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ABSTRACT

Accurate propagation of signals through stochastic biochemical networks involves significant expenditure of cellular
resources. The same is true for regulatory mechanisms that suppress fluctuations in biomolecular populations.
Wiener-Kolmogorov (WK) optimal noise filter theory, originally developed for engineering problems, has recently
emerged as a valuable tool to estimate the maximum performance achievable in such biological systems for a given
metabolic cost. However, WK theory has one assumption that potentially limits its applicability: it relies on a linear,
continuum description of the reaction dynamics. Despite this, up to now no explicit test of the theory in nonlinear
signaling systems with discrete molecular populations has ever seen performance beyond the WK bound. Here we
report the first direct evidence the bound being broken. To accomplish this, we develop a theoretical framework
for multi-level signaling cascades, including the possibility of feedback interactions between input and output. In
the absence of feedback, we introduce an analytical approach that allows us to calculate exact moments of the
stationary distribution for a nonlinear system. With feedback, we rely on numerical solutions of the system’s master
equation. The results show WK violations in two common network motifs: a two-level signaling cascade and a
negative feedback loop. However the magnitude of the violation is biologically negligible, particularly in the parameter
regime where signaling is most effective. The results demonstrate that while WK theory does not provide strict
bounds, its predictions for performance limits are excellent approximations, even for nonlinear systems.

1 Introduction

Fundamental mathematical limits on the behavior of
biochemical reaction networks1–6 provide fascinating
insights into the design space of living systems. Though
these limits remain notoriously permeable compared to
their analogues in physics—subject to re-interpretaton
and exceptions as additional biological complexities
are discovered—they still give a rough guide to what is
achievable by natural selection for a given set of resources.
They also raise other interesting issues7,8: is selection
actually strong enough to push a particular system toward
optimality? When is performance sacrificed due to
metabolic costs or the randomizing forces of genetic
drift?

Information processing in cellular networks has been
a particularly fertile ground for discussing optimality.
Certain cellular processes like environmental sensing
rely on accurate information transfer through intrinsically
stochastic networks of reactions9,10. Other processes
in development and regulation depend on suppressing

noise through homeostatic mechanisms like negative
feedback11–14. Either scenario, whether maintaining a
certain signal fidelity or suppressing fluctuations, can be
quite expensive in terms of metabolic resources3,15, and
hence potentially an area where optimization is relevant.

Discussions of signaling performance limits are of-
ten framed in terms of information theory concepts like
channel capacity16,17, and complemented by direct ex-
perimental estimates18–25. In recent years, another tool
has emerged for understanding constraints on biological
signal propagation: optimal noise filter theory15,26–30,
drawing on the classic work of Wiener and Kolmogorov
(WK) in engineered communications systems31–33. The
theory maps the behavior of a biological network onto
three basic components: a signal time series, noise cor-
rupting the signal, and a filter mechanism to remove
the noise. Once the identification is made, the payoff is
substantial: one can use the WK solution for the opti-
mal noise filter function to derive closed form analytical
bounds on measures of signal fidelity (like mutual infor-
mation) or noise suppression (like Fano factors). These
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bounds depend on the network’s reaction rate param-
eters, allowing us to determine a minimum energetic
price associated with a certain level of performance15.
Finally, the theory specifies the conditions under which
optimality can be realized in a particular network.

To date, however, there has been one major caveat:
the WK theory relies on a continuum description of the
molecular populations in the network, and assumes all
reaction rates are linearly dependent on the differences of
these population numbers from their mean values. While
this may be a good approximation in certain cases (i.e.
large populations, with small fluctuations relative to the
mean), it certainly raises doubts about the universal valid-
ity of the bounds derived from the theory. Biology is rife
with nonlinearities, for example so-called ultrasensitive,
switch-like rate functions34 in signaling cascades. Could
these nonlinear effects allow a system to substantially
outperform a WK bound derived using linear assump-
tions? Curiously, every earlier attempt to answer this
question for specific systems26,28 (summarized below)
has yielded the same answer: the WK bound seemed to
hold rigorously even when nonlinearities and discrete
populations were taken into account.

The current work shows that this is not the full story.
We have found for the first time two biological examples
that can be explicitly proven to violate their WK bounds:
a two-level signaling cascade and a negative feedback
loop. To demonstrate this, we start by describing a
general theoretical framework for signaling cascades
with arbitrary numbers of intermediate species (levels),
with the possibility of feedback interactions between the
input and output species. We show how to calculate WK
bounds based on the linearized, continuum version of
this system, generalizing earlier WK results for single-
level systems. In order to check the validity of the
WK bound, we introduce an analytical approach for
calculating exact moments of the discrete stationary
probability distribution of molecular populations, starting
from the underlying master equation. Our method works
for arbitrarily long cascades in the absence of feedback. It
allows us to find cases in a nonlinear two-level signaling
cascade where the WK bound holds, as well as cases
where it is violated. A similar picture emerges in a
nonlinear single-level system with negative feedback, but
here we use an alternative numerical approach to tackle
the master equation. Remarkably, for the cases where
nonlinearity helps beat the WK bound, the magnitude of
the violation is tiny, typically fractions of a percent. We
observe a trend that as the signaling efficiency increases,

improving the biological function of the system, the size
of the violation decreases or vanishes. This makes the
WK value an excellent estimate for the actual performance
limit in the biologically relevant parameter regime. Thus
while the results show the WK theory does not rigorously
bound the behavior of nonlinear signaling systems, they
also put the theory on a more solid foundation for practical
applications.

2 Results

2.1 Signaling network
We begin by defining a general model of an #-level
cellular signaling cascade. Each specific system we
consider in our analysis will be a special case of this
model. As shown schematically in Fig. 1, we have an
input chemical species -0 followed by # downstream
species -1, . . ., -# . For example, if this was a model
of a mitogen-activated kinase (MAPK) cascade35, the
input -0 would be an activated kinase, which activates
another kinase via phosphorylation (-1), which in turn
leads to a sequence of downstream activations until we
reach the final activated kinase -# . The copy number
of species -8 is denoted by G8 = 0, 1, 2, . . .. Hence the
state of the system can be represented by the vector
x = (G0, G1, . . . , G# ). Stochastic transitions between
states are governed by an infinite-dimensional Markovian
transition rate matrix, . The element,x′,x of this matrix
represents the probability per unit time to observe state x′
at the next infinitesimal time step, given that the current
state is x. The values of these elements will depend on
the rates of the chemical reactions that are possible in our
signaling network, as described below. The probability
?x (C) of being in state x at time C evolves according to
the corresponding master equation36,

3

3C
?x (C) =

∑
x′

[
,x,x′?x′ (C) −,x′,x ?x (C)

]
. (1)

The first term on the right represents the gain of proba-
bility in state x due to transitions out of all other states
x′ into x, and the second term the loss due to transitions
out of x into all other states. We will focus on systems
where , is time-independent and the system reaches a
unique stationary distribution Px . The latter satisfies
Eq. (1) with the left-hand side set to zero,

0 =
∑
x′

[
,x,x′Px′ −,x′,xPx

]
. (2)

All physical observables we consider can be expressed
as averages over this stationary distribution. If 5 (x) is
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Figure 1. Overview of the #-level signaling cascade model, showing an example with # = 2. The signal from input
species -0 is propagated through to output species -# , with the possibility of feedback back to the input. In the
absence of feedback, the signal fidelity is measured via the error � , defined in terms of correlations between the
input fluctuations XG0(C) = G0(C) − 〈G0〉 and output fluctuations XG# (C) = G# (C) − 〈G# 〉. In the linearized system the
error is related to the input-output mutual information I through I = − 1

2 log2 � . For the system with feedback, the
quantity we focus on is n , the ratio of input variance 〈XG2

0 (C)〉 with feedback to the variance 〈XG2
0 (C)q=0〉 without.

This is also equal to the Fano factor 〈XG2
0 (C)〉/〈G0〉, which measures the effectiveness of feedback in suppressing

input fluctuations.

some function of state x, we will use 〈 5 〉 ≡ ∑
x 5 (x)Px

to denote the associated stationary average.
The detailed form of Eq. (2) for our cascade requires

specifying all the possible chemical reactions in our
network. We start with species -0, which is produced
with some rate '0(G# ) ≥ 0. We treat “production” as
occurring with a single effective rate, encompassing all
the substeps involved in activation of -0 from some
inactive form (not explicitly included in the model). The
functional form of the rate '0(G# ) can be decomposed
into two parts,

'0(G# ) = � + q(G# ). (3)

Here, � represents a constant baseline activation rate
and q(G# ) the perturbation to that rate due to feedback

from the final downstream species -# . q(G# ) is a poten-
tially nonlinear function, with q′(G# ) < 0 corresponding
to negative feedback (production of -0 inhibited by in-
creases in G# ), and q′(G# ) > 0 corresponding to positive
feedback (production of -0 enhanced by increases in G# ).
In the absence of feedback, q(G# ) = 0. The possibility
of feedback from the last species to an upstream one has
analogues in biological systems like the ERK MAPK
pathway37. Of course there may be feedback to multiple
upstream species (as is the case for ERK), but here we
only consider one feedback interaction as a starting point
for modeling.

In a similar spirit, the baseline rate � is a constant
for simplicity, representing the net effect of processes
leading to the activation of -0 that are not explicitly part
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of the model. There are also deactivation processes for
-0 (i.e. the action of phosphatases) which we model
by an overall deactivation rate W0G0 proportional to the
current population. We denote the constant W0 as the
per-capita deactivation rate. For the case of no feedback,
the marginal stationary probability of the input -0 is a
Poisson distribution Π(G0; Ḡ0)38,

Π(G0; Ḡ0) =
(Ḡ0)G04−Ḡ0

(G0)!
, (4)

where Ḡ0 ≡ �/W0, which in this case is equal to the mean
and variance: 〈G0〉 = 〈(XG0)2〉 = Ḡ0, with XG0 ≡ G0−〈G0〉.
Dynamically, the input signal has exponentially decaying
autocorrelations, with characteristic time W−1

0 . More
complex types of input (for example with time-dependent
� (C) or non-exponential autocorrelations) can also be
considered in generalizations of the model26,27. For our
system, once feedback is turned on, the input distribution
is no longer simply described by Eq. (4), and in general
will not have a closed form analytical solution.

For 8 > 0, the production function for the 8th species
-8 is '8 (G8−1) ≥ 0, depending on the population G8−1
directly upstream. The deactivation rate at the 8th level
is W8G8. We allow the '8 functions to be arbitrary, and
hence possibly nonlinear. Putting everything together,
we can now write out the explicit form of Eq. (2),

0 =

#∑
8=0

{
W8

[
(G8 + 1)Px+e8 − G8Px

]
+ '8 (G8−1)

[
Px−e8 − Px

] }
.

(5)

For compactness of notation, we define G−1 ≡ G#
and introduce the (# + 1)-dimensional unit vectors
e8, where e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0),
e2 = (0, 0, 1, 0, . . . , 0) and so on. Eq. (5) is gener-
ally analytically intractable, in the sense that we cannot
usually directly solve it to find the stationary distribution
Px . Despite this limitation, we can still make progress
on understanding signaling behavior in the cascade via
alternative approaches. Linearization of the production
functions, described in the next section, is one such ap-
proach. Crucially, this approximation facilitates deriving
bounds on signaling fidelity via the WK filter formalism.
Later on we will also introduce exact analytical as well as
numerical methods for tackling certain cases of Eq. (5),
to explore the validity of the WK bounds in the presence
of nonlinearities.

2.2 WK filter formalism
In this section, we provide a brief overview of linearizing
our signaling model and mapping it to a WK filter,
generalizing the approach developed in Refs. 26, 28, 38.
This mapping allows us to derive bounds on various
measures of signaling fidelity, which we know are valid
at least within the linear approximation. The aim here is
to summarize the bounds that we will later try to beat by
introducing nonlinearities. Additional details of the WK
approach can be found in the review of Ref. 38, which
presents three special cases of our model: the # = 1 and
# = 2 cascades without feedback, and the # = 1 system
with feedback. The WK bound for the general #-level
cascade, with and without feedback, is presented here
for the first time, with the complete analytical derivation
shown in the Supplementary Information (SI).

2.2.1 Linearization
If we consider the limit where the mean copy numbers
of all the chemical species in the cascade are large, we
can approximately treat each population G8 as a contin-
uous variable. If the magnitude of fluctuations in the
stationary state is small relative to the mean, we can also
approximate all the production functions to linear order
around their mean values,

'0(G# ) ≈ � − q1(G# − Ḡ# ),
'8 (G8−1) ≈ f80 + f81(G8−1 − Ḡ8−1), 8 > 0,

(6)

with some coefficients q1, f80, and f81. Here we have
absorbed the zeroth-order Taylor coefficient of q(G# )
around Ḡ# into �. Note that the sign convention for the
first-order coefficient q1 means that q1 > 0 corresponds
to negative feedback. The stationary averages in the
linearized case are:

Ḡ0 =
�

W0
, Ḡ8 =

f80
W8

for 8 > 0. (7)

We will use bar notation like Ḡ8 to exclusively denote
the linearized stationary mean values. Brackets like 〈G8〉
will always denote the true mean, whether the system is
linear (in which case 〈G8〉 = Ḡ8) or not.

One advantage of linearization is the ability to ex-
press dynamics in an analytically tractable form, using
the chemical Langevin approximation39. The Langevin
equations corresponding to Eq. (5) are:

3

3C
G0(C) = '0(G# ) − W0G0(C) + =0(C),

3

3C
G8 (C) = '8 (G8−1) − W8G8 (C) + =8 (C), 8 > 0,

(8)
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where the =8 (C) are Gaussian noise functions with cor-
relations 〈=8 (C)= 9 (C ′)〉 = 2X8 9W8 Ḡ8X(C − C ′). We can
rewrite Eq. (8) in terms of deviations from the mean,
XG8 (C) ≡ G8 (C) − 〈G8〉, plugging in Eqs. (6)-(7). The result
is:

3

3C
XG0(C) = −W0XG0(C) − q1XG# (C) + =0(C),

3

3C
XG8 (C) = −W8XG8 (C) + f81XG8−1(C) + =8 (C),

8 > 0.

(9)

As shown in the SI Sec. 1, this system of stochastic
differential equations can be solved using a Fourier
transform.

2.2.2 Finding bounds on signal fidelity by mapping the
system onto a noise filter

The linear chemical Langevin approach also allows us
to map the system onto a classic noise filter problem
from signal processing theory. We describe two versions
of this mapping here, the first for the system without
feedback, and the second with feedback.

1. No feedback system: Imagine we are interested
in understanding correlations between two dynamical
quantities in our system, as a measure of how accurately
signals are transduced through the cascade. The choice
of these two quantities, one of which we will label the
“true signal” B(C) and the other the “estimated signal”
B̃(C) within the filter formalism, depends on the biological
question we would like to ask. For the cascade without
feedback (q1 = 0), a natural question is how well the
output -# reflects the input -0. The function of the
cascade can be to output an amplified version of the
input40, but there is inevitably corruption of the signal as
it is transduced from level to level due to the stochastic
nature of the biochemical reactions in the network. If
we assign B(C) ≡ XG0(C) and B̃(C) ≡ XG# (C), it turns out
that because of the linearity of the dynamical system in
Eq. (9) the two are related through a convolution,

B̃(C) =
∫ ∞

−∞
3C ′ � (C − C ′) [B(C ′) + =(C ′)] . (10)

The details of the functions � (C) and =(C), as derived
from Eq. (9), are given in the SI Sec. 1. One can interpret
Eq. (10) as a linear noise filter: a signal B(C) corrupted
with additive noise =(C) (a function which depends on
the Langevin noise terms =8 (C)) is convolved with a
filter function � (C) to yield an estimate B̃(C). The filter
function, which encodes the effects of the entire cascade,

obeys an important physical constraint: � (C) = 0 for all
C < 0. This enforces causality, since it ensures that the
current value of B̃(C) (the output in our case) only depends
on the past history of the input plus noise, B(C ′) + =(C ′)
for C ′ < C.

The traditional version of filter optimization31–33 is
searching among all possible causal filter functions � (C)
for the one that minimizes the relative mean squared
error between the signal and estimate:

n (B(C), B̃(C)) = 〈( B̃(C) − B(C))2〉
〈B2(C)〉

. (11)

Since the averages are taken in a stationary state, n

is time-independent, and can have values in the range
0 ≤ n < ∞. For the case of a biological cascade however,
where B(C) and B̃(C) are the times series of input and
output fluctuations XG0(C) and XG# (C) respectively, we
expect that the output may be an amplified version of
the input. Hence a better measure of fidelity may be
a version of Eq. (11) that is independent of the scale
differences between signal and estimate. To define this
scale-free error, note that the optimization search over
all allowable � (C) necessarily involves searching over all
constant prefactors � that might multiply a filter function
� (C). Using �� (C) as the filter function instead of � (C),
is equivalent to switching from B̃(C) to �B̃(C), as can
be seen from Eq. (10). If we were to look at the error
n (B(C), �B̃(C)) for a given B̃(C) and B(C), we can readily
find the value of � that minimizes this error, which is
given by � = 〈B̃(C)B(C)〉/〈B̃2(C)〉. Plugging this value in,
we can define a scale-free error � as follows:

� (B(C), B̃(C)) = min� n (B(C), �B̃(C))

= 1 − 〈B̃(C)B(C)〉2

〈B2(C)〉〈B̃2(C)〉
.

(12)

By construction, � (B(C), B̃(C)) ≤ n (B(C), B̃(C)) and in fact
� has a restricted range: 0 ≤ � ≤ 1. The independence
of � from the relative scale of the output versus the
input makes it an attractive measure of the fidelity of
information transmission through the cascade. In fact,
within the linear chemical Langevin approximation, one
can show that � = 2−2I , where I is the instantaneous
mutual information in bits between B(C) and B̃(C)38. Thus
� will be the main measure of signal fidelity we focus
on when we discuss the no-feedback cacade.

For a given B(C) and =(C), we denote the causal filter
function � (C) that minimizes n (B(C), B̃(C)) as the Wiener-
Kolmogorov (WK) optimal filter �WK(C). Because this
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optimization includes exploring over all possible prefac-
tors of � (C), the same WK filter function simultaneously
minimizes n (B(C), B̃(C)) and � (B(C), B̃(C)), and the min-
ima of the two error types coincide. We will denote
this minimum as �WK. Hence we have n ≥ � ≥ �WK
in general for linear systems, and n = � = �WK when
� (C) = �WK(C).

The procedure for calculating �WK(C) for a specific
system, and then finding the optimal error bound �WK,
is based on analytical manipulation of the power spectra
associated with B(C) and =(C)33,38. We illustrate the
details in SI Sec. 1, applying the method to our cascade
model. This yields the following value for �WK for an
#-level cascade without feedback:

�WK = 1 −
#∏
9=1

W0W 9−1Λ 9

(W0 + _ 9)2 , (13)

where Λ 9 ≡ Ḡ 9−1f
2
91/(f90W0) is a dimensionless param-

eter associated with the 9 th level, and _ = _ 9 is the 9 th
root with positive real part (Re(_ 9) > 0) of the following
polynomial �(_):

�(_) = W2
0 +

#∑
9=1

W
2− 9

0

9∏
:=1

W2
:−1 − _2

W:−1Λ:

. (14)

This is a polynomial of degree 2# in _, and hence has
2# roots. Because the coefficients of _ in the polynomial
are real, the conjugate of any complex root must also be
a root. Finally, because only even powers of _ appear
in �(_), the negative of a root is also a root. Putting
all these facts together ensures that there will always be
# roots _ 9 where Re(_ 9) > 0. Moreover, among the
set of _ 9 , any complex roots come in conjugate pairs.
This guarantees that the expression for �WK in Eq. (13)
is always real. Note that the choice of ordering of the
roots _ 9 , 9 = 1, . . . , # is arbitrary, since it does not
affect the result. Within the linear approximation, �WK
gives a lower bound on the achievable � , and and hence
an upper bound on the maximum mutual information
between input and output, Imax = −1

2 log2 �WK.
Special cases of Eq. (13) recover earlier results. For

# = 1, we find the single root _1 = W0
√

1 + Λ1, and we
can rewrite Eq. (13) in a simple form:

�WK =
2

1 +
√

1 + Λ1
for # = 1, (15)

which is the result found in Ref. 26. Similarly, the # = 2
version, with more complicated but still analytically

tractable roots _1 and _2, was derived in Ref. 38. For the
case of general # , the roots _ 9 can be found numerically.
However, there is one scenario where we know closed
form expressions for all the _ 9 for any # . This turns
out to be the case where the biological parameters of
the cascade are tuned such that filter function � (C) in
Eq. (10) is proportional to �WK(C), and hence � = �WK.
(We do not need strict equality of the filter functions,
because the resulting value of � is independent of an
overall constant in front of � (C).) That this is even
possible is itself non-trivial; generally when we vary
biological parameters in a system mapped onto a noise
filter, we allow � (C) to explore a certain subspace of all
possible filter functions. It is not guaranteed that any
� (C) in that subspace will coincide with �WK(C) up to
a proportionality constant. However, as shown in SI
Sec. 1, for the no-feedback #-level model we can achieve
� (C) ∝ �WK(C) when the following conditions are met:

W 9 = W0

√
1 +

W 9−1

W0
Λ 9 , 9 = 1, . . . , #. (16)

These can be solved recursively to give nested radical
forms:

W1 = W0
√

1 + Λ1,

W2 = W0

√
1 +

√
1 + Λ1Λ2,

W3 = W0

√
1 +

√
1 +

√
1 + Λ1Λ2Λ3,

(17)

and so on. When these conditions are satisfied, the roots
_ 9 have straightforward analytical forms, namely _ 9 = W 9

for all 9 . Hence we can substitute the values in Eq. (17)
for _ 9 in Eq. (13) to get �WK explicitly when this scenario
is true. With the aid of the recursion relation in Eq. (16),
we can then write �WK in this case as:

�WK = 1 −
#∏
8=1

ℓ8

(1 +
√

1 + ℓ8)2
, (18)

where ℓ8 ≡ W8−1Λ8/W0 are dimensionless positive con-
stants. The simple form of the bound in Eq. (18) makes
it useful for analyzing the energetic cost of increasing
signal fidelity in a cascade. The biological implications
of this bound are discussed later on.

2. System with feedback: The case with feedback uses
a qualitatively different, and more abstract, mapping of
the system onto a noise filter. Here the true and estimated
signals are identified with the following quantities28,38:

B(C) ≡ XG0(C) |q=0, B̃(C) = XG0(C) |q=0 − XG0(C). (19)
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The subscript in XG0(C) |q=0 denotes that this XG0(C) is
obtained by solving Eq. (9) with the feedback turned off,
q(G# ) = 0 or equivalently q1 = 0. The XG0(C) without
the subscript represents the solution with the feedback
present. With this mapping, the error n from Eq. (11)
can be written as:

n (B(C), B̃(C)) = 〈( B̃(C) − B(C))2〉
〈B2(C)〉

=
〈XG2

0 (C)〉
〈XG2

0 (C) |q=0〉
.

(20)

The underlying motivation is that negative feedback can
serve as a homeostasis mechanism, dampening fluctua-
tions XG0(C) in the -0 species that are the direct target
of the feedback. Achieving a small n , by making B̃(C) as
close as possible to B(C), translates to an efficient sup-
pression of -0 fluctuations (relative to their undamped
magnitude in the absence of feedback). Note that in
this case n , rather than the scale-free error � , is the
quantity used to specify system performance. Despite
this difference, the problem is still a question of accurate
information propagation through the cascade, because we
need XG# (C) to encode a faithful representation of the in-
put fluctuations in order to be able to effectively suppress
them via negative feedback. Since the -0 fluctuations
in the no-feedback system follow the Poisson distribu-
tion of Eq. (4), the denominator in Eq. (20) is given by
〈XG2

0 (C) |q=0〉 = Ḡ0. Thus n = 〈XG2
0 (C)〉/Ḡ0, which is also

known as the Fano factor (ratio of variance to the mean),
a standard measure for the size of fluctuations. Pois-
son distributions have Fano factors n = 1, but negative
feedback in optimal cases can reduce n to values much
smaller than 1.

The close connections between the no feedback and
feedback analysis is apparent when we consider the
analogue of the convolution in Eq. (10) for the feedback
case. It turns out that B(C) and =(C) have the same
functional forms as in the no feedback case, but the filter
function � (C) is different (details in SI Sec. 2). Because
the WK bound depends only on the power spectra of
B(C) and =(C), the result for the bound �WK is exactly
the same as Eq. (13), with roots _ 9 specified by Eq. (14).
The interpretation of Eq. (13) in this case is as a lower
bound for the error in Eq. (20), namely n ≥ �WK.

Unlike the no-feedback cascade, where we can in
principle tune the biological parameters so that � =

�WK, for the linearized negative feedback system we
can only asymptotically approach the bound from above,

n → �WK. This limit is easiest to describe in the case
where the production functions at each level are directly
proportional to the upstream species, '8 (G8−1) ∝ G8−1
for 8 > 0. In terms of Eq. (6), this corresponds to
setting f81 = f80/Ḡ8−1, so that '8 (G8−1) = f81G8−1. The
following two conditions are then needed to approach
WK optimality: i) the levels in the cascade have fast
deactivation rates relative to the inverse autocorrelation
time of the input, W8 � W0 for 8 > 0; ii) the coefficient of
the negative feedback function is tuned to the value,

q1 = W0(
√

1 + Λeff − 1)
#∏
8=1

W8

f81
, (21)

where

Λeff =
1
�

[
#∑
8=1

1
f80

] −1

. (22)

In this limit n approaches �WK, with Eq. (13) evaluating
to the same form as Eq. (15), except for Λ replaced by
Λeff,

�WK =
2

1 +
√

1 + Λeff
. (23)

The # = 1 special case of this result, where Λeff = Λ1 =

f80/�, was the focus of Ref. 28.

2.2.3 Optimal bounds and metabolic costs
The general �WK bound in Eq. (13), and its corresponding
values in various special cases (Eqs. (15), (18), (23)),
depend on the production rate parameters f80, f81 and
the per-capita deactivation rates W8 at each state 8. These
processes have associated metabolic costs. If production
involves activation of a substrate via phosphorylation,
the cell has to maintain a sufficient population of inactive
substrate and also consumes ATP during phosphorylation.
Similarly, deactivation requires maintaining a population
of phosphatases. Achieving systems with better optimal
performance can be expensive. To illustrate this, consider
production functions of the form '8 (G8−1) = f81G8−1,
with f81 = f80/Ḡ8−1, as described in the previous section.
Since n from Eq. (20) is given in terms of relative
variance, a 10-fold decrease in the standard deviation
of fluctuations would require a 100-fold decrease in n .
To decrease the optimal �WK from Eq. (23) by a factor
of 100, one would need rougly a 104 increase in Λeff,
assuming we are in the regime where Λeff � 1. This
extreme cost of eliminating fluctuations via negative
feedback3 has to be borne across the whole cascade:
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since Λeff in Eq. (21) is potentially bottlenecked by one
f80 much smaller than the others, the mean production
rates for all the levels must be hiked up in order to increase
Λeff.

An analogous story emerges when we analyze the same
system without negative feedback. The relevant measure
here is the scale-free error � between the time series of
input and output populations, or equivalently the mutual
information I. Imagine we would like to increase the
mutual information upper bound Imax = −(1/2) log �WK
by 1 bit. In the limit of ℓ8 � 1 in Eq. (18), this can be
achieved for example by increasing every ℓ8 by a factor
of ≈ 16, regardless of # . Given f81 = f80/Ḡ8−1 and
Ḡ8−1 = f8−1,0/W8−1 we can evaluate the dimensionless
constants associated with level 8 as Λ8 = f80/(Ḡ8−1W0)
and ℓ8 = (W8−1/W0)Λ8 = (f80/f8−1,0) (W8−1/W0)2. Hence
increasing ℓ8 requires either increasing the relative mean
production between the 8th level and its predecessor, or
the per-capita deactivation rate of the latter (if 8 > 0), or
some combination of both. Note the Λ8 parameter has a
simple physical interpretation here: the average number
of 8 molecules produced per molecule of -8−1 during
the characteristic time interval W−1

0 of input fluctuations.
The massive cost of achieving multiple bits of mutual
information between input and output in a biological
signaling cascade is consistent with the narrow range of
experimentally measured I values, spanning ∼ 1 to 3
bits18–25, with most systems near the lower end of the
spectrum.

2.3 Nonlinearity in # = 1 signaling models: earlier
attempts to go beyond the WK limit

The linearized noise filter approach described above pro-
vides a general recipe for deriving bounds on signaling:
i) start with a linear chemical Langevin description of
the system; ii) identify signal and estimate time series
that are based on observables of interest, and are re-
lated via convolution in terms of some system-specific
filter function � (C); iii) derive the optimal filter function
�WK(C) and the the corresponding error bound �WK; iv)
explore if and under what conditions the system can reach
optimality. But the procedure leaves open an important
question: is the resulting bound �WK a useful approxi-
mation describing the system’s performance limits, or
can biology potentially harness nonlinearity to enhance
performance significantly beyond the WK bound? We
know that nonlinear, Hill-like functional relationships
are a regular feature of biological signaling41, manifested
in some cases as an extreme switch-like input-output

relation known as ultrasensitivity34. Is �WK still relevant
in these scenarios? This section summarizes previous
efforts to answer this question (all for the # = 1 case),
setting the stage for our main calculations.

2.3.1 Nonlinearity in the # = 1 model without feedback
Ref. 26 derived an exact solution for the no-feedback # =

1 system with an arbitrary production function '1(G0)
and discrete populations. The input signal remains the
same as in the linear case, governed by production rate
'0(G# ) = � and deactivation rate W0. The starting point
is expanding '1(G0) in terms of a series of polynomials,

'1(G0) =
∞∑
==0

f1=E= (G0; Ḡ0). (24)

Here, E= (G0; Ḡ0) is a polynomial of =th degree in G0,
which depends on Ḡ0 = �/W0 as a parameter. The
functions E= (G0; Ḡ0) are variants of so-called Poisson-
Charlier polynomials, whose properties are described in
detail in the SI Sec. 4. Similar expansions have found
utility in spectral solutions of master equations42,43. The
most important characteristic of these polynomials is
that they are orthogonal with respect to averages over
the Poisson distribution Π(G0; Ḡ0) defined in Eq. (4). If
we denote 〈 5 (G)〉Ḡ ≡ ∑∞

G=0 5 (G)Π(G; Ḡ) the average of
a function 5 (G) with respect to a Poisson distribution
Π(G; Ḡ), then26,44

〈E=′ (G; Ḡ)E= (G; Ḡ)〉Ḡ = =!Ḡ=X=′,=. (25)

The first few polynomials are given by:

E0(G; Ḡ) = 1, E1(G; Ḡ) = G − Ḡ,

E2(G; Ḡ) = (G − Ḡ)2 − G.
(26)

Eq. (25) allows the coefficients f1= from Eq. (24) to be
evaluated in terms of moments with respect to Π(G0; Ḡ0),

f1= =
〈E= (G0; Ḡ0)'1(G0)〉Ḡ0

Ḡ=0=!
. (27)

Using Eq. (26) we can write the first two coefficients as

f10 = 〈'1(G0)〉Ḡ0 , f11 = Ḡ−1
0 〈(G0− Ḡ0)'1(G0)〉Ḡ0 . (28)

They have a simple physical interpretation: f10 is the
mean production rate and f11 is a measure of how steep
the production changes with G near Ḡ, and they are exactly
the same as the coefficients in the linear expansion of
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Eq. (6). If f1= ≠ 0 for any = ≥ 2 then the production
function '1(G0) is nonlinear.

The exact expression for the error � derived in Ref. 26
takes the form:

� = 1 −
Ḡ0W

2
1f

2
11

(W0 + W1)2

[
W1f10 +

∞∑
==1

f2
1=W1=!Ḡ=0
W1 + =W0

] −1

.

(29)

The nonlinear f1= coefficients for = ≥ 2 contribute to the
expression in the brackets as f2

1= multiplying a positive
factor, and hence if nonzero always act to increase the
error regardless of their sign. It turns out that Eq. (29)
is bounded from below by the # = 1 WK limit from
Eq. (15),

� ≥ �WK =
2

1 +
√

1 + Λ1
, (30)

with Λ1 = Ḡ0f
2
11/(f10W0). The WK limit is achieved

when W1 = W0
√

1 + Λ1, just as predicted by Eq. (17), and
when '1(G0) has the optimal linear form, 'opt

1 (G0) =

f10 + f11(G0 − Ḡ0), with all f1= = 0 for = ≥ 2.
Increasing the slope of '1(G0) at G0 = Ḡ0 will increase

f11 and hence Λ1, progressively decreasing the �WK
limit. This can be seen in Fig. 2, which illustrates
different production functions and the corresponding
error values. Eventually, the slope will become so steep
that it is impossible to have a purely linear function
'1(G0) with that value of f11. This is because f11 must
always be smaller than f10/Ḡ0 to have a linear production
function that is everywhere non-negative, '1(G0) > 0
for all G0 ≥ 0. f11 can be arbitrarily large for very steep,
sigmoidal production functions '1(G0), but in this case,
the error will be significantly larger than �WK due to
the contributions from the nonlinear coefficients f1=,
= ≥ 2. We see this for the largest values of Λ1 in Fig. 2B,
with the added error due to nonlinearity overwhelming
the benefit from large Λ1. In summary, for the # = 1
no-feedback model, there is no way to beat the WK limit,
regardless of the choice of '1(G0).

2.4 Nonlinearity in the # = 1 TetR negative feedback
circuit

Ref. 28 studied an # = 1 negative feedback loop in-
spired by data from an experimental synthetic yeast gene
circuit45. In this circuit, TetR messenger RNA (the -0
species) leads to the production of TetR protein (the -1
species), while the protein in turn binds to the promoter
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Figure 2. The case of a no-feedback # = 1 signaling
model with a nonlinear production function '1(G0) for
parameters: � = 1 s−1, W0 = 0.01 s−1, f10 = 100 s−1. A)
Examples of a variety of production functions '1(G0),
colored from red to yellow based on their steepness at
Ḡ0, and hence the size of the corresponding parameter
Λ1. Superimposed in black is the marginal distribution
Π(G0; Ḡ0) of the input species -0. B) For the production
functions shown in panel A, the corresponding exact
error � from Eq. (29) (circles) as a function of Λ1. The
WK bound �WK from Eq. (30) is shown in blue for
comparison. Adapted from Ref. 26.

of the TetR gene, inhibiting the production of the messen-
ger RNA. The model is similar to Eq. (8) when # = 1,
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3

3C
G0(C) = '0(G1) − W0G0(C) + =0(C),

3

3C
G1(C) = '1(G0) − W1G1(C) − Γ(G1(C)) + =1(C),

(31)

with a linear production function '1(G0) = f11G0, but
with a sigmoidal Hill function form for the feedback
'0(G1),

'0(G1) =
�1\

a1
1

\
a1
1 + G

a1
1
. (32)

Note that this model has additional contribution to the
deactivation of the output, a function Γ(G1) that is also
sigmoidal:

Γ(G1) =
�2\

a2
2

\
a2
2 + G

a2
1
. (33)

The parameters �8 , a8 , \8 , 8 = 1, 2 are all non-negative and
determine the shape of the two Hill functions, which are
common phenomenological expressions for regulatory
interactions in biology41.

Using numerical methods to solve the corresponding
master equation (similar to those described below), one
can carry out a parameter search to solve the following
optimization problem: with the constraints of fixed W0,
W1, f11, Ḡ0, Ḡ1 (and hence also fixed Λ1 = f11/W0),
one can vary the Hill function parameters to find the
smallest possible n . The circles in Fig. 3 show the
optimization results for different Λ1 in the range Λ1 =

2 − 10, comparable to experimental estimates46. The
�WK bound from Eq. (23) is shown for comparison as a
solid curve. The dashed curve shows an exact bound for
the system, derived by Lestas, Vinnicombe, and Paulsson
(LVP)3 using information theory, which applies when
'1(G0) is linear and where the negative feedback from
-1 back to -0 can occur via any function (linear or
nonlinear). This exact bound is given by

�LVP =
2

1 +
√

1 + 4Λ1
. (34)

Note that �LVP ≤ �WK, which opens the possibility that
a nonlinear system could fall somewhere between the
two curves, beating �WK. However, as we see in Fig. 3,
the optimal numerical results were only able to approach
from above, and never outperformed, the WK limit.

Based on the nonlinear # = 1 results with and without
feedback described above, one could plausibly imagine

10
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Figure 3. The Fano factor n for the TetR # = 1 negative
feedback loop of Ref. 28. Numerical optimization results
are shown as circles, while the WK and LVP lower
bounds (Eqs. (23) and (34) respectively) are shown as
solid and dashed curves. Figure adapted from Ref. 28.

that WK theory somehow provides universal bounds.
Despite the fact that the WK limit was derived for linear
systems, it surprisingly gives a rigorous bound for the
nonlinear no-feedback model, and a numerical search
to beat the limit proved fruitless in the feedback case.
However, as we demonstrate in the next section, such a
conclusion is premature.

3 Beating the WK limit

To explore the validity of the WK limit more broadly, we
need to be able to obtain precise error results in a wider
range of nonlinear signaling systems. In this section,
we provide two lines of evidence that demonstrate for
the first time error values below �WK. The first is from
an # = 2 no-feedback cascade with a linear '1(G0)
and quadratic '2(G1) production functions. (We will
prove that the related case, where '1(G0) is nonlinear
but '2(G1) linear, always gives � ≥ �WK.) These
results use an exact expression for � that is valid for any
# > 1 no-feedback system, based on a recursion relation
derived from the master equation of Eq. (5) that can be
evaluated numerically to arbitrary precision. The second
line of evidence is from a # = 1 negative feedback loop
with linear production function '1(G0) and a feedback
function q(G1) that includes a quadratic contribution.
Here a solvable recursion relation for � is not possible,
so we use a numerical solution of Eq. (5).
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3.1 Exact calculation of error in the nonlinear, dis-
crete # > 1 model without feedback

In order to understand the behavior of more complex
nonlinear signaling cascades, we need to generalize the
exact # = 1 no-feedback error expression from Eq. (29)
to systems with # > 1. To start, let us introduce
some convenient notation to deal with multiple-level
systems. Along with the (# + 1)-dimensional vector
x = (G0, G1, . . . , G# ) that describes the full state of our
system, we will define the #-dimensional truncated
vector x̂ = (G0, G1, . . . , G#−1) that is missing the final
component G# . In a similar way we define the truncated
#-dimensional unit vectors ê8, 8 = 1, . . . , # − 1, where
ê0 = (1, 0, . . . , 0), ê1 = (0, 1, . . . , 0), and so on until
ê#−1 = (0, . . . , 0, 1). Consider the following generating
function derived from the stationary distribution Px,

�x̂ (H) =
∞∑

G#=0
HG#Px. (35)

The subscript x̂ denotes the fact that �x̂ (H) depends
on all components G0 through G#−1, but G# has been
eliminated through the sum. If one carries out the sum
over G# on both sides of Eq. (5), one can rewrite the
master equation entirely in terms of generating functions,

0 =

#−1∑
8=0

{
W8 [(G8 + 1)�x̂+ê8 (H) − G8�x̂ (H)]

+ '8 (G8−1) [�x̂−ê8 (H) − �x̂ (H)]
}

+ W# (1 − H)� (1)
x̂ (H)

+ '# (G#−1) (H − 1)�x̂ (H).

(36)

Here, the ?th derivative of �x̂ (H) with respect to H is
denoted as �

(?)
x̂ (H) ≡ (3 ?/3H?)�x̂ (H). If we take ?

derivatives with respect to H of both sides of Eq. (36),
and then set H = 1, we get the following relation,

0 =

#−1∑
8=0

{
W8 [(G8 + 1)� (?)

x̂+ê8 (1) − G8�
(?)
x̂ (1)]

+ '8 (G8−1) [� (?)
x̂−ê8 (1) − �

(?)
x̂ (1)]

}
− ?W#�

(?)
x̂ (1) + ?'# (G#−1)� (?−1)

x̂ (1).

(37)

The above relation turns out to be the main one we need
to evaluate the scale-free error � . To see this, let us
rewrite the expression for � from Eq. (12) with the noise

filter mapping B̃(C) ≡ XG# (C), B(C) ≡ XG0(C):

� = 1 − 〈B̃(C)B(C)〉2

〈B2(C)〉〈B̃2(C)〉

=
〈XG# (C)XG0(C)〉2

〈(XG0(C))2〉〈(XG# (C))2〉

=
(〈G# (C)G0(C)〉 − 〈G# (C)〉〈G0(C)〉)2

(〈G2
0 (C)〉 − 〈G0(C)〉2) (〈G2

#
(C)〉 − 〈G# (C)〉2)

.

(38)

All the moments on the right-hand side of Eq. (38) with
respect to the stationary distribution that involve G# (C)
can in fact be expressed in terms of � (?)

x̂ (1):

〈G# (C)〉 =
∑
x

G#Px

=
∑̂
x

�
(1)
x̂ (1),

〈G# (C)G0(C)〉 =
∑
x

G# G0Px

=
∑̂
x

G0�
(1)
x̂ (1),

〈G2
# (C)〉 − 〈G# (C)〉 =

∑
x

G# (G# − 1)Px

=
∑̂
x

�
(2)
x̂ (1).

(39)

Here,
∑

x ≡ ∑∞
G0=0 · · ·

∑∞
G#=0 and

∑
x̂ ≡∑∞

G0=0 · · ·
∑∞

G#−1=0. The remaining moments in Eq. (38),
those that involve only G0(C), are known from the fact
that the marginal distribution of the input -0 is just the
Poisson distribution Π(G0; Ḡ0) of Eq. (4). This yields

〈G0(C)〉 = Ḡ0, 〈G2
0 (C)〉 = Ḡ2

0 + Ḡ0. (40)

Recall that the barred notation denotes the linearized
stationary averages defined in Eq. (7). Thus the approach
to finding � is as follows: i) use Eq. (37) to derive prop-
erties of � (?)

x̂ (1) that allow us to evaluate the moments
in Eq. (39); ii) together with Eq. (40), we can then plug
the moment results into Eq. (38) to derive an expression
for � . Here we will summarize the final result, with the
full details of the derivation shown in the SI Sec. 3.

To facilitate the solution, we expand the production
function in terms of Poisson-Charlier polynomials, just
as in Eq. (24) for the # = 1 case,

'8 (G8−1) =
∞∑
==0

f8=E= (G8−1; Ḡ8−1) for 8 > 0. (41)
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Each expansion coefficient is given by the analogue of
Eq. (27), averaging over a Poisson distribution:

f8= =
〈E= (G8−1; Ḡ8−1)'8 (G8−1)〉Ḡ8−1

Ḡ=
8−1=!

. (42)

To tackle the � (?)
x̂ (1), we will define new functions � (?)x̂

through the relation:

�
(?)
x̂ (1) ≡ �

(?)
x̂ Π(x̂; ˆ̄x). (43)

Here Π(x̂; ˆ̄x) is a multi-dimensional Poisson distribution,

Π(x̂; ˆ̄x)
≡ Π(G0; Ḡ0)Π(G1; Ḡ1) · · ·Π(G#−1; Ḡ#−1).

(44)

Thus any �
(?)
x̂ ≠ 1 represents the deviation of � (?)

x̂ (1)
from a simple multi-dimensional Poisson distribution.
Similarly, we can define a multi-dimensional version of
the Poisson-Charlier polynomials,

En̂ (x̂; ˆ̄x)
≡ E=0 (G0; Ḡ0)E=1 (G1; Ḡ1) · · · E=#−1 (G#−1; Ḡ#−1),

(45)

where n̂ = (=0, =1, . . . , =#−1) is an #-dimensional vec-
tor of integers =8 ≥ 0. Let us expand �

(?)
x̂ in terms of

these polynomials,

�
(?)
x̂ =

∑̂
n

`
(?)
n̂ En̂ (x̂; ˆ̄x), (46)

defining expansion coefficients `
(?)
n̂ . It turns out the

moments in Eq. (39) are all just linear combinations
of the `

(?)
n̂ , which follows from the properties of the

Poisson-Charlier polynomials averaged with respect to
Poisson distributions:

〈G# (C)〉 = `
(1)
0̂

,

〈G# (C)G0(C)〉 = Ḡ0

(
`
(1)
0̂

+ `
(1)
0̂+ê0

)
,

〈G2
# (C)〉 − 〈G# (C)〉 = `

(2)
0̂

.

(47)

Here 0̂ ≡ (0, 0, . . . , 0) is the #-dimensional zero vector.
Plugging this into Eq. (38) gives

� = 1 −
Ḡ0

(
`
(1)
0̂+ê0

) 2

`
(2)
0̂

+ `
(1)
0̂

−
(
`
(1)
0̂

) 2 . (48)

The final piece of the solution is converting Eq. (37)
into a recursion relation for the coefficients ` (?)

n̂ :

`
(?)
n̂

=

?a
(?−1,# )
n̂ +∑#−1

8=1

(
Ḡ−1
8
a
(?,8)
n̂−ê8 − W8`

(?)
n̂−ê8

)
?W# +∑#−1

8=0 =8W8
,

(49)

with `
(0)
0̂

= 1. The coefficients a
(?,8)
n̂ are given by the

following expansion in terms of f8= and `
(?)
n̂ :

a
(?,8)
n̂ =

∞∑
0,1=0

0+1≥=8−1
|0−1 | ≤=8−1

f80`
(?)
n̂+(1−=8−1) ê8−1

�01
=8−1 (Ḡ8−1),

(50)

and �<=
:

(I) are polynomials in I given by:

�<=
: (I) =

b<+=−:
2 c∑

2=max(0,=−:,<−:)
Γ<=
:2 I

2 , (51)

with

Γ<=
:2 =

<!=!
2!(2 + : − <)!(2 + : − =)!(< + = − : − 22)! . (52)

Here the sum starts at the largest of the three values 0,
= − : , or < − : , and bFc denotes the largest integer less
than or equal to F.

The general procedure for calculating � works as
follows:

1. For a given set of production functions '8 (G8−1),
we calculate the expansion coefficients f8= using
Eq. (42). If necessary, we truncate the expansion
above some order ", setting f8= = 0 for = > ".
In practice, because of the rapid convergence of
Eq. (41) for G8−1 near Ḡ8−1, choosing " = 3 or 4 is
sufficient. But we can increase the cutoff " to get
whatever numerical precision we desire.

2. We plug the resulting f8= into Eq. (50), and this in
turn defines the a

(?,8)
n̂ that appear in Eq. (49).

3. We solve the recursive system of equations in
Eq. (49) for `

(1)
0̂+ê0

, ` (1)
0̂

, and `
(2)
0̂

, and use these
to find � from Eq. (48).

Though complex in appearance, the procedure is easy
to implement as a numerical algorithm, and with any
finite cutoff " is guaranteed to yield a value for � . As
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we increase " we generally quickly converge to the exact
� for the system.

In some cases, the entire procedure can be carried out
analytically to give exact closed form expressions for
� . When # = 1, we recover the result in Eq. (29), as
expected. Another example is the # = 2 system where
the first level production function '1(G0) is arbitrary, but
the second level function '2(G1) is linear (and hence
f2= = 0 for = ≥ 2). Here � is given by:

� = 1 −
Ḡ0W1W2(W1 + W2)f2

11f
2
21

(W0 + W1)2(W0 + W2)2

[
W1(W1 + W2)f20

+ f2
21

(
f10 +

∞∑
==1

f2
1=Ḡ

=
0 (=W0 + W1 + W2)

(=W0 + W1) (=W0 + W2)

) ] −1

.

(53)

Just as in Eq. (29), any nonlinear contributions to '1(G0)
always increase � , since the coefficients f1= for = ≥ 2
only appear in the brackets in Eq. (53) as f2

1= multiplying
positive factors. In this scenario, � ≥ �WK always,
where �WK is given by Eq. (13).

The simplest case where we are able to observe a
violation of the �WK limit is for # = 2 when '1(G0) is
linear and the '2(G1) is quadratic: f1= = 0 for = ≥ 2 and
f2< = 0 for < ≥ 3. The resulting analytical expression
for � is complicated, but we can investigate its optimal
behavior numerically. In Fig. 4 we conducted a numerical
minimization of � with respect to W2 and the quadratic
coefficient f22 for various combinations of A ≡ W1/W0
and Λ1, keeping Λ2 fixed. If we denote this minimum
value �min, Fig. 4 shows log10 |�min/�WK − 1| with the
cool colored contours indicating �min > �WK and warm
colored contours indicating �min < �WK. In the purely
linear case described earlier, we found that � = �WK
when the conditions from Eq. (17) are satisfied, which
corresponds to A =

√
1 + Λ1, shown as as dashed white

curve in the figure. With the addition of the quadratic
term in '2(G1), the region near that curve now supports
solutions that beat the WK limit (the warm colored band
in Fig. 4). However the improvement relative to the WK
bound is exceedingly small, roughly ∼ 0.001 − 0.01%
better.

To understand the small size of the improvement,
let us look at a subset of the parameter space that is
analytically tractable. Set the linear portions of the
production functions to be directly proportional to the
upstream population, '1(G0) = f11G0 and '2(G1) =

f21G1 + f22E2(G1; Ḡ1), which means f=1 = f=0/Ḡ=−1
for = = 1, 2. Furthermore, imagine that the conditions

of Eq. (17) are fulfilled for W1 and W2, which means
� = �WK when the quadratic perturbation f22 = 0. In
this case Λ1 = A2 − 1, with A ≡ W1/W0 > 1, and Λ2 = dA ,
with d ≡ f20/f10. �WK from Eq. (18) can then be
written as:

�WK = 1 − d(A − 1)A2

(1 + A)
(
1 +

√
1 + dA2

) 2 . (54)

Let us focus on the regime where signaling is at least
as effective as in many experimentally measured cas-
cades18–25, which means �max & 1 bit or equivalently
�WK . 1/4. This generally requires A � 1 and d � 1.
In this limit, the complicated full expression for � sim-
plifies, and we can expand the difference � − �WK to
second order in the perturbation parameter f22,

� − �WK ≈ 2
W0dA

f22 +
2Ḡ0

W2
0d

2
f2

22. (55)

There is a minimum � = �min at f22 = −W0d/(2Ḡ0A),
with

�min − �WK ≈ − 1
2Ḡ0A2 . (56)

Though we can violate the �WK bound, the size of the
violation becomes small for A � 1. From Eq. (54) we
know that �WK ∼ 2/A for d, A � 1, and hence the relative
magnitude �min/�WK − 1 ≈ −(4Ḡ0A)−1. The negligible
scale of the improvement over �WK is consistent with
the numerical results of Fig. 4, though the latter was
calculated over a broader portion of the parameter space.

3.2 Revisiting nonlinearity in the # = 1 model with
feedback

The violation of the �WK bound in the no-feedback
case raises the question of whether similar results are
possible in the presence of feedback. We return to # = 1
system used for the TetR model above, but with several
simplifications: i) we do not include the additional
nonlinear degradation term Γ(G1); ii) rather than a Hill
function for '0(G1), we use Eq. (3), with a quadratic
form for the feedback function q(G1),

q(G1) = −q1(G1 − Ḡ1) + q2(G1 − Ḡ1)2. (57)

Depending on the values of q1 and q2, there could be a
range of G1 where '0(G1) in Eq. (3) becomes negative,
which is unphysical. In our numerical calculations, we
thus always use max('0(G1), 0) as the feedback function.
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Figure 4. Contour plot of log10 |�min/�WK − 1| for the # = 2 cascade with linear '1(G0) and quadratic '2(G1). The
minimum value of the error �min at a given A = W1/W0 and Λ1 is found by numerical minimization with respect to W2
and f22, with fixed Λ2 = 5. Cool colors denote regions where �min > �WK and warm colors where �min < �WK.
The dashed white curve corresponds to A =

√
1 + Λ1.

However for the parameters we explored, the range of G1
where the sign switch in '0(G1) occurs is far outside the
typical range of stationary state G1 fluctuations, so the
precise details of the cutoff have a negligible influence
on the results. A final important difference from the
TetR model is that we will also investigate the regime
of smaller Λ1 (the numerics in the earlier study were
confined to Λ1 ≥ 2). Based on the intuition from the
no-feedback case, we guess that any violation of the �WK
bound might become very small for large Λ1, and hence
difficult to detect numerically.

Though Eq. (57) has a simple form that is convenient
for parameter exploration, it has one feature that makes
it somewhat unrealistic from a biological perspective.
For q1 > 0, q2 < 0 (the case that will be of interest
to us below) the slope 3q(G1)/3G1 becomes positive
for G1 < G∗1 = Ḡ1 + q1/(2q2), corresponding to positive
feedback for smaller G1 populations. Since we would
like to concentrate on systems with negative feedback,
we also define an alternative feedback function q̃(G1)
that avoids this issue by being constant for G1 ≤ G∗1 and
monotonically decreasing for G1 > G∗1:

q̃(G1) =
{
q(G1) G1 > G∗1
q(G∗1) G1 ≤ G∗1

. (58)

As we will see below, it turns out that both q(H) and
q̃(H) give qualitatively similar results.

The Poisson-Charlier expansion approach of the pre-
vious example can also be applied to a general # level
feedback system, yielding a set of coupled linear equa-
tions for the coefficients `

(?)
n̂ analogous to Eq. (49).

However, because of the feedback interaction between
G# and G0, these equations are no longer particularly use-
ful: lower order coefficients depend on higher order ones
in an infinite hierarchy of equations that has no closure
for any nonlinear q(G1). We thus turn to an alternative
approach: solving the master equation, Eq. (5), for the
2D stationary probability Px , where x = (G0, G1). Since
G0 and G1 can be any non-negative integer, Eq. (5) is an
infinite linear system of equations. To make it amenable
to a fast numerical solution, we truncate the range of
allowable (G0, G1) to be within six standard deviations of
Ḡ0 and Ḡ1. We estimate the standard deviations from the
linear case (q2 = 0), where closed form expressions are
available in terms of the system parameters. The actual
standard deviations in the presence of nonzero q2 for
the parameter range we considered were not perturbed
significantly, so this estimation procedure worked well.
Similarly, Ḡ0 and Ḡ1 were good estimates for the actual
〈G0〉 and 〈G1〉, because the mean of the distribution shifts
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only a small amount with q2. The window established by
this procedure had a typical width of around ∼ 100 for G1
and ∼ 700 for G0 for parameters in the range described
below. In Eq. (5), all Px outside the allowable range of
x were set to zero. This means that Eq. (5) becomes a
finite system of linear equations that can be solved effi-
ciently using sparse matrix methods. Once the stationary
distribution is known numerically, one can then easily
calculate the error n from Eq. (20) by finding the marginal
distribution of G0 and calculating its first and second mo-
ments. We checked for convergence and boundary effects
by redoing the solution using window widths that were
different than six standard deviations, and verified that
the results were unchanged up to the desired precision
(< 10−4 for the calculation of n). For select parameter
sets, we also validated the moments of the stationary
distribution against kinetic Monte Carlo simulations47,
though for the latter achieving high precision is difficult
because of the computational time required.

We used the following parameter values (all in units
of s−1): W0 = 2, W1 = 200, f10 = 8000, f11 = 2. The
value of � was varied to allow for a range of possible
Λ1 = Ḡ1f

2
11/(W0f10) = �f2

11/(W
2
0f10). The value of q1

was set to the optimality condition from Eq. (21),

q1 =
W0W1
f11

(
√

1 + Λ1 − 1), (59)

where we have used the fact thatΛeff = Λ1 for# = 1. This
guarantees that in the linear feedback case of q2 = 0, the
system should be close to the WK limit (up to correction
factors due to finite W1, since technically the WK limit
is only approached in the feedback case when W1 → ∞).
Fig. 5A shows numerical results the Fano factor n as a
function of q2 for different values of Λ1 between 0.25
and 1. In all cases for linear feedback (q2 = 0), we see
that n > �WK, where �WK is given by Eq. (23). The fact
that n is above �WK for the linear system is due to the
fact that W1 is finite. For the case q2 > 0 (not shown in
the graphs), the error increases, while for q2 < 0 we see
that the error decreases, until it dips below the �WK line
before increasing again. The choice of feedback function,
q(G1) or q̃(G1), does not make a significant difference.
Interestingly, the violation of the WK bound is quite small,
just as in the no-feedback case, as we can see more clearly
in Fig. 5B, where the ratio n/�WK is plotted, in this case
using the q̃(G1) function. The largest dip we observed is
still only about 1.5% below �WK. Moreover, in order to
see any violation at all we had to look at small Λ1 ≤ 1. In
this regime, �WK is quite large, just below the Poissonian

Fano factor value of 1. Hence the fluctuations are only
slightly reduced by the feedback. Once Λ1 becomes
larger, in the more biologically relevant regime where
negative feedback is effective at suppressing fluctuations,
we found it impossible to observe any violations of �WK.
This could possibly explain the lack of any evidence of
violations in the earlier TetR study28 (see Fig. 3), where
only Λ1 ≥ 2 was considered. Though the figures show
results for only one set of parameter values, other sets we
tried produced qualitatively similar results: the nonlinear
case beat the WK limit for small Λ1, but it was always
by a small amount.

4 Conclusions

Using a combination of analytical and numerical ap-
proaches, we have been able to show that the Wiener-
Kolmogorov optimal error �WK is not a universal lower
bound for biological signaling cascades, both with and
without feedback. However, far from undermining
the usefulness of the WK theory, our results actually
strengthen its practical value as a general purpose ap-
proximation to estimate performance limits in signaling
systems. In some cases, for example the # = 1 or # = 2
no-feedback systems with nonlinear production in the
first level, the �WK bound continues to hold rigorously
despite nonlinearity. And in all cases where the bound
is broken, the extent of the violation is negligible and
decreases or vanishes in the regime where the system
is effective at its respective task (either propagating the
upstream signal with high fidelity or suppressing fluctua-
tions). Further study is needed to see if the performance
gain beyond the �WK bound can be made substantial,
for example by combining the effects of nonlinearity
from multiple levels in the cascade. However, additional
nonlinearity is not necessarily beneficial: in Eqs. (29)
and (53), and as depicted in Fig. 2, each higher order
nonlinear contribution pushes us further away from the
�WK limit.

Thus for practical purposes, the WK approach remains
an excellent way of deriving biological bounds that re-
main meaningful even when the underlying assumptions
of the theory (like linearity) no longer strictly hold.
Equally importantly, the theory allows one to ascertain
under what conditions one can actually achieve this kind
of optimality. In all the signaling systems investigated so
far, �WK is either directly attainable or can be asymptoti-
cally approached by tuning parameters. This is in contrast
to a rigorous bound like �LVP from Eq. (34), which holds
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Figure 5. A) Numerically calculated Fano factor n in the # = 1 nonlinear feedback system. The plots show n versus
q2 for the quadratic feedback function q(G1) (blue) from Eq. (57) and the monotonic alternative q̃(G1) (orange)
from Eq. (58), using the parameters described in the text. The WK bound �WK in shown as a dashed red line. The
subgraphs depict cases with four different values of Λ1 between 0.25 and 1. B) The Fano factor results from panel A,
using the feedback function q̃(G1), but normalized with respect to �WK. The dashed red line is n/�WK = 1.

for arbitrarily complex feedback mechanisms in a system
with linear production. However, it has overestimated the
optimal capabilities of all the feedback networks we have
investigated: none of our systems ever gets close to �LVP.
A recent example of the versatility of the WK theory
is the study of kinase-phosphatase signaling networks
in Ref. 15. A simple analytical WK bound, derived
from a linearized # = 1 network, explains a previously
unknown optimal relationship between signal fidelity,
bandwidth, and minimum ATP consumption. It holds
across a vast biological parameter space deduced from
bioinformatic databases, and remains valid even when all
the microscopic, nonlinear reaction details of the system
are taken into account. The robustness of the WK bound,
highlighted in the results of the current study, help us
understand the theory’s success in such contexts.

Beyond future applications of WK theory to other
specific systems, and possible experimental validation,
there is still work to be done in developing the analytical
techniques (like the Poisson-Charlier expansion) which
we used for the no-feedback cascade. Exact results in
nonlinear systems are relatively rare and hence valuable
in themselves, and also as benchmarks for a variety

of simpler approximations like the WK theory. The
expansion method we described is currently limited
by cases where the recursive system of equations does
not close (i.e. in the presence of feedback, and more
generally in biochemical networks with loops). Carefully
tailored moment closure approaches48 might provide a
way forward, and broaden the applicability of the method
to systems with different types of feedback and other
more complex network motifs.
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systems. The open question raised by our first article
on the topic—can the WK bound ever be beaten via
nonlinearity—is here answered in the affirmative. But
instead of weakening the applicability of WK theory,
the surprising insignificance of nonlinear enhancements
actually strengthens the case for it.
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Supplementary Information:
Cellular signaling beyond the Wiener-Kolmogorov limit
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1 Deriving the WK optimal filter results for the multi-level cascade without feedback

1.1 Mapping the system onto a noise filter
The starting point for the derivation is the system of equations in main text Eq. (9), with q1 = 0 in the absence of
feedback:

3

3C
XG0(C) = −W0XG0(C) +=0(C),

3

3C
XG8 (C) = −W8XG8 (C) +f81XG8−1(C) +=8 (C), 8 > 0,

(S1)

where the Gaussian noise functions satisfy 〈=8 (C)= 9 (C ′)〉 = 2X8 9W8 Ḡ8X(C− C ′). Taking the Fourier transform of Eq. (S1),
we can solve the system of equations for the fluctuation functions XG8 (l) in Fourier space,

XG0(l) =
=0(l)
W0− 8l

,

XG 9 (l) =
1

W 9 − 8l
(
f91XG 9−1(l) += 9 (l)

)
, 9 > 0,

(S2)

with 5 (l) denoting the Fourier transform of a function 5 (C). Iteratively plugging the result for XG 9−1(l) into the
XG 9 (l) equation, starting from 9 = 1, we can solve Eq. (S2) to get the following expressions for the Fourier space
input and output fluctuations:

XG0(l) =
=0(l)
W0− 8l

,

XG# (l) =
©­«
#∏
9=1

f91

W 9 − 8l
ª®¬
XG0(l) +

#∑
9=1
= 9 (l)

9−1∏
:=1

W: − 8l
f91f:1

 .
(S3)
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Let us compare the result for XG# (l) to the Fourier transform of main text Eq. (10), the noise filter convolution
integral:

B̃(l) = � (l) (B(l) +=(l)). (S4)

We can make a mapping of the system to a linear noise filter with the following choice of estimate, signal, noise, and
filter function:

B̃(l) = XG# (l), B(l) = XG0(l), =(l) =
#∑
9=1
= 9 (l)

9−1∏
:=1

W: − 8l
f91f:1

, � (l) =
#∏
9=1

f91

W 9 − 8l
. (S5)

1.2 Concise overview of WK optimal filter theory
To apply WK theory to our problem, let us summarize its main results (see Ref. 1 for a more detailed review). Given a
Fourier-transformed signal and noise functions B(l) and =(l), let us denote the corresponding power spectra %B (l)
and %= (l). The spectra are defined through the relation 〈 5 (l) 5 (l′)〉 = 2c% 5 (l)X(l+l′), where 5 = B or =. For
the signal corrupted by noise, H(l) ≡ B(l) +=(l), the corresponding power spectrum is %H (l) = %B (l) +%= (l) if
the noise is uncorrelated with the signal. This is indeed the case, since the Gaussian noise functions = 9 (l) in Eq. (S5)
that contribute to =(l) are uncorrelated with =0(l), the function that enters into the signal XG0(l) in Eq. (S3).

Once %B (l) and %B (l) are specified, one can find a corresponding optimal filter function �WK(l). Optimality
here means that the time-domain function �WK(C), plugged into the convolution integral of main text Eq. (10),
minimizes the error n (B(C), B̃(C)) between the estimate and signal defined in main text Eq. (11). In Fourier space the
optimal filter takes the following form if signal and noise are uncorrelated2:

�WK(l) =
1

%+H (l)

{
%B (l)
(%+H (l))∗

}
+
. (S6)

The + superscripts and subscripts denote two types of causal decompositions. For example, the function %+H (l) is
defined via %H (l) = |%+H (l) |2, where the factor %+H (l) is chosen such that it has no zeros or poles in the upper half-
plane. This decomposition always exists for all the physical power spectrawe encounter in signaling contexts. The other
decomposition, denoted by {� (l)}+ for a function � (l), can be calculated from {� (l)}+ ≡ F [Θ(C)F −1 [� (l)]].
Here F [ 5 (C)] indicates the Fourier transform of a function 5 (C), F −1 the inverse Fourier transform, and Θ(C) is a
unit step function3. In practice, it is often convenient to calculate it through an alternative method: doing a partial
fraction expansion of � (l) and keeping only those terms with no poles in the upper half-plane.

To find the lower bound on n , we inverse Fourier transform �WK(l) back to the time domain. The minimum
error �WK can then be expressed compactly in the following form, which is convenient for calculations:

�WK = 1− 1
�B (0)

∫ ∞

0
3C�WK(C)�B (C), (S7)

where �B (C) = F −1 [%B (l)] is the signal autocorrelation function, given by the inverse Fourier transform of its power
spectrum.

1.3 Calculating the optimal filter function �WK
Given Eqs. (S3), (S6), and the properties of the Gaussian noise functions = 9 (C), which in Fourier space satisfy
〈=8 (l)= 9 (l)〉 = 4cX8 9W8 Ḡ8X(C − C ′), the power spectra for the signal and noise can be written as:

%B (l) =
2�

l2 +W2
0
, (S8a)

%= (l) =
2�
W2

0

#∑
9=1

1
Λ 9

[
9−1∏
:=1

(l2 +W2
:
)

W0W:Λ:

]
. (S8b)
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Here we have used the facts that Ḡ0 = �/W0, Ḡ8 = f80/W8 for 8 > 0, and have introduced the dimensionless constants
Λ 9 ≡ Ḡ 9−1f

2
91/(f90W0). Summing %B (l) and %= (l), we can write %H (l) in the form:

%H (l) =
2�

W2
0 (l2 +W2

0)
�(8l), (S9)

where �(_) is the polynomial from main text Eq. (14),

�(_) = W2
0 +

#∑
9=1
W

2− 9
0

9∏
:=1

W2
:−1−_

2

W:−1Λ:
. (S10)

As discussed in the main text, this polynomial will always have # roots _ 9 , 9 = 1, . . . , # , where Re(_ 9) > 0. (The
other # roots of the polynomial are just −_ 9 .) Thus we can factor �(8l) in the following way:

�(8l) = W2
0

(
#∏
:=1

1
W0W:−1Λ:

) 
#∏
9=1
(l+ 8_ 9)



#∏
9=1
(l− 8_ 9)

 . (S11)

Since l = −8_ 9 for 9 = 1, . . . , # are all the zeros of �(8l) in the complex lower half plane, this enables us to write
down the decomposition %H (l) = %+H (l) (%+H (l))∗ where

%+H (l) =
√
 

l+ 8W0

#∏
9=1
(l+ 8_ 9), (S12a)

(%+H (l))∗ =
√
 

l− 8W0

#∏
9=1
(l− 8_ 9), (S12b)

and

 = 2�
#∏
:=1

1
W0W:−1Λ:

. (S13)

Continuing with the calculation of �WK(l), we see that:

%B (l)
(%+H (l))∗

=
2�

√
 (l+ 8W0)

#∏
9=1

1
l− 8_ 9

. (S14)

The quantity
{
%B (l)
(%+H (l))∗

}
+
is computed from taking the causal part of the partial fraction decomposition of Eq. (S14).

Because the only causal pole (pole in the lower half plane) of Eq. (S14) is −8W0, all other terms in the decomposition
are dropped, yielding:{

%B (l)
(%+H (l))∗

}
+
=

2�8#

�
√
 (l+ 8W0)

, (S15)

where � =
∏#
9=1(W0 +_ 9). Finally, we can divide this result by %+H (l), following Eq. (S6), giving us the optimal

filter:

�WK(l) =
2�8#

� 

#∏
9=1

1
l+ 8_ 9

=
2�
� 

#∏
9=1

8

l+ 8_ 9

=
2�
� 

#∏
9=1

1
_ 9 − 8l

.

(S16)
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Plugging in the definitions of � and  , we can rewrite the prefactor to get the final form for the optimal filter function:

�WK(l) =
#∏
:=1

W0W:−1Λ:
(W0 +_:) (_: − 8l)

. (S17)

1.4 Calculating the optimal error �WK
To calculate �WK from Eq. (S7), we first take the inverse Fourier transform of �WK(l) from Eq. (S17), which gives
a sum of exponentials in the time domain,

�WK(C) = Θ(C)
©­«
#∏
9=1

W0W 9−1Λ 9

(W0 +_ 9)
ª®¬
[
(−1)#−1

#∑
:=1

4−_: C
∏
<≠:

1
_: −_<

]
. (S18)

Using the fact that �B (C) = F −1 [%B (l)] = Ḡ0 exp(−W0 |C |), we can evaluate the integral in Eq. (S7) to find

�WK = 1− ©­«
#∏
9=1

W0W 9−1Λ 9

(W0 +_ 9)
ª®¬
[
(−1)#−1

#∑
:=1

1
W0 +_:

∏
<≠:

1
_: −_<

]
. (S19)

Reversing the partial fraction decomposition,

#∏
:=1

1
H +_:

=

#∑
:=1

1
H +_:

∏
<≠:

1
_<−_:

= (−1)#−1
#∑
:=1

1
H +_:

∏
<≠:

1
_: −_<

,

(S20)

with H = W0, the error reduces to the value in main text Eq. (13):

�WK = 1−
#∏
9=1

W0W 9−1Λ 9

(W0 +_ 9)2
. (S21)

1.5 Conditions under which the system can achieve WK optimality
In order for the system to attain � = �WK, the parameters must be tuned such that � (l) ∝ �WK(l), where � (l)
and �opt(l) are given by Eqs. (S5) and (S17) respectively. Comparing the two functions, we see that they are
proportional to one another when _ 9 = W 9 for all 9 = 1, . . . , # . Satisfying this condition actually requires a certain
relationship between the different per-capita deactivation rates W 9 and the Λ 9 parameters.

To see this, let us first denote �# (_) as the polynomial from Eq. (S10) for a particular value of # . The explicit
forms of the polynomials for the first few values of # are as follows:

�1(_) = W2
0 +

W2
0 −_

2

Λ1
,

�2(_) = W2
0 +

W2
0 −_

2

Λ1
+
(W2

0 −_
2) (W2

1 −_
2)

W0W1Λ1Λ2
,

�3(_) = W2
0 +

W2
0 −_

2

Λ1
+
(W2

0 −_
2) (W2

1 −_
2)

W0W1Λ1Λ2
+
(W2

0 −_
2) (W2

1 −_
2) (W2

2 −_
2)

W2
0W1W2Λ1Λ2Λ3

.

(S22)

Consider the # = 1 system. There is one root _1 with a positive real part, and we set it to _1 = W1 to satisfy the
condition. This requires that �1(W1) = 0, which occurs when W1 = W0

√
1+Λ1. Interestingly, this same value of W1
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will also be a root for all higher polynomials # > 1. Because the additional terms in the higher polynomials all
contain a (W2

1 −_
2) factor, we see that �# (W1) = �1(W1) = 0 for # > 1.

Thus �2(_) has one root _1 = W1 = W0
√

1+Λ1 that we have already found, and a new root _2 = W2 whose value
we need to determine. This will be true iteratively at every higher value of #: the first # − 1 roots _ 9 = W 9 ,
9 = 1, . . . , # −1, will be the same roots as for �#−1(_), and there will one new root _# = W# . This follows from the
structure of the �# (_) polynomials, where

�# (W 9) = � 9 (W 9) = 0 for # > 9 . (S23)

We can find all the higher roots by induction. Let us assume that we have already found the values of _ 9 = W 9 for
9 = 1, . . . , # −1 and are interested in finding _# = W# . The known roots allow us to completely factor �#−1(_), and
from the definition of the polynomials in Eq. (S10) that factorization has to take the form:

�#−1(_) = W2
0

#−1∏
9=1

(W2
9
−_2)

W0W 9−1Λ 9
. (S24)

Note that we know the overall prefactor in the factorization above from the prefactor of the highest power _2(#−1) in
the definition of �#−1(_). Turning to �# (_), we can write this polynomial as �#−1(_) plus an added term,

�# (_) = �#−1(_) +
W0(W2

0 −_
2)

W#−1Λ#

#−1∏
9=1

(W2
9
−_2)

W0W 9−1Λ 9
. (S25)

Comparing Eq. (S25) to Eq. (S24), we see that

�# (_) = �#−1(_) +
(W2

0 −_
2)

W0W#−1Λ#
�#−1(_)

= �#−1(_)
[
1+
(W2

0 −_
2)

W0W#−1Λ#

]
.

(S26)

Setting the factor in the brackets to zero allows us to find the new root _# = W# in terms of the previous root W#−1,

W# = W0

√
1+ W#−1

W0
Λ# . (S27)

Starting from the known value of W1 = W0
√

1+Λ1, we can iteratively use Eq. (S27) to find all the higher roots. The
solutions are the nested radical forms shown in main text Eq. (17),

W1 = W0
√

1+Λ1, W2 = W0

√
1+

√
1+Λ1Λ2, W3 = W0

√
1+

√
1+

√
1+Λ1Λ2Λ3, . . . . (S28)

When these conditions are satisfied, the expression for �WK simplifies to the form in main text Eq. (18),

�WK = 1−
#∏
8=1

ℓ8

(1+
√

1+ ℓ8)2
, (S29)

where ℓ8 = W8−1/Λ8/W0.
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2 Deriving the WK optimal filter results for the multi-level cascade with feedback

2.1 Mapping the system onto a noise filter, finding the WK filter function and bound
The feedback derivation starts with main text Eq. (9), but with the q1 term present:

3

3C
XG0(C) = −W0XG0(C) −q1XG# (C) +=0(C),

3

3C
XG8 (C) = −W8XG8 (C) +f81XG8−1(C) +=8 (C), 8 > 0,

(S30)

The noise filter mapping is qualitatively different from the no feedback case, taking the form of main text Eq. (19),

B(C) ≡ XG0(C) |q=0, B̃(C) = XG0(C) |q=0− XG0(C). (S31)

We know the XG0(C) |q=0 solution in Fourier space already, having calculated it in Eq. (S3),

B(l) = XG0(l) |q0 =
=0(l)
W0− 8l

. (S32)

We can manipulate the Fourier space counterpart of Eq. (S30) to relate B̃(l) to B(l) through a noise filter equation,

B̃(l) = � (l) (B(l) +=(l)), (S33)

where

=(l) =
#∑
9=1
= 9 (l)

9−1∏
:=1

W: − 8l
f91f:1

, � (l) =
q1

∏#
9=1f91∏#

9=0(W 9 − 8l) +q1
∏#
9=1f91

. (S34)

Comparing to Eq. (S5), we see that B(l) and =(l) in this mapping are exactly the same as in the no feedback case.
Hence %B (l) and %= (l) are the same, which means the calculation of �WK and �WK is unchanged. The result for
�WK in Eq. (S21) serves as a lower bound for the error n .

2.2 Conditions under which the system can achieve WK optimality
Comparing � (l) from Eq. (S34) and �WK(l) from Eq. (S17), one sees that achieving � (l) = �WK(l), and hence
n = �WK, is non-trivial. However there is one scenario where this can be approximately fulfilled. We will show that
in a certain limit the #-level feedback system effectively behaves like an # = 1 level system with an effective Λ1
parameter. Note that the # = 1 version of %= (l) from Eq. (S8b) looks like:

%= (l) =
2�
W2

0Λ1
. (S35)

Let us now consider an #-level system where W 9 � W0 for 9 > 0. The main frequency scale in the system is set by the
input signal, which has characteristic frequency W0, so typical frequencies l that are relevant to the system behavior
all share the property that l� W 9 for 9 > 0. If we use this simplification in Eq. (S8b), the noise power spectrum can
be approximated as:

%= (l) ≈
2�
W2

0

#∑
9=1

1
Λ 9

[
9−1∏
:=1

W:

W0Λ:

]
. (S36)

Comparing Eq. (S35) to Eq. (S36), we note that the multi-stage noise power spectrum is approximately the same
form as for an # = 1 system, except with Λ1 replaced by an effective parameter Λeff given by:

Λeff =
©­«
#∑
9=1

1
Λ 9

[
9−1∏
:=1

W:

W0Λ:

]ª®¬
−1

. (S37)
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For the special case where the production functions ' 9 (G 9−1) = f91G 9−1, and hence f91 = f90/Ḡ 9−1 for 9 > 0, the
expression for Λeff simplifies to the result shown in main text Eq. (22):

Λeff =
1
�


#∑
9=1

1
f90


−1

. (S38)

The corresponding # = 1 optimal filter �WK(l) from Eq. (S17), with Λeff instead of Λ1, can be expressed as:

�WK(l) =
W0(
√

1+Λeff−1)
W0
√

1+Λeff− 8l
. (S39)

Here we have used the fact that _1 = W0
√

1+Λ1 is the root for �1(_) from Eq. (S22), and substituted in Λeff.
Let us now write � (l) from Eq. (S34) using the approximation l� W 9 for 9 > 0,

� (l) ≈
q1

∏#
9=1f91

(W0− 8l)
∏#
9=1 W 9 +q1

∏#
9=1f91

. (S40)

We can thus approximately have � (l) ≈ �WK(l) from Eq. (S39) when the feedback strength is tuned to the value
from main text Eq. (21),

q1 = W0(
√

1+Λeff−1)
#∏
9=1

W 9

f91
, (S41)

which then ensures that n ≈ �WK, with the latter having the # = 1 form,

�WK =
2

1+
√

1+Λeff
. (S42)

3 Exact error calculation in the nonlinear cascade without feedback
This section fills in the details of the calculation that transforms main text Eq. (37), a relation for the generating
function �x̂ (H) and its derivatives � (?)x̂ (H), into the recursion relation of main text Eq. (49). The ultimate goal is
to use the recursion relation to find the coefficients ` (?)n̂ in order to evaluate the exact error � given by main text
Eq. (48):

� = 1−
Ḡ0

(
`
(1)
0̂+ê0

)2

`
(2)
0̂
+ ` (1)

0̂
−

(
`
(1)
0̂

)2 . (S43)

Recall the expansions defined in the main text for all the quantities of interest:

'8 (G8−1) =
∞∑
==0

f8=E= (G8−1; Ḡ8−1) for 8 > 0,

�
(?)
x̂ =

∑̂
n

`
(?)
n̂ En̂ (x̂; ˆ̄x),

(S44)

where

�
(?)
x̂ =

�
(?)
x̂ (1)
Π(x̂; ˆ̄x)

. (S45)
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Here we use the multi-dimensional versions of the Poisson distributions and Poisson-Charlier polynomials,

Π(x̂; ˆ̄x) ≡ Π(G0; Ḡ0)Π(G1; Ḡ1) · · ·Π(G#−1; Ḡ#−1),
En̂ (x̂; ˆ̄x) ≡ E=0 (G0; Ḡ0)E=1 (G1; Ḡ1) · · ·E=#−1 (G#−1; Ḡ#−1).

(S46)

More details on the Poisson-Charlier polynomials can be found in the next section of the SI, which provides a brief
guide to their most useful properties.

Since we know the production functions '8 (G8−1) for our system of interest, we can easily find the coefficients
f8= in Eq. (S44), using main text Eq. (42). To derive the coefficients ` (?)n̂ , we start with the relation in main text
Eq. (37):

0 =
#−1∑
8=0

{
W8 [(G8 +1)� (?)x̂+ê8 (1) − G8�

(?)
x̂ (1)] +'8 (G8−1) [� (?)x̂−ê8 (1) −�

(?)
x̂ (1)]

}
− ?W#� (?)x̂ (1) + ?'# (G#−1)� (?−1)

x̂ (1).

(S47)

Using Eq. (S45) and the fact that Poisson distributions satisfy (G8 + 1)Π(G8 + 1; Ḡ8) = Ḡ8Π(G8; Ḡ8), we can rewrite
Eq. (S47) in terms of the � (?)x̂ functions:

0 =

{
#−1∑
8=0

W8 [Ḡ8� (?)x̂+ê8 − G8�
(?)
x̂ ] +'8 (G8−1) [G8 Ḡ−1

8 �
(?)
x̂−ê8 − �

(?)
x̂ ] − ?W# �

(?)
x̂ + ?'# (G#−1)� (?−1)

x̂

}
Π(x̂; ˆ̄x). (S48)

Let us introduce one more expansion, for products of the '8 (G8−1) and � (?)x̂ functions,

'8 (G8−1)� (?)x̂ =
∑̂
n

a
(?,8)
n̂ En̂ (x̂; ˆ̄x). (S49)

Because '8 (G8−1) and � (?)x̂ have their own individual expansions in terms of the Poisson-Charlier polynomials,
defined by Eq. (S44), the coefficients a (?,8)n̂ are entirely determined by the coefficients f8= and ` (?)n̂ of the individual
expansions. This relation, a property of the Poisson-Charlier polynomials, is explained in more detail in SI Sec. 4.5.
It takes the form:

a
(?,8)
n̂ =

∞∑
0,1=0

0+1≥=8−1
|0−1 | ≤=8−1

f80`
(?)
n̂+(1−=8−1) ê8−1

�01=8−1 (Ḡ8−1), (S50)

where �<=
:
(I) are polynomials defined in Eqs. (S66)-(S67).

Let us define 〈 5 (x̂)〉 ˆ̄x =
∑

x̂ 5 (x̂)Π(x̂; ˆ̄x) as the average of a function 5 (x̂) with respect to Π(x̂; ˆ̄x). Using the
recursion relationships for Poisson-Charlier polynomials shown in Eq. (S64), one can prove the following useful
identities: 〈

En̂ (x̂; ˆ̄x)� (?)x̂

〉
ˆ̄x
= Zn̂ ( ˆ̄x)` (?)n̂ ,〈

En̂ (x̂; ˆ̄x)'8 (G8−1)� (?)x̂

〉
ˆ̄x
= Zn̂ ( ˆ̄x)a (?,8)n̂ ,〈

En̂ (x̂; ˆ̄x)G8'8 (G8−1)� (?)x̂−ê8

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
a
(?,8)
n̂−ê8 + Ḡ8a

(?,8)
n̂

]
,〈

En̂ (x̂; ˆ̄x)� (?)x̂+ê8

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
`
(?)
n̂ + (=8 +1)` (?)n̂+ê8

]
,〈

En̂ (x̂; ˆ̄x)G8� (?)x̂

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
`
(?)
n̂−ê8 + (=8 + Ḡ8)`

(?)
n̂ + (=8 +1)Ḡ8` (?)n̂+ê8

]
,〈

En̂ (x̂; ˆ̄x)G8� (?)x̂−ê8

〉
ˆ̄x
= Zn̂ ( ˆ̄x)

[
`
(?)
n̂−ê8 + Ḡ8`

(?)
n̂

]
,

(S51)
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where Zn̂ ( ˆ̄x) ≡
∏#−1
8=0 =8!Ḡ=8 . By multiplying Eq. (S48) by En̂ (x̂; ˆ̄x) and summing over x̂, we can use the above

averages to obtain the following relation:

0 = −=0W0`
(?)
n̂ +

#−1∑
8=1

(
−W8` (?)n̂−ê8 −=8W8`

(?)
n̂ + Ḡ

−1
8 a
(?,8)
n̂−ê8

)
− ?W# ` (?)n̂ + ?a

(?−1,8)
n̂ . (S52)

We can rearrange this obtain the recursion relation in main text Eq. (49),

`
(?)
n̂ =

?a
(?−1,# )
n̂ +∑#−1

8=1

(
Ḡ−1
8
a
(?,8)
n̂−ê8 −W8`

(?)
n̂−ê8

)
?W# +

∑#−1
8=0 =8W8

. (S53)

This relation, together with ` (0)
0̂
= 1 which we know from the normalization property

∑
x̂ �x̂ (1) = 1, is sufficient for

us to calculate any coefficient ` (?)n̂ of interest.

4 Properties of the Poisson-Charlier polynomials

4.1 Definition of the polynomials
In this section, we summarize some properties of the polynomials E= (G; Ḡ) used in our analytical expansion approach
for calculating moments of master equations. These are variants of Poisson-Charlier (PC) polynomials4,5, 2= (G; Ḡ),
related by a trivial factor to the standard PC definition:

E= (G; Ḡ) = (−Ḡ)=2= (G; Ḡ). (S54)

The =th function E= (G; Ḡ) is a polynomial in G of degree =, depending on the parameter Ḡ. It is defined as follows:

E= (G; Ḡ) =
=∑
<=0

(
=

<

)
(−Ḡ)< (G)=−<. (S55)

Here (G): ≡ G(G−1) · · · (G− : +1) = :!
(G
:

)
is the :th falling factorial of G, with (G)0 ≡ 1. The first few polynomials

are given by:

E0(G; Ḡ) = 1, E1(G; Ḡ) = G− Ḡ, E2(G; Ḡ) = (G− Ḡ)2− G,
E3(G; Ḡ) = (G− Ḡ)3−3G(G− Ḡ) +2G.

(S56)

These E= (G; Ḡ) appear in a variety of master equation expansion approaches, for example the spectral method of
Refs. 6,7. In fact, E= (G; Ḡ) = =!〈=|G〉, where 〈=|G〉 is the mixed product defined in Eq. A8 of Ref. 6 (with Ḡ substituted
for the rate parameter 6).

4.2 Orthogonality with respect to the Poisson distribution
One of the convenient properties of these polynomials is that they have simple averages with respect to the Poisson
distribution,

Π(G; Ḡ) = Ḡ
G4−Ḡ

G!
, (S57)

where G is a non-negative integer, and Ḡ is the parameter that defines the mean of the distribution, so that
Ḡ =

∑∞
G=0 GΠ(G; Ḡ). Let us denote the average of a function 5 (G) with respect to the Poisson distribution Π(G; Ḡ) in

the following way:

〈 5 (G)〉Ḡ ≡
∞∑
G=0

5 (G)Π(G; Ḡ). (S58)
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Then the polynomials of Eq. (S55) satisfy the following orthogonality relationship8,9:

〈E=′ (G; Ḡ)E= (G; Ḡ)〉Ḡ = =!Ḡ=X=′,=. (S59)

Since E0(G; Ḡ) = 1, a special case of Eq. (S59) when =′ = 0 gives an expression for the mean:

〈E= (G; Ḡ)〉Ḡ = X=0. (S60)

4.3 Using the polynomials as a basis for function expansions
The polynomials form a basis in which one can expand arbitrary functions of populations 5 (G),

5 (G) =
∞∑
==0

U=E= (G; Ḡ), (S61)

for some coefficients U=. To calculate the <th coefficient U<, we multiply both sides of Eq. (S61) by E<(G; Ḡ) and
take the average with respect to Π(G; Ḡ):

〈E<(G) 5 (G)〉Ḡ =
∞∑
==0

U=〈E<(G; Ḡ)E= (G; Ḡ)〉Ḡ = U<<!Ḡ<, (S62)

where we have used the orthogonality relation Eq. (S59). Thus U< is given by:

U< =
〈E<(G; Ḡ) 5 (G)〉Ḡ

<!Ḡ<
=

<∑
==0

(−1)<−=Ḡ−=
(<−=)!

〈(
G

=

)
5 (G)

〉
Ḡ

, (S63)

where we have plugged in the definition of E<(G; Ḡ) from Eq. (S55). For the kinds of functions we ordinarily
encounter in working with master equations, the coefficients U< rapidly decay with <, so in practice we can often
form an excellent approximation by just keeping the first few (= ≤ 5) terms in the expansion of Eq. (S61)9.

4.4 Recursion relationships
The polynomials satisfy the following recursion relationships, as can be easily verified from their definition in
Eq. (S55):

GE= (G; Ḡ) = =ḠE=−1(G; Ḡ) + (=+ Ḡ)E= (G; Ḡ) + E=+1(G; Ḡ),
E= (G +1; Ḡ) = =E=−1(G; Ḡ) + E= (G; Ḡ),
GE= (G−1; Ḡ) = ḠE= (G; Ḡ) + E=+1(G; Ḡ).

(S64)

4.5 Expanding the product of polynomials
The final property that comes in useful in calculations is that the product of two polynomials E<(G; Ḡ) and E= (G; Ḡ)
can be itself expanded in a linear combination of polynomials in the following form:

E<(G; Ḡ)E= (G; Ḡ) =
=+<∑

:= |=−< |
E: (G; Ḡ)�<=: (Ḡ), (S65)

where the coefficients �<=
:
(Ḡ) are polynomials in Ḡ given by:

�<=: (Ḡ) =
b<+=−:2 c∑

2=max(0,=−:,<−:)
Γ<=:2 Ḡ

2 . (S66)
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Here, the sum starts at the largest of the three values 0, =− : , and <− : , and bIc denotes the largest integer less or
equal to I. The quantity Γ<=

:2
is defined as:

Γ<=:2 ≡
<!=!

2!(2+ : −<)!(2+ : −=)!(< +=− : −22)! . (S67)

Thus for example if one had two functions 5 (G) and 6(G) with individual expansions,

5 (G) =
∞∑
==0

U=E= (G; Ḡ), 6(G)
∞∑
==0

V=E= (G; Ḡ), (S68)

then the product can be expanded as

5 (G)6(G) =
∞∑
==0

W=E= (G; Ḡ), (S69)

with coefficients given by

W= =

∞∑
:,ℓ

:+ℓ≥=
|:−ℓ | ≤=

U: Vℓ�
:ℓ
= (Ḡ). (S70)
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