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ABSTRACT	

Mediation	models	are	a	set	of	statistical	techniques	that	investigate	the	mechanisms	

that	produce	an	observed	relationship	between	an	exposure	variable	and	an	

outcome	variable	in	order	to	deduce	the	extent	to	which	the	relationship	is	

influenced	by	intermediate	mediator	variables.	For	a	case-control	study,	the	most	

common	mediation	analysis	strategy	employs	a	counterfactual	framework	that	

permits	estimation	of	indirect	and	direct	effects	on	the	odds	ratio	scale	for	

dichotomous	outcomes,	assuming	either	binary	or	continuous	mediators.		While	this	

framework	has	become	an	important	tool	for	mediation	analysis,	we	demonstrate	

that	we	can	embed	this	approach	in	a	unified	likelihood	framework	for	mediation	

analysis	in	case-control	studies	that	leverages	more	features	of	the	data	(in	

particular,	the	relationship	between	exposure	and	mediator)	to	improve	efficiency	

of	indirect	effect	estimates.	One	important	feature	of	our	likelihood	approach	is	that	

it	naturally	incorporates	cases	within	the	exposure-mediator	model	to	improve	

efficiency.	Our	approach	does	not	require	knowledge	of	disease	prevalence	and	can	

model	confounders	and	exposure-mediator	interactions,	and	is	straightforward	to	

implement	in	standard	statistical	software.	We	illustrate	our	approach	using	both	

simulated	data	and	real	data	from	a	case-control	genetic	study	of	lung	cancer.			
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INTRODUCTION	

	 Mediation	techniques1-4	are	indispensable	epidemiological	tools	for	

exploring	the	relationship	between	an	exposure	of	interest	and	an	outcome	variable	

by	investigating	how	their	relationship	is	affected	by	intermediate	mediator	

variables.	Mediation	models	partition	the	total	effect	that	an	exposure	has	on	

outcome	into	the	indirect	effect	on	outcome	explained	by	the	mediator	and	the	

direct	effect	on	outcome	not	explained	by	the	mediator.	Classic	methods	for	

mediation	analysis	are	embedded	within	a	structural	equation	modeling	(SEM)	

framework5-7	that	fit	3	distinct	regression	models:	1)	regression	of	outcome	on	

exposure,	2)	regression	of	mediator	on	exposure,	and	3)	regression	of	outcome	on	

exposure	and	mediator.	Estimates	of	direct	effect	can	be	based	on	exposure-

outcome	relationship	in	model	(3),	while	estimates	of	indirect	effects	are	derived	

from	the	product	of	the	exposure-mediator	relationship	in	(2)	and	the	mediator-

outcome	relationship	in	(3)	(or,	alternatively,	the	difference	of	the	exposure-

outcome	relationship	in	(1)	and	the	exposure-outcome	relationship	in	(3)).	

Counterfactual	approaches	for	mediation	analysis8-10	expanded	on	the	SEM	

framework	to	allow	for	estimates	of	indirect	and	direct	effects	in	the	presence	of	

potential	mediator-exposure	interactions	as	well	as	nonlinear	relationships	

between	variables.		

	 Many	studies,	particularly	in	genetic	epidemiology,	are	case-control	studies.	

Mediation	analysis	for	case-control	studies	uses	the	influential	framework	of	

VanderWeele	(VW)	and	colleagues.	The	VW	framework,	published	in	a	pair	of	

landmark	papers10;	11	with	over	1100	citations	combined,	showed	how	the	
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counterfactual	framework	could	be	used	to	estimate	indirect	and	direct	effects	on	

the	odds	ratio	scale	for	dichotomous	outcomes	assuming	either	binary	and/or	

continuous	mediators10;	12.			

As	described	in	Materials	and	Methods,	the	VW	framework	conducts	

inference	using	two	separate	regression	models:	(a)	a	logistic	regression	model	of	

disease	on	exposure	and	mediator	and	(b)	a	separate	regression	model	of	mediator	

regressed	on	exposure.	Estimates	and	standard	errors	of	total,	direct,	and	indirect	

effects	are	then	derived	based	on	parameter	estimates	and	standard	errors	from	

these	two	regression	models.	We	note	that,	while	fitting	model	(a)	is	

straightforward,	fitting	model	(b)	is	problematic	because	the	sample	is	non-

randomly	ascertained	under	a	case-control	design,	so	that	parameter	estimates	

based	on	the	study	based	on	data	from	study	participants	do	not	reflect	those	from	

the	population	in	general.	To	circumvent	this,	Valeri	and	VanderWeele10	used	only	

controls	to	fit	model	(b).	While	this	is	valid,	the	exclusion	of	cases	from	model	(b)	

means	the	VW	approach	loses	efficiency	relative	to	methods	that	could	properly	

model	the	cases	(accounting	for	ascertainment)	when	investigating	the	mediator-

exposure	relationship.	An	alternative	strategy	to	incorporate	cases	into	the	

mediator	model	was	considered	by	VanderWeele	et	al.13,	which	employed	weighted	

regression	techniques	that	utilized	inverse-probability	weighting	(IPW)	with	robust	

standard	errors.	A	drawback	of	the	IPW	approach	however	is	that	the	method	

requires	knowledge	of	disease	prevalence,	which	might	be	difficult	to	specify,	

especially	when	disease	prevalence	differs	between	subpopulation	groups.		
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	 In	this	article,	we	propose	a	likelihood	approach	for	mediation	analysis	in	

case-control	studies	that	provides	efficiency	gains	over	traditional	VW	methods.	

Rather	than	estimating	indirect	and	direct	effects	based	on	two	separate	regression	

models,	our	likelihood	approach	jointly	models	the	disease,	exposure,	and	mediator	

together	in	a	unified	framework	that	accounts	for	correlation	in	the	parameter	

estimates	between	the	two	VW	regression	models	to	provide	refined	estimates	of	

these	quantities.		Our	approach	also	naturally	incorporates	cases	within	the	

mediator-exposure	model	and	(unlike	IPW	methods)	does	not	require	knowledge	of	

disease	prevalence	to	do	so.	Our	method	can	also	handle	confounders	and	exposure-

mediator	interactions.	The	method	is	simple	to	implement	within	the	R	

programming	language	and	we	provide	code	(see	Web	Resources)	for	public	use.	

Using	simulated	data,	we	show	our	approach	provides	more	efficient	estimates	of	

indirect	effects	compared	to	VW	approaches	(including	IPW	strategies)	for	both	

continuous	and	binary	mediators.	We	further	illustrate	our	method	using	genetic	

and	smoking	data	from	a	case-control	study	of	lung	cancer.				

	

MATERIALS	AND	METHODS	

	 Assumptions	and	Notation:	We	assume	a	case-control	study.	Define	Y	as	

disease	outcome	(1=case,	0=control),	A	as	an	exposure	of	interest	(continuous	or	

categorical),	M	as	a	possible	mediator	(continuous	or	categorical),	and	C	as	a	vector	

of	confounders	not	influenced	by	exposure.	We	wish	to	fit	the	mediation	model	in	

Figure	1.	In	particular,	we	wish	to	measure	the	direct	effect	of	A	on	Y	and	the	

indirect	effect	of	A	on	Y	carried	out	through	the	mediator	M.		
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	 VanderWeele	Framework:	The	original	VanderWeele	(VW)	technique10;	11	

estimates	direct	and	indirect	effects	in	Figure	1	based	on	a	formal	causal	inference	

framework8;	9.	This	framework	conceptualizes	counterfactual	and	potential	

outcomes,	which	define	the	mechanistic	process	by	which	an	exposure	may	causally	

affect	the	dependent	variable	conditional	on	mediators.	Assume	a	binary	exposure	

and	let	𝑌(𝑎)	be	the	potential	outcome	for	exposure	level	a	(a=0,1).	Then	the	total	

effect	of	A	on	Y	is	defined	as	𝐸[𝑌(1)] − 𝐸[𝑌(0)], which	is	the	difference	between	the	

expectation	of	Y	when	A	equals	1	and	when	A	equals	0.	The	framework	can	estimate	

this	difference	despite	only	one	of	the	potential	outcomes	being	observable	for	a	

given	subject,	provided	four	assumptions	hold:	(I)	no	unmeasured	exposure-

outcome	confounding,	(II)	no	unmeasured	mediator-outcome	confounding,	(III)	no	

unmeasured	exposure-mediator	confounding,	and	(IV)	no	mediator-outcome	

confounder	affected	by	exposure.		

	 Under	these	four	assumptions,	we	can	decompose	the	total	effect	(TE)	of	

exposure	on	outcome	into	the	natural	indirect	effect	(NIE)	and	the	natural	direct	

effect	(NDE).	NIE	is	defined	as	𝑁𝐼𝐸 = 𝐸[𝑌(1,𝑀!)] − 𝐸[𝑌(1,𝑀")],	where	𝑀"	(𝑀!)	is	

the	counterfactual	value	of	the	mediator	M	when	A	equals	0	(1).	Likewise,	NDE	is	

defined	as	𝑁𝐷𝐸 = 𝐸[𝑌(1,𝑀")] − 𝐸[𝑌(0,𝑀")].	Thus,	the	total	effect	equals	𝑇𝐸 =

𝑁𝐼𝐸 + 𝑁𝐷𝐸 = 𝐸[𝑌(1,𝑀!)] − 𝐸[𝑌(0,𝑀")].	Additionally,	for	a	given	(fixed)	value	of	

mediator	M,	we	can	define	the	controlled	direct	effect	(CDE)	as	𝐶𝐷𝐸 = 𝐸[𝑌(1,𝑀)] −

𝐸[𝑌(0,𝑀)],	which	can	change	for	different	values	of	M	(as	we	will	show).		
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	 For	case-control	studies	with	a	binary	outcome,	the	VW	techniques11	

extended	the	definitions	of	NIE,	NDE,	and	CDE	to	the	odds	ratio	scale.	On	this	scale,	

the	total	effect	(conditional	on	confounders	C)	is	defined	as		

𝑂𝑅#$ =
𝑃(𝑌(1) = 1|𝐶) 𝑃(𝑌(1) = 0|𝐶)⁄
𝑃(𝑌(0) = 1|𝐶) 𝑃(𝑌(0) = 0|𝐶)⁄ 	

where	𝑃(𝑌(𝑎) = 1|𝐶)	is	the	probability	of	disease	when	A=a.	TE	can	be	partitioned	

into	the	product	of	the	NIE	and	NDE,	which	are	defined	as	

𝑂𝑅%&$ =
𝑃(𝑌(1,𝑀!) = 1|𝐶) 𝑃(𝑌(1,𝑀!) = 0|𝐶)⁄
𝑃(𝑌(1,𝑀") = 1|𝐶) 𝑃(𝑌(1,𝑀") = 0|𝐶)⁄ 			

𝑂𝑅%'$ =
𝑃(𝑌(1,𝑀") = 1|𝐶) 𝑃(𝑌(1,𝑀") = 0|𝐶)⁄
𝑃(𝑌(0,𝑀") = 1|𝐶) 𝑃(𝑌(0,𝑀") = 0|𝐶)⁄ 	

The	VW	framework	estimates	𝑂𝑅#$ , 𝑂𝑅%'$ , 𝑂𝑅%&$ 	by	first	fitting	regression	models	

to	the	observed	data.	To	model	the	disease	data,	the	VW	framework	applies	the	

logistic	model			

		

𝑙𝑜𝑔𝑖𝑡{𝑃(𝑌 = 1|𝐴 = 𝑎,𝑀 = 𝑚, 𝐶 = 𝑐)} = 𝛾" + 𝛾(𝑎 + 𝛾)𝑚 + 𝛾()𝑎𝑚 + 𝛾*𝑐			(1𝑎)	

	

To	model	the	mediator	(continuous	or	binary),	VW	uses	one	of	the	following	

regression	models		

	

Continuous:	𝐸[𝑀|𝐴 = 𝑎, 𝐶 = 𝑐] = 𝛽" + 𝛽+𝑎 + 𝛽,𝑐						(1𝑏)						

Binary:	𝑙𝑜𝑔𝑖𝑡[𝑃(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)] = 𝛽" + 𝛽+𝑎 + 𝛽,𝑐					(1𝑐)		
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For	a	continuous	mediator,	the	VW	framework	estimates	NIE,	NDE,	and	CDE	on	

disease	outcome	going	from	exposure	level	a*	to	a	(assuming	assumptions	I-IV	

above	hold)	as		

𝑙𝑜𝑔{𝑂𝑅!"#} = (𝛾$ + 𝛾$%𝑚)(𝑎 − 𝑎∗)					(2𝑎) 
 
𝑙𝑜𝑔{𝑂𝑅'"#} ≅ 9𝛾$ + 𝛾$%(𝛽( + 𝛽$𝑎∗ + 𝛽!𝑐 + 𝛾%𝜎))=(𝑎 − 𝑎∗) + 0.5𝛾$%) 𝜎)(𝑎) − 𝑎∗))			(2𝑏) 

 
𝑙𝑜𝑔{𝑂𝑅'*#} ≅ (𝛾%𝛽% + 𝛾$%𝛽$𝑎)(𝑎 − 𝑎∗)			(2𝑐)	

	
where	𝜎-	in	equation	(2b)	is	the	residual	variance	from	fitting	model	(1b),	which	is	

assumed	to	be	normally	distributed.	Note	that	CDE	in	(2a)	depends	on	level	of	the	

mediator	(as	previously	mentioned).	In	contrast,	for	a	binary	mediator,	the	VW	

framework	estimates	NIE,	NDE,	and	CDE	on	disease	outcome	going	from	exposure	

level	a*	to	a	as	

	
𝑂𝑅*'$ = 𝑒𝑥𝑝{(𝛾( + 𝛾()𝑚)(𝑎 − 𝑎∗)}					(3𝑎)	

	

𝑂𝑅%'$ ≅
𝑒𝑥𝑝(𝛾(𝑎){1 + 𝑒𝑥𝑝(𝛾) + 𝛾()𝑎 + 𝛽" + 𝛽(𝑎∗ + 𝛽*𝑐)}
𝑒𝑥𝑝(𝛾(𝑎∗){1 + 𝑒𝑥𝑝(𝛾) + 𝛾()𝑎∗ + 𝛽" + 𝛽(𝑎∗ + 𝛽*𝑐)}

			(3𝑏)	

	

𝑂𝑅%&$ ≅
{1 + 𝑒𝑥𝑝(𝛽" + 𝛽(𝑎∗ + 𝛽*𝑐)}{1 + 𝑒𝑥𝑝(𝛾) + 𝛾()𝑎 + 𝛽" + 𝛽(𝑎 + 𝛽*𝑐)}
{1 + 𝑒𝑥𝑝(𝛽" + 𝛽(𝑎 + 𝛽*𝑐)}{1 + 𝑒𝑥𝑝(𝛾) + 𝛾()𝑎 + 𝛽" + 𝛽(𝑎∗ + 𝛽*𝑐)}

			(3𝑐)	

	
Once	we	estimate	these	quantities,	we	can	derive	the	standard	errors	of	

𝑂𝑅#$ , 𝑂𝑅%'$ , 𝑂𝑅%&$ 	on	the	log	scale	by	applying	the	delta	method	using	the	

formulae	outlined	in	the	Appendix	of	Valeri	and	VanderWeele10.	We	can	then	

perform	hypothesis	testing	of	𝑂𝑅#$ , 𝑂𝑅%'$ , 𝑂𝑅%&$ 	using	Wald	tests.		

The	VW	framework’s	estimation	of	NDE,	NIE,	and	CDE	for	both	continuous	

mediators	in	(2)	and	binary	mediators	in	(3)	requires	parameter	estimates	from	the	

mediator	models	in	(1b)	and	(1c).	Fitting	models	(1b)	and	(1c)	is	difficult	because	
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the	sample	is	ascertained	based	on	disease	and	does	not	represent	a	random	sample	

from	a	population	as	assumed	by	𝐸[𝑀|𝑎, 𝑐]	in	(1b)	and	𝑙𝑜𝑔𝑖𝑡[𝑃(𝑀 = 1|𝑎, 𝑐)]	in	(1c).	

To	circumvent	this	complication,	VW	models	often	make	a	rare-disease	assumption	

and	fit	𝐸[𝑀|𝑎, 𝑐]	and	𝑙𝑜𝑔𝑖𝑡[𝑃(𝑀 = 1|𝑎, 𝑐)]	in	(1b)	and	(1c)	using	control	data	only.	

Alternatively,	as	in	VanderWeele	et	al.13,	one	can	instead	incorporate	cases	into	the	

mediator	models	in	(1b)	and	(1c)	using	IPW	such	that	cases	are	utilized	in	the	model	

but	their	contributions	(compared	to	controls)	are	downweighted	relative	to	their	

sampling	proportion.		For	IPW	regression,	the	standard	errors	of	the	coefficients	in	

(1b)	and	(1c)	are	then	derived	using	robust	Huber-White	procedures14;	15.		

	 Unified	Likelihood	Approach:	Here,	we	propose	a	unified	likelihood	approach	

that	jointly	models	disease,	exposure,	and	mediator	data	together	while	

incorporating	cases	into	the	mediator	model	accounting	for	ascertainment,	using	

the	rare	disease	approximation.	Letting	j	index	subject	and	assuming	all	subjects	are	

independent,	we	initially	define	the	joint	(prospective)	likelihood	as	𝐿/ =

∏ 𝑃[𝑌0 , 𝑀0\𝐴0 , 𝐶0]0 ,	which	we	then	factor	into	

	

𝐿+ =B 𝑃D𝑀, = 𝑚F𝑌, = 𝑦, 𝐴, = 𝑎, 𝐶, = 𝑐K
,

𝑃D𝑌, = 𝑦F𝐴, = 𝑎, 𝐶, = 𝑐K							(4) 

	

We	note	that	we	could	replace	𝑃D𝑌, = 𝑦F𝐴, = 𝑎, 𝐶, = 𝑐K	in	(4)	with	𝑃[𝐴0 =

𝑎\𝑌0 = 𝑦, 𝐶0 = 𝑐]	and	instead	perform	inference	using	the	retrospective	likelihood	

𝐿1 = ∏ 𝑃[𝐴0 , 𝑀0\𝑌0 , 𝐶0]0 .		However,	the	prospective	likelihood	is	often	preferred	to	

the	retrospective	likelihood	as	Y|A,C	in	the	former	likelihood	is	easier	to	model	(e.g.	

using	logistic	regression)	than	A|Y,C	in	the	latter	likelihood;	standard	results16	
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assure	that	LR	and	LP	are	proportional	if	a	nonparametric	distribution	is	chosen	for	

A|C,	and	that	only	the	intercept	is	affected.	

We	first	describe	how	to	model	𝑃[𝑀0 = 𝑚\𝑌0 = 𝑦, 𝐴0 = 𝑎, 𝐶0 = 𝑐]	in	(4).	For	

controls,	we	assume	a	rare	disease	such	that	𝐸[𝑀0 = 𝑚\𝑌0 = 0, 𝐴0 = 𝑎, 𝐶0 = 𝑐] ≅

𝛽" + 𝛽(𝑎 + 𝛽*𝑐	(for	a	continuous	mediator)	or	𝑙𝑜𝑔𝑖𝑡[𝑃_𝑀 = 1\𝑌0 = 0, 𝐴0 = 𝑎, 𝐶0 =

𝑐`] = 𝛽" + 𝛽+𝑎 + 𝛽,𝑐		(for	a	binary	mediator).	These	choices	are	the	same	as	usually	

used	when	using	the	VW	framework.	

Data	from	cases	can	be	incorporated	into	the	mediation	model;	these	

contributions	are	discarded	in	the	VW	framework.		To	accomplish	this,		note	that	we	

can	write	𝑃[𝑀0 = 𝑚\𝑌0 = 1, 𝐴0 = 𝑎, 𝐶0 = 𝑐]	as17;	18;		

	

𝑃[𝑀0 = 𝑚\𝑌0 = 1, 𝐴0 = 𝑎, 𝐶0 = 𝑐] =
𝜃0(𝑎,𝑚, 𝑐)𝑃[𝑀0 = 𝑚\𝑌0 = 0, 𝑎, 𝑐]

∫ 𝜃0(𝑎,𝑚∗, 𝑐)𝑃[𝑀0 = 𝑚∗\𝑌0 = 0, 𝑎, 𝑐] 𝑑𝑚∗ 						(5)	

	

where	

𝜃0(𝑎,𝑚, 𝑐) =
𝑃[𝑌0 = 1\𝐴0 = 𝑎,𝑀0 = 𝑚, 𝐶0 = 𝑐]
𝑃[𝑌0 = 0\𝐴0 = 𝑎,𝑀0 = 𝑚, 𝐶0 = 𝑐]

= 𝑒𝑥𝑝(𝛾" + 𝛾(𝑎 + 𝛾)𝑚 + 𝛾()𝑎𝑚 + 𝛾*𝑐)						(6)	

	

is	the	disease	odds	given	exposure,	mediator,	and	confounders	(allowing	for	

possible	mediator-exposure	interaction,	if	desired).	Note	that	𝜃0(𝑎,𝑚, 𝑐)	is	the	same	

quantity	fit	in	equation	(1a)	in	our	summary	of	the	VW	framework.		
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	 Equation	(5)	shows	that	we	can	naturally	model	the	mediator	in	the	cases	

(accounting	for	ascertainment)	as	a	function	of	the	disease	odds	in	(6)	and	the	

mediator	model	in	the	controls,	without	requiring	external	information	like	disease	

prevalence	(which	IPW	methods	require).	The	denominator	in	(5)	corresponds	to	

the	disease	odds	given	exposure	and	confounders17;	18.	That	is,		

	

𝜃,(𝑎, 𝑐) =
𝑃D𝑌, = 1|𝑎, 𝑐K
𝑃D𝑌, = 0|𝑎, 𝑐K

= O𝜃,(𝑎,𝑚∗, 𝑐)𝑃D𝑀, = 𝑚∗F𝑌, = 0, 𝑎, 𝑐K 𝑑𝑚∗					(7) 

 
which	becomes	

= 𝑒-!.𝛾𝐴𝑎+𝛾𝐶𝑐O𝑒/𝛾𝑀+𝛾𝐴𝑀𝑎0𝑚∗𝑃D𝑀, = 𝑚∗F𝑌, = 0, 𝑎, 𝑐K 𝑑𝑚∗					 

 
if	the	model	in	equation	(6)	is	used.		𝜃0(𝑎, 𝑐)	in	(7)	has	a	closed	form	whenever	the	

moment	generating	function	for	𝑃[𝑀0 = 𝑚∗\𝑌0 = 0, 𝑎, 𝑐]	has	a	simple	or	closed	form,	

which	simplifies	inference.	For	example,	if	the	mediator	M	is	normally	distributed	in	

controls	with	mean	𝐸[𝑀0 = 𝑚\𝐴0 = 𝑎, 𝐶0 = 𝑐, 𝑌0 = 0] = 𝛽" + 𝛽(𝑎 + 𝛽*𝑐	and	variance	

𝜎-,	then	we	show	in	Supplementary	Materials	that	𝜃0(𝑎, 𝑐) = 𝑒𝑥𝑝(𝛾" + 𝛾(𝑎 +

(𝛾) + 𝛾()𝑎)(𝛽" + 𝛽(𝑎 + 𝛽*𝑐) + 0.5(𝛾) + 𝛾()𝑎)-𝜎- + 𝛾*𝑐).	For	a	binary	M,	we	

simply	replace	the	integral	in	equation	(7)	with	a	sum	over	the	two	levels	of	the	

mediator.		

	 To	complete	construction	of	𝐿/	in	(4),	we	model	𝑃[𝑌0 = 𝑦\𝐴0 = 𝑎, 𝐶0 = 𝑐]	

using	a	logistic	regression	model	based	on	𝜃0(𝑎, 𝑐)	in	(7),	such	that	𝑃[𝑌0 =

𝑦\𝐴0 = 𝑎, 𝐶0 = 𝑐] = 7(9,;)%

!=7(9,;)
	with	the	assurance	that	the	only	difference	between	
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using	LP	and	LR	for	case-control	sampling	is	in	the	intercept16	𝛾(.	Combining	all	the	

pieces,	we	can	simplify	our	likelihood	for	inference	in	(4)	to	give		

	

𝐿/ =g 𝑃[𝑀0 = 𝑚\𝑌0 = 0, 𝐴0 = 𝑎, 𝐶0 = 𝑐]
0

𝜃(𝑎,𝑚, 𝑐)>&
1 + 𝜃(𝑎, 𝑐) 								(8)	

.	

We	propose	to	base	inference	on	𝐿/	in	(8);	parameter	estimates	can	be	obtained	by	

maximizing	(8)	with	respect	to	(𝛾", 𝛾(, 𝛾) , 𝛾() , 𝛾* , 𝛽", 𝛽(, 𝛽* , 𝜎-)	using	standard	

optimization	algorithms	like	Quasi-Newton,	and	the	covariance	matrix	of	the	

estimated	parameters	can	be	obtained	either	from	the	information	matrix	or	a	

‘sandwich’	variance	estimator.	We	can	then	substitute	these	estimates	into	

equations	(2a-2c)	or	(3a-3c)	to	obtain	estimates	of	𝑂𝑅1# ,	𝑂𝑅'"# ,	𝑂𝑅'*# ,	and	𝑂𝑅!"# 	

and	use	the	delta	method	results	given	in	the	Appendix	of	Valeri	and	VanderWeele10	

to	obtain	standard	errors	and	construct	confidence	intervals	of	these	quantities.	We	

can	perform	hypothesis	testing	of	the	parameters	or	measures	of	direct	and	indirect	

effects	using	Wald	statistics	based	on	the	estimates	and	standard	errors.		

	 Simulation	Studies:	We	performed	simulation	studies	to	evaluate	the	

efficiency	gains	of	our	likelihood	for	mediation	analysis	relative	to	the	original	VW	

method.	We	assumed	a	continuous	exposure	A	that	followed	a	standard	normal	

distribution	and	a	binary	covariate	C	that	followed	a	Bernoulli(0.5)	distribution.	

Using	A	and	C,	we	generated	a	continuous	mediator	M	using	equation	(1b)	or	

generated	a	binary	mediator	M	using	equation	(1c)	using	parameter	values	shown	

in	Table	1.	We	then	used	M,	A,	C	to	generate	disease	status	using	equation	(1a)	and	
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parameter	values	shown	in	Table	1,	assuming	a	value	for	the	intercept	that	yielded	a	

population	prevalence	of	0.03.	As	shown	in	Table	1,	we	considered	models	that	

explicitly	assumed	an	exposure-mediator	interaction	as	well	as	models	that	

assumed	no	interactions.	We	chose	parameter	values	to	yield	models	with	

𝑙𝑜𝑔(𝑂𝑅𝑇𝐸) = 0.145,	𝑙𝑜𝑔(𝑂𝑅𝑁𝐷𝐸) = 0.1	,	and	𝑙𝑜𝑔(𝑂𝑅𝑁𝐼𝐸) = 0.045	for	both	a	

continuous	and	binary	mediator,	with	and	without	a	mediator-exposure	interaction	

effect.	For	a	specific	model,	we	prospectively	generated	subjects	until	we	obtained	

300	cases	and	300	controls.	For	all	simulation	settings,	we	generated	1000	

replicates	per	setting.		

	 For	each	simulation	analysis,	we	compared	the	performance	of	our	likelihood	

approach	both	to	the	original	VW	method	that	discards	cases	within	the	mediator	

models	of	(1b)	and	(1c)	as	well	as	the	IPW-version	of	VW	that	incorporates	cases	

into	the	mediator	models	of	(1b)	and	(1c)	using	inverse	probability	weighting.	For	

the	IPW	analyses,	we	assumed	the	disease	prevalence	of	the	weighting	is	correctly	

specified.	All	analyses	were	conducted	in	the	R	programming	language.	We	fit	our	

likelihood	to	simulated	datasets	using	a	quasi-Newton	algorithm	implemented	in	

the	R	‘optim’	function.	We	fit	the	VW	methods	using	the	R	functions	‘glm’	and	‘lm’.	

For	the	IPW	method,	we	constructed	robust	Huber-White	standard	errors	of	the	

mediator	model	using	the	‘vcovHC’	function	in	the	R	library	‘sandwich’.		

	 Application	to	Case-Control	Genetic	Study	of	Lung	Cancer:	Lung	cancer	is	the	

leading	cause	of	cancer-related	deaths	across	the	world19	and	represents	a	major	

public	health	concern.	A	well-known	environmental	risk	factor	for	lung	cancer	is	

tobacco	smoking,	with	long-term	smokers	having	a	10-fold	increased	risk	of	lung	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452552
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

cancer	relative	to	non-smokers20.	Beyond	smoking	and	other	environmental	risk	

factors,	genetics	are	also	known	to	broadly	play	a	role	in	lung-cancer	risk21;	22	with	

several	specific	risk	loci	being	identified	within	genome-wide	association	studies	

(GWAS)	of	the	disease	23;	24.		

	 One	established	risk	loci	of	lung	cancer	identified	by	GWAS	resides	on	

chromosome	15q25.125.	The	associated	region	contains	nicotinic	acetylcholine	

receptor	subunit	genes	that	encode	proteins	that	form	receptors	that	bind	nicotine.	

A	number	of	studies	suggest	that	this	risk	locus	is	also	associated	with	measures	of	

smoking	behavior26-29.	Given	the	known	relationship	between	smoking	behavior	

and	lung	cancer,	it	is	worth	inquiring	whether	the	SNPs	in	this	locus	influence	lung	

cancer	risk	partially	or	completely	through	smoking	behavior.		To	explore	these	

hypotheses,	we	utilized	genetic,	smoking	pack-year,	and	disease	data	from	the	

GENEVA	GWAS	of	Lung	Cancer	and	Smoking30;	31	available	through	dbGaP	

(accession	number	phs000093.v2.p2;	see	Web	Resources).	The	GENEVA	GWAS	

dataset	consists	of	2695	cases	and	2779	controls	genotyped	for	508,916	post-QC	

SNPs	across	the	genome.	

We	first	used	the	GENEVA	data	to	perform	a	genome-wide	analysis	of	the	

post-QC	autosomal	SNPs	with	lung	cancer	using	logistic	regression,	adjusted	for	

gender	and	the	top	three	principal	components	of	ancestry	(Manhattan	and	

quantile-quantile	plots	are	shown	in	Figures	S1	and	S2,	respectively).		Within	the	

chromosome	15q25.1	locus,	we	identified	strong	associations	of	several	SNPs	with	

lung	cancer	in	GENEVA	with	SNP	rs12914385	(p=1.887	x10-15)	yielding	the	top	signal	

in	the	region	(see	Figure	S3).	We	next	conducted	a	GWAS	of	a	dichotomized	version	
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of	smoking	pack-years	(split	at	the	median	value	of	3	pack-years)	in	the	GENEVA	

data	using	logistic	regression,	adjusting	for	gender	and	the	top	3	principal	

components	of	ancestry	(Manhattan	and	quantile-quantile	plots	are	shown	in	

Figures	S4	and	S5,	respectively).	Interestingly,	we	observed	the	same	lung	cancer	

risk	SNP	rs12914385	also	yielded	a	strong	association	with	the	dichotomized	pack-

year	variable	(p=1.364	x10-6)	and	likewise	was	the	top	signal	in	the	chromosome	

15q25.1	locus	(see	Figure	S6).		

	 Based	on	our	results,	we	explored	the	relationship	of	rs12914385	with	

smoking	pack-years	and	lung	cancer	within	a	mediation	framework.	Specifically,	we	

were	interested	in	exploring	how	much	this	SNP	(exposure	A)	influenced	lung	

cancer	disease	status	(outcome	Y)	through	the	dichotomized	smoking	pack-year	

variable	(mediator	M).	Our	analyses	also	controlled	for	gender	and	the	top	three	

principal	components	of	ancestry	(covariates	C).	Within	controls,	the	minor-allele	

frequency	of	rs12914385	was	0.402.	We	performed	inference	using	both	our	

likelihood	approach	as	well	as	traditional	VW	techniques.		

We	note	that	VanderWeele	and	colleagues13;	32	previously	conducted	similar	

analyses	to	untangle	the	relationship	between	SNPs	in	15q25.1	locus,	smoking,	and	

lung	cancer	using	case-control	mediation	tools.	Our	analysis	above	differs	from	

these	previous	analyses	in	a	few	important	ways.	First,	the	previous	analysis	did	not	

use	the	GENEVA	study	and	instead	analyzed	a	different	collection	of	genetic	studies	

of	lung	cancer.	Second,	the	authors	did	not	consider	rs12914385	as	the	SNP	

exposure	and	instead	studied	two	nearby	SNPs	(rs8034191,	rs1051730)	in	moderate	

linkage	disequilibrium	with	rs12914385.	Finally,	they	also	considered	different	
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measures	of	smoking	than	pack-years	and	did	not	adjust	for	principal	components	

of	ancestry	as	we	do	in	our	analyses	presented	here.		

	

RESULTS	

Simulations	with	Continuous	Mediator:	Table	2	provides	simulation	results	for	

estimating	and	conducting	inference	of	𝑂𝑅#$ , 𝑂𝑅%'$ , 𝑂𝑅%&$ , 𝑂𝑅*'$ 	using	our	

likelihood	approach,	the	original	VW	method,	and	the	VW-IPW	under	the	generating	

model	that	assumed	a	continuous	mediator	with	no	mediator-exposure	interaction	

effect	on	disease	risk.		We	noticed	important	differences	among	the	methods	with	

regards	to	inference	of	indirect	effects	(highlighted	in	Table	2).	In	particular,	the	

simulation	results	revealed	that	our	likelihood	approach	yielded	smaller	(but	still	

well	calibrated)	standard	errors	of	the	indirect	effects,	relative	to	the	VW	approach,	

due	in	part	to	the	former	method	incorporating	cases	within	the	mediation	model	

that	the	latter	method	discards.	Consequently,	Table	2	shows	our	likelihood	

approach	has	greater	power	to	detect	the	indirect	effect	relative	to	the	VW	method.	

We	performed	additional	power	simulations	under	a	wider	range	of	indirect-effect	

size	estimates	(generated	by	varying	the	value	of	𝛾) 	in	(2c)	while	holding	the	

remaining	simulation	parameters	at	the	values	shown	in	Table	1)	and	observed	that	

the	likelihood	approach	was	substantially	more	powerful	than	the	VW	method	for	

detecting	an	indirect	effect	across	all	values	considered	(Figure	2).	For	total	and	

direct	effects,	the	likelihood,	VW,	and	VW-IPW	methods	all	yielded	similar	findings.	

Our	likelihood	approach	improves	efficiency	of	indirect	effects	by	

incorporating	cases	within	the	mediation	model.	This	impact	can	be	illuminated	by	
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studying	the	standard	errors	of	the	mediator-model	parameter	estimates	(see	Table	

S1),	which	are	much	smaller	for	our	likelihood	approach	than	for	the	VW	approach.	

Additionally,	by	jointly	modeling	disease,	mediator,	and	exposure	data	in	a	unified	

framework,	we	account	for	correlations	among	the	disease-model	and	mediator-

model	parameters	(see	Table	S2);	the	VW	framework	assumes	no	correlation	among	

parameters	from	these	two	different	models.	By	incorporating	these	non-zero	

correlations	in	our	likelihood	framework,	our	approach	refines	the	standard	errors	

of	the	indirect	effects	estimated	using	the	delta	method.	Results	using	the	VW-IPW	

approach	(which	incorporates	cases	but	substantially	downweights	their	

contribution	relative	to	controls)	were	quite	similar	to	those	using	the	VW	approach	

but	did	yield	slightly	smaller	standard	errors	for	mediator-model	parameter	

estimates	relative	to	VW.		

We	next	considered	simulation	models	with	a	continuous	mediator	where	we	

generated	a	mediator-exposure	interaction.	Table	3	shows	estimates	and	standard	

errors	for	𝑂𝑅#$ , 𝑂𝑅%'$ , 𝑂𝑅%&$ , 𝑂𝑅*'$ 	when	we	assume	an	interaction	effect.	For	

indirect	effects,	the	VW	and	VW-IPW	methods	had	larger	mean	estimates	of	

standard	error	than	the	empirical	standard	deviation	of	the	effect	estimates	and	

likewise	had	wider	coverage	for	the	95%	CI	than	expected	(98.0%	for	both	the	VW	

and	VW-IPW	methods).	Our	likelihood	approach,	on	the	other	hand,	had	appropriate	

coverage	of	the	95%	confidence	interval	for	the	indirect	effect	and	the	mean	

estimates	of	standard	error	mirrored	the	empirical	standard	deviation	of	estimates	

in	the	simulated	datasets.	Consequently,	the	likelihood	approach	had	increased	

power	to	detect	the	indirect	effect	relative	to	the	VW	and	VW-IPW	techniques.	The	
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likelihood,	VW,	and	VW-IPW	methods	all	yielded	similar	inference	for	total	and	

direct	effects	when	an	interaction	effect	was	incorporated	in	the	model.		

To	understand	the	improved	power	of	our	likelihood	approach	for	detecting	

indirect	effects,	inspection	of	the	parameter	estimates	(Table	S3)	show	that	the	

likelihood	approach	provides	more	efficient	estimates	of	the	mediator-exposure	

interaction	effect	in	the	disease	model,	as	well	as	those	parameters	related	to	the	

mediator	model.	Inspection	of	the	mean	covariance	estimates	for	model	parameters	

(Table	S4)	shows	the	likelihood	approach	estimates	non-zero	correlations	between	

disease-model	parameters	(including	the	mediator-exposure	interactions)	and	

mediator-model	parameters	that	the	VW	and	IPW-VW	methods	presume	are	0.		

Simulations	with	Binary	Mediator:		Table	4	provides	estimates	and	standard	

errors	for	𝑂𝑅#$ , 𝑂𝑅%'$ , 𝑂𝑅%&$ , 𝑂𝑅*'$ 	for	a	binary	mediator	assuming	no	mediator-

exposure	interaction	effect.	For	𝑂𝑅%&$ ,	we	observed	that	the	likelihood	approach	

yielded	smaller	standard	errors	than	the	VW	and	VW-IPW	approaches	and	

consequently	had	increased	power	to	detect	this	indirect	effect.		We	subsequently	

conducted	additional	power	simulations	under	a	broader	range	of	indirect-effect	

size	estimates	(generated	by	varying	values	of	𝛾) 	in	(3c)	while	holding	the	

remaining	simulation	parameters	at	the	values	shown	in	Table	1)	and	observed	

substantially	increased	power	for	the	likelihood	approach	over	the	VW	method	

across	this	range	(Figure	3).		The	likelihood	approach,	VW,	and	VW-IPW	approaches	

all	produced	similar	results	for	total	and	direct	effects.		

Inspection	of	parameter	estimates	(Table	S5)	and	mean	parameter	

covariance	(Table	S6)	reveal	similar	trends	to	what	we	observed	in	the	analysis	of	
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continuous	mediators;	the	likelihood	approach	produces	mediator-model	

parameter	estimates	with	smaller	standard	errors	than	the	VW	and	VW-IPW	

methods	and	the	likelihood	approach	estimates	non-zero	covariances	between	

disease-model	parameters	and	mediator-model	parameters.		

	 We	finally	consider	simulation	models	with	a	binary	mediator	assuming	a	

mediator-exposure	interaction	effect	on	disease	risk	and	show	the	main	results	in	

Table	5.	For	the	indirect	effect,	our	likelihood	approach	had	appropriate	coverage	of	

the	95%	confidence	interval	with	mean	standard	errors	for	the	effect	estimates	that	

mirrored	the	empirical	standard	deviation	of	the	parameter	estimates	in	the	

simulated	datasets.	The	VW	and	VW-IPW	methods	yielded	unbiased	estimates	for	

the	effects	as	well	but	the	coverage	of	the	95%	confidence	interval	for	the	indirect	

effects	was	larger	than	expected	(98.6%	for	both	the	VW	and	VW-IPW	methods)	and	

the	mean	standard	errors	of	the	indirect	effects	was	larger	than	the	empirical	

standard	deviation	of	the	parameter	estimates	produced	by	the	methods	across	the	

simulated	datasets.	Consequently,	the	likelihood	approach	had	markedly	increased	

power	to	detect	the	indirect	effect	relative	to	the	VW/VW-IPW	methods.	Inspection	

of	model	parameter	estimates	(Table	S7)	and	mean	parameter	covariance	(Table	

S8)	revealed	similar	findings	as	previously	observed	for	other	simulation	models.	

Results	for	direct	and	total	effects	were	similar	among	all	three	methods	when	we	

modeled	an	interaction	effect.		

	 Application	to	Case-Control	Genetic	Study	of	Lung	Cancer:	Using	the	2695	

cases	and	2779	controls	from	the	GENEVA	GWAS	of	lung	cancer,	we	first	conducted	

a	mediation	analysis	that	assessed	whether	the	significant	effect	of	SNP	rs12914385	
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on	lung	cancer	risk	was	due	in	part	to	an	indirect	effect	through	a	mediator	of	

smoking	pack-years,	adjusting	for	covariate	effects	of	gender	and	the	top	three	

principal	components	of	ancestry.	We	initially	applied	our	likelihood	approach,	as	

well	as	the	VW	approach,	to	the	data	explicitly	assuming	a	potential	interaction	

effect	𝛾() 	of	exposure	(SNP	genotype)	and	mediator	(smoking	pack-years)	on	

disease	risk.	However,	we	observed	no	significant	interaction	effect	using	either	our	

likelihood	approach	(p=0.147)	or	the	VW	approach	(p=0.130).	Thus,	we	removed	the	

interaction	parameter	from	each	model	and	proceeded	with	reduced	models	that	

assumed	no	interaction	effects.		

Under	the	reduced	models,	we	provide	the	odds-ratio	estimates	of	indirect	

and	direct	effects	of	rs12914385	on	lung-cancer	risk	using	our	likelihood	in	Table	6	

(see	Table	S9	for	corresponding	parameter	estimates	produced	using	our	

approach).	Overall,	our	results	demonstrate	that	the	effect	of	rs12914385	on	lung	

cancer	risk	is	predominantly	a	direct	effect	but	there	is	evidence	of	a	modest	

indirect	effect	through	smoking	pack-years.	Specifically,	the	total	effect	of	

rs12914385	on	lung	cancer	risk	(𝑂𝑅1# 	=	1.358;	95%	CI:	[1.255,1.470])	is	nearly	

completely	due	to	a	direct	effect	(𝑂𝑅'"# 	=1.333;	95%	CI:	[1.226,1.449])	of	the	SNP	

on	disease	outcome	rather	than	an	indirect	effect	through	the	mediator	of	smoking	

pack-years	(𝑂𝑅'*#=1.019;	95%	CI:	[1.000,1.039]).	That	being	said,	the	test	of	the	

indirect	effect	was	significant	(p=0.0494)	using	our	approach;	additional	analyses	

using	larger	sample	sizes	to	explore	the	indirect	effect	further	is	warranted.		

We	next	repeated	the	same	mediation	analysis	of	rs129143851	using	the	

traditional	VW	approach	(Table	6,	Table	S9).	While	the	estimates	of	total,	direct,	and	
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indirect	effects	using	the	VW	approach	were	quite	similar	to	those	produced	using	

our	likelihood	approach,	we	observed	that	the	VW	method’s	confidence	intervals	

were	noticeably	wider	both	for	the	total	effect	as	well	as	the	indirect	effect	

compared	to	our	likelihood	approach.	Furthermore,	the	VW	approach	found	no	

borderline	evidence	of	an	indirect	effect	of	rs129143851	on	lung-cancer	risk	through	

smoking	pack-years	(p=0.5204).	Inspection	of	parameter	estimates	(see	

Supplementary	Table	9)	revealed	the	likelihood	approach	yielded	smaller	standard	

errors	for	parameter	estimates	within	the	mediation	model	than	the	VW	approach,	

mirroring	our	observations	within	our	simulated	datasets.			

	

DISCUSSION	

	 Our	work	develops	a	unified	likelihood	approach	for	case-control	mediation	

analysis	that	improves	inference	of	indirect	effects	relative	to	the	popular	

counterfactual	framework	of	VanderWeele	by	jointly	modeling	the	disease	model	

and	mediator	model	together	in	a	joint	framework	that	further	leverages	important	

information	on	the	mediator-exposure	relationship	within	cases.	Existing	VW	

methods	either	ignore	cases	in	the	mediator	model	or	use	IPW	procedures	to	

incorporate	them	into	the	model.	Unlike	our	approach,	IPW	requires	knowledge	of	

disease	prevalence	which	may	be	difficult	to	ascertain.	Even	if	prevalence	

information	is	correctly	specified,	the	IPW-VW	techniques	fit	the	disease	model	and	

mediator	model	separately	and	so	does	not	account	for	the	correlation	among	

parameters	between	the	two	models.	Our	likelihood	framework	utilizes	this	

correlation,	thereby	resulting	in	more	efficient	estimates	of	parameters	within	the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452552doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452552
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22	

mediator	model	compared	to	the	VW	models.	We	also	note	our	framework	also	

leads	to	more	efficient	estimates	of	the	mediator-exposure	interaction	variable	in	

the	disease	model	when	modeled.		Due	to	the	increased	efficiency	of	these	

parameter	estimates	(as	well	as	accounting	for	parameter	correlation	between	

disease	and	mediator	models),	we	also	subsequently	obtain	more	efficient	estimates	

of	indirect	effects	between	an	exposure	and	disease	outcome	compared	to	the	VW	

framework.	Our	method	further	does	not	require	knowledge	of	disease	prevalence	

to	incorporate	cases	into	our	framework.		

	 We	illustrated	our	method	using	genetic	data	from	a	GWAS	study	of	lung	

cancer	and	found	that	the	effect	of	the	top	risk	SNP	in	the	chromosome	15q25.1	

locus	on	lung	cancer	within	this	dataset	is	predominantly	a	direct	effect	but	there	is	

some	evidence	for	a	modest	indirect	effect	through	smoking	pack-years.	While	we	

applied	our	unified	likelihood	within	a	case-control	genetics	project	for	illustration	

purposes,	the	technique	is	widely	applicable	in	other	settings	(e.g.	environmental	

studies,	psychological	studies)	that	employ	a	case-control	sampling	design.	We	

provide	R	code	implementing	the	likelihood	approach	on	our	website	(see	Web	

Resources).	Extension	of	our	framework	to	handle	multiple	mediators	is	feasible	

and	will	be	explored	in	future	work.		

	 Both	our	likelihood	approach	and	the	VW	framework	model	the	probability	

of	disease	conditional	on	exposure	and	mediator	even	though,	by	design,	case-

control	studies	generate	retrospectively	ascertained	mediator	and	exposure	data.	

Such	prospective	analysis	can	be	as	efficient	as	a	retrospective	analysis	but	this	

result	holds	only	under	the	assumption	of	a	saturated	non-parametric	distribution	
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for	the	exposure16.	Carroll33	showed	that	prospective	analysis	of	retrospectively-

sampled	data	may	be	less	efficient	than	a	retrospective	analysis	when	one	restricts	

the	exposure	distribution	in	some	fashion.	For	example,	genetic	studies	often	

restrict	the	distribution	of	exposure	(genotype	or	haplotype)	by	making	the	logical	

assumption	that	the	underlying	alleles	are	in	Hardy-Weinberg	Equilibrium	(HWE).	

In	these	situations,	many	studies	have	shown34-37	that	retrospective	analysis	of	case-

control	genetic	data	can	be	more	efficient	than	prospective	analysis	under	the	HWE	

assumption.	Thus,	in	future	work,	we	will	investigate	the	use	of	a	retrospective	

likelihood	for	case-control	mediation	analysis	that	may	improve	on	prospective	

approaches	by	directly	modeling	the	distribution	of	exposure	conditional	on	

outcome.		
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TABLE	1:	SIMULATION	MODELS	
	
	

	 Continuous	Mediator	 Binary	Mediator	
	 No	Interaction	 Interaction	 No	Interaction	 Interaction	
	 	 	 	 	
𝛾(	 0.100	 0.077	 0.100	 0.049	
𝛾) 	 0.300	 0.200	 0.420	 0.320	
𝛾() 	 X	 0.100	 X	 0.100	
𝛾* 	 0.050	 0.050	 0.100	 0.100	
𝛽"	 0.100	 0.100	 -0.310	 -0.310	
𝛽(	 0.150	 0.200	 0.430	 0.430	
𝛽* 	 0.050	 0.050	 0.100	 0.100	
𝜎-	 0.500	 0.500	 X	 X	
	 	 	 	 	

log(𝑂𝑅1#)	 0.145	 0.145	 0.145	 0.145	
log	(𝑂𝑅'"#)	 0.100	 0.100	 0.100	 0.100	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.045	 0.045	
log	(𝑂𝑅!"#)	 0.100	 0.077	 0.100	 0.049	

	
𝑂𝑅1# ,	𝑂𝑅'"# ,	𝑂𝑅'*# ,	and	𝑂𝑅!"# 	calculated	where	𝑎∗ = 0,	𝑎 = 1,	𝑐 = 0,	and	𝑚 = 0	
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TABLE	2:	CONTINUOUS	MEDIATOR	WITH	NO	INTERACTION	
	
	

	 	 	 	 	 	 	 Power	at	𝛼 =	

	 	
True	
Value	

Mean	
Value	

Mean	
SE	 SD	

95%	CI	
Coverage	 0.05	 0.01	 0.001	

Likelihood	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.144	 0.083	 0.081	 0.961	 0.408	 0.198	 0.055	
log	(𝑂𝑅'"#)	 0.100	 0.099	 0.085	 0.083	 0.958	 0.199	 0.072	 0.014	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.019	 0.019	 0.956	 0.691	 0.362	 0.058	
log	(𝑂𝑅!"#)	 0.100	 0.099	 0.085	 0.083	 0.958	 0.199	 0.072	 0.014	
	 	 	 	 	 	 	 	 	 	

VW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.144	 0.084	 0.081	 0.964	 0.397	 0.182	 0.046	
log	(𝑂𝑅'"#)	 0.100	 0.099	 0.085	 0.083	 0.958	 0.199	 0.072	 0.014	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.022	 0.021	 0.940	 0.504	 0.131	 0.009	
log	(𝑂𝑅!"#)	 0.100	 0.099	 0.085	 0.083	 0.958	 0.199	 0.072	 0.014	
	 	 	 	 	 	 	 	 	 	
VW-IPW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.144	 0.084	 0.081	 0.964	 0.397	 0.185	 0.047	
log	(𝑂𝑅'"#)	 0.100	 0.099	 0.085	 0.083	 0.958	 0.199	 0.072	 0.014	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.022	 0.021	 0.948	 0.521	 0.143	 0.008	
log	(𝑂𝑅!"#)	 0.100	 0.099	 0.085	 0.083	 0.958	 0.199	 0.072	 0.014	
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TABLE	3:	CONTINUOUS	MEDIATOR	WITH	INTERACTION	
	
	

	 	 	 	 	 	
95%	CI	
Coverage	

Power	at	𝛼 =	

	 	
True	
Value	

Mean	
Value	 Mean	SE	 Emp.	SD	 0.05	 0.01	 0.001	

Likelihood	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.145	 0.084	 0.084	 0.956	 0.407	 0.215	 0.055	
log	(𝑂𝑅'"#)	 0.100	 0.103	 0.085	 0.086	 0.951	 0.240	 0.086	 0.018	
log	(𝑂𝑅'*#)	 0.045	 0.043	 0.022	 0.022	 0.960	 0.565	 0.281	 0.048	
log	(𝑂𝑅!"#)	 0.077	 0.079	 0.087	 0.090	 0.940	 0.143	 0.057	 0.006	
	 	 	 	 	 	 	 	 	 	

VW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.146	 0.088	 0.086	 0.962	 0.372	 0.178	 0.034	
log	(𝑂𝑅'"#)	 0.100	 0.104	 0.086	 0.087	 0.952	 0.238	 0.087	 0.020	
log	(𝑂𝑅'*#)	 0.045	 0.043	 0.028	 0.023	 0.980	 0.235	 0.013	 0.000	
log	(𝑂𝑅!"#)	 0.077	 0.079	 0.088	 0.091	 0.941	 0.152	 0.054	 0.005	
	 	 	 	 	 	 	 	 	 	
VW-IPW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.148	 0.088	 0.086	 0.963	 0.376	 0.183	 0.034	
log	(𝑂𝑅'"#)	 0.100	 0.104	 0.086	 0.087	 0.952	 0.239	 0.088	 0.020	
log	(𝑂𝑅'*#)	 0.045	 0.043	 0.028	 0.023	 0.980	 0.254	 0.016	 0.000	
log	(𝑂𝑅!"#)	 0.077	 0.079	 0.088	 0.091	 0.941	 0.152	 0.054	 0.005	
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TABLE	4:	BINARY	MEDIATOR	WITH	NO	INTERACTION	
	
	

	 	 	 	 	 	 	 Power	at	𝛼 =	

	 	
True	
Value	

Mean	
Value	

Mean	
SE	 SD	

95%	CI	
Coverage	 0.05	 0.01	 0.001	

Likelihood	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.142	 0.083	 0.083	 0.953	 0.391	 0.193	 0.061	
log	(𝑂𝑅'"#)	 0.100	 0.097	 0.085	 0.085	 0.949	 0.200	 0.080	 0.021	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.020	 0.021	 0.940	 0.649	 0.319	 0.034	
log	(𝑂𝑅!"#)	 0.100	 0.097	 0.085	 0.085	 0.949	 0.200	 0.080	 0.021	
	 	 	 	 	 	 	 	 	 	

VW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.142	 0.084	 0.083	 0.961	 0.373	 0.184	 0.055	
log	(𝑂𝑅'"#)	 0.100	 0.097	 0.085	 0.085	 0.949	 0.200	 0.080	 0.021	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.023	 0.024	 0.920	 0.497	 0.134	 0.008	
log	(𝑂𝑅!"#)	 0.100	 0.097	 0.085	 0.085	 0.949	 0.200	 0.080	 0.021	
	 	 	 	 	 	 	 	 	 	
VW-IPW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.142	 0.084	 0.083	 0.961	 0.374	 0.185	 0.055	
log	(𝑂𝑅'"#)	 0.100	 0.097	 0.085	 0.085	 0.949	 0.200	 0.080	 0.021	
log	(𝑂𝑅'*#)	 0.045	 0.045	 0.022	 0.023	 0.923	 0.519	 0.153	 0.008	
log	(𝑂𝑅!"#)	 0.100	 0.097	 0.085	 0.085	 0.949	 0.200	 0.080	 0.021	
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TABLE	5:	BINARY	MEDIATOR	WITH	INTERACTION	
	
	

	 	 	 	 	 	 	 Power	at	𝛼 =	

	 	
True	
Value	

Mean	
Value	

Mean	
SE	 SD	

95%	CI	
Coverage	 0.05	 0.01	 0.001	

Likelihood	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.148	 0.084	 0.085	 0.946	 0.427	 0.214	 0.053	
log	(𝑂𝑅'"#)	 0.100	 0.107	 0.085	 0.084	 0.953	 0.243	 0.080	 0.023	
log	(𝑂𝑅'*#)	 0.045	 0.041	 0.023	 0.023	 0.969	 0.501	 0.218	 0.029	
log	(𝑂𝑅!"#)	 0.049	 0.055	 0.117	 0.117	 0.953	 0.077	 0.018	 0.002	
	 	 	 	 	 	 	 	 	 	

VW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.148	 0.088	 0.085	 0.961	 0.392	 0.168	 0.036	
log	(𝑂𝑅'"#)	 0.100	 0.107	 0.086	 0.084	 0.951	 0.233	 0.079	 0.021	
log	(𝑂𝑅'*#)	 0.045	 0.041	 0.029	 0.023	 0.986	 0.193	 0.020	 0.000	
log	(𝑂𝑅!"#)	 0.049	 0.055	 0.118	 0.118	 0.951	 0.075	 0.017	 0.002	
	 	 	 	 	 	 	 	 	 	
VW-IPW	 	 	 	 	 	 	 	 	
log(𝑂𝑅1#)	 0.145	 0.149	 0.088	 0.085	 0.959	 0.392	 0.172	 0.037	
log	(𝑂𝑅'"#)	 0.100	 0.108	 0.086	 0.084	 0.951	 0.235	 0.079	 0.021	
log	(𝑂𝑅'*#)	 0.045	 0.041	 0.029	 0.023	 0.986	 0.224	 0.020	 0.000	
log	(𝑂𝑅!"#)	 0.049	 0.055	 0.118	 0.118	 0.951	 0.075	 0.017	 0.002	
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TABLE	6:	MEDIATION	ANALYSIS	OF	rs12914385	AND	LUNG	CANCER	

	
	

	 	 Estimate	
95%	CI	
Coverage	 P-value	

Likelihood	 	 	 	
𝑂𝑅1# 	 1.358	 (1.255,1.470)	 <0.0001	
𝑂𝑅'"# 	 1.333	 (1.226,1.449)	 <0.0001	
𝑂𝑅'*# 	 1.019	 (1.000,1.039)	 0.0494	
𝑂𝑅!"# 	 1.333	 (1.226,1.449)	 <0.0001	
	 	 	 	 	

VW	 	 	 	
𝑂𝑅1# 	 1.347	 (1.232,1.474)	 <0.0001	
𝑂𝑅'"# 	 1.333	 (1.226,1.449)	 <0.0001	
𝑂𝑅'*# 	 1.011	 (0.978,1.044)	 0.5204	
𝑂𝑅!"# 	 1.333	 (1.226,1.449)	 <0.0001	
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FIGURE	1:	MEDIATION	DIAGRAM	
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FIGURE	2:	POWER	TO	DETECT	INDIRECT	EFFECT	(CONTINUOUS	MEDIATOR)	

	

Power	of	likelihood	framework	and	original	VW	method	to	detect	log	(𝑂𝑅'*#)	for	300	cases	
and	300	controls	assuming	continuous	mediator	and	no	exposure-mediator	interaction	
effect.	Simulation	parameters	shown	in	Table	1	for	continuous	mediator,	with	exception	of	
𝛾%	which	is	varied	to	produce	range	of	values	of	log	(𝑂𝑅'*#)	shown	in	x-axis	of	plot.			 	
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FIGURE	3:	POWER	TO	DETECT	INDIRECT	EFFECT	(BINARY	MEDIATOR)	

	

Power	of	likelihood	framework	and	original	VW	method	to	detect	log	(𝑂𝑅'*#)	for	300	cases	
and	300	controls	assuming	binary	mediator	and	no	exposure-mediator	interaction	effect.	
Simulation	parameters	shown	in	Table	1	for	binary	mediator,	with	exception	of	𝛾%	which	is	
varied	to	produce	range	of	values	of	log	(𝑂𝑅'*#)	shown	in	x-axis	of	plot.			
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