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The genetic composition of the gut microbiota is constantly reshaped by ecological and
evolutionary forces. These strain-level dynamics can be challenging to understand be-
cause they emerge from complex spatial growth processes that take place within a host.
Here we introduce a general population genetic framework to predict how stochastic evo-
lutionary forces emerge from simple models of microbial growth in spatially extended
environments like the intestinal lumen. Our framework shows how fluid flow and lon-
gitudinal variation in growth rate combine to shape the frequencies of genetic variants
in sequenced fecal samples, yielding analytical expressions for the effective generation
times, selection coefficients, and rates of genetic drift. We find that the emergent evolu-
tionary dynamics can often be captured by well-mixed models that lack explicit spatial
structure, even when there is substantial spatial variation in species-level composition.
By applying these results to the human colon, we find that continuous fluid flow and
simple forms of wall growth are unlikely to create sufficient bottlenecks to allow large
fluctuations in mutant frequencies within a host. We also find that the effective gener-
ation times may be significantly shorter than expected from traditional average growth
rate estimates. Our results provide a starting point for quantifying genetic turnover
in spatially extended settings like the gut microbiota, and may be relevant for other
microbial ecosystems where unidirectional fluid flow plays an important role.

The human gut harbors a diverse microbial ecosystem
that plays an important role in maintaining health and
reducing susceptibility to disease (1, 2). The composition
of the gut microbiota is shaped by interactions between
hundreds of different species (3, 4), which must continu-
ally reproduce in order to balance their daily excretion in
feces (5, 6). These high rates of cell turnover create enor-
mous opportunities for rapid evolutionary change: the
trillions of bacteria within a single human colon produce
more than a billion new mutations every day (7), and
tens of thousands of bacterial generations will typically
elapse within a single human lifetime (1, 8). Consistent
with these estimates, a growing number of empirical stud-
ies, ranging from experimental evolution in mouse models
(9, 10, 11, 12) to longitudinal sequencing of human sub-
jects (7, 13, 14, 15, 16, 17, 18, 19, 20), have shown that
genetic variants can sweep through resident populations
of gut bacteria on timescales of weeks and months. Un-
derstanding the causes and consequences of this genetic
turnover is likely to be important for predicting the sta-
bility and resilience of this diverse microbial ecosystem
(21).

A central challenge in understanding the evolution of
the gut microbiota stems from the complex structure of
the gut environment. While the frequencies of genetic
variants are typically tracked in homogenized fecal sam-
ples, most microbial growth occurs in the spatially ex-
tended setting of the large intestine. At present, little
is known about how this spatial structure influences the
evolutionary dynamics that are observed in sequenced
fecal samples. This makes it difficult to draw quantita-
tive conclusions from existing genetic data: What does

it mean if the frequency of a variant increases dramat-
ically over a few days? or if it eventually declines in
frequency a few weeks later? Is it reasonable to inter-
pret these coarse-grained measurements using well-mixed
models from population genetics? or are spatially explicit
models necessary for extracting quantitative insights?

Previous studies of gut microbial biogeography have
shown that growth conditions can vary over a huge range
of length scales, ranging from the micron scales of in-
tercellular interactions (22, 23, 24) to macroscopic com-
partments like the mucosa, lumen, and intestinal crypts
(25). Even within the comparatively simpler environ-
ment of the central lumen — thought to be the primary
site of growth for some of the most abundant species
of Bacteroides and Firmicutes (26) — significant longi-
tudinal gradients are established by the basic anatomy
of the intestinal tract. Primary nutrients are supplied
at one end of the colon, where microbial densities are
relatively low, and are rapidly consumed by bacteria in
the ascending colon (27). The constant influx of fluid,
along with additional mixing from contractions of the
intestinal walls (26, 28), causes both bacteria and their
metabolic byproducts to drift toward lower regions of the
colon, where they are eventually excreted in feces. These
physical processes combine to produce large gradients in
nutrient concentrations, pH, and excretion rates across
the longitudinal axis of the large intestine (27, 28, 29),
which can have important consequences for the rela-
tive growth rates and abundances of different species
(28, 30, 31, 32, 33, 34).

The evolutionary implications of these spatial gradi-
ents are less well understood, since the details will depend
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on the phenotypic differences that exist among more
closely related strains. However, even in the absence of
phenotypic differences, the longitudinal structure of the
lumen will lead to general physical effects that can be
appreciated by revisiting our back-of-the-envelope calcu-
lation for the production rate of new mutations. While
billions of mutations may be produced each day, not all
of these emerge on equal footing. Mutations that occur
near the lower end of the colon are very likely to be ex-
creted in feces before they can produce viable offspring.
Conversely, mutations that occur near the entrance of the
colon are significantly more likely to produce descendants
that can persist and grow within the host over many gen-
erations.

These physical considerations suggest that only a sub-
set of the luminal population will tend to contribute to
its long-term genetic composition. Similar arguments ap-
ply for estimates of the effective generation time, which
can vary substantially in different regions of the colon
(27, 35, 36). These arguments suggest that the rele-
vant evolutionary parameters must emerge from some
sort of average over this existing longitudinal structure.
However, the weights in this average will be determined
not by the current bacterial densities and growth rates,
but rather by their long-term contribution to the fu-
ture population. Our limited understanding of these
weights — even in the simplest models of luminal growth
— leaves many important questions unresolved: Can
fluid flow alone generate sufficient population bottlenecks
that would allow large fluctuations in mutant frequencies
within a host? How do absolute growth rate differences
map on to the frequency trajectories that can be observed
in vivo? And how do the answers to these questions de-
pend on the physical properties of the gut environment,
which vary dramatically across species, and can be mod-
ulated by drugs or other dietary perturbations?

In this study, we introduce a mathematical frame-
work for predicting how stochastic evolutionary forces
emerge from explicit spatial models of microbial growth
in the intestinal lumen. Building on earlier work in
Refs. (37, 38, 39, 40), we show that the emergent evo-
lutionary dynamics can often be captured by spatially
homogeneous models with an appropriate set of effective
parameters, even when the ecological effects of spatial
structure are very strong. We derive analytical expres-
sions to show how the effective selection coefficients, gen-
eration times, and population sizes are related to the un-
derlying growth rates and flow profiles along the large
intestine. By applying this framework to parameter es-
timates from the human colon (28), we find that fluid
flow alone is unlikely to generate large fluctuations in
the frequencies of sequenced mutations, while the diffu-
sion of slowly growing cells can still have a large impact
on the long-term evolution of the population. These re-
sults provide a framework for understanding how spa-
tial structure influences the genetic composition of the

gut microbiota, and may be relevant for other microbial
ecosystems (e.g. hot springs and acid mine drainage sys-
tems) where unidirectional flow is thought to play an
important role (41, 42).

ANALYSIS

We consider the dynamics of mutant lineages in a spatial
model of luminal growth that incorporates continuous
fluid flow, growth, and active mixing from contractions
of the intestinal walls (26, 28). A key assumption of
this model is that the mixing process is strong enough to
destroy any cross-sectional spatial structure within the
lumen (28), yielding an effective diffusion process in the
longitudinal dimension (denoted by x) with some effec-
tive flow rate v(x) and effective diffusion coefficient D(x)
(Fig. 1A). The local density of species µ at position x
and time t can then be described by a reaction diffusion
equation,

∂tρµ(x, t) = ∂2
x[D(x)ρµ(x, t)]− ∂x[v(x)ρµ(x, t)]

+ λµ[~r(x, t)]ρµ(x, t) ,
(1)

where λµ[~r(x, t)] is a function that describes the net
growth rate of species µ. We assume that this net growth
rate depends on a set of local environmental variables
~r(x, t), which could represent local nutrient concentra-
tions, pH, or the abundances of other species. These
environmental variables will be described by their own
set of reaction diffusion equations, which are coupled to
the species densities ρµ(x, t). In our analysis below, we
will assume that the ecosystem has approached a steady-
state, in which the species densities ρµ(x, t) and environ-
mental variables ~r(x, t) can be described by time invari-
ant profiles ρµ(x) and ~r(x). This is a crucial simplifica-
tion, as it means that the growth rate λµ[~r(x, t)] can be
replaced by a simple spatially varying growth function
λµ(x) ≡ λµ [~r(x)], which is conditionally independent of
the surrounding community. The steady-state growth
profiles are uniquely determined by the steady-state den-
sity profiles,

λµ(x) =
∂2
x[D(x)ρµ(x)]− ∂x[v(x)ρµ(x)]

ρµ(x)
, (2)

such that the realized growth rates can in principle be de-
termined from static snapshots of a community’s spatial
composition.

Dynamics of mutant lineages

We wish to understand the dynamics of genetic variants
within species in the steady-state communities described
above. Since these variants may initially be present in
just a small number of cells, the deterministic dynamics
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FIG. 1 Dynamics of a genetic variant in a spatially extended population in the intestinal lumen. (a) Schematic of
spatial growth model. Nutrients enter the colon from the small intestine (left) and fecal samples are generated at the distal end
(right). Intestinal wall contractions mix contents of lumen (inset), producing effective diffusion in the axial direction (26, 28).
Continuous fluid flow through the colon generates longitudinal gradients in steady-state bacterial growth rates [λ(x), orange
line] and population densities [ρ(x), shaded blue region]. Mutation events (red star) found new lineages that begin to grow
and spread out in space [ρm(x, t), shaded red region]. After τmix generations, the spatial distribution of the mutant lineage
approaches that of the wildtype population, but with a smaller overall size. (b) Mutation frequencies observed in fecal samples
over time. Two hypothetical trajectories are shown (red lines), illustrating the stochastic fluctuations that arise due to genetic
drift.

in Eq. (1) must be augmented to account for stochas-
tic fluctuations in cell numbers in both space and time.
As long as the frequency of the mutant lineage is suffi-
ciently rare, we expect it to have a negligible influence on
the steady state values of ri(x) and ρµ(x), such that the
growth function of the mutant can be described its own
steady state growth profile λm(x). In Supplementary In-
formation 1, we use a microscopic birth-and-death model
to show that the density profile of the mutant lineage can
be described by the coarse-grained stochastic differential
equation

∂tρm(x, t) = ∂2
x[D(x)ρm(x, t)]− ∂x[v(x)ρm(x, t)]

+ λm(x)ρm(x, t)

+
√

Υm(x)ρm(x, t) · ηλ(x, t)

+
∂

∂x

[√
D(x)ρm(x, t) · ηD(x, t)

]
,

(3)

where ηλ(x, t) and ηD(x, t) are independent Brownian
noise terms with 〈ηi(x, t)ηj(x′, t′)〉 = δijδ(x− x′)δ(t− t′)
(43), and Υm(x) is the variance in offspring number of
the local birth and death process. In the absence of cell
death, Υm(x) will be proportional to the local growth
rate λm(x); we expect this to be a reasonable approx-

imation in the human gut, where live cells comprise a
large fraction of the total excreted biomass (5, 44, 45).

Equation (3) is a stochastic variant of the familiar
Fisher-KPP equation (46, 47), which is frequently used
to model the spread of species or genetic variants through
space (46, 47, 48, 49). An important difference in our set-
ting is that the expansion velocity v(x) is now set by the
fluid flow in the environment, such that the mutant and
wildtype populations are continuously “treadmilling” in
place. We will show below that this typically leads to
“pushed” rather than “pulled” expansions (50, 51), which
will have important implications for the stochastic dy-
namics of genetic drift in this system (52, 53).

Equation (3) provides a quantitative model for pre-
dicting the spread of a genetic variant within a resident
gut community under the combined action of fluid flow,
mixing, and spatially varying growth rates. While the
spatiotemporal dynamics of Eq. (3) are often quite com-
plicated, further simplifications arise in scenarios where
the emergent evolutionary forces (e.g. natural selection
and genetic drift) are much slower than the “ecological”
processes of growth, flow, and mixing. These ecological
forces will lead to a characteristic mixing timescale τmix

(discussed in more detail below), which represents the
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time required for the descendants of a mutant lineage to
disperse across space (Fig. 1A). For times much larger
than τmix, the shape of the mutant density profile will
approach the steady-state population profile,

ρm(x, t) ≈ f(t)ρ(x) (t� τmix) , (4)

but with a prefactor f(t) that depends on the growth
rate λm(x), the stochastic noise terms in Eq. (3), and
the initial density profile ρm(x, 0). This prefactor f(t)
also coincides with the relative frequency of the mutant
lineage in later fecal samples (Fig. 1B). Thus, the dy-
namics of f(t) provide a crucial connection between the
spatial growth dynamics in Eq. (3) and the frequencies
of mutant lineages that are measured in metagenomic
sequencing data.

Much of the relevant behavior can be understood by
considering a perfectly neutral lineage [λm(x) = λ(x)]
founded by a single individual a position x (Fig. 1A). In
Supplementary Information 2, we show that the distri-
bution of f(t) at intermediate times (t � τmix) can be
captured by a well-mixed Wright-Fisher model

∂f

∂t
=
√

Λf(t) η(t) , (5)

with an effective initial frequency

f(0|x) ≈ u(x) ≡ D(x)ρ(x)e
−

∫ x
0

v(x′)
D(x′)dx

′

∫
D(x)ρ(x)2e

−
∫ x
0

v(x′)
D(x′) dx′

, (6)

and an effective rate of genetic drift

Λ =

∫ [
Υ(x)u(x)2 + 2D(x) (∂xu(x))

2
]
ρ(x) dx , (7)

which is independent of the mutation’s initial position.
Equation (5) implies that this new mutation will require
a time of order τdrift ∼ f/Λ to drift to frequency ∼f in fu-
ture fecal samples (54, 55). These dynamics will be con-
sistent with the separation-of-timescales assumption as
long as τdrift � τmix, which requires that f(t) � Λτmix.
Since Λ is inversely proportional to the bacterial density,
and τmix is independent of density (see below), we expect
these results to apply for a broad range of frequencies
when population sizes are sufficiently large.

At intermediate times (τmix � t � 1/Λ), the descen-
dants of the mutant lineage will be approximately evenly
distributed across the population (Fig. 1A), so the condi-
tional fixation probability of the entire lineage is simply
f(t). Averaging over the random values of f(t) using
Eq. (5), we find that

pfix(x) =

∫
f · p(f, t|x)df = u(x) , (8)

so that Eq. (6) has a simple interpretation as the fixation
probability of a neutral mutation at position x (37). Sim-
ilarly, the product g(x) = u(x)ρ(x) represents the spatial

distribution of future common ancestors of the popula-
tion (37) — regardless of whether they have a mutation
or not — which provides a quantitative measure of the
spatial locations that have an outsized influence on the
genetic composition of future fecal samples. By mod-
elling the long-term accumulation of neutral mutations
within these populations, we obtain a simple prediction
for the effective generation time,

1

τg
= λe ≡

∫
[λ(x) + d(x)]u(x)ρ(x) dx , (9)

where d(x) is the local death rate (Supplementary Infor-
mation 2.3). This allows us to re-express the “wall-clock”
rate of genetic drift in Eq. (7) as a more traditional ef-
fective population size:

Ne =

∫
[λ(x) + d(x)]u(x)ρ(x) dx

∫ [
Υ(x)u(x)2 + 2D(x) (∂xu(x))

2
]
ρ(x) dx

, (10)

which is proportional to the total bacterial density as ex-
pected. When cell death is negligible [λ(x)+d(x) ≈ λ(x),
Υ(x) ≈ λ(x)], these effective parameters are completely
determined by the steady state density profile ρ(x).

Analytical solutions for a minimal model of bacterial growth

We can understand the implications of these results by
examining a minimal model of bacterial growth in the
gut, which yields analytical solutions for the growth and
density profiles in Eqs. (9) and (10). We assume that
flow and diffusion are uniform in space, such that there
is a characteristic length scale ∼D/v that sets the transi-
tion between diffusive and advective motion. We further
assume that growth depends on a single limiting nutrient
with a step-like dose response curve (Fig. 2A). These as-
sumptions produce a spatial growth profile with a sharp
transition at a critical position x = ` (Fig. 2B), whose
location depends on the relative magnitudes of λ, v, and
D. In Supplementary Information 4, we obtain analytical
expressions for the resulting population density profiles,
which are illustrated in Fig. 2C,D.

We observe two characteristic regimes that depend on
the value of the dimensionless parameter α ≡ 4Dλ/v2,
which compares the characteristic timescales of growth
(λ−1) and local dilution (∼D/v2). When α < 1, growth
is not sufficient to overcome the constant loss of individ-
uals due to fluid flow, and the population cannot perma-
nently establish itself in the gut — a scenario we refer to
as “washout” (26). At the opposite extreme (α � 1),
growth is sufficiently rapid that the nutrients are de-
pleted long before flow is relevant (` � D/v), and dif-
fusive mixing is still the dominant form of motion. This
diffusion-dominated growth produces a nearly uniform
population density profile, and a distribution of future
ancestors [g(x) = u(x)ρ(x)] that is primarily composed
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α ≫ 1

α → 1

FIG. 2 Analytical solutions for a minimal model of bacterial growth. (a,b) Schematic of bacterial growth rates. A
step-like growth response curve (a) leads to a sharp transition between high growth (λ(x) ≈ λ) and no-growth (λ(x) ≈ 0) at a
critical position ` (b). (c, d) Spatial profiles of population density, ρ(x) (blue line), neutral fixation probability, u(x) (red line),
and distribution of future common ancestors, g(x) = u(x)ρ(x) (green shaded region), for examples of (c) diffusion-dominated
growth (4Dλ/v2 ≈ 10) and (d) flow-dominated growth (4Dλ/v2 ≈ 1.04). In both cases, the dashed black lines indicate the
boundary of the growth region in panel b. (e) Scaled effective growth rate, λe/λ, and (f) scaled effective population size,
(Ne/N) · (vL/2D), as a function of the washout parameter α ≡ 4Dλ/v2. Black lines denote the analytical predictions in
Supplementary Information 4.2, while the red lines illustrate the asymptotic behavior in the α� 1 and α− 1 � 1 limits.

of slowly growing cells (Fig. 2C). This leads to a reduced
effective growth rate, λe∼v2/D � λ (Fig. 2E), and an
effective population size, Ne∼ρ(L)D/v, that is indepen-
dent of the length of the colon (Fig. 2F).

Between these two extremes, we also observe an inter-
mediate regime close to the washout threshold (α → 1),
where flow dominates over diffusion throughout most of
the growth region (D/v � `). This produces a strong
spatial gradient in the density profile, and a distribution
of future ancestors [g(x) = u(x)ρ(x)] that is primarily
concentrated within the growth region (Fig. 2D). The
effective growth rate therefore approaches its maximum
value λe ≈ λ (Fig. 2E), while the effective population size
is dramatically reduced (Fig. 2F). By examining the con-
tributions to Eq. (10), we find that these lower effective
population sizes are driven by fluctuations in a narrow
region near the entrance of the colon (x . D/v), rather
than the comparatively larger sub-population of dividing
cells (x ∼ `). This shows how long-term lineage dynamics
can have a major impact on the emergent evolutionary
parameters in our model.

While the enhanced fluctuations are most pronounced
near the washout threshold (α ≈ 1), we note that
washout itself does not play a major role in this behav-
ior. In Supplementary Information 4.3, we show that the
results in Fig. 2 are robust to the addition of a washed
out region at the proximal end of an otherwise estab-
lished population. This suggests that it is the accumu-
lated growth over many diffusion lengths — rather than

washout per se — that is the primary cause of the re-
duced effective population size when α → 1. It also
suggests that our qualitative results are do not depend
on the specific nature of the boundary between the large
and small intestine: the small number of cells that diffuse
into this low-growth region do not dramatically change
the dynamics that occur downstream.

Dynamics of selected mutations

We can use a similar separation-of-timescales approach
to analyze the fates of selected mutations as well (Sup-
plementary Information 3). Provided that the growth
rate differences are sufficiently small (see below), we find
that the emergent dynamics on timescales t � τmix can
again be mapped on to well-mixed Wright-Fisher model

∂f

∂t
= seλef(t) +

√
λef(t)

Ne
· η(t) , (11)

with an effective selection coefficient

se =
1

λe

∫
[λm(x)− λ(x)]u(x)ρ(x) dx . (12)

This equation encapsulates the relevant growth rate dif-
ferences across the ancestral region g(x) ∝ u(x)ρ(x). For
a global increase in growth rate [λm(x) = (1 + s)λ(x)],
the effective selection coefficient se is proportional to s
as expected. However, Eq. (12) also allows us to account
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α ≫ 1

α → 1

FIG. 3 Dynamics of selected mutations. (a) Schematic trajectory of a beneficial mutation, which either establishes and
grows exponentially at rate se (dashed line) or else goes extinct (light red line). (b) The spatially-resolved fixation probability
ws(x) of a beneficial mutation that originates at position x. Red lines denote the numerical solutions of Eq. (13) for the minimal
model in Fig. 2 with a constant growth rate advantage λm(x) = (1+s)λ(x) (Supplementary Information 4.4). The dashed lines
indicate the transition from λ(x) ≈ λ to λ(x) ≈ 0. The top panel illustrates a population in the diffusion-dominated growth
regime (4Dλ/v2 ≈ 1.9) while the bottom panel illustrates a population in the flow-dominated growth regime (4Dλ/v2 ≈ 1.04).
In both cases, fixation profiles were calculated for s = 10−3, 10−2, and 10−1. (c) The effective fixation probability pfix obtained
by averaging ws(x) the range of initial positions. The top and bottom panels denote the same populations as in (b). Dashed
lines indicate the separation-of-timescales prediction, pfix = 2se. Deviations from this prediction emerge in the flow-dominated
growth regime, due to the enhanced fixation probability of mutations that originate at larger x values (illustrated in panel b).

for tradeoffs in growth rate that emerge at different spa-
tial locations. The relative weights of fitness effects in
these different microenvironments are determined by the
product λ(x)g(x), which biases the effective selection co-
efficients toward regions with higher local growth rates.

The mapping in Eq. (11) allows us to obtain a precise
picture of the dynamics a beneficial mutation as observed
in sequenced fecal samples. When τmix � t � 1/seλe,
the dynamics of the selected lineage will be identical to
the neutral mutations described above. With probabil-
ity ∼Neseu(x), the mutant lineage will eventually es-
tablish and grow deterministically as ∼eseλet, and will
fix within the population on a characteristic timescale
Tfix ∼ 1

seλe
log(2Nese) (54, 55). These dynamics will be

consistent with the separation-of-timescales assumption
as long as seλeτmix � 1.

For stronger selection strengths (seλeτmix � 1),
the separation-of-timescales assumption will eventually
break down, and growth rate differences will start to play
an important role during the mixing process itself. In this
case, we show in Supplementary Information 3.1 that an
analogous fixation probability can still be obtained nu-
merically by solving the ordinary differential equation

0 = λm(x)w(x) +D(x)∂2
xw(x) + v(x)∂xw(x)

− Υm(x)w(x)2

2
−D(x)(∂xw(x))2 ,

(13)

which gives the fixation probability of a beneficial mu-

tation that arises at a given position x. Equation (13)
is similar to existing branching process models of fixa-
tion in spatially or genetically subdivided populations
(56, 57, 58), but with an additional non-linearity that ac-
counts for the conservative noise of spatial diffusion. The
total fixation probability can be obtained from Eq. (13)
by averaging w(x) over the local production rate of new
mutations, µ(x)ρ(x), yielding

pfix ≡
1

Ne

∫
µ(x)ρ(x)w(x) dx∫
µ(x)ρ(x)u(x) dx

. (14)

When seλeτmix � 1, we recover the linear relation
pfix = 2se predicted by the separation-of-timescales ap-
proximation. Deviations from this behavior at larger val-
ues of se can therefore provide insight into the mixing
timescale τmix, which we have so far treated as an im-
plicit parameter.

In Fig. 3, we compute these fixation probabilities nu-
merically for the minimal model in Fig. 2, assuming a
global increase in growth rate [λm(x) = (1+s)λ(x)] and a
replication-dominated mutation rate [µ(x) ≈ µλ(x)]. We
find good agreement with the separation-of-timescales
prediction at sufficiently low values of s. This shows
that τmix is primarily determined by the ancestral re-
gion [g(x) = u(x)ρ(x)] rather than the total length of
the colon (L → ∞). For diffusion-dominated growth
(4Dλ/v2 & 1), this linear approximation remains ac-
curate for growth rate advantages as large as s∼100%,
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demonstrating the broad utility of the separation-of-
timescales approach in this regime. In contrast, we find
that deviations can emerge at much lower values of s
in the flow-dominated growth regime (4Dλ/v2 − 1 �
1), such that the fixation probabilities are often much
larger than expected under the separation-of-timescales
approximation (Fig. 3C). The spatial fixation profiles in
Fig. 3B show that this increase is primarily driven by en-
hanced fixation probabilities in lower regions of the colon
(Fig. 3C), which acts to expand the range of produc-
tion of successful beneficial mutations. These deviations
can be rationalized by the longer times required for lin-
eages to migrate across the ancestral region ∼v/`, such
that even small growth rate advantages can produce large
numbers of additional offspring before complete mixing
is achieved. However, despite these enhanced fixation
probabilities, we find that the long-term growth rates of
established mutations continue to match the separation-
of-timescales prediction above. By solving a related equa-
tion for the average density profile (Supplementary Infor-
mation 4.5), we find that the exponential growth rates
eventually approach S ∼ seλe even when seλeτmix � 1.
This shows that finite mixing can have a differential im-
pact depending on the timescales of the corresponding
evolutionary processes (e.g. establishment vs fixation).

APPLICATION TO THE HUMAN COLON

Our analytical results have shown that the effective evo-
lutionary parameters can strongly depend on the relative
magnitudes of growth, flow, and mixing across the large
intestine. How do these results extend to bacteria grow-
ing in the human colon? While direct measurements of
the growth rates and density profiles are difficult to ob-
tain in this system, rough estimates for many of the key
parameters were recently obtained by Cremer et al (28)
using a generalization of the model in Eq. (1). By explic-
itly modeling the consumption and production metabo-
lites along the length of the human colon (L∼2m), Cre-
mer et al (28) obtained predictions for the steady-state
growth rates and density profiles for a pair of representa-
tive species from the Bacteroides and Firmicutes phyla
(Fig. 4A).

An important feature of this model is a spatially vary-
ing flow rate, due to the absorption of water by the
colonic epithelium. Cremer et al (28) estimated that
this effect causes the flow rate to decline from v ≈
30µm/s to v ≈ 5µm/s over the length of the proxi-
mal colon (≈30cm). Given an estimated mixing rate of
D≈106µm2/s, the effective diffusion lengthscales range
from D/v ≈ 3− 20cm, and the corresponding timescales
range from D/v2≈16 minutes to 11 hours. These esti-
mates suggest that the in vitro growth rates of the rep-
resentative strains (λ = 0.6 − 1 hr−1) will be close to
washout at the highest flow rates, but far from washout

elsewhere, making it difficult to directly apply the results
from our minimal model in Figs 2 and 3.

To overcome this challenge, we developed a numerical
approach for calculating the effective evolutionary pa-
rameters in Eqs. (9), (10), and (14) using the steady-
state density profiles estimated by Cremer et al (28)
(Supplementary Information 5). The results are shown
in Fig. 4. In both cases, we find that the flow rate de-
creases sufficiently rapidly across the proximal colon that
the corresponding ancestral regions [g(x) = u(x)ρ(x)]
include a substantial contribution from slowly growing
cells. For example, the B. theta curves in Fig. 4E pre-
dict that about a third of the future common ancestors
will come from regions where growth rates are <0.5/day,
while another third will come from nutrient-rich regions
where growth rates are >0.5/hr. This suggests that these
resident populations will lie on the boundary between
diffusion-dominated and flow-dominated growth in Figs 2
and 3 above. This has several implications for the emer-
gent evolutionary dynamics:

Figure 4F shows that the effective growth rates are
about 3 times smaller than the maximum growth rates
attained at the entrance of the colon. This corresponds
to about 9 generations per day for the B. theta example
and about 5 generations per day for E. rectale. These
predictions are 5-10 times higher than the traditional
∼1/day estimates based on the daily biomass excreted
in feces (59, 60), which reflects the higher-than-average
growth rates experienced by evolutionarily relevant lin-
eages. Interestingly, these higher growth rates are more
consistent with direct measurements of B. theta genera-
tion times in germ-free mice (61), suggesting that some
of the emergent evolutionary parameters may be similar
in these environments, despite the vast differences in host
physiology.

In addition to these shortened generation times,
Fig. 4G shows that corresponding effective population
sizes are about 10-20 times smaller than the total num-
ber of bacterial cells in the colon. This leads to elevated
rates of genetic drift, but not at the levels necessary to
drive large changes in the frequencies of genetic variants
over a single host lifetime. Given the large number of
bacteria in the human gut [N ∼ 1013 (62)], these esti-
mates predict that a species with 1% relative abundance
would have an absolute rate of genetic drift of about
Λ≡λe/Ne∼10−9 per day. At this rate, genetic drift would
require more than a hundred years to generate even a 1%
shift in the frequency of a common genetic variant. This
stands in contrast to the rapid shifts in frequency that
are observed for some mutations in sequenced human fe-
cal samples (Fig. 5). This quantitative discrepancy sug-
gests that other factors, like natural selection or temporal
bottlenecks, are required to explain these observations.

Finally, Fig. 4H shows that the mixing timescales in
the human colon are sufficiently rapid that the estab-
lishment probabilities of beneficial mutations are well-
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FIG. 4 Applications to bacteria in the human colon. (a) Estimates of the flow velocity along the first 80 cm of the
human colon (28). Colors indicate the positions of different colonic segments. (b,c) Steady-state growth rate and density
profiles estimated for two representative species using the results of Ref. (28). Growth rate profiles were extracted from
the figures in Ref. (28), and the corresponding density profiles were calculated from Eq. (2) using the methods described in
Supplementary Information 5. (d,e) Predictions for the neutral fixation profile u(x) (d) and distribution of common ancestors
g(x) (e) obtained from the estimated parameters in (a-c) (Supplementary Information 5). In both cases, the predicted ancestral
distributions contain a large contribution from regions with low growth rates. (f-g) Predictions for the effective growth rate,
effective population size, and the net fixation probability of beneficial mutations (Supplementary Information 5).

approximated by the linear prediction [pfix∼2se] across
a wide-range of physiologically relevant fitness benefits.
These results show that our separation-of-timescales ap-
proach can apply even for human-relevant conditions,
yielding quantitative estimates for a number of key evo-
lutionary parameters.

Extensions to wall growth and other spatial refugia

So far, we have assumed that the emergent evolutionary
forces are dominated by the dynamics within the lumi-
nal fluid. However, our basic mathematical framework
can also be extended to incorporate certain forms of wall
growth (or other spatial refugia), which are known to
play an important role in a variety of microbial ecosys-
tems (23, 25, 42, 63, 64). While a complete analysis of
this case is beyond the scope of the present paper, many
of the key features can already be appreciated within a
simple model, in which a well-mixed luminal compart-
ment is connected to a large number of protected sub-
populations on the walls of the large intestine (Fig. S1,
Supplementary Information 6). By mitigating the effects

of fluid flow, these wall-bound populations have an ad-
vantage in contributing genetic material to the future
population. In extreme cases, these wall-bound popula-
tions can help recolonize the lumen after strong pertur-
bations like diarrhea. However, their influence on the
steady-state dynamics of genetic turnover in the gut are
less well understood.

Previous work has argued that wall growth comprises a
small fraction of the daily biomass production in the hu-
man gut, since the effective linear density in the wall (ρw)
is much smaller than the corresponding density in the
lumen (ρ`) (26, 28). By generalizing our separation-of-
timescales approach to this regime, we find that the long-
term rates of genetic turnover critically depend on the
engraftment rate ε, which represents the per-generation
probability for a luminal cell to successfully migrate into
one of the subpopulations on the wall (Supplementary
Information 6). When wall growth comprises a small
fraction of the total biomass production (ρwλw � ρ`λ`),
we find even tiny rates of engraftment,

εc ≈
(
ρwλw
ρ`λ`

)3/2

, (15)
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FIG. 5 Mutation frequencies within a Bacteroides
massiliensis population from a single human subject.
Relative abundance of B. massiliensis (top) and the frequen-
cies of single nucleotide variants in this species (bottom) in-
ferred from longitudinally sequenced fecal samples from a
previous study (15) (Methods). Blue trajectories highlight
a cluster of mutations that experienced a large shift in fre-
quency during the study (∆f ≈ 50%), despite relatively small
changes in the overall relative abundance of B. massiliensis
(∼2-fold; top). The timescale of this genetic shift (∆t ∼ 25
days) is many orders of magnitude faster than our predicted
timescale of genetic drift (∆t ∼ 1/Λ; Fig. 4 and Eq. 16),
even after accounting for the observed fluctuations in overall
relative abundance.

are sufficient to ensure that genetic drift is dominated by
the luminal compartment (Λ ≈ Λ`). This suggests that
there is a broad parameter regime where our previous
results still apply. When ε� εc, fluctuations within the
wall population start to become more important, and the
long-term rate of genetic drift is amplified by a factor of

Λ

Λ`
≈
(
ε

εc
+

√
ρw
ρ`

λ`
λw

)−2

� 1 . (16)

At even smaller engraftment rates, the separation-of-
timescales approximation eventually breaks down, and
the long-term dynamics start to be dominated by the se-
quential spread of strains across many isolated refugia
(Supplementary Information 6). These slow spreading
dynamics can lead to apparent rates of genetic drift that
are even weaker than the lumen (Λ � Λ`), despite the
fact that the relevant population of cells is significantly
smaller. This highlights how the dynamics of many dis-
tinct refugia can be qualitatively different than a single
refuge on its own.

This non-monotonic behavior illustrates the impor-
tance of the engraftment rate ε, which is currently poorly
constrained by experimental data. Previous estimates
in the human gut suggest that the total wall growth is
bounded by ρwλw/ρ`λ` . 10−3 (26). Using these esti-
mates as a guide, our model predicts that wall growth

should have a negligible impact on genetic drift as long
as ε & 10−4, and that engraftment rates of order ε∼10−6

are required to enhance the rate of drift by a factor of
∼103. These values are still too small to explain the rapid
shifts in frequency observed in sequenced fecal samples
(Fig. 5).

Our analysis also highlights the importance of the un-
derlying timescales of these dynamics: while smaller en-
graftment rates can produce higher rates of genetic drift,
these fluctuations still require at least ∼ρ`λ`/ρwλw gen-
erations to propagate back into the lumen before they
are eventually sampled in feces (Supplementary Infor-
mation 6). On shorter time scales, we expect that wall-
dominated genetic drift will generate autocorrelated fluc-
tuations in sequenced fecal samples, similar to the back-
ground selection scenario analyzed in Ref. (40). Under-
standing the dynamics of these lagged fluctuations – and
the signatures they leave in genetic data like Fig. 5 –
could provide a promising approach for measuring the
impact of wall growth from bulk metagenomic sequenc-
ing data.

DISCUSSION

The spatial organization of microbial communities can
strongly influence their ecological and evolutionary dy-
namics. Here we sought to quantify these effects in the
human gut microbiota, whose long-term composition is
shaped by lineages that manage to evade eventual dilu-
tion in feces. We have developed a mathematical frame-
work for predicting how stochastic evolutionary forces
emerge from simple models of bacterial growth in the
intestinal lumen, and how they give rise to the genetic
variation that can be observed in sequenced fecal sam-
ples.

While our simplified models neglect many important
features of microbial and host physiology, they make sev-
eral new predictions about the role of spatial structure
for the within-host evolution of the gut microbiota. Chief
among these is the finding that the emergent evolution-
ary dynamics can often be captured by effective models
that lack explicit spatial structure, even in cases where
longitudinal gradients have a large effect on local species
composition. Similar results are implicit in earlier stud-
ies that focused on neutral fixation and heterozygosity
(37, 38, 39, 65). Here we showed that this equivalence
extends to wider range of evolutionary phenomena, in-
cluding the establishment and spread of beneficial muta-
tions. This suggests that well-mixed models from popula-
tion genetics might have broader utility for modeling the
dynamics of genetic variants in sequenced fecal samples,
despite their explicit spatial structure. In these cases, our
results provide a basis for connecting the inferred param-
eters (e.g. effective selection coefficients and population
sizes) with specific weighted averages over the underlying
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growth and density profiles.

Consistent with previous intuition, we found that uni-
directional fluid flow can have a large impact on the emer-
gent evolutionary parameters in the gut. Populations
that are close to the washout threshold experience dra-
matically elevated rates of genetic drift — much larger
than would be predicted by the absolute number of divid-
ing cells (Supplementary Information 4.2). This shows
how long-term lineage dynamics can play an essential role
in extrapolating evolutionary parameters from absolute
growth and density measurements.

By applying our results to recent estimates from the
human gut, we found that continuous fluid flow (and
simple forms of wall growth) are unlikely to lower effec-
tive population sizes to the point where we would expect
large fluctuations in genetic composition within a host
lifetime. This suggests that additional factors, such as
natural selection or temporal bottlenecks, are necessary
to explain the rapidly changing mutation frequencies that
have been observed in sequenced human fecal samples
(7, 13, 14, 15, 16, 17, 18, 19, 20). We also found that the
spatial gradients generated by fluid flow can cause the
effective generation time to be about 5-10 times shorter
than the traditional ∼1/day estimates obtained from the
average growth rate across the colon (59, 60). This sug-
gests that the human gut microbiota may experience sub-
stantially more evolution than previously expected over
the course of a given year. It also suggests that relatively
small fitness advantages (s∼1−10%) may be sufficient to
drive large changes in the frequencies of genetic variants
over daily and weekly timescales. We note that our pre-
cise estimates should be treated with a degree of caution,
since they are currently derived from relatively rough es-
timates the underlying growth rates and density profiles
in the gut (28). Our framework provides a flexible ap-
proach for refining these estimates using future measure-
ments of spatially resolved growth rates (66) or microbial
abundances (32) in human subjects. Our results also
highlight the spatial locations where additional measure-
ments would be most informative for constraining our
estimates of the emergent evolutionary parameters.

Future experiments could test these predictions quan-
titatively using genetic barcoding techniques (67, 68, 69),
both in animal models (12), and potentially even in hu-
mans (70). For example, by introducing libraries of bar-
coded strains and tracking their relative fluctuations in
subsequent fecal samples, it should be possible to directly
measure the effective rate of genetic drift in Eq. (5) to
test our theoretical predictions in Fig. 4. Even stronger
tests are possible if the strain labeling events are coupled
to local environmental conditions (e.g. pH, mucin, etc.)
(71, 72, 73). By tracking the frequencies of these labeled
lineages as they spread out across the colon — and poten-
tially into the intestinal walls (32) — one could directly
measure the weighting function u(x) and its associated
mixing timescales. Our results provide a framework for

interpreting these spatiotemporal measurements, and for
using them to extract key unknown parameters like the
engraftment rate ε (Supplementary Information 6).

The limitations of our simple growth model create
many additional directions for future work. For exam-
ple, our results suggest that it will be critical to under-
stand how temporal variation in growth conditions – ei-
ther from regular circadian rhythms (74, 75) or larger
perturbations like antibiotics (15) – might alter the emer-
gent evolutionary forces we have studied here. It would
also be interesting to examine how more complex forms
of wall growth or other spatial refugia (61, 76, 77) might
contribute to long-term genetic turnover within the gut.
While the details of these models will necessarily differ
from the ones studied here, our results show how simi-
lar separation-of-timescales approaches may continue to
be useful for analyzing these additional scenarios as well.
By “integrating out” variation over shorter length- and
time-scales, these coarse-graining approaches can provide
a promising route for modeling evolutionary dynamics in
complex natural settings (78).

DATA AND CODE AVAILABILITY

Source code for the data analysis and figure generation
is available at Github (https://github.com/bgoodlab/
spatial_gut_evolution).
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[70] Maldonado-Gómez MX, et al. (2016) Stable engraftment
of bifidobacterium longum ah1206 in the human gut de-
pends on individualized features of the resident micro-
biome. Cell host & microbe 20(4):515–526.

[71] Naydich AD, et al. (2019) Synthetic gene circuits en-
able systems-level biosensor trigger discovery at the host-
microbe interface. MSystems 4(4):e00125–19.

[72] Merk LN, Shur A, Pandey A, Murray RM, Green LN
(2020) Engineering logical inflammation sensing circuit
for modulating gut conditions. bioRxiv.

[73] Loveless TB, et al. (2021) Molecular recording of sequen-
tial cellular events into dna. bioRxiv.

[74] Thaiss CA, et al. (2014) Transkingdom control of micro-
biota diurnal oscillations promotes metabolic homeosta-
sis. Cell 159(3):514–529.

[75] Leone V, et al. (2015) Effects of diurnal variation of gut
microbes and high-fat feeding on host circadian clock
function and metabolism. Cell host & microbe 17(5):681–
689.

[76] Lourenço M, et al. (2020) The spatial heterogeneity of the
gut limits predation and fosters coexistence of bacteria
and bacteriophages. Cell Host & Microbe 28(3):390–401.

[77] Donaldson GP, et al. (2020) Spatially distinct physiol-
ogy of bacteroides fragilis within the proximal colon of
gnotobiotic mice. Nature microbiology 5(5):746–756.

[78] Bergelson J, Kreitman M, Petrov DA, Sanchez A,
Tikhonov M (2021) Functional biology in its natural con-
text: A search for emergent simplicity. Elife 10:e67646.

[79] Albenberg L, et al. (2014) Correlation between intralumi-
nal oxygen gradient and radial partitioning of intestinal
microbiota. Gastroenterology 147(5):1055–1063.

[80] Espey MG (2013) Role of oxygen gradients in shaping
redox relationships between the human intestine and its
microbiota. Free Radical Biology and Medicine 55:130–
140.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2021.07.15.452569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452569
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

SUPPLEMENTAL INFORMATION (SI)

1. MICROSCOPIC DERIVATION OF THE REACTION-DIFFUSION MODEL

In this section, we introduce a microscopic birth-and-death model that reproduces the continuum limit described by
Eq. (3). We begin by deriving a mean-field model for the total population profile in Eq. (2). We assume that space
and time are divided into discrete intervals of size ∆x and ∆t, respectively. In a given interval ∆t, we will let mv(x)
denote the probability that an individual is carried from position x to position x+ ∆x by advection (flow). Likewise,
we will let 2mD(x) denote the probability that an individual moves to either x + ∆x or x − ∆x through diffusion
(mixing). Finally, we will let mb(x|{ρ(x, t)}) and md(x|{ρ(x, t)}) denote the probability that an individual gives birth
or dies, respectively; these probabilities will generally depend on both the position x as well as the current density
profile, ρ(x, t). In the limit of large densities, these assumptions yield a mean-field update rule:

ρ(x, t+ ∆t) = ρ(x, t) +mb(x|{ρ(x, t)})ρ(x, t)−mb(x|{ρ(x, t)})ρ(x, t)− [2mD(x) +mv(x)] ρ(x, t)

+ [mD(x−∆x) +mv(x−∆x)] ρ(x−∆x, t) +mD(x+ ∆x)ρ(x+ ∆x, t) ,
(S1)

whose continuum limit is given by

∂tρ(x, t) =
∂2

∂x2

[
mD(x)∆x2

∆t
· ρ(x, t)

]
− ∂

∂x

[
mv(x)∆x

∆t
· ρ(x, t)

]
+

[
mb(x|{ρ(x)})

∆t
− md(x|{ρ(x)})

∆t

]
· ρ(x, t) , (S2)

This allows us to identify the macroscopic parameters

D(x) ≡ mD(x)∆x2

∆t
, v(x) ≡ mv(x)∆x

∆t
, , (S3a)

b(x|{ρ(x)}) ≡ mb(x|{ρ(x)})
∆t

, d(x|{ρ(x)}) ≡ md(x|{ρ(x)})
∆t

, (S3b)

as well as the net growth rate,

λ(x|{ρ(x)}) ≡ b(x|{ρ(x)})− d(x|{ρ(x)}) , (S3c)

so that

∂tρ(x, t) = ∂2
x [D(x)ρ(x, t)]− ∂x [v(x)ρ(x, t)] + λ(x|{ρ(x)})ρ(x, t) . (S4)

At steady state, this reduces to

0 = ∂2
x[D(x)ρ(x)]− ∂x[v(x)ρ(x)] + λ(x)ρ(x) , (S5)

which can be rearranged to obtain Eq. (2) in the main text.
The relevant boundary conditions can be derived in several different ways. In the simplest version, we assume that

there is no input or output flux of bacteria from advection or diffusion through the left boundary (x = 0). This
implies that

mv(x−∆x)ρ(x−∆x) +mD(x−∆x)ρ(x−∆x)−mD(x)ρ(x) = 0 (S6)

which reduces to

v(x)ρ(x)− ∂x[D(x)ρ(x)] = 0 (S7)

in the continuum limit as expected. Similarly, we assume that there is no influx or outflux of bacteria from diffusion
at the right boundary (x = L). This yields

mD(x+ ∆x)ρ(x+ ∆x)−mD(x)ρ(x) = 0 (S8)

or

∂x[D(x)ρ(x)] = 0 . (S9)
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A related set of boundary conditions can be derived by assuming that λ(x) is positive only in some finite region of
space, and enforcing the physical constraint that ρ(x)→ 0 as x→ −∞ and ρ(x)→ const as x→∞. We will find that
this unbounded formulation can sometimes be more convenient in our later derivations, while yielding qualitatively
similar results as the bounded model above.

At steady state, these boundary conditions imply that total growth rate across the colon must equal the outflow at
x = L,

∫ L

0

λ(x)ρ(x)dx = v(L)ρ(L) , (S10)

such that the average per capita growth rate is given by

λ ≡
∫ L

0
λ(x)ρ(x) dx
∫ L

0
ρ(x) dx

=
v(L)ρ(L)
∫ L

0
ρ(x) dx

. (S11)

In the limit of a long colon, the resident population will often be dominated by regions with saturated growth

[
∫ L

0
ρ(x) dx ≈ Lρ(L)], so that

λ ≈ v(L)/L . (S12)

This allows us to recover the standard relationship between the average replication time and the total transit time
across the colon (59). We note that all of these calculations assume that the daily elimination of feces does not
substantially distrurb the steady-state assumption in Eq. (S5). This is partially justified by estimates that only ∼20%
of the colonic volume is excreted each day (28). However, further work is required to assess the impact of these daily
fluctuations on the steady-state assumptions employed here.

Stochastic dynamics of a rare lineage

We are now in a position to derive the stochastic dynamics of a rare mutant lineage when the larger population
has reached equilibrium. As long as the mutant is sufficiently rare, we expect it to have a negligible influence on
the environmental parameters, ri(x, t), so that λ(x) will remain close to its equilibrium form. We will now consider
scenarios where the mutant has a of modified birth and death rate, bm(x) and dm(x), which will also be constant in
time when the mutant is sufficiently rare. Since the mutant lineage will start out with a small number of cells, its
density profile ρm(x, t) must now be described by a stochastic update rule

ρm(x, t+ ∆t) = ρm(x, t) + (δρm(x))det + (δρm(x))stoch , (S13)

where the deterministic term is similar to the mean-field dynamics in Eq. (S4) above:

(δρm(x))det = [mb,m(x)−md,m(x)]ρm(x, t)− [2mD(x) +mv(x)] ρm(x, t)

+ [mD(x−∆x) +mv(x−∆x)] ρm(x−∆x, t) +mD(x+ ∆x)ρm(x+ ∆x, t) .
(S14)

The stochastic term is given by

(δρm(x))stoch =
√
mb,m(x)ρm(x)Zbx +

√
md,m(x)ρm(x)Zdx −

√
mD(x)ρm(x)ZDLx −

√
mD(x)ρm(x)ZDRx

−
√
mv(x)ρm(x)Zvx +

√
mD(x−∆x)ρ(x−∆x)ZDRx−∆x

+
√
mv(x−∆x)ρm(x−∆x)Zvx−∆x +

√
mD(x+ ∆x)ρm(x+ ∆x)ZDLx+∆x ,

(S15)

where the {Zix} are independent Gaussian random variables with zero mean and unit variance:

〈ZixZjy〉 = δi,jδx,y . (S16)

Note that due the advection and diffusion terms, the stochastic term is not diagonal in the ρm(x) basis, since it will
generally include correlations from neighboring x values. In our analysis below, we will often be interested in the
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moments of quantities like
∫
φ(x)δρm(x) dx, where φ(x) is an arbitrary deterministic function. In this case, it is often

helpful to diagonalize these integrals in the ρm(x) basis by rewriting them in the form

∫
φ(x)[δρm]detdx =

∫
{φ(x)[mb,m(x)−md,m(x)]ρm(x) + [φ(x+ ∆x)− φ(x)]mv(x)ρm(x)

+[φ(x+ ∆x)− φ(x)]mD(x)ρm(x) + [φ(x−∆x)− φ(x)]mD(x)ρm(x)} dx
(S17)

and
∫
φ(x)[δρm]stochdx =

∫ {
φ(x)

√
[mb,m(x) +md,m(x)]ρm(x)Zλx + [φ(x−∆x)− φ(x)]

√
mD(x)ρm(x)ZDLx

+[φ(x+ ∆x)− φ(x)]
√
mD(x)ρm(x)ZDRx

+[φ(x+ ∆x)− φ(x)]
√
mv(x)ρm(x)Zvx

}
dx ,

(S18)

These identities are particularly useful for calculating the generating functional of the mutant lineage, starting from
an initial density profile ρm(x, 0):

H[φ(x), t] =
〈
e−

∫
φ(x)ρm(x,t)

〉
, (S19)

Recursion relations for H[φ(x), t] can be obtained using standard approaches (57, 58). For example, by considering
the change in H[φ(x), t] over a single timestep ∆t, we can rewrite the generating function as

H[φ(x), t+ ∆t] =
〈
e−

∫
φ(x)ρm(x)dx · e−

∫
φ(x)[δρm(x)]detdx · e−

∫
φ(x)[δρm(x)]stochdx

〉
Zix,ρm(x)

(S20)

where the angle brackets denote an average over both Zix and ρm(x). By expanding the exponentials to leading order
in mi(x) and performing the relevant averages, we obtain a standard system of equations

∂H

∂t
=

{
φ(x)

mb,m(x)−md,m(x)

∆t
+ [φ(x+ ∆x)− φ(x)]

mv(x)

∆t
+ [φ(x+ ∆x)− φ(x)]

mD(x)

∆t

+[φ(x−∆x)− φ(x)]
mD(x)

∆t
− φ(x)2[mb,m(x) +md,m(x)]

2∆t
− [φ(x+ ∆x)− φ(x)]2mv(x)

2∆t

− [φ(x+ ∆x)− φ(x)]2mD(x)

2∆t
− [φ(x+ ∆x)− φ(x)]2mD(x)

2∆t

}
∂H

∂φ(x)
.

(S21)

In the continuum limit, this system reduces to the partial differential equation,

∂H

∂t
=

{
D(x)∂2

xφ(x) + v(x)∂xφ(x) + λm(x)φ(x)− Υm(x)φ(x)2

2
−D(x)[∂xφ(x)]2

}
∂H

∂φ(x)
, (S22)

subject to the initial condition

H[φ(x), 0] = e−
∫
φ(x)ρm(x,0)dx , (S23)

where we have defined the net growth rate,

λm(x) = bm(x)− dm(x) , (S24)

and total variance in offspring number,

, Υm(x) = bm(x) + dm(x) . (S25)

The generating function in Eq. (S22) is identical to the one produced by the Langevin model in Eq. (3). This shows
that Eq. (3) can be viewed as the continuum limit of the microscopic model in Eqs. (S14) and (S15). Both models are
similar to the linear branching processes that have been analyzed in previous work on evolutionary traveling waves
(56, 57, 58). The main difference in this case is the additional nonlinear derivative of φ(x) in Eq. (S22) which arises
from the conservative nature of the diffusive fluctuations in space.
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The linearity of the noise term in Eqs. (3) and (S22) yields a straightforward equation for the average mutant
density profile,

∂t〈ρm(x, t)〉 = ∂2
x[D(x)〈ρm(x, t)〉]− ∂x[v(x)〈ρm(x, t)〉] + λm(x)〈ρm(x, t)〉 , (S26)

which is similar to the mean field dynamics in Eq. (S4). Formal solutions for the entire distribution of ρm(x, t) can
also be obtained from Eq. (S22) using the method of characteristics. If we let τ measure time before the present, then
the characteristic curves φ(x, τ) are defined by

∂τφ(x, τ) = D(x)∂2
xφ(x, τ) + v(x)∂xφ(x, τ) + λm(x)φ(x, τ)− Υm(x)φ(x)2

2
φ(x, τ)2 −D(x)[∂xφ(x, τ)]2 , (S27)

with the initial condition φ(x, 0) = φ(x). The time-dependent generating function is then given by

H[φ(x), t] = e−
∫
φ(x,t)ρm(x,0) . (S28)

We will explore the behavior of this solution in several specific cases below.

2. DYNAMICS OF A NEUTRAL LINEAGE

We first consider the dynamics of a neutral lineage [λm(x) = λ(x), Υm(x) = Υ(x)], where the characteristic function
reduces to

∂τφ(x, τ) = D(x)∂2
xφ(x, τ) + v(x)∂xφ(x, τ) + λ(x)φ(x, τ)− Υ(x)φ(x)2

2
−D(x)[∂xφ(x, τ)]2 . (S29)

To analyze this equation, it will be useful to first consider the behavior of the linear version,

∂τφ0(x, τ) = D(x)∂2
xφ0(x, τ) + v(x)∂xφ0(x, τ) + λ(x)φ0(x, τ) , (S30)

which is obtained by dropping the φ2 and (∂xφ)2 terms in Eq. (S29). We note that the right-hand side of Eq. (S29) is
the adjoint of the deterministic dynamics for 〈ρm(x, t)〉 in Eq. (S26). Thus, if φ0(x, τ) is a solution of Eq. (S30), then

〈ρm(x, t)〉 ∝ ·φ0(x, t)

D(x)
e
∫ x
0

v(x′)
D(x′)dx

′
(S31)

is also a solution for 〈ρm(x, t)〉 for the particular initial condition

〈ρm(x, 0)〉 ∝ ·φ0(x, 0)

D(x)
e
∫ x
0

v(x′)
D(x′)dx

′
. (S32)

Since the average density profile of a neutral lineage must eventually approach 〈ρm(x, t)〉 ∝ ρ(x) at long times,
Eq. (S31) shows that φ0(x, τ) must also approach a steady state shape as τ →∞. The linearity of Eq. (S30) implies
that these steady-state solutions can be expressed in the general form

φ∗0(x|{φ(x′, 0)}) =

[∫
C(x′)φ(x′, 0)dx′

]
u(x) , , (S33)

where C(x) is a weighting function that we determine below, and

u(x) =
ρ(x) ·D(x)e

−
∫ x
0

v(x′)
D(x′)dx

′

∫
ρ(x′)2 ·D(x′)e

−
∫ x′
0

v(x′′)
D(x′′)dx

′′
dx′

(S34)

is a solution to the fixed point equation,

0 = D(x)∂2
xu(x) + v(x)∂xu(x) + λ(x)u(x) , (S35)

with an overall normalization set by
∫
u(x)ρ(x)dx = 1. We have adopted this normalization convention to be consistent

with the u(x) function defined in Ref. (37). In that work, the u(x) function was initially derived in terms of the Greens
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function of the deterministic dynamics in Eq. (S4). Here we see that it also arises as a solution to the linearized version
of the neutral characteristic function in Eq. (S29). We discuss this connection in more detail below.

The linearized solutions in Eq. (S33) will be important because they capture the leading order behavior of the
characteristic curves φ(x, τ) in the limit of small φ(x, 0). For example, by substituting Eq. (S33) into Eq. (S28), we
find that the leading order contribution to the generating function is given by

− logH[{φ(x, 0)}, t] =

∫
φ(x, τ)ρm(x, 0)dx→

[∫
C(x)φ(x, 0) dx

] [∫
u(x′)ρm(x′, 0)dx

]
+O(φ(x, 0)2) . (S36)

The average mutant density profile, 〈ρm(x, t)〉, then follows as

〈ρm(x, t)〉 ≡ −∂ logH[{φ(x, 0)}, t]
∂φ(x, 0)

→ C(x)

∫
u(x′)ρm(x′, 0) dx′ . (S37)

In particular, this shows that if ρm(x, 0) is proportional to the steady state density profile, ρm(x, 0) = fρ(x), then
〈ρm(x, t)〉 must be constant over time:

fρ(x) = C(x)

∫
u(x′) · fρ(x′, 0)dx′ = C(x)f . (S38)

This implies that C(x) = ρ(x), and hence

φ∗(x|{φ(x′, 0)}) =

[∫
ρ(x′)φ(x′, 0)dx′

]
u(x) . (S39)

The functional form of Eq. (S39) implies that ρ(x′)u(x) is the Greens function for the linearized dynamics in Eq. (S30)
in the limit that τ →∞, just as ρ(x)u(x′) is the Greens function for the deterministic dynamics of 〈ρm(x, t)〉 (37).

We will let τmix denote the “mixing timescale” required for φ0(x, τ) to approach its fixed point φ∗(x). This
timescale can have a complicated dependence on λ(x), v(x), and D(x), but due to the linearity of Eq. (S30), it must
be independent of the overall scale of φ(x, 0) — or equivalently, of ρm(x, t). This suggests that in sufficiently large
populations, we will be able to exploit a separation of timescales between the linearized growth dynamics (τmix) and
the slower evolutionary process of genetic drift [∝ 1/

∫
ρm(x, t)dx].

1. Variance accumulated due to genetic drift

As an example of this separation-of-timescales approach, we note that the variance of ρm(x, t) can be obtained from
the second order corrections to φ(x, τ) in the limit that φ(x, 0) is small:

− logH[{φ(x, 0)}, t] ∼
∫
φ(x, 0)〈ρm(x, t)〉 − 1

2

∫
φ(x, 0)φ(x′0)Cov(ρm(x, t), ρm(x′, t)) +O(φ(x, 0)3) . (S40)

We can calculate these contributions by computing the next order terms in the perturbation expansion for φ(x, τ)
above. By treating the nonlinear terms as a small correction, a basic iterative solution shows that the τ � τmix

behavior is given by

φ(x, τ) ∼
[∫

φ(x′, 0)ρ(x′)dx′
]
u(x)

− 1

2

[∫
φ(x′, 0)ρ(x′)dx′

]2 [∫ (
Υ(x′)u(x′)2 + 2D(x)(∂xu(x′))2

)
ρ(x′)dx′

]

︸ ︷︷ ︸
Λ

·u(x) · τ , (S41)

where Λ coincides with the effective rate of genetic drift in Eq. (7) in the main text. This iterative solution in Eq. (S41)
is self-consistently valid when

τmix � τ �
[∫

φ(x′, 0)ρ(x′)dx′
]−1

Λ−1 , (S42)
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which can be satisfied for any fixed value of τ � τmix by choosing sufficiently small values of φ(x, 0). Note, however,
that the converse is not true: for any fixed value of φ(x, 0) � 1/Λτmix, the perturbative solution in Eq. (S41) will
eventually break down for sufficiently large τ .

Fortunately, the variance of ρm(x, t) can be extracted from the generating function H[{φ(x)}, t] by choosing a
sufficiently low value of φ(x, 0) = φ(x) so that Eq. (S41) remains valid for each desired value of t. By substituting
this solution into Eq. (S28), we see that the second order contributions to the generating function are given by

logH[{φ(x, 0)}, t] ≈ −
[∫

φ(x′, 0)ρ(x′)dx′
] [∫

u(x′)ρm(x′, 0)dx′
]

+
1

2

[∫
φ(x, 0)ρ(x)dx

]2 [∫
u(x′)ρm(x′, 0)dx′

]
Λt ,

(S43)

so that

Var(ρm(x, t)) = ρ(x)2

[∫
u(x′)ρm(x′, 0)dx′

]
Λt . (S44)

This solution is self-consistently valid as long as t� τmix. By expressing this result as a coefficient of variation:

c2V (ρm(x, t)) ≡ Var(ρm(x, t))

〈ρm(x, t)〉2 =
Λt[∫

u(x′)ρm(x′, 0)dx′
] , (S45)

we obtain a natural definition of the drift timescale,

τdrift ≡ Λ−1

∫
u(x)ρm(x, 0)dx , (S46)

based on the time that the coefficient of variation first exceeds one.

2. Survival probability at long times

It will also be useful to calculate φ(x, τ) on timescales much longer than τdrift. This is particularly important for
calculating the survival probability of a lineage at long times. This survival probability can be calculated from an
asymptotic expansion of the moment generating function in the limit that t� τdrift � τmix:

H[{φ(x, 0}, t] ≈ [1− ps(t)]e−0 + ps(t)e
−O(t) . (S47)

Plugging in our method-of-characteristics solution for H[φ(x), t] above, we find that

ps(t) ∼
∫
φ(x, t)ρm(x, 0) (t� τdrift � τmix) (S48)

In this case, we can no longer calculate φ(x, τ) by appealing to the simple perturbative expansion above, since the
nonlinear terms (which represent the effects of fluctuations) will eventually become important for sufficiently large τ .
Nevertheless, due to the separation of timescales, we expect that φ(x, t) will remain close to φ∗(x) in a sense that we
will make more precise below. At long times, we know that φ(x, t) must eventually vanish (since neutral mutations
must always go extinct in an infinitely large population). Motivated by the behavior in the single locus case (54, 55),
we define a new function ψ(x, τ) such that

φ(x, τ) =
φ∗(x)

τ
· ψ(x, τ) , (S49)

anticipating that ψ(x, τ) approach some time-independent shape in the limit of large τ . In fact, it will be useful to
split up ψ(x, τ) into three independent components:

ψ(x, τ) = [ψ(0,∞)]︸ ︷︷ ︸
B

·
[
ψ(0, τ)

ψ(0,∞)

]

︸ ︷︷ ︸
f(τ)

·
[
ψ(x, τ)

ψ(0, τ)

]

︸ ︷︷ ︸
g(x,τ)

, (S50)
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where B is an arbitrary constant and f(τ) and g(x, τ) are unknown functions that satisfy the boundary conditions

f(∞) = 1 , g(0, τ) = 1 . (S51)

The spatial boundary conditions on φ(x, τ) provide an additional set of boundary conditions for the function g(x, τ).
At x = 0, we have

0 = ∂xφ(0, τ) =
B

τ
· f(τ)g(0, τ) · ∂xφ∗(0) +

Bφ∗(x)

τ
· f(τ)∂xg(0, τ) , (S52)

which implies that

∂xg(0, τ) = 0 . (S53)

Likewise, at x→∞ we must have φ(x, τ)→ 0, which implies that

lim
x→∞

φ∗(x)g(x, τ)→ 0 . (S54)

Substituting these definitions into Eq. (S29), we obtain a corresponding characteristic curve for g(x, τ):

0 =
g(x, τ)

τ
− g(x, τ)∂τ log f(τ)− ∂τg(x, τ) +D(x)∂2

xg(x, τ) + [v(x) + 2D(x)∂x log φ∗(x)] ∂xg(x, τ)

− Bf(τ)φ∗(x)g(x, τ)

2τ

(
Υ(x) + 2D(x)[∂x log φ∗(x) + ∂x log g(x, τ)]2

)
,

(S55)

subject to the boundary conditions

g(0, τ) = 1 , ∂xg(0, τ) = 0 , lim
x→∞

φ∗(x)g(x, τ) = 0 (S56)

We now seek an asymptotic solution of Eq. (S55) in the limit of large τ . We assume that f(τ) and g(τ) can be
written as a power series in 1/τ :

f(τ) ∼ f0 +
f1

τ
+ . . . , g(x, τ) ∼ g0(x) +

g1(x)

τ
+ . . . (S57)

The boundary conditions on f(τ) and g(x, τ) imply that

f0 = 1 , g0(0) = 1 , g1(0) = 0 , ∂xgi(x, 0) = 0 , lim
x→∞

φ∗(x)gi(x) = 0 . (S58)

After substituting these expansions into Eq. (S55) and collecting like powers of 1/τ , we find that the zeroth order
contribution yields:

0 = D(x)∂2
xg0(x) + [v(x) + 2D(x)∂x log φ∗(x)] ∂xg0(x, τ) . (S59)

The only solution that satisfies the boundary conditions at x = 0 and x =∞ is

g0(x) = 1 . (S60)

The next order contribution from Eq. (S55) then yields

0 = 1 +D(x)∂2
xg1(x) + [v(x) + 2D(x)∂x log φ∗(x)] ∂xg1(x, τ)

− Bφ∗

2

[
Υ(x) + 2D(x)(∂x log φ∗)2

]
,

(S61)

or

∂2
xg1(x) +

[
v(x)

D(x)
+ 2∂x log φ∗(x)

]
∂xg1(x) =

Bφ∗(x)

2D(x)

[
Υ(x) + 2D(x)(∂x log φ∗(x))2

]
− 1

D(x)
. (S62)

This is a first order equation for ∂xg1(x, ), which has the solution

g1(x) =

∫ x

0

e
−

∫ x′
0

v(x′′)dx′′

D(x′′)

φ∗(x′)2

∫ x′

0

e
∫ x′′
0

v(x′′′)dx′′′

D(x′′′)

[
Bφ∗(x′′)3

2D(x′′)

[
Υ(x′′) + 2D(x′′)(∂x log φ∗)2

]
− φ∗(x′′)2

D(x′′)

]
dx′′ . (S63)
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The limits of integration in Eq. (S63) were chosen to satisfy the boundary conditions g1(0) = 0 and ∂xg1(0) = 0.
To apply the remaining boundary condition at x = ∞, it is helpful to impose the mild assumption that λ(x)

eventually vanishes for sufficiently large x. This implies that the solutions for φ∗(x) must scale as

φ∗(x) ∼ Ce−
∫ x
0
v(x′)dx′′

D(x′) (S64)

for sufficiently large x. This means that the prefactor inside of the first integral must correspondingly grow as

∼ e
+

∫ x
0
v(x′)dx′′
D(x′) . Similarly, at large x, the inner integral must eventually approach a constant value at large x. The

only way that the combined expression can grow more slowly than 1/φ(x) is if the inner integral vanishes at x→∞:

∫ ∞

0

e
∫ x
0
v(x′)dx′

D(x′)

[
Bφ∗(x)3

2D(x)

[
Υ(x) + 2D(x)(∂x log φ∗(x))2

]
− φ∗(x)2

D(x)

]
dx = 0 , (S65)

which requires that

B =
2
∫
φ∗(x)φ

∗(x)
D(x) e

∫ x
0
v(x′)dx′

D(x′) dx

∫
[λ(x)φ∗(x)2 + 2D(x)(∂xφ∗(x))2] φ

∗(x)
D(x) e

∫ x
0
v(x′)dx′
D(x′) dx

. (S66)

Plugging this back into our expression for φ(x, τ), and recalling that

φ∗(x) =

[∫
φ(x, 0)ρm(x, 0)

]
u(x) (S67)

and

ρ(x) =
u(x)

D(x)
e
∫ x
0
v(x′)dx′

D(x′) , (S68)

we find that the characteristic curve φ(x, τ) reduces to

φ(x, τ) ∼ 2u(x)

Λ · τ , (S69)

where Λ is the effective rate of genetic drift defined in Eq. (7). The survival probability is therefore given by

ps(t) ∼
2
∫
u(x)ρm(x, 0)dx

Λ · t (S70)

We can combine this result with the average lineage size above to obtain the average size conditioned on survival:

〈ρm(x, t)〉 = 〈ρm(x, t)|>0〉 · ps(t) + 0 · [1− ps(t)] , (S71)

which yields

〈ρm(x, t)|>0〉 = ρ(x) · Λt

2
, (S72)

or

〈f |f > 0〉 =
Λt

2
. (S73)

Note that the dependence on the initial density profile ρm(x, 0) cancels out, so that the conditional mean is independent
of the initial conditions for times t� τdrift � τmix. Similarly, the conditional variance is given by

Var(f |f>0) =

(
Λt

2

)2

. (S74)

Motivated by these results, we can also solve for the full distribution of f(t) conditioned on survival. The key
insight will be to restrict our evaluation of the generating function regimes where

φ(x, 0) ∼ 〈ρm(x, t)| > 0〉−1 � (Λτmix)−1 . (S75)
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Equations (S73) and (S74) show that this will be sufficient to capture the typical values of ρm(x, t), though it will
break down for smaller sizes where the lineage is close to extinction. By restricting our attention to this regime, we
can again employ the short-time expansion that we used to derive the mean and variance in above. At intermediate
times τmix � τ � Λ−1, the generating function will quickly reduce to

φ(x, τ) ≈
[∫

φ(x′, 0)ρ(x′)dx′
]
u(x) . (S76)

Thus, it will be sufficient to consider effective initial conditions of the form φ(x, 0+) = zeffu(x). The next order
correction yields

φ(x, τ) = zeffu(x)− z2
effu(x) · Λτ

2
+O(Λτ)2 = φ(x, 0+)− φ(x, 0+)2 Λτ

2u(x)
, (S77)

which can be recast as a coarse-grained differential equation for φ(x, t):

∂φ(x, τ)

∂τ
= − Λ

2u(x)
φ(x, τ)2 , (τ � τmix) (S78)

After solving this equation, and applying the initial condition φ(x, 0+) =
∫
φ(x′, 0)ρ(x′)dx′, we find that

φ(x, τ) =
u(x)

∫
φ(x′, 0)ρ(x′)dx′

1 + Λτ
2 ·
∫
φ(x′, 0)ρ(x′)dx

. (S79)

The generating function for the total mutant frequency can be obtained by setting φ(x, 0) = z/N . This yields

Hf (z, t) ≈ 1− φ(x, t) = 1− u(x)z

1 + Λtz
2

, (S80)

and a corresponding survival probability

ps(t) ≈
2u(x)

Λt
. (S81)

The conditional generating function is therefore given by

Hf (z, t|f > 0) =
Hf (z, t)− (1− ps(t))

ps(t)
=

1

1 + Λt
2 · z

, (S82)

which is an exponential distribution with mean Λt/2. These expressions are equivalent to a well-mixed Wright-Fisher
model,

∂f

∂t
=
√

Λf · η(t) , (S83)

with an effective initial frequency f(0) = u(x) and an effective rate of genetic drift Λ.

3. Effective generation time

We can use this result to calculate the effective generation time by focusing on the long-term substitution rate of
neutral mutations. In principle, mutations can arise through a mixture of replication errors during cell division and
DNA damage between divisions. We can encapsulate both of these processes within our model using a spatially
varying mutation rate,

µ(x) = µb · b(x) + µ0(x) (S84)

where b(x) is the local birth rate, µb is the mutation rate from cell division, and µ0(x) is the background mutation
rate from DNA damage. Once a mutation occurs, our previous analysis shows that it will survive to times t � τmix

with probability

ps(x, t) ∼
u(x)[∫ (λ(x)u(x)2

2 +D(x)(∂xu(x))2
)
ρ(x) dx

]
· t
. (S85)
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At this point, the mutant and wildtype populations will have equivalent spatial distributions (since t � τmix).
Symmetry considerations then imply the ultimate fixation probability of the neutral mutant must be proportional to
its relative size, so that

pfix(x) = ps(x, t) ·
∫
〈ρm(x′, t)|>0〉dx′∫

ρ(x′)dx′
= u(x) . (S86)

This allows us to identify u(x) with the fixation probability of a neutral lineage, as previously noted by Ref. (37).
The long-term substitution rate of these neutral mutations is therefore given by

R =

∫
µ(x)u(x)ρ(x) dx . (S87)

We can connect this to the effective generation time by focusing on the subset of division-marking mutations, for
which µ(x) = µb · b(x), and

Rb = µb

∫
b(x)u(x)ρ(x) dx . (S88)

By definition, Rb must also be equal to µ · t/τg, where τg is the effective generation time. This yields an expression
for τg in terms of an average over u(x) and ρ(x),

1

τg
= λe ≡

∫
b(x)u(x)ρ(x)dx . (S89)

Equation (9) in the main text follows from this expression by replacing the local birth rate with its equivalent definition,
b(x) = λ(x) + d(x). We can use this result to re-express the rates of genetic drift above in more traditional units of
generations:

Var(f(t)) =

[∫ (
λ(x′)u(x′)2 + 2D(∂x′u)2

)
ρ(x′)dx′∫

λ(x′)u(x′)ρ(x′)dx′

]
· f · λet (S90)

The quantity in braces can then be identified as an “effective population size”

N−1
e =

∫ (
λ(x′)u(x′)2 + 2D(∂x′u)2

)
ρ(x′)dx′∫

λ(x′)u(x′)ρ(x′)dx′
, (S91)

which is equivalent to Eq. (10) in the main text. These definitions allow us to rewrite our earlier results in a particularly
compact form:

Var(f(t)) ≈ f · λet
Ne

, (S92)

ps(x, t) =
Neu(x)

λet
, (S93)

〈ρm(x, t)|>0〉 = ρ(x)

(
λet

Ne

)
. (S94)

Together, these results show that on timescales much longer than τmix, the dynamics of neutral lineages resemble a
Wright-Fisher model with effective generation time λ−1

e and effective population size Ne.

3. DYNAMICS OF A SELECTED LINEAGE

We can use a similar set of approaches to characterize the dynamics of selected mutations. In this case, the charac-
teristic curve in the generating function is now given by

∂τφ(x, τ) = D(x)∂2
xφ(x, τ) + v(x)∂xφ(x, τ) + λm(x)φ(x, τ)− Υm(x)φ(x)2

2
φ(x, τ)2 −D(x)[∂xφ(x, τ)]2 , (S95)
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where λm(x) is the position-dependent growth rate of the mutant strain. If λm(x) is sufficiently close to the wildtype
growth rate λ(x), then the dynamics of φ(x, t) on timescales τmix � τ � O(1/se) can be derived using the same
short-time perturbation approach as above. The first order contribution is given by

φ(x, τ) =

[∫
φ(x′, 0)ρ(x′)dx′

]
u(x) +

[∫
φ(x′, 0)ρ(x′)dx′

] [∫
[λm(x′)− λ(x′)]u(x′)ρ(x′)dx′

]
u(x) · τ . (S96)

The average mutant density profile is therefore given by

〈ρm(x, t)〉 =

[∫
u(x′)ρm(x′, 0)dx′

]
ρ(x) (1 + seλet) , (S97)

where

se ≡
1

λe

∫
[λm(x)− λ(x)]u(x)ρ(x)dx (S98)

is the effective selection coefficient defined in Eq. (12) in the main text. Iterating over multiple short time windows
then yields

〈ρm(x, t)〉 =

[∫
u(x′)ρm(x′, 0)dx′

]
ρ(x)eseλe·t . (S99)

For a constant growth rate advantage, λm(x) = (1 + s)λ(x), we find that

se = s ·
∫
λ(x)u(x)ρ(x) dx∫

[λ(x) + d(x)]u(x)ρ(x) dx
. (S100)

This shows that the effective selection strength is proportional to s as expected. When cell death is negligible in the
regions that dominate λ(x)u(x)ρ(x), this further reduces to se = s.

1. Establishment probability

In contrast to the neutral scenario above, the characteristic curve for a beneficial mutation must eventually saturate
at a nonzero fixed point:

φ(x, τ)→ w(x) , (S101)

described by the ordinary differential equation in Eq. (13). For small growth rate differences, we can solve for the
fixed point w(x) using a perturbation expansion that is structurally similar to the one we used in the neutral case
above. We first introduce a perturbation scale ε such that

λm(x) = λ(x) + εξ(x) ,

Υm(x) = Υ(x) + εζ(x) ,
(S102)

with ε� 1. We then rewrite w(x) as

w(x) = εBu(x)f(ε)g(x, ε) , (S103)

where u(x) is the linearized neutral fixed point above, and f(ε) and g(x, ε) are unknown functions that satisfy

f(0) = 1 , g(0, ε) = 1 , ∂xg(0, ε) = 0 , lim
x→∞

g(x, ε) = 0 . (S104)

Substituting these expressions into Eq. (13) in the main text, we obtain an analogous differential equation for g(x, ε):

0 = εξ(x)g(x, ε) +D(x)∂2
xg(x, ε) + [v(x) + 2D(x)∂x log u] ∂xg(x, ε)

− εBf(ε)u(x)g(x, ε)

2

(
Υ(x) + εζ(x) + 2D(x)[∂x log u(x) + ∂x log g(x, ε)]2

)
,

(S105)
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subject to the boundary conditions

g(0, ε) = 1 , ∂xg(0, ε) = 0 , lim
x→∞

u(x)g(x, ε) = 0 . (S106)

We then assume an analogous set of asymptotic expansions:

f(ε) = 1 + f1 · ε+O(ε2) ,

g(x, ε) = g0 + g1(x)ε+O(ε2) ,
(S107)

and substitute these expressions into Eq. (S105). At zeroth order in ε, we find that

0 = D(x)∂2
xg0(x, τ) + [v(x) + 2D(x)∂x log u(x)] ∂xu(x, τ) , (S108)

and hence g0 = 1 as above. At first order in ε, we have

0 = ξ(x) +D(x)∂2
xg1(x) + [v(x) + 2D(x)∂x log u(x)] ∂xg1(x)

− B

2u(x)

(
Υ(x)u(x)2 + 2D(x)[∂xu(x)]2

)
.

(S109)

This is a similar first order equation as in the neutral case, and the solution is given by

g1(x) =

∫ x

0

e
−

∫ x′
0

v(x′′)dx′′

D(x′′)

φ∗(x′)2

∫ x′

0

e
∫ x′′
0

v(x′′′)dx′′′
D(x′′′)

[
Bφ∗(x′′)3

2D(x′′)

[
λ(x′′) + 2D(x′′)(∂x log φ∗)2

]
− φ∗(x′′)2

D(x′′)
ξ(x′′)

]
dx′′ .

(S110)

As above, the finite boundary condition at x =∞ requires that B is chosen to satisfy

B =
2
∫
ξ(x)u(x)ρ(x)∫

[Υ(x)u(x)2 + 2D(x)(∂xu)2]ρ(x) dx
. (S111)

This implies that

w(x) = 2Neseu(x) + ε2 , (S112)

as expected from Eq. (11).
We can test the limits of this perturbation expansion by turning to a numerical solution of Eq. (13). In this case,

it is helpful to work in logarithmic space by defining

γ(x) ≡ log

[
w(x)

w(0)

]
. (S113)

This function satisfies the related differential equation

0 = D(x)∂2
xγ(x) +D(x)(∂xγ(x))2 + v(x)∂xγ(x) + λm(x)− Υm(x)w(0)eγ(x)

2
−D(x)w(0)eγ(x)[∂xγ(x)]2 , (S114)

with the initial conditions

γ(0) = 0 γ′(0) = 0 . (S115)

We will often be interested in scenarios where there is a critical position x = x0 above which λm(x) and Υm(x) vanish,
and where v(x) and D(x) eventually attain constant values, v(x) = v and D(x) = D. When this occurs, the solution
to Eq. (S114) for x > ` is given by

w(x) = − log

[
1− D∂xw(x0)

v

(
1− e−v(x−x0)/D

)]
+ w(x0) , (S116)

where the initial conditions w(x0) and ∂xw(x0) must be chosen to ensure that w(x) → 0 as x → ∞. By examining
the form of Eq. (S116), we see that the only way that this can happen is if w(x0) and ∂xw(x0) are related by

w(x0) = log

[
1− D∂xw(x0)

v

]
, (S117)
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which implies that

w(x) = − log
[
1−

(
1− e−w(x0)

)
e−v(x−x0)/D

]
. (S118)

In terms of the logarithm γ(x), these expressions become

∂xγ(x0) +
v

D

[
ew(0)eγ(x0) − 1

w(0)eγ(x0)

]
= 0 , (S119)

and

γ(x) = log
[
− log

[
1−

(
1− e−w(x0)

)
e−v(x−x0)/D

]
w(x0)−1

]
, (S120)

respectively. These expressions allow us to obtain numerical solutions for the fixation profile by first solving for w(x)
over the finite region 0 ≤ x ≤ x0 and then enforcing continuity with this analytical solution for the large-x limit at
x = x0. We used this approach to calculate the large-se behavior of the fixation probability in Figs 3 and 4, which is
described in more detail in Supplementary Information 4.4 and 5 below.

2. Long-term growth rate of strongly beneficial mutations

We can use a related approach to investigate the large-se behavior of the average mutant density profile in Eq. (S26).
We assume that the long-time behavior can be written in the form

〈ρm(x, t) = eStψ(x) , (S121)

where S is an effective exponential growth rate and ψ(x) is an arbitrary spatial profile. Substituting this ansatz into
Eq. (S26), we find that ψ(x) must satisfy the related differential equation

0 = ∂2
x[D(x)ψ(x)]− ∂x[v(x)ψ(x)] + [λm(x)− S]ψ , (S122)

and is subject to the same boundary conditions as 〈ρm(x, t)〉:

∂xψ(0) =
v

D
ψ(0) , ∂xψ(L) = 0 . (S123)

When λm(x) is close to λ(x), we can use a perturbative solution of Eq. (S122) to obtain an alternate derivation of
the effective selection coefficient in Eq. (12) in the main text.

To do so, we first note that the duality between ρ(x) and u(x) holds for ψ(x) as well. This motivates us to define
a function

φ(x) = D(x)ψ(x)e
−

∫ x
0

v(x′)
D(x′)dx

′
, (S124)

which satisfies the dual equation

0 = D(x)∂2
xφ(x) + v(x)∂xφ(x) + [λm(x)− S]φ(x) . (S125)

This is similar to Eq. (13) in the main text, except with Sφ(x) replacing the λm(x)w(x)2/2 + ∂xw(x) term. Thus, by
repeating our perturbative calculation for w(x) above, we conclude that S must be chosen to satisfy

S =

∫
[λm(x)− λ(x)]u(x)ρ(x) dx∫

u(x)ρ(x) dx
= seλe . (S126)

in agreement with the separation-of-timescales result in Eq. (12).

The advantage of Eq. (S122) is that it can still be used to solve for the exponential growth rate even when Sτmix � 1.
We carry out this calculation for the minimal model in Fig. 3 in Supplementary Information 4.5 below.
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4. ANALYTICAL SOLUTIONS FOR A MINIMAL MODEL OF BACTERIAL GROWTH

We can gain additional intuition for our results by considering a concrete model of microbial growth in the gut, where
many of the important quantities can be determined analytically. In this simplified model, we assume that the flow
velocity and mixing rates are spatially uniform, so that

v(x) ≡ v , D(x) ≡ D . (S127)

We also assume that the gut is long enough that the total length L can be regarded as effectively infinite (vL/D →∞).
We neglect cell death, and assume that microbial growth depends on a single nutrient that is supplied at the entrance
of the colon, which is consumed by cells during division. We assume that the growth rate has a step-like dependence
on the local nutrient concentration,

λ(c) =

{
λ if c > K

0 else
(S128)

with a maximum growth rate λ and saturation constant K. This function is qualitatively similar to the Monod-like
models that have been employed in previous work (28, 65), but with a sharper transition between the no-growth and
saturated-growth-rate regimes. This will turn out to be a crucial simplification that will allow us to obtain analytical
solutions for the growth rate and density profiles that are attained at steady state.

The assumptions of our model imply that the local nutrient concentration must be a monotonically decreasing
function of x, since the nutrients are progressively consumed as they flow down the colon. The step-like growth
function then implies that the local growth profile λ(x) must also develop a step-like form,

λ(x) =

{
λ if x < `,

0 else,
(S129)

which transitions from high-growth to no-growth at a critical position x = `. The location of this transition is
determined by the point where the local nutrient concentration first drops below c(x) = K. This depends in turn on
the local density profile ρ(x), which dictates the total consumption of resources between x = 0 and x = `.

An important feature of our minimal model is that it allows us to side-step this coupled calculation of n(x) and
ρ(x). To see this, we note that the solutions for the steady-state density profile in Eq. (S5) will have two degrees of
freedom, one of which is fixed by the overall normalization condition,

N =

∫
ρ(x) dx . (S130)

Since there are two independent boundary conditions for ρ(x) — and only one remaining degree of freedom — we
see that ` can be uniquely determined by the requirement that Eq. (S5) admits a non-trivial solution. Furthermore,
the solution to this “eigenvalue problem” also determines the shape of the density profile ρ(x) up to an overall
normalization factor, which is fixed by Eq. (S130). This shows that the explicit dependence on the nutrient profile is
completely encapsulated by the population size N , which will vary as a function of the nutrient input flux and the
saturation constant K. However, for a fixed value of N , the steady-state growth and density profiles are completely
determined by Eq. (S5). We adopt this perspective in our calculations below, treating N as an independent parameter
that must be determined experimentally.

We note that this same argument applies for any model that generates a single parameter family of growth profiles
like Eq. (S129). This suggests that Eq. (S129) may be considerably more general than the specific growth model
proposed above, and can also be viewed as a purely phenomenological approximation to the empirical growth profiles
in Fig. 4.

1. Steady state density profile

To solve for the steady-state density profile, it will be convenient to switch to diffusion units by defining the rescaled
variables:

z ≡ vx

2D
, ˜̀≡ v`

2D
, L̃ ≡=

vL

2D
. (S131)
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Equation (S5) can then be written in the dimensionless form

0 = ∂2
zρ(z)− 2∂zρ(z) + αθ(˜̀− z)ρ(z) (S132)

with α defined by

α ≡ 4Dλ

v2
. (S133)

Equation (S132) admits a simple piecewise solution for z < ˜̀ and z > ˜̀, respectively. In the bulk of the colon (z > `),
the density profile satisfies

∂2
zρ− 2∂zρ = 0 , (S134)

which has the general solution

ρ(z) = Ce2z +D , (S135)

where C and D are integration constants. The finite boundary condition at z = L̃→∞ requires that C = 0, so that
ρ(z) is simply a constant in this region.

On the other hand, when z < ˜̀, the density profile instead satisfies

∂2
zρ− 2∂zρ+ αρ = 0 (S136)

which has the general solution

ρ(z) = Aez [cos(kz) + b sin(kz)] (S137)

where

k ≡
√
α− 1 ≡

√
4Dλ

v2
− 1 (S138)

and A and b are a pair of integration constants. Applying the boundary condition at z = 0 yields

0 = −∂zρ(0) + 2ρ(0) = − [1 + bk] + 2 , (S139)

so that b = 1/k and

ρ(z) = Aez
[
cos(kz) +

1

k
sin(kz)

]
. (S140)

Finally, enforcing continuity at z = ˜̀ allows us to solve for D in terms of A:

D = Ae
˜̀
[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]
(S141)

while enforcing continuity of the derivative at ˜̀ yields an “eigenvalue” equation for ˜̀:

[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]
+
[
−k sin(k ˜̀) + cos(k ˜̀)

]
= 0 (S142)

This can be rewritten in the compact form

tan
(
k ˜̀
)

=
2
√
α− 1

α− 2
(S143)

whose solution is given by

˜̀=
1√
α− 1

tan−1

(
2
√
α− 1

α− 2

)
∼
{

2
α if α� 1
π√
α−1
− 2 if α− 1� 1

(S144)
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Given this value of ˜̀, the full piecewise solution for the density profile can be written as

ρ(z) =

{
Aρ
[
cos(kz) + 1

k sin(kz)
]
ez if z ≤ ˜̀

Aρ

[
cos(k ˜̀) + 1

k sin(k ˜̀)
]
e

˜̀
if z > ˜̀ (S145)

where the normalization constant Aρ is determined by the overall population size
∫
ρ(z) dz = N . Equation (6) then

implies that the neutral fixation probability u(x) is given by

u(z) =

{
Au
[
cos(kz) + 1

k sin(kz)
]
e−z if z ≤ ˜̀

Au

[
cos(k ˜̀) + 1

k sin(k ˜̀)
]
e−2(z−˜̀)−˜̀

if z > ˜̀ (S146)

where the normalization constant Au is fixed by the condition that
∫
u(z)ρ(z) dz = 1. The ancestral distribution

g(z) = u(z)ρ(z) then takes on the simple form

g(z) =




AuAρ

[
cos(kz) + 1

k sin(kz)
]2

if z ≤ ˜̀

AuAρ

[
cos(k ˜̀) + 1

k sin(k ˜̀)
]2
e−2(z−˜̀) if z > ˜̀

(S147)

which is independent of N as expected and normalized so that
∫
g(z)dz = 1.

2. Effective generation time and population size

To calculate the effective generation time and population size, it will be helpful to first obtain explicit expressions for
the normalization factors Aρ and Au above. In the limit that the length of the colon is very long (L̃� ˜̀, 1), the total

population size will be dominated by slowly growing regions (z > ˜̀), so that

N =

∫
ρ(z) dz ≈ Aρ

[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]
e

˜̀
L̃ , (S148)

or

Aρ ≈
N[

cos(k ˜̀) + 1
k sin(k ˜̀)

]
e˜̀L̃

. (S149)

Similarly, the normalization condition
∫
g(z)dz = 1 implies that

(AρAu)
−1

=

∫ ˜̀

0

[
cos(kz) +

1

k
sin(kz)

]2

dz

︸ ︷︷ ︸
I1

+

∫ ∞
˜̀

[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]2

e−2(z−˜̀) dz

︸ ︷︷ ︸
I2

, (S150)

which we have split into contributions from the integrals I1 and I2. The latter is given by

I2 =
1

2

[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]2

, (S151)

while the former evaluates to

I1 =
k2 ˜̀+ ˜̀+ 1

2k2
+
k2 − 1

4k3
sin(2k ˜̀)− 1

2k2
cos(2k ˜̀) . (S152)

Using these expressions, we can write the effective generation time in the form

λe
λ

=
1

λ

∫
λ(z)u(z)ρ(z) dz =

∫ ˜̀

0

u(z)ρ(z) dz =
I1

I1 + I2
, (S153)

where I1 and I2 are defined as above. This yields an exact expression,

λe
λ

=
4k(k2 ˜̀+ ˜̀+ 1) + 2(k2 − 1) sin(2k ˜̀)− 4k cos(2k ˜̀)

[4k3 ˜̀+ k2 + 4k(˜̀+ 1) + 1] + 2[k2 + k − 1] sin(2k ˜̀) + [k2 − 4k − 1] cos(2k ˜̀)
, (S154)
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whose large and small α limits are given by

λe
λ
∼
{

4
α if α� 1,

1 if α− 1� 1.
(S155)

This asymptotic behavior can also be obtained by considering the I1 and I2 integrals directly. When α� 1 is large,
the sine and cosine terms sum to ≈1 throughout the entire interval 0 ≤ z ≤ ˜̀. This implies that I1 ≈ ˜̀� 1 and
I2 ≈ 1/2 and hence

λe
λ
≈

˜̀

˜̀+ 1
2

≈ 4

α
, (α� 1) . (S156)

In the opposite extreme (α − 1 � 1, k � 1, and ˜̀� 1), the sine term dominates over the cosine term through the
bulk of the interval 0 ≤ z ≤ ˜̀, so that

I1 ≈
1

k2

∫ ˜̀

0

sin(k ˜̀)2dz =
1

k3

∫ π

0

sin2 u du =
π

2k3
(S157)

Meanwhile, Eq. (S142) shows that the sine and cosine terms sum to ≈ 1 at z = ˜̀, so that I2 = 1
2 � I1, and

λe
λ
≈

π
2k3

π
2k3 + 1

2

≈ 1 , (α− 1� 1) , (S158)

as desired.
We can use a similar strategy to evaluate the effective population size in Eq. (10). We begin by rewriting this

expression in the form

(
Ne
N

)−1

=
1

λe

[∫
ρ(z) dz

] ∫ [
λ(z)u(z)2 +

2λ

α
(∂zu)2

]
ρ(z) dz , (S159)

=

(
λ

λe

)(∫
ρ(z)dz

Aρ

)
(AρAu)

2




∫ ˜̀

0

u(z)2ρ(z) dz

AρA2
u︸ ︷︷ ︸

I3

+

∫ ˜̀

0

2(∂zu)2ρ(z) dz

αAρA2
u︸ ︷︷ ︸

I4

+

∫ ∞
˜̀

2(∂zu)2ρ(z) dz

αAρA2
u︸ ︷︷ ︸

I5


 , (S160)

which we have split into contributions from the integrals I3, I4, and I5. To evaluate these expressions, it is helpful to
use Eq. (S146) to show that

∂zu =

{
−Au

(
1+k
k

)
sin(kz)e−z if z ≤ ˜̀,

−2Au

[
cos(k ˜̀) + 1

k sin(k ˜̀)
]
e−2(z−˜̀)−˜̀

if z > ˜̀ (S161)

This implies that I5 is given by

I5 =
2

α
e−

˜̀
[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]3

, (S162)

while I3 evaluates to

I3 =
e−

˜̀

36k5 + 4k3

[
sin(k ˜̀)[27k4 − 24k2 − 3] + sin(3k ˜̀)[3k4 − 12k2 + 1] (S163)

− cos(k ˜̀)[54k3 + 6k]− cos(3k ˜̀)[10k3 − 6k]
]

+
16

9k2 + 1
, (S164)

and I4 is given by

I4 =
2

α

(k2 + 1

k

)2
[

e−
˜̀

36k5 + 40k3 + 4k

[
sin(k ˜̀)[9k4 + 26k2 − 3]− sin(3k ˜̀)[3k4 + 2k2 − 1] (S165)

− cos(k ˜̀)[36k3 + 4k] + cos(3k ˜̀)[4k3 + 4k]
]

+
8k2

9k4 + 10k2 + 1

]
. (S166)
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Putting everything together, we have

Ne
N
· vL

2D
=

e−
˜̀

cos(k ˜̀) + 1
k sin(k ˜̀)

· I1(I1 + I2)

I3 + I4 + I5
, (S167)

whose large and small α limits are given by

Ne
N
· vL

2D
∼
{

1
4 if α� 1,
π2e2

27 (α− 1)−3e
−π√
α−1 if α− 1� 1.

(S168)

As above, these large and small α limits can also be obtained by considering the individual integrals directly. When
α� 1 the sine and cosine terms sum to ≈1 (and ˜̀≈ 2/α� 1), so

I3 ≈
∫ ˜̀

0

e−z dz ≈ 2

α
, (S169)

and

I4 ≈
1

α

∫ ˜̀

0

e−zdz ≈ 2

α2
� I3 , (S170)

while I5 evaluates to

I5 ≈
∫ ∞

0

8

α
e−4z dz =

2

α
. (S171)

This implies that growth below ˜̀(represented by I3) and diffusion above ˜̀(represented by I5) make equal contributions
to the magnitude of genetic drift. Combining this with our asymptotic expressions for I1 and I2 above, we find that

Ne
N
· vL

2D
≈≈

2
α · 1

2
2
α + 2

α

≈ 1

4
, (α� 1) . (S172)

This shows that while the wall-clock rate of genetic drift (Λ) declines for large α, the longer generation times in this
regime end up compensating for this effect to yield a constant value of Ne/N .

In the opposite extreme (α− 1� 1, k � 1, and ˜̀� 1), the I3 integral will be dominated by a narrow region where
z∼O(1), so that

I3 =

∫ ˜̀

0

[cos(kz) +
1

k
sin(kz)]3e−z dz ≈

∫ ∞

0

(1 + z)3e−z dz = 16 . (S173)

and

I4 =
2

α

∫ ˜̀

0

(
1 + k

k
sin(kz)

)2

[cos(kz) +
1

k
sin(kz)]ze−z dz ≈

∫ ∞

0

2z2(1 + z)e−z dz = 16 . (S174)

Finally, since cos(k ˜̀) + 1
k sin(k ˜̀) ≈ 1, the contribution from I5 becomes

I5 ≈ 2e−
˜̀� I3 . (S175)

Combined with our expressions for I1 and I2 above, this yields,

Ne
N
· vL

2D
≈ e−˜̀

(
π

2k3

)2

2 · 16
≈ π2e2

27
(α− 1)−3e

− π√
α−1 , (α− 1� 1) . (S176)

This shows that in the α − 1 � 1 regime, genetic drift is dominated by a narrow slice of the ancestral distribution
with z ∼ O(1)� ˜̀. Since ρ(z) is exponentially increasing in this regime, the bacterial density in this narrow slice of
z values is also smaller than ρ(`) by an additional factor of ∼ exp(−˜̀). This leads to an effective population size that
is significantly smaller than the total number of dividing cells, which scales like

Nd
N
· vL

2D
= L̃

∫ ˜̀

0

Aρ

[
cos(kz) +

1

k
sin(kz)

]
ez dz ≈ 1 , (α− 1� 1) . (S177)
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3. Extension to multiple growth regions

To better understand the mechanisms responsible for driving the enhanced rates of genetic drift near the washout
threshold (α → 1), we considered a generalization of our minimal model that includes a washed out region at the
proximal end of the colon. We reasoned that such a model would allow us to determine whether washout itself (α < 1)
— vs an extended region of near-washout (α → 1) growth — is the primary cause of the behavior in Fig. 2F. For
simplicity, we assumed that the washed-out region extends all the way from x = 0 to x = −∞, so that it would have
the largest possible impact on the emergent evolutionary parameters. Our generalized model assumes that the growth
and flow velocity profiles can be written the piecewise form,

λ(x) =





λ0 if x < 0,

λ if 0 ≤ x ≤ `,
0 if x > `,

(S178)

and

v(x) =

{
v0 if x ≤ 0,

v if x > 0,
(S179)

where λ0 and v0 represent the growth and flow parameters in the washed out region.
To solve for the steady-state population density profile, it is helpful to adopt the same units as in Eq. (S131) above,

where all lengths are measured relative to the mixing lengthscale in the original the x > 0 region. The equation for
the steady-state density profile in the new region can then be written in the dimensionless form

0 = β2
0ρ(z)− 2β0∂zρ(z) + α0ρ(z) , (S180)

with α0 and β0 defined by

α0 ≡
4Dλ0

v2
0

, β0 ≡
v0

v
. (S181)

Here, we will be primarily interested in parameter combinations that prevent the population from fully establishing
in the x < 0 region (α0 < 1) and where the flow velocity is at least as large as in the x > 0 region (v0 & v).

The general solution to Eq. (S180) is given by

ρ(z) = A0e
v0z
v

[
ek0β0z + b0e

−k0β0z
]
, (S182)

where A0 and b0 are integration constants, and

k0 ≡
√

1− α0 . (S183)

The reflecting boundary condition at z = −∞ requires that b = 0, so that

ρ(z) = A0e
β0(1+k0)z . (S184)

By matching this solution to our previous solution for ρ(z) in the z > 0 region,

ρ(z) = Aρe
z [cos(kz) + b sin(kz)] , (S185)

we find that

A0 = Aρ (S186)

The derivative condition is slightly more complicated in this case, since v(x) changes abruptly at x = 0. In this case,
the conservation of particle flux across the boundary yields a generalized continuity condition,

D∂xρ(0)− − v0ρ(0)− = D∂xρ(0)+ − vρ(0)+ , (S187)

which, in dimensionless form, becomes

∂zρ(0)− − 2β0ρ(0)− = ∂zρ(0)+ − 2ρ(0)+ . (S188)
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By applying this condition to Eqs. (S184) and (S185), we find that

b =
1 + β0(k0 − 1)

k
. (S189)

Finally, the continuity conditions at z = ˜̀ yield an analogous eigenvalue equation for ˜̀:

cos(k ˜̀) +

(
1 + β0(k0 − 1)

k

)
sin(k ˜̀)− k sin(k ˜̀) + (1 + β0(k0 − 1)) cos(k ˜̀) = 0 , (S190)

which can be written in the compact form,

tan(k ˜̀) =
2
√
α− 1

[
1− β0(1−

√
1−α0)

2

]

α2 − 2 + β0(1−√1− α0)
. (S191)

The solution to this equation,

˜̀=
1√
α− 1

tan−1




2
√
α− 1

[
1− β0(1−

√
1−α0)

2

]

α2 − 2 + β0(1−√1− α0)


 , (S192)

will sensitively depend on the magnitude of the compound parameter

β0(1−
√

1− α0) =
v0

v

[
1−

√
1− 4Dλ0

v2
0

]
. (S193)

When β0(1 − √1− α0) � 1, the solution for ˜̀ is only slightly perturbed from its value in our original model in
Eq. (S142). Since we are primarily interested in cases where v0 & v, this condition will apply whenever

α0 �
1

β0
. 1 , (S194)

or in terms of the original parameters,

4Dλ0

v2
0

� v

v0
. 1 . (S195)

For a fixed value of λ0 . λ, this will always be satisfied for sufficiently large v0.

On the other hand, when β0(1−√1− α0) & 1, the solutions for ˜̀ and ρ(z) will be substantially different than the
original model in Supplementary Information 4.1. This can occur both when α0 is close to the washout threshold
(1− α0 � 1), but also for small values of α0 provided that the flow rates are sufficiently high:

1

β0
. α0 � 1 . (S196)

This second case corresponds to a scenario where the growth rate λ0 is much larger than λ, but v0 is still sufficiently
high to ensure that the washout condition is still satisfied (α0 � 1). This represents an inversion of the usual scenario,
in which the vast majority of biomass is produced in the washed-out region due to the diffusion of cells from a stable
population further downstream. While this is a potentially interesting regime, we believe that it is unlikely to apply
for a typical bacterial population in the human colon. We will therefore focus on the first case (α0 � β−1

0 . 1) below,
while leaving a full analysis of the other regimes for future work.

When α0 � β−1
0 . 1, the full piece-wise solution for the density profile reduces to

ρ(z) ≈





Aρe
−2β0|z| if z < 0,

Aρ
[
cos(kz) + 1

k sin(kz)
]
ez if 0 < z < ˜̀,

Aρ[cos(k ˜̀) + 1
k sin(k ˜̀)]e

˜̀
if z > ˜̀.

(S197)
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where ˜̀ is approximately equal to the original solution in Eq. (S142). Similarly, neutral fixation probability is given
by

u(z) ≈





Aue
−β0α0|z|/2 if z < 0,

Au
[
cos(kz) + 1

k sin(kz)
]
e−z if 0 < z < ˜̀,

Au[cos(k ˜̀) + 1
k sin(k ˜̀)]e

˜̀−2z if z > ˜̀,

(S198)

and the distribution of future common ancestors is

g(z) ≈





AuAρe
−2β0|z| if z < 0,

AuAρ

[
cos(kz) + 1+β0(k0−1)

k sin(kz)
]2

if 0 < z < ˜̀,

AuAρ[cos(k ˜̀) + 1+β0(k0−1)
k sin(k ˜̀)]2e2(˜̀−z) if z > ˜̀.

(S199)

The effective evolutionary parameters can be obtained by essentially repeating the same derivation from Supplemen-
tary Information 4.2. The total population size is still dominated by the z > ˜̀ region, so the normalization constant
Aρ is unchanged from before. The normalization condition,

∫
g(z)dz = 1, now yields a slightly different expression

for the normalization constant Au:

(AρAu)
−1

=

∫ 0

−∞
e−2β0|z| dz

︸ ︷︷ ︸
I−1

+

∫ ˜̀

0

[
cos(kz) +

1

k
sin(kz)

]2

dz

︸ ︷︷ ︸
I1

(S200)

+

∫ ∞
˜̀

[
cos(k ˜̀) +

1

k
sin(k ˜̀)

]2

e−2(z−˜̀) dz

︸ ︷︷ ︸
I2

,

which includes an additional contribution from the integral

I−1 ≡
∫ 0

−∞
e−2β0|z| dz =

1

2β0
. (S201)

The effective growth rate can then be expressed as

λe
λ

=

∫ 0

−∞

λ0

λ
(AρAu)e−2β0k0|z| dz +

∫ ˜̀

0

(AρAu)

[
cos(kz) +

1 + β0(k0 − 1)

k
sin(kz)

]2

dz , (S202)

=
α0β

2
0

α I−1 + I1

I−1 + I1 + I2
, (S203)

where I1 and I2 are the same as in Supplementary Information 4.2 above. Similarly, the effective population size can
be written as

(
Ne
N

)−1

=
1

λe

[∫
ρ(z) dz

] ∫ [
λ(z)u(z)2 +

2λ

α
(∂zu)2

]
ρ(z) dz , (S204)

=

(
λ

λe

)(∫
ρ(z)dz

Aρ

)
(AρAu)

2

[∫ 0

−∞

λ0u
2ρ(z) dz

λAρA2
u︸ ︷︷ ︸

I−3

+

∫ 0

−∞

2(∂zu)2ρ(z) dz

αAρA2
u︸ ︷︷ ︸

I−4

(S205)

+

∫ ˜̀

0

u(z)2ρ(z) dz

AρA2
u︸ ︷︷ ︸

I3

+

∫ ˜̀

0

2(∂zu)2ρ(z) dz

αAρA2
u︸ ︷︷ ︸

I4

+

∫ ∞
˜̀

2(∂zu)2ρ(z) dz

αAρA2
u︸ ︷︷ ︸

I5

]
,

which includes two new contributions,

I−3 =
λ0

λ

∫ 0

−∞
e−2β0|z| dz =

α0β0

2α
, (S206)

I−4 =
2

α

∫ 0

−∞

(
β0α0

2

)2

e−2β0|z| dz =
β0α

2
0

4α
, (S207)
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from the z < 0 region. Putting everything together, we find that

Ne
N
· vL

2D
=

e− ˜̀

cos(k ˜̀) + 1
k sin(k ˜̀)

· (
α0β

2
0

α I−1 + I1)(I−1 + I1 + I2)

I−3 + I−4 + I3 + I4 + I5
, (S208)

where I1, I2, I3, I4, and I5 are the same as in Supplementary Information 4.2 above. Comparing these results to our
previous expressions, we see that I−3 and I−4 are smaller than I3 + I4 + I5 by an additional factor of α0β0 � 1, so
they make a negligible contribution to the denominator of Eq. (S208). This implies that Ne is at least as large as
in the original model in Fig. 2. Taken together, this shows that the addition of a strongly washed out region to an
otherwise established population has only a small perturbative effect on the scaled effective population size (provided
that the washed out growth rate does not become arbitrarily large). We can therefore conclude that it is the extra
growth, rather than washout per se, that drives the enhanced rates of genetic drift in Fig. 2F.

4. Establishment probability of strongly beneficial mutations

We calculated the establishment probabilities in Fig. 3B,C by numerically solving the differential equation in Eq. (S114)
for the special case where λm(x) = (1 + s)λ(x). In our minimal model, this equation reduces to the simple form,

0 = Dγ′′ +D(γ′)2 + vγ′ + (1 + s)λ− w(0)

[
(1 + s)λeγ

2
−Deγ [γ′(x)]2

]
, (S209)

for 0 ≤ x ≤ `, while the boundary conditions are given by Eqs. (S115) and (S119):

γ(0) = γ′(0) = 0 , (S210a)

γ′(`) +
v

D

[
ew(0)eγ(`) − 1

w(0)eγ(`)

]
= 0 . (S210b)

Numerical solutions to this boundary value problem were obtained using the shooting method. For a given combination
of s, λ, v, and D, we scanned through a range of w(0) values and computed the corresponding values of γ(`) and
γ′(`) by integrating Eq. (S209) from the initial condition γ(0) = γ′(0) = 0 using the solve_ivp function in SciPy. We
then used these γ(`) and γ′(`) values to determine the unique choice of w(0) that satisfies the boundary condition in
Eq. (S210b). The resulting profiles, w(x) = w(0)eγ(x), were used to calculate the establishment probabilities in Fig. 3.

5. Long-term growth rate of strongly beneficial mutations

The establishment probabilities in Supplementary Information 4.4 can be contrasted with the long-term growth rates
of beneficial mutations derived in Supplementary Information 3.2. In our minimal model, Eq. (S122) reduces to

0 = ∂2
zψ(z)− 2∂zψ(z) + α

[
(1 + s)θ(˜̀− z)− sy

]
ψ(z) , (S211)

where we have adopted the same diffusion units as in Eq. (S131) above, and defined the scaled exponential growth
rate

y ≡ S

sλ
. (S212)

This equation admits a piecewise solution of the form,

ψ(x) =

{
A1e

z [cos(k1z) + b1 sin(k1z)] if z < ˜̀,

A2e
z
[
e−k2z + b2e

k2z
]

if z > ` ,
(S213)

where k1 and k2 are given by

k1 = k

√
1 +

sλ(1− y)

k2
, (S214)

k2 =

√
1 +

sy

α
, (S215)
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and k =
√
α− 1 is the neutral inverse length scale defined in Eq. (S138) above. The boundary conditions at z = 0

and z =∞ require that b1 = 1/k1 and b2 = 0. The continuity conditions at z = ˜̀ then lead to an eigenvalue equation
for y:

−k1 sin(k1
˜̀) + cos(k1

˜̀) = −k2

[
cos(k1

˜̀) +
1

k1
sin(k1`)

]
, (S216)

which can be rewritten in the compact form

tan

[
k ˜̀

√
1 +

αs(1− y)

α− 1

]
=

(
2
√
α− 1

α− 2

)
·

√
1 + αs(1−y)

α−1

[
1 +

√
1+αsy−1

2

]

1 + αs(1−y)
α−2 + 1−

√
1+αsy
α−2

. (S217)

When s = 0, this reduces to our earlier expression in Eq. (S143) relating k ˜̀ and α. For nonzero values of s, it allows
us to solve for y as a function of s and α.

Motivated by Fig. 3, we will be particularly interested in regimes where s� 1, but not necessarily small compared
to 1/λeτmix. In this regime, we will be able to show that the s-dependent terms in the square roots will always be
small compared to one. Expanding Eq. (S217) to first order in s, we obtain

1 + tan2(k ˜̀)

tan(k ˜̀)
· k ˜̀· (1− y)

2(α− 1)
=

(1− y)

2(α− 1)
+
y

4
− (1− y)

α− 2
+

y

2(α− 2)
, (S218)

We can evaluate this expression in the diffusion-dominated growth (α� 1) and flow-dominated growth (α− 1� 1)
regimes respectively. In the flow-dominated regime, we have k ˜̀∼ π − 2

√
α− 1, so that Eq. (S218) reduces to

π(1− y)

4(α− 1)3/2
=

(1− y)

2(α− 1)
+
y

4
+ (1− y)− y

2
, (S219)

and hence

y = 1− (α− 1)3/2

π
. (S220)

On the other hand, in the diffusion-dominated regime, we have k ˜̀∼ 2/
√
α, so that Eq. (S218) reduces to

(1− y)

2α
=

(1− y)

2α
+
y

4
− (1− y)

α
+

y

2α
, (S221)

and

y =
4

α
. (S222)

Switching back to S, this implies that S ≈ seλe in both the large and small α limits provided that s . 1.

5. APPLICATION TO BACTERIA IN THE HUMAN COLON

We sought to apply our framework to the human gut microbiota by leveraging the extensive parameter estimates in
Ref. (28). The authors of this study developed a quantitative modeling framework (similar to Eq. 1) that explicitly
accounts for the interplay between fluid flow, nutrient uptake, short-chain fatty acid production, and changes in local
pH, while neglecting cell death [d(x)� λ(x)]. The authors combined this computational model with in vitro growth
measurements and published data on human physiology to obtain spatially resolved predictions for the steady-state
growth rates and density profiles of two representative species in the human gut: Bacteroides thetaiotaomicron and
Eubacterium rectale. We adapted these estimates for our evolutionary framework using the procedure described below.

We began by manually extracting the steady-state growth rate profiles from Fig. 3B in Ref. (28). Since these growth
profiles represent solutions to a boundary value problem, we expect that small numerical artifacts in the extraction
process will prevent these initial estimates from admitting a steady state solution in Eq. (2). To overcome this issue,
we “refit” the extracted growth profiles by introducing a small horizontal shift

λrefit(x) = λmeasured(x+ δ`) , (S223)
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and determined the unique value of δ` that yields a steady state solution for u(x) and ρ(x). We carried out this refitting
step using a variant of the shooting method described in Supplementary Information 4.4, setting s→ 0 so that w(x)
becomes proportional to u(x). We verified that the fitted values of δ` were small compared to the other length scales
in the problem — e.g. the minimum diffusion length scale D/v(0), or the distance required for λmeasured(x) to decay
to half its maximum value — which suggests that our refitting procedure should have a negligible influence on the
inferred evolutionary parameters.

Once the relevant values of δ` were identified, we used the same numerical procedures to generate the steady-state
solutions for u(x), ρ(x), and w(x), under the assumption that Υ(x) ≈ λ(x). The effective evolutionary parameters in
Fig. 4F-H were obtained by numerically integrating the resulting spatial profiles over the relevant values of x.

Mutation trajectory data in Fig. 5. The example mutation trajectories for the B. massiliensis popula-
tion in Fig. 5 were obtained from our previous study (15), in which we performed deep metagenomic sequencing on
19 fecal samples from a single individual over a six month interval. Raw sequencing data was processed exactly as
described in Fig. S7F of Ref. (15), producing a list of inferred mutation trajectories (Supplemental Data 1). This
particular subject received a 2-week course of oral antibiotics starting on day 57, so we only plotted data from the
samples that were collected prior to the start of treatment.

6. EXTENSIONS TO WALL GROWTH AND OTHER SPATIAL REFUGIA

Most of our analysis has focused on a simple model where all of the dynamics take place along the longitudinal axis of
the lumen. In this section, we will show how our mathematical framework can be extended to account for simple forms
of cross-sectional structure as well. Our use of a one-dimensional model was motivated by previous work by Cremer
et al (26, 28), who argued that peristaltic mixing is sufficiently rapid in the human gut to destroy any cross-sectional
structure within the luminal fluid itself. In particular, given an estimated effective diffusion constant of D≈106µm2/s,
non-motile cells will diffuse across the inner diameter of the colon (d∼3mm) in ∼10 minutes (26). This is significantly
shorter than the rate of cell division (Fig. 4), which suggests that any cross-sectional structure will quickly average
out on longer evolutionary timescales (e.g. Fig. 5).

However, this simple argument will not necessarily extend to cells in the mucosa or the intestinal crypts (25), where
mixing is thought to occur more slowly. By mitigating the effects of dilution, these cells could have a natural advantage
in contributing genetic material to the future population, and could therefore play an outsized role in the emergent
evolutionary dynamics. While a detailed analysis of surface growth is beyond the scope of the present paper, we can
gain some insight into main effects by analyzing a simpler model — designed to provide a rough approximation to
wall growth in the human gut — in which a well-mixed luminal compartment is connected to K � 1 semi-isolated
subpopulations on the walls of the large intestine (Fig. S1).

We assume that each of these subpopulations (or refugia) contains ∼Nr cells, which compete amongst themselves,
but are otherwise isolated from the other subpopulations on the wall. These dynamics can be viewed as an approxi-
mation to the local competition that emerges from the diffusion of resources within a continuous surface population.
Here we approximate these dynamics with a simple local growth rate for each refuge,

λk(t) = λw ·
Nr

Nk(t)
, (S224)

which is inversely proportional to the current number of cells, Nk(t). We assume that the cells in the lumen compete
for a separate set of resources, so that they have their own local growth rate,

λ`(t) = λ` ·
N `

N`(t)
. (S225)

We note that the steady state growth rates λ` and λw will not necessarily be equal to each other, so that the typical
generation times will vary between the lumen and the wall.

In addition to growth, we assume that the wall populations and the luminal compartment can exchange cells with
each other. We will let mλw denote the per capita rate that cells migrate from the wall into the lumen, and we will
let ελ`/K denote the corresponding rate of migration from the lumen into a particular subpopulation on the wall.
Note that m and ε are both scaled by their local generation time, so that they can be interpreted as a traditional per
generation migration probability; the parameter ε coincides with the engraftment rate defined in the main text, and
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will play a crucial role in our analysis below. For simplicity, we will assume that individual wall populations cannot
exchange cells with each other directly, but only indirectly through diffusion into the lumen. We expect this to be a
reasonable approximation for scenarios like the human gut, where active mixing makes it much easier to travel large
distances within the lumen. Finally, we assume that the cells in the lumen are diluted out of the population at a
per capita rate δ. This dilution rate is the key feature that distinguishes the lumen from the subpopulations on the
walls: the latter populations only dilution indirectly by exchanging cells with the lumen. This provides them with a
privileged spatial location whose effects we will investigate below.

At steady state (N` ≈ N `, Nk ≈ Nr), the input and output from each compartment must balance, so that

∆N` = λ`N ` − δN ` +
K∑

k=1

[
mλwNr −

(
ελ`
K

)
N `

]
= 0 , (S226)

∆Nk = λwNr +

(
ελ`
K

)
N ` −mλwNr = 0 . (S227)

We can rearrange these equations to write them in the non-dimensional form,

(
δ

λ`

)
= 1 +

KNrλw
N`λ`

, m = 1 +
εN`λ`
KNrλw

. (S228)

Since N ` and KNr are both proportional to the longitudinal density of cells, we can also write this as

(
δ

λ`

)
= 1 +

ρwλw
ρ`λ`

, m = 1 +
ερ`λ`
ρwλw

, (S229)

where ρ` and ρw denote the longitudinal densities in the lumen and wall respectively. Similar to our luminal models
above, it will be useful to view these equations as determining δ and m as a function of the “input parameters” ε,
ρw, ρ`, λ`, and λw. Equation (S229) shows that this relationship is mediated through two compound parameters,

εw ≡
ρwλw
ρ`λ`

, εe ≡
ερ`λ`
ρwλw

. (S230)

The first parameter (εw) represents the ratio between the total biomass produced by wall growth and the biomass
produced within the lumen. Cremer et al (26, 28) argued that this ratio is likely to be small for the most abundant
species in the human gut, largely due to the differences in the longitudinal densities (e.g. ρw/ρ` . 10−3). The ratio
between λw and λ` is less well understood in situ, but it is reasonable to suppose that oxygen gradients (79, 80) and
dense cellular packing in the wall (23) might limit λw . λ` for the most abundant species that are sampled in feces
(26). Based on these considerations, we will restrict our attention to regimes where εw � 1.

In a similar manner, the second parameter (εe) can be interpreted as the ratio between the total number of cells that
engraft into the wall from the lumen, and the total number produced by division within the wall itself. The empirical
value of this parameter is largely unknown. Here we will focus on regimes where εe � 1, since this corresponds most
closely to our intuitive notion of a “refuge” (i.e., more cells produced within than without). We will see below that
higher engraftment rates are already effectively well-mixed with the lumen, similar to the cross-sectional structure
discussed above. In terms of the underlying parameters, the assumptions that εw � 1 and εe � 1 imply that

ε� ρwλw
ρ`λ`

� 1 . (S231)

Note, however, that we make no assumptions about the relative values of εw and εe. We will see that the relationship
between these two small parameters will determine the transition between refuge-dominated and lumen-dominated
dynamics below.

Stochastic dynamics of a rare lineage. We can obtain a diffusion model for the stochastic dynamics of a rare
mutant lineage by repeating our derivation in Supplementary Information 1. Let nk denote the number of mutant
cells in refuge k, and let n` the denote the corresponding number of cells in the lumen. Provided that nk � Nr and
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n` � N `, the infinitesimal change in these quantities in a timestep ∆t is given by

δn` =
(
λ`n`∆t+

√
λ`n`∆tZλ,`

)
+
∑

k

(
mλwnk∆t+

√
mλwnk∆tZm,k

)

−
(
δn`∆t+

√
δn`∆tZδ,`

)
−
∑

k

(
ελ`n`∆t

K
+

√
ελ`n`∆t

K
Ze,k

)
,

(S232a)

δnk =
(
λwnk∆t+

√
λwnk∆tZλ,k

)
−
(
mλwnk∆t+

√
mλwnk∆tZm,k

)

+

(
ελ`n`∆t

K
+

√
ελ`n`∆t

K
Ze,k

)
,

(S232b)

where the {Zi} again denote independent Gaussian random variables with zero mean and unit variance. After
eliminating δ and m using the steady-state conditions in Eq. (S229) and enforcing the limits that εw, εe � 1, these
equations can be written in the compact form,

δn` = −εwλ`n`∆t+
∑

k

λwnk∆t+
√

2λ`n`∆tZ` +
∑

k

(
√
λwnk∆tZm,k −

√
εeεwλ`n`∆t

K
Ze,k

)
, (S233a)

δnk = −εenkλw∆t+
εeεwn`λ`∆t

K
+
√
λwnk∆tZλ,k −

√
λwnk∆tZm,k +

√
εeεwλ`n`∆t

K
Ze,k , (S233b)

where we have merged the contributions of Zλ,` and Zδ,` into a single variable Z`. This update rule can also be
expressed in terms of the local mutation frequencies, fk ≡ nk/Nr and f` ≡ n`/N `, so that

δf` = εwλ`

(
1

K

∑

k

fk − f`
)

∆t+

√
2λ`f`∆t

N `

Z` +
∑

k

(√
εwλ`fk∆t

KN `

Zm,k −
√
εeεwλ`f`∆t

KN `

Ze,k

)
, (S234a)

δfk = −εeλw (f` − fk) ∆t+

√
λwfk∆t

Nr

Zλ,k −
√
λwfk∆t

Nr

Zm,k +

√
εeλwf`∆t

Nr

Ze,k . (S234b)

These frequency dynamics allow us to immediately identify two characteristic mixing timescales that equalize mutation
frequencies across compartments. From Eq. (S234a), we can identify a characteristic migration timescale,

Tm ≡
1

λ`εw
=

1

λ`
· ρ`λ`
ρwλw

, (S235)

which describes how rapidly the lumen population relaxes to the average composition of the wall. Similarly,
Eq. (S234b) contains a corresponding engraftment timescale,

Te ≡
1

λwεe
=

1

λw
· 1

ε
· ρwλw
ρ`λ`

, (S236)

which describes how rapidly the wall populations relax to a fixed composition of the lumen. The relationship between
these two timescales will play a critical role in determining the emergent evolutionary dynamics below.

Using the update rule in Eq. (S232a), we can also derive an equation for the generalization of the moment generating
function,

H(φ`, φ1, . . . , φK , t) ≡
〈
e−φ`n`(t)−

∑
k φknk(t)

〉
, (S237)

by repeating the derivation in Supplementary Information 1. This yields

∂H

∂t
= λ`

[
−εwφ` +

εeεw
K

∑

k

φk − φ2
` −

εeεw
2K

∑

k

(φk − φ`)2

]
∂H

∂φ`

+
∑

k

λw

[
φ` − εeφk −

φ2
k

2
− (φk − φ`)2

2

]
∂H

∂φk
,

(S238)
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with the initial condition H(~φ, 0) = e−φ`n`(0)−
∑
k φknk(0).

Rate of genetic drift. We can use Eq. (S238) to calculate the effective rate of genetic drift by generalizing
the separation-of-timescales approach in Supplementary Information 2. In this case, the linearized versions of the
characteristic curves, u` and uk = ur, satisfy the simple relation,

u` − εeur = 0 (S239)

and are normalized so that KNrur +N `u` = 1. This yields

ur =
u`
εe
, u` =

1

N`

[
1 +

λ`
λw

εw
εe

]−1

. (S240)

We can recognize the second term in this expression as the ratio between the mixing timescales Te and Tm above.
When Te � Tm, the value of u` is completely unchanged in the presence of the wall population. In both cases, the
value of ur is significantly larger than u`, consistent with the notion that the refuges constitute privileged spatial
locations. Our results show that the magnitude of this advantage is directly tied to the engraftment ratio εe, which
is consistent with our intuition above.

We can use these results to calculate the effective rate of genetic drift by repeating the perturbation expansion in
Supplementary Information 2. This yields

Λ = 2λ`u
2
`N ` + εeεwλw(ur − u`)2N ` + λwu

2
rKNr + λw(ur − u`)2KNr , (S241)

which reduces to

Λ ≈ 2

N`
·

1 + εw
ε2e[

1 + λ`εw
λwεe

]2 ≈
2λ`

N `

·
1 + 1

ε2

(
ρwλw
ρ`λ`

)3

[
1 + 1

ε
λw
λ`

(
ρw
ρ`

)2
]2 (S242)

in the limit that εw, εe � 1. The value of this expression critically depends on how the engraftment ratio εe compares
to the internal scales

√
εw and ρw/ρ`, which are both small compared to one. When εe �

√
εw � ρw/ρ`, we find that

Λ ≡ Λ` ≈
2λ`

N `

, (εe �
√
εw � ρw/ρ`) , (S243)

which is equivalent to the original rate of drift in the absence of the wall. In terms of the underlying parameters, this
regime occurs when

ε� εc ≡ (ρwλw/ρ`λ`)
3/2 . (S244)

This shows that even tiny rates of engraftment are sufficient to ensure convergence to the lumen-dominated regime.
In the opposite extreme, where εe �

√
εw � ρw/ρ`, we find that

Λ ≈ Λw ≡
2λw

KNr

, (εe � ρw/ρ` �
√
εw) , (S245)

which is equivalent to the rate of genetic drift in an effective population that is the same size as the entire wall. This
amplifies the rate of genetic drift by a factor of

Λw
Λ`

=
ρ`
ρw

λw
λ`
� 1 . (S246)

This amounts to a 1000-fold increase when ρw/ρ` ∼ 10−3 and λw ∼ λw. In terms of the underlying parameters, this
wall-dominated regime occurs when

ε� εw ≡
λw
λ`

(
ρw
ρ`

)2

, (S247)
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which is identical to the condition that the engraftment timescale Te in Eq. (S236) is much greater than the migration
timescale Tm in Eq. (S235). In other words, wall-dominated drift occurs when fluctuations in the wall propagate to
the lumen more rapidly than the other way around.

In between these two extremes (ρw/ρ` � εe �
√
εw), the rate of genetic drift scales as

Λ ≈ 2λ`

N `

(
εw
ε2e

)
≈ 2λ`

N `

(
ρwλw
ρ`λ`

)3
1

ε2
, (ρw/ρ` � εe �

√
εw) , (S248)

which interpolates between the Λ` and Λw limits above.

Breakdown of the separation-of-timescales approximation. The perturbation expansion used to derive
Eq. (S242) will be valid on timescales much longer than the mixing timescales Tm and Te in Eqs. (S235) and (S236).
At a minimum, this requires that the drift timescale in the entire gut, Tdrift∼1/Λ, must be long compared to Tm and
Te above. When Te � Tm, this yields the condition,

ε� λw

λ`N `

. (S249)

Intuitively, this condition requires that large numbers of cells must successfully engraft somewhere in the wall popula-
tion during a single wall generation time. However, in addition to this global constraint, our model in Eq. (S234b) also
assumed that the mutant lineage remains rare in individual refugia as well. This requires that the mixing timescale
Te must also be fast compared to the drift timescale within an individual subpopulation, Tdrift,k ∼ Nr/λw. This leads
to a more stringent condition,

ε� εw

Nr

, (S250)

which depends on the absolute population size of an individual refuge. (Note that this is the first time where we have
observed an explicit dependence on Nr, as opposed to the entire wall population, KNr.)

When ε . εw/Nr, the separation-of-timescales approximation breaks down, and the dynamics are instead dominated
by the slow spread of mutations across many approximately clonal refugia. We can understand these dynamics with
a simple heuristic picture that is valid in the limit that ε� εw/Nr. At any individual time step, each subpopulation
will be fixed for either the mutant or the wildtype, and the lumen will consist of a weighted mixture of these K clonal
populations. New lineages will enter a given subpopulation from the lumen at rate ελ`N `/K. The vast majority of
these lineages will go extinct; however, with probability 1/Nr, a lucky migrant will drift to fixation within the refuge
on a timescale ∼Nr/λw and will then propagate back into the lumen. The net effect of this event is to replace the
focal subpopulation with a single individual drawn at random from one of the other K refuges. Thus, the dynamics
in this regime will be equivalent to an effective model with K “individuals” that reproduce with an effective “division
rate” λe ≡ ελ`N `/KNr ≈ T−1

e . On timescales t� Te � Tm, this leads to an effective rate of genetic drift,

Λe ∼
ελ`N `

KNr

, (S251)

which can be substantially smaller than the wall-dominated regime above. We can now see that the origin of this
slow behavior is the long time that it takes for mutations to sequentially fix across many individual refugia. This
highlights an important way in which many isolated refugia are qualitatively different than a single one.

These results show that wall growth can only produce elevated rates of genetic drift within a limited parameter
regime,

1

Nr

(
ρwλw
ρ`λ`

)
� ε�

(
ρwλw
ρ`λ`

)3/2

, (S252)

which sensitively depends on the value of Nr. In particular, if Nr . (ρwλw/ρ`λ`)
1/2

, wall growth can only reduce
the apparent rates of genetic drift. Larger rates of drift are possible above this threshold, up to a maximum possible
amplification factor

Λmax

Λ`
∼
(
ρwλw
ρ`λ`

)
N

2

r . (S253)
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Unlike Eq. (S246) above, this bound becomes smaller for smaller values of ρwλw/ρ`λ`, and can only be counteracted
by larger local refuge sizes Nr. While the relevant magnitudes of Nr are largely unknown, these analytical results
nevertheless place strong constraints on the ability of wall growth (or other spatial refugia) to enhance the rate of
genetic drift. Rough estimates of the relevant parameters suggest that these effects are unlikely to explain the large
shifts in frequency observed in the human fecal samples in Fig. 5. Our results also highlight the importance of
migration through the lumen. This suggests that it will be impossible to fully separate the impact of wall growth
from the longitudinal dynamics within the luminal fluid above. We can attain a rough correspondence between these
two pictures by taking N ` ≈ ρ``g, where `g is the typical length scale of the ancestral region, g(x) ∝ u(x)ρ(x), in
Figs 2 and 4. However, we caution that our current analysis has focused only on the simplest possible caricatures of
wall growth, and omits many important features of real microbiota. A detailed understanding of these surface-growth
dynamics (and their interactions with the luminal fluid above) remains an important topic for future work.
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FIG. S1 Schematic of simplified model of wall growth. A well-mixed luminal compartment exchanges cells with K
semi-isolated subpopulations (or “refugia”) arranged on the walls. Cells move from the refugia to the lumen with a per capita
migration rate mλw, where λw is the growth rate on the wall; conversely, cells move from the lumen into the wall with a per
capita engraftment rate ελ`, where λ` is the growth rate in the lumen. Cells in the lumen experience constant dilution at
rate δ, while cells in the refugia can only be diluated if they happen to migrate into the lumen. The balance between growth,
dilution, and migration leads to steady state population sizes N` ≈ N ` and

∑
kNk ≈ KNr in the lumen and wall, respectively.

If the luminal compartment has a cylindrical geometry with length `g, these steady-state population sizes are proportional to
the longitudinal densities ρ` and ρw of the lumen and wall, respectively.
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