lower CI -0.13 0.40 0.19 

Upper CI 0.03 0.48 0.26 

 Place removed  

VS Place 

removed + Rate 

randomized 

Mean AUC Diff 0.07 0.26 0.14 

SEM AUC Diff 0.04 0.03 0.02 

Lower CI -0.008 0.20 0.10 

Upper CI 0.16 0.31 0.18 
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DeLong Test VS Original (Significance = 0.05) 

BOLD values statistically significant 

 Original VS Rate fixed Original VS Place removed 

PRE 0.15 0.15 

RUN 0.007 5.56×10-34 

POST 8.15×10-08 6.33×10-12 

 
Table S5. Summary statistics of the DeLong Test comparing the ROC curves between the original and the 

manipulated condition. 
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DeLong Test VS Negative control (Significance = 0.05) 

BOLD values statistically significant 

 
Rate fixed VS Rate fixed + 

Place randomized 

Place removed VS Place 

removed + Rate randomized 

PRE 0.91 0.23 

RUN 2.28×10-98 7.14×10-88 

POST 2.65×10-55 1.15×10-35 

 
Table S6. Summary statistics of the DeLong Test comparing the ROC curves between the manipulated 

conditions and their respective negative controls. 
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