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Abstract  

Most traits in livestock, crops and humans are polygenic, that is, a large number of loci contribute to 

genetic variation. Effects at these loci lie along a continuum ranging from common low-effect to rare 

high-effect variants that cumulatively contribute to the overall phenotype. Statistical methods to 

calculate the effect of these loci have been developed and can be used to predict phenotypes in new 

individuals. In agriculture, these methods are used to select superior individuals using genomic 

breeding values; in humans these methods are used to quantitatively measure an individual’s disease 

risk, termed polygenic risk scores. Both fields typically use SNP array genotypes for the analysis.  

Recently, genotyping-by-sequencing has become popular, due to lower cost and greater genome 

coverage (including structural variants).   Oxford Nanopore Technologies’ (ONT) portable sequencers 

have the potential to combine the benefits genotyping-by-sequencing with portability and decreased 

turn-around time. This introduces the potential for in-house clinical genetic disease risk screening in 

humans or calculating genomic breeding values on-farm in agriculture. Here we demonstrate the 

potential of the later by calculating genomic breeding values for four traits in cattle using low-coverage 

ONT sequence data and comparing these breeding values to breeding values calculated from SNP 

arrays. At sequencing coverages between 2X and 4X the correlation between ONT breeding values 

and SNP array-based breeding values was > 0.92 when imputation was used and > 0.88 when no 

imputation was used. With an average sequencing coverage of 0.5x the correlation between the two 

methods was between 0.85 and 0.92 using imputation, depending on the trait.  This demonstrates 

that ONT sequencing has great potential for in clinic or on-farm genomic prediction.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452615
http://creativecommons.org/licenses/by/4.0/


2 
 

Author Summary  

Genomic prediction is a method that uses a large number of genetic markers to predict complex 

phenotypes in livestock, crops and humans. Currently the techniques we use to determine genotypes 

requires complex equipment which can only be used in laboratories. However, Oxford Nanopore 

Technologies’ have released a portable DNA sequencer, which can genotype a range of organisms in 

the field.  As a result of the device’s higher error rate, it has largely only been considered for specific 

applications, such as characterising large mutations. Here we demonstrated that despite the devices 

error rate, accurate genomic prediction is also possible using this portable device. The ability to 

accurately predict complex phenotypes such as the predisposition to schizophrenia in humans or 

lifetime fertility in livestock in-situ would decrease the turnaround time and ultimately increase the 

utility of this method in the human clinical and on-farm settings.  

 

Introduction   

Complex traits in livestock, crop and human genetics are primarily polygenic, that is, a large number 

of variants contribute to genetic variation. These traits, which are often continuous (e.g., height [1], 

weight [2] or temperament [3]) are heritable to varying degrees [4]. The contribution to the overall 

phenotype of each variant typically ranges between very small effects for common variants to larger 

effects for some low frequency variants [5]. Each allele an individual carries at loci associated with the 

complex trait contributes to an increase or decrease in the phenotype [4]. By exploiting this 

relationship, it is possible to predict the complex phenotype of a genotyped individual without a 

phenotype if the variant effects are estimated using appropriate statistical methods such as genomic 

best linear unbiased prediction, Bayesian methods, or polygenic risk scores in humans [6, 7].  
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In livestock and crops, genomic predictions are termed genomic estimated breeding values (GEBVs) 

and are used to increase the accuracy and intensity of selection in a process referred to as genomic 

selection [6]. The benefits of genomic prediction include more accurate selection of complex traits 

and a decrease in generation interval, which ultimately leads to accelerated genetic gain, evidenced 

in the poultry [8] and dairy industries [9]. The method allows for the polygenic nature of complex traits 

by genotyping a number of markers spread evenly throughout the genome and assigning an effect to 

each marker.  

 

Today, almost all livestock species have SNP arrays designed to enable genomic selection. In Australia, 

the turnaround time between sample collection and GEBV results is between 6-8 weeks. This 

turnaround time has prevented the adoption of genomic selection in Australia’s northern beef 

industry, where cattle are generally only handled once a year for a handful of days. This means 

management decisions based on the GEBV results from SNP array genotyping cannot be implemented 

until the following year, when the cattle are handled again. There is also significant demand for faster 

GEBV turnaround time in the sheep and southern beef industries to allow point of management 

decisions, for example, allocation of feeding regimes based on genetic potential.   

 

In human genetics, complex disease traits have been the focus of this type of quantitative genetics, 

although pharmacogenetics also holds some potential. For complex diseases such as bipolar disorder, 

Type II Diabetes, and Crohn’s disease [10] polygenic risk scores are used to evaluate an individual’s 

genetic predisposition to the disease. Poly-genic risk scores are based on the genome wide association 

study (GWAS) correlation between significant SNP markers and the disease [11]. To-date the large-

scale utility of polygenic risk scores for individuals has been limited [5]. This has been attributed in 

part to the current turnaround time, and cost. Instead, family history is used to estimate an individual’s 

predisposition to a particular disease.  
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However, family history information has limited utility for determining relative risk for complex 

diseases in some cases. For example, in schizophrenia a family history of the disease is reported in less 

than a third of cases [12]. A Swedish national study [13] reported family history of the disease in only 

3.81% of cases, taking into account first-, second- and third-degree relatives. Moreover, despite half 

the genetic variance for schizophrenia occurring within family, siblings with a family history of the 

disease are given the same risk using family history alone.    By genotyping the individual, polygenic 

risk scores far more accurately report an individual’s genetic risk than family history alone.  In the case 

of schizophrenia, this information could be used to differentiate between individuals vulnerable to 

environmental risk factors [14].   

 

Studies exploring the polygenic nature of pharmacological response to chemotherapeutics [15] and 

asthma treatments [16] have also yielded promising results. Decreasing the turnaround time of 

genotyping could increase the utility of polygenic risk scores for individuals. For example, a clinician 

may like to know the genetic risk of a particular disease to assess the priority of diagnostic tests, 

predict the efficacy of a potential drug treatment, or predict the patient’s likelihood of having a severe 

adverse reaction to a particular treatment, as quickly as possible before the treatment is due to be 

administered.   Decreased turnaround time for poly genic risk scores would also help clinicians 

diagnose complex diseases in patients while in their prodromal phase, which is vital in early 

intervention [14].   

 

Genomic prediction in both medicine and agriculture has previously relied heavily on SNP array 

technology. SNP arrays are a low-cost method to genotype thousands to hundreds-of-thousands of 

genetic markers. Once costing $400 USD for 10,000 SNP genotypes, SNP arrays now cost less than $50 
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USD for 50,000-800,000 SNP genotypes. However, the technology requires large, expensive laboratory 

equipment. Therefore, the turnaround time is, at a very optimistic minimum, the time for a sample to 

reach the laboratory.  

 

Recently, there has been a rise in the popularity of genotyping-by-sequencing. A widely applied 

approach is to use restriction enzymes to reduce the complexity of genomes for low-coverage 

sequencing on short-read sequencing platforms [17]. This method is not only becoming cheaper than 

SNP array genotyping, but it also allows for simultaneous genome wide marker discovery. These 

advantages have allowed an increased number of traits and associated variants to be studied [4], 

which has resulted in the ability to accurately predict many new complex traits from genotypes. Still, 

genotyping-by-sequencing is laboratory based and requires expensive equipment. A potential solution 

to reduce the turnaround time of genomic prediction while incorporating the benefits of genotyping-

by-sequencing, is to use Oxford Nanopore Technologies’ (ONT) portable nucleotide sequencer, the 

MinION [18].  

 

The MinION could be used to sequence samples in-situ for genomic prediction in livestock and human 

settings. Despite initial reports of poor sequencing accuracy and yield, steady developments in flow 

cell chemistry, library preparation and base calling algorithms has seen reported sequencing yields 

increase from less than 3 GB to greater than 40 GB and sequencing accuracy increase from 68.4% [19] 

to over 98% [20, 21]. A major advantage of ONT sequencing technology is the ability for ONT reads to 

map more accurately to complex genomic regions [22]. This is largely a result of the read length 

produced by the technology, which has no theoretical limit. This reduces read mapping bias [23] and 

eliminates the need for restriction enzyme digestion used for genotyping-by-sequencing with short 

read sequencing technology.    
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The aim of this study was to evaluate the accuracy of genomic predictions calculated from low-

coverage ONT sequence data and compare the results to SNP array-based predictions. We calculated 

correlations and prediction bias for ONT genomic predictions against the SNP array predictions for 

various sequencing depths (4x, 2x, 1x, 0.5x) and tested three different methods of imputing missing 

genotypes. Our results suggest ONT’s MinION sequencer could be a useful tool for in-situ genomic 

prediction, with human clinical or on-farm applications.  

 

Results  

Sequencing 

ONT sequencing of 19 cattle from tail hair yielded an average read length of 1,797 bp and an average 

flow cell yield of 22.57 Gb over the 96-hr run, with the highest yield being 41.13 Gb (Table 1).  The 

average Phred scaled base quality was 20.54 ±  0.16  with a maximum of 22.3 and minimum of 18.2. 

On average 86.4% ± 0.6 of reads were effective (i.e., mapping quality Phred score > 0). For each 

animal, a random subset of sequence data representing 4x, 2x, 1x, and 0.5x sequencing coverage of 

the 2.7 Gb bovine genome was used for genomic predictions.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452615
http://creativecommons.org/licenses/by/4.0/


7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A minimum allele observation based genotyping approach was used to genotype 641,163 SNP 

markers. This method accounted for the random probability of sampling alleles in a diploid species by 

grouping loci with similar coverage together and calling genotypes using a minimum allele count 

specific to each coverage group. Three methods (non-imputed, imputed-AF & imputed-Beagle) were 

tested to genotype loci with less than one overlapping ONT read (where only one read was observed 

Animal 
ID 

Average 
Read Length 

(Bp) 

Flow Cell 
Yield 
(Gb) 

Average 
base quality1 

 
Percentage of effective reads2 

DM1 879 25.87 20.5 83.2 

DM2 1,698 21.95 20.2 84.9 

DM3 1,710 19.74 20.7 86.3 

DM4 2,004 15.98 20.8 87.3 

DM5 1,990 21.15 20.9 87.9 

DM6 1,007 26 20.2 81.3 

DM7 1,678 20.7 20.5 89.1 

DM8 2,570 13.57 21.1 89.2 

DM9 2,456 19.22 20.1 87.4 

DM10 2,504 16.93 20.5 87.6 

DM11 1,637 23.69 21.2 85.2 

DM12 1,941 14.9 18.2 81.2 

DM13 1,999 18.59 20.9 86.6 

DM14 1,729 34.96 20.9 87.1 

DM15 1,847 24.83 20.7 86.9 

DM16 2,597 17.35 20.7 88.0 

DM17 1,374 21.54 20.3 85.6 

DM18 1,132 30.75 20.2 85.6 

DM19 1,351 41.13 21.6 92.1 

Average 1,795 22.57 20.54 86.4 

standard 
error 113.67 1.56 0.16 0.6 

1 Quality is the sum of all Phred base qualities divided by the number of bases  
2 ( 𝟏 −  

(𝑴𝑸𝟎 𝒓𝒆𝒂𝒅𝒔+ 𝒖𝒏𝒎𝒂𝒑𝒑𝒆𝒅 𝒓𝒆𝒂𝒅𝒔)

𝒕𝒐𝒕𝒂𝒍 𝒓𝒂𝒘 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝒔
 ) * 100 

 

Table 1: Read length and flow cell yield for each sample sequenced on the MinION.  
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all heterozygous loci were called as homozygous regardless).  Although the first two methods are 

obviously not accurate, they are very fast which could be useful on farm or in a clinical setting.  Before 

imputation, at 0.5x sequencing coverage 64% of ONT genotypes were correctly called, 34% were 

incorrect in one allele (i.e., called homozygous rather than heterozygous) and 0.02% were incorrect in 

both alleles (opposing homozygous; Figure 1). At 4x sequencing coverage 74% of calls were correctly 

called in both alleles, 24% were called incorrectly in one allele and 2% were called incorrectly in both 

alleles.  

 

 

 

Figure 1: Proportion of genotype calls with both alleles correct (2), one allele incorrect (1) 

and two alleles incorrect (0) at different sequencing coverages. Two correctly called alleles 

(green) indicates no difference between the ONT genotype and SNP array genotype. One 

correctly called allele (blue) indicates one allele of the ONT genotype is correct and the other 

is incorrect. If both alleles are incorrect the (i.e., the alternate homozygous has been called) 

the number of correctly called alleles is zero (red).   
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Marker Effects  

Marker effects (BLUP solutions) for predicting GEBV were derived from 26,145 female cattle 

genotyped for 641,163 SNP markers from Hayes, Fordyce & Landmark [24] for each of the four traits: 

body condition score, body weight, corpus luteum at 600 days (CL600) and hip height. The marker 

effects were highly polygenic (Figure 2) with the largest marker effect for each trait less than 0.007% 

of the total effect. The hip height and body weight marker effects had the largest standard deviations: 

0.0011 and 0.00063. While CL600 and body condition score had the smaller standard deviations: 

0.00048 and 0.00041, respectively. These SNP marker effects were used to calculate genomic 

predictions for each of the four traits using ONT genotypes. The effect of read length, base quality, 

effective mapping percentage and number of reads mapping with quality 0 on ONT genomic prediction 

accuracy was tested. None of these covariates had a significant effect (linear model; P > 0.01) on the 

prediction accuracy.    
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1 

Figure 2: Proportion of trait variance described by the markers across the autosomes for each trait, where a positive value indicates 

a positive effect on the trait and a negative value a negative effect on the trait. The proportion of trait variance was calculated as 
𝐸𝑖

σȁ𝐸ȁ
 where 𝐸𝑖  is the effect of the 𝑖𝑡ℎ  marker and σȁ𝐸ȁ is the sum of the magnitudes of all markers for a particular trait. A) Body 

weight B) Hip Height C) CL600 D) Body Condition Score.  

A) B) 

C) D) 
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Genomic prediction accuracies based on non-imputed genotypes   2 

The non-imputed genotyping method, where uncalled loci were assigned a homozygous reference 3 

genotype, was as expected the least accurate for genomic prediction across all traits (Figure 3). The 4 

ONT non-imputed genomic predictions had reasonable correlations with the SNP array predictions 5 

from 4x down to 1x sequencing coverage (0.98 – 0.95 at 4x and 0.95 – 0.85 at 1x). These correlations 6 

dropped significantly at 0.5x sequencing coverage, 0.65 for body weight, 0.81 for CL600, 0.72 for body 7 

condition score and 0.69 for hip height (Figure 3). For sequencing coverages below 4x the prediction 8 

bias (regression coefficient of SNP array GEBV on ONT GEBV) for the non-imputed method was 9 

consistently greater than 1, indicating the ONT GEBV are under-estimating compared to the SNP array 10 

GEBV. At 2x sequencing coverage the bias ranged between 1.1 for body weight and 1.54 for body 11 

condition score (Figure 4; Table 2).  At 0.5x sequencing coverage the bias for these two traits increased 12 

to 1.45 for body weight and 1.79 for body condition score. For the CL600 trait the bias at 0.5x was 2.7.  13 

 14 

Genomic prediction accuracies based on imputed-AF genotypes   15 

The correlation coefficients for the imputed-AF method, which used the population allele frequency 16 

to genotype missing loci, were the highest of the three methods. At 4x sequencing coverage the 17 

correlations were 0.99 for body condition score & CL600, 0.96 for body weight and 0.97 for hip height. 18 

This dropped slightly at 2x sequencing coverage, down to 0.95 for body weight, 0.98 for CL600, 0.97 19 

for body condition score and 0.95 for hip height. The correlations remained above 0.9 for all traits at 20 

1x sequencing coverage except for hip height, which was 0.88. At 0.5x sequencing coverage the 21 

correlations for this method remained above 0.8 with the lowest being 0.84 for body condition score. 22 

The prediction bias for this method was consistently greater than 1, ranging between 1.65 for hip 23 

height and 1.96 for body condition score at 1x sequencing coverage. This increased to between 2.2 24 

and 3.1 for hip height and CL600 respectively at the lowest sequencing coverage.  25 
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 26 

Genomic prediction accuracies based on imputed-Beagle genotypes   27 

The final genotyping method, which used the imputation package Beagle v5.1 [25], had correlations 28 

greater than 0.85 for all traits at sequencing coverages as low as 0.5x. At 4x sequencing coverage the 29 

correlations for body weight, CL600, body condition score and hip height were 0.97, 0.99, 0.98 and 30 

0.98 respectively. The correlations decreased slightly with the decrease in sequencing coverage to 31 

0.85 for body weight, 0.91 for CL600, 0.89 for body condition score and 0.85 for hip height at 0.5x 32 

sequencing coverage. Although the correlations for this genotyping approach were, on average, not 33 

as high as the imputed-AF approach, the prediction bias was significantly reduced. The prediction bias 34 

at 4x sequencing coverage was around 1 for all traits and decreased slightly as the sequencing 35 

coverage decreased. The decrease in prediction bias was most notable in the body weight and hip 36 

height traits, which had a bias of 0.88 and 0.74 respectively at 0.5x sequencing coverage. For the same 37 

sequencing coverage CL600 and body condition score has a bias of 1.02 and 1.06.   38 

  39 
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 40 

  41 

Figure 3: Correlations between the ONT genomic predictions and the expected GEBVs based on SNP 

array genomic predictions at four sequencing coverages for the four traits; A) body weight, B) hip height, 

C) body condition score, and D) CL600. 

A) 

B) 

C) 

D) 
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 42 

 43 

  44 

Non-imputed  Imputed-AF Imputed-Beagle  

Body 

Weight 

Hip 

Height 

CL600  

Body  

Condition  

Score 

Figure 4: Correlations between the ONT genomic prediction and the SNP array genomic 

predictions for each of the four traits and three genotyping methods use.  
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 45 

 46 

  47 

  Sequencing 
Coverage  

(x of bovine 
genome) 

Bias  
(Regression coefficient of the SNP array- 

GEBV on the ONT-GEBV)) 

  Non-
imputed 

Imputed-AF 
Imputed-

Beagle 

Body weight 

4 0.96 0.96 0.93 

2 1.1 1.11 0.88 

1 1.52 1.85 0.94 

0.5 1.45 2.27 0.88 

CL600 

4 0.98 0.98 0.96 

2 1.27 1.3 1.01 

1 1.49 1.72 0.96 

0.5 2.7 3.13 1.02 

Body 
condition 

score 

4 1.15 1.2 1.09 

2 1.54 1.49 1.06 

1 1.52 1.96 1.02 

0.5 1.79 2.78 1.06 

Hip height 

4 1.06 1.08 1.03 

2 1.23 1.23 1.03 

1 1.16 1.64 0.92 

0.5 1.1 2.22 0.74 

Table 2: Prediction bias for the different genotyping methods and sequencing 

coverages across the four traits.  
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Discussion  48 

In this study we sequenced 19 Droughtmaster heifers on ONT’s portable MinION sequencer, in order 49 

to compare genomic predictions from ONT data to SNP array genotyping, the current standard for 50 

genomic prediction. We investigated the accuracy of the ONT genomic predictions at various 51 

sequencing coverages (4x, 2x, 1x, and 0.5x) as well as using three different methods to genotype loci 52 

with no sequencing coverage: non-imputed, imputed-AF and imputed-Beagle. Beagle [25] imputation 53 

produced highly correlated GEBVs across all sequencing coverages. At 0.5x sequencing coverage this 54 

method had GEBV correlations greater than 0.85 and there was no evidence of prediction bias. On the 55 

other hand, the non-imputed and imputed-AF methods demonstrated significant prediction bias at 56 

low sequencing coverages.    57 

 58 

The average sequencing yield of 22.57 Gb represents a significant improvement on flow cell yield from 59 

previous ONT studies in cattle [26] and other species [27, 28]. This is largely a result of advances in our 60 

ability to fully utilise the sequencing capacity of each flow cell due to the release of a flow cell wash 61 

kit (Oxford Nanopore Technologies, Oxford). The wash kit is able to increase the yield from a single 62 

flow cell by unblocking ‘unavailable’ pores [29]. Pores on the flow cell can become blocked during 63 

sequencing by contaminants or tertiary DNA structures. To the best of our knowledge, the sequencing 64 

yield from one of our samples (41.13 Gb) is one of the largest MinION flow cell yields yet published. 65 

The proposed 2022 release of ONT’s shoebox sized PromethION P2 [30] could see portable sequencing 66 

flow cell yields increase 2-3-fold [31], through the increased density of pores on PromethION flow 67 

cells. This increase in the amount and speed of data generation would make in-situ genomic prediction 68 

more achievable, as the requirement to wait for data acquisition would be drastically reduced.   69 

 70 
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The average read length from these tail hair samples was significantly shorter than the average read 71 

length from previously sequenced tissues [26, 28]. The average Phred base quality of 20.52 represents 72 

a read error-rate of 0.9%, similar quality scores were reported by Runtuwene et al. [32] also using R9.4 73 

flow cell chemistry. This shows the improvement in ONT sequencing from the initial reports using the 74 

R7.3 flow cell chemistry [32, 33] of base quality scores between 6.88 and 9.4 which relate to an error 75 

rate of 20.5% and 11.5% respectively. Further improvements are likely to arise with additional 76 

advances in base calling software, which have already shown significant progress [34, 35]. Continued 77 

improvements in base call accuracy will lead to more reliable genotypes, and therefore more accurate 78 

genomic predictions.  79 

 80 

Although the sequencing effects of read length, base quality, effective mapping percentage and 81 

number of reads mapping with quality 0 had no significant effect on the ONT genomic prediction 82 

accuracy, this should still be investigated further. It is possible that a lack of variability between 83 

samples in this study made it difficult to model the true effect of these factors. Calculating genomic 84 

predictions using sequence data from different tissues or library preparation kits could help to 85 

investigate these different factors. It is particularly critical to test these effects under field conditions 86 

which reflect the real-world variation that may be experienced by either clinicians or producers 87 

applying this technology in-situ. 88 

 89 

The non-imputed genotyping method performed significantly worse than either of the two imputation 90 

methods. This is likely because the missing genotypes were assigned as homozygous reference and 91 

therefore received no marker effect, because a homozygous reference is coded as a 0 in the genotype 92 

matrix, thereby giving 0 × the alternative allele effect. As the average sequencing coverage decreased 93 

the number of missing loci increased and therefore the breeding values were under-estimated at low 94 

coverages. This is supported by the decrease in the regression coefficient of ONT GEBV on SNP array 95 
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GEBV for the non-imputed method as the sequencing coverage decreased. While not unexpected, this 96 

phenomenon has important implications: individuals with deeper sequencing coverage will have 97 

higher genomic prediction values, as more of their loci will be represented as non-zero in the genotype 98 

matrix. Therefor this method is unsuitable for any circumstance where the sequencing coverage is not 99 

tightly controlled.   100 

 101 

The allele frequency method of imputation had the highest correlations with the SNP array breeding 102 

values across the range of coverages. However, overestimation of breeding values in animals at the 103 

lower end for each trait and under estimation of breeding values for animals at the high end was 104 

observed at low coverages (Figure 4). This type of prediction bias was also reported by Pimentel, Edel 105 

[36] who investigated the effect of imputation error on genomic predictions in 3,494 dairy cows 106 

genotyped on a low-density SNP array. They concluded this type of bias was an artifact of imputation 107 

algorithms suggesting the most frequent haplotype within a population whenever a haplotype cannot 108 

be observed unambiguously. A similar bias was likely seen here because assigning the missing 109 

genotypes using allele frequencies (i.e., the average genotype within the population) has regressed 110 

the breeding value of each animal toward the population mean. At high coverages (4x and 2x) this is 111 

less prominent because there are fewer missing genotypes. However, at the low coverages (1x and 112 

0.5x) a significant number of markers are missing ONT genotypes and therefore the regression toward 113 

the mean for animals is more prominent. Therefore, this method is likely only useful when within-114 

group rankings are of interest, and not absolute predictions: for example, if a producer wanted to 115 

identify the top 30% of animals for a certain trait within their herd. 116 

 117 

The Beagle [25] imputation method for genotyping missing loci was the overall most accurate method 118 

when considering both correlation and prediction bias. Although the correlations for some traits were 119 

not as high as using the allele frequencies, the prediction bias was consistently close to 1 across all 120 
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coverages and traits, indicating there was little over or under estimation of breeding values. This is 121 

likely because imputation with Beagle [25] uses linkage disequilibrium between genotyped markers 122 

to establish haplotypes. This means that the missing genotypes are imputed using the full extent of 123 

available information from the genotyped data (i.e., nearby markers genotyped with ONT reads). This 124 

approach is very different to imputing the missing genotypes using the allele frequency without 125 

considering nearby ONT genotyped markers.  Imputation methods such as this are likely the most 126 

useful approach, despite the added time required to run the imputation program, which is currently 127 

substantially less time than required to produce the sequence data.  128 

 129 

Here we tested the effect of a single imputation program, Beagle [25]. Further increases in the 130 

accuracy of ONT genomic predictions could be achieved using purpose built, low-coverage imputation 131 

packages such as the recently published program QUILT [37]. This particular imputation package 132 

produced similar genotype accuracies as a SNP array imputed using Beagle v.5.1 with 1x ONT 133 

sequencing coverage [37].  Additionally, imputation and genomic prediction accuracy could further be 134 

increased by genotyping genome wide SNPs rather than exclusively SNPs from the BovineHD BeadChip 135 

(Illumina, San Diego, CA) SNP array. This would have the advantage of incorporating the additional 136 

information available from whole genome sequencing (a very large number of polymorphic loci) rather 137 

than SNP array genotyping.  138 

 139 

Other methods to increase the accuracy of the genomic prediction also include using sequence 140 

trimming quality control tools such as Prowler [38]. These tools increase the average Phred base 141 

quality of reads which reduces alignment errors and increases the number of effective reads. Studies 142 

based on short read information have found that optimisation of imputation strategies can have large 143 

effects on the accuracy of imputed genotypes [39, 40]. It is likely that appropriately optimised 144 

imputation strategies will increase the accuracy of imputation from ONT data further than what we 145 
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have reported here and may allow for the calculation of accurate genomic predictions from ultra-low 146 

(less than 0.5X) sequence coverage, making the method more cost effective.  147 

 148 

Targeted sequencing methods also hold enormous potential to increase the accuracy of genomic 149 

prediction using ONT sequencing. A promising method for in-situ applications is ONT’s adaptive 150 

sequencing, which can target loci within a genome for sequencing without molecular intervention [41, 151 

42]. This method only requires the location of genetic markers and no additional laboratory steps, 152 

therefore would be ideal for on-farm or clinical applications of genomic prediction with the MinION 153 

[41, 42].  154 

 155 

Although each flow cell was run for 96-hrs, the data used here for genomic prediction represent a 156 

small subset of the data acquired from each flow cell. For example, given the size of the bovine 157 

genome, 1x and 0.5x sequencing coverage represent 3 Gb and 1.5 Gb of sequence data respectively. 158 

This means that accurate genomic prediction for each animal would have been achievable in a fraction 159 

of the 96-hr sequencing run. Xu, Ge [43] reported an average yield of 0.48 Gb of sequence data per 160 

hour on a flow cell. For 0.5x sequencing coverage it would take a little over 3 hours to obtain sufficient 161 

data for accurate genomic prediction. With the above-mentioned optimisation steps, it is possible that 162 

the minimum required sequence data could fall further, decreasing the sequencing time. ONT also 163 

provide rapid library preparation protocols which are capable of preparing sequencing libraries in 15 164 

minutes. This could make ONT genomic prediction far more rapid than traditional methods by 165 

eliminating the need to send samples to a laboratory. Studies have already demonstrated that ONT 166 

sequencing can significantly decrease turnaround times for pathogen identification by providing in-167 

situ sequencing [44-46], genomic predictions could be the next step in in-situ genomic diagnosis. 168 

 169 
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Studies have demonstrated the ability for ONT data to characterise structural variants [47, 48], provide 170 

rapid pathogen identification [44-46] and assemble both large and small genomes [33, 35, 49]. In 171 

cattle, ONT data has successfully characterised the poll allele [26] and a novel structural variant in the 172 

ASIP gene controlling coat colour in Nellore cattle [50]. More recently in cattle, ONT sequencing was 173 

also used to annotate novel transcript isoforms by multiplex sequencing 32 bovine tissues on a single 174 

ONT flow cell [51]. Using cattle as an example agricultural species, we have successfully demonstrated 175 

yet another application of ONT data. Further optimisation of genotyping-by-sequencing methods with 176 

ONT sequence data by combining adaptive sequencing and optimised imputation methods, could see 177 

the required coverage for accurate genomic prediction decrease further. Given the average MinION 178 

flow cell yield achieved here, more than 20 human/cattle genome sized samples could be multiplexed 179 

on a single flow cell, making this approach cost-effective.  This study is the first demonstration of 180 

genomic predictions using ONT sequencing, which has applications not only in agriculture, but in the 181 

clinical setting also.  182 

 183 

Materials & Methods  184 

UQ Ethics  185 

Tail hair samples from 19 Droughtmaster animals were collected under the University of Queensland 186 

ethics approval numbers SVS/301/18 and SVS/465/18. 187 

 188 

DNA preparation 189 

DNA for this study was extracted from tail hairs collected from 19 Droughtmaster heifers. The hairs 190 

were pulled and stored at room temperature for more than a year prior to DNA extraction. A subset 191 

of the hairs was used for genotyping on the 777k BovineHD BeadChip (Illumina, San Diego, CA). The 192 

remaining hairs were used for ONT sequencing. Genomic DNA for sequencing was extracted using the 193 
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Gentra Puregene Tissue Kit (Qiagen) according to the manufacturer’s instructions with modifications. 194 

Briefly, 20-30 hair samples were lysed in 300 l of Cell lysis solution (Gentra® Puregene® Tissue Kit) 195 

and 1.5 l of Proteinase K solution (20mg/ml) for 5 hours at 55oC. RNA was then digested by addition 196 

of 1.5 l of RNase A Solution, following 1-hour incubation at 37oC. Samples were placed on ice for 5 197 

minutes after adding 100 l Protein Precipitation Solution (Gentra® Puregene® Tissue Kit) and spun at 198 

14000 x g for 3 minutes. 300 l of Isopropanol was used to precipitate DNA. Samples were centrifuged 199 

at 14000 x g for 3 minutes. DNA pellets were washed in 300 l of 70% ethanol, air-dried for 5 minutes 200 

and resuspended in 55 l of DNA Hydration Solution (Gentra® Puregene® Tissue Kit).  201 

 202 

DNA concentrations were measured using the Qubit dsDNA Broad Range assay kit (Thermo Fisher 203 

Scientific). The purity of the extracted DNA was determined with the NanoDropND 1000 (v.3.5.2, 204 

Thermo Fisher Scientific), assessing the 260/280 nm and 260/230 nm ratios. The size of extracted DNA 205 

was examined using pulsed-field gel electrophoresis (Sage science, USA) with a 0.75% Seakem Gold 206 

agarose gel (Lonza, USA) in 0.5X Tris/Borate/EDTA (TBE) running buffer, run for 16 hours at 75 V. The 207 

gel was stained after the electrophoresis with SYBR Safe dye (10000x) and visualized using Quantity 208 

One analysis software (Bio-rad). 209 

 210 

Sequencing methodology 211 

Extracted DNA samples were prepared using a ligation kit (SQK-LSK 109, Oxford Nanopore 212 

Technologies) based on the manufacturer’s instruction with some modifications. Starting with 4 – 8 213 

g of DNA produced enough sequencing library to provide up to 4 flow cell loads from a single library. 214 

Samples were diluted at the clean-up points with nuclease-free water to prevent bead clumping during 215 

0.4x AmPureXP purifications. End-prep reaction and ligation incubation times were increased to 30 216 

minutes and 1 hour respectively. During the 96-hour sequencing run the flow cell was washed three 217 

times using the nuclease-flush kit (Oxford Nanopore Technologies) and then reloaded with the same 218 
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library. The use of DNase in flushing and flow-cell re-fuelling helps to remove blocking DNA and 219 

increases the sequencing output. 220 

 221 

Genotyping methods  222 

Base calls were made from the raw current disruption data using GUPPY (version 4.2.2, Oxford 223 

Nanopore Technologies) on the University of Queensland high performance computing infrastructure. 224 

The sequence data (fastq files) from each animal were randomly subsampled down to 4x, 2x, 1x & 0.5x 225 

sequencing coverage using a bash script. Minimap2 v2.17 [52] was used to align the reads to the Bos 226 

taurus reference genome ARS-UCDv1.2 [53], using the default ONT settings with the flag -x ont-aln. 227 

Samtools mpileup v1.3 [54] was used to create a pileup of the reads at 641,163 SNP loci that were also 228 

genotyped on the 777k BovineHD BeadChip (Illumina, San Diego, CA) and are segregating in Australia’s 229 

northern beef population.  230 

 231 

A variable allele count genotyping method was used to genotype the SNP loci. Briefly, this method 232 

grouped loci with similar coverage together and called genotypes using a separate minimum allele 233 

count for each group (Figure 5). The minimum allele counts for each coverage group were chosen such 234 

that there was at least a 95% probability of observing both alleles given the random sampling nature 235 

of sequencing a diploid species. 236 

 237 

 238 

 239 
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 240 

Three methods were used to assign genotypes at loci with less than 2x coverage: non-imputed, 241 

imputed-AF and imputed-Beagle. The non-imputed approach assigned missing loci as homozygous 242 

reference, coded as 0 in the genotype matrix. The imputed-AF method used the allele frequency 243 

within the population, calculated from SNP array data, to genotype the missing loci. The sum of the 244 

probabilities of each genotype given Hardy-Weinberg equilibrium multiplied by the genotype codes, 245 

0 for homozygous reference, 1 for heterozygous and 2 or homozygous alternate were used to fill 246 

missing genotypes. Using continuous genotype values between 0 and 2 for this method allowed some 247 

accounting for the uncertainty of genotyping from low coverage sequence data. Finally, the imputed-248 

Beagle method used the imputation package Beagle v5.1 [25] to impute the missing genotypes given 249 

a reference panel of 1,200 animals which represented a subset of animals in the 1000 bull genomes 250 

project [54] with high Bos indicus content. The effective population and window parameters in Beagle 251 

were set to 100,000 and 100 respectively based on Pook, Mayer [56]. For imputation of the 0.5x 252 

sequencing coverage genotypes the window parameter was increased to 158 cM to ensure genotyped 253 

markers overlapped with the reference panel on each chromosome.  254 

 255 

Figure 5: Variable allele count genotyping flow chart  
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SNP-BLUP method for EBVs  256 

Genomic BLUP solutions from [24] were back solved to obtain SNP effects using GCTA [57] at 641,163 257 

loci. The SNP effects were for four traits: hip height, body condition score, body weight and CL600 258 

(presence of corpus luteum at 600 days). The presence of a corpus luteum is used as an indicator of 259 

heifer puberty in beef cattle [58, 59].   260 

 261 

The estimated phenotypes (b̂) for the four traits were calculated using SNP array genotypes, contained 262 

in an n by m design matrix M, where n is number of animals and m is number of markers (641,163). 263 

The matrix contained 0, 1 or 2, designating homozygous, heterozygous and homozygous alternative 264 

genotype calls from the SNP array. The estimated phenotypes (b̂)  were then calculated using:   265 

b̂   =  𝐌ĝ 266 

 267 

The ONT genotypes at the 641,163 loci were then used to calculate genomic breeding values for the 268 

four traits. The SNP marker information was contained in an n by m design matrix N, where n is number 269 

of animals genotyped using ONT data, and m is number of markers that were used (641k, 270 

corresponding to the same loci as in matrix M). The matrix contained genotype values between 0 and 271 

2, according to the genotyping method used (non-imputed, imputed-AF or imputed-Beagle), and 272 

consistent with the nomenclature in matrix M. The matrix contained only 0, 1 or 2 for the non-imputed 273 

and imputed-Beagle methods, however contained continuous genotypes between 0 and 2 for loci 274 

imputed using the allele frequency. The estimated phenotypes (â) were then calculated using the 275 

same estimated marker effects as were used for the SNP array data: 276 

 â   =  𝐍ĝ 277 

 278 
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Linear models were used to evaluate the correlation between â and b̂, being the estimated genetic 279 

value derived from ONT and SNP array, respectively. The correlation between â and b̂ was reported 280 

as well as the prediction bias (regression coefficient of the SNP array-GEBV on the ONT-GEBV).  281 

 282 

Linear models were also used to evaluate the effect of read length, base quality, effective mapping 283 

percentage and number of reads mapping with Phred mapping quality 0 on ONT genomic prediction 284 

accuracy. To evaluate each covariate, y was calculated as the residuals from the model  b ̂~ â + e, 285 

where â was an array of SNP-array based genomic predictions (from above), and b ̂ was an array of 286 

ONT-based genomics predictions (from above). The significance of each covariate (read length, base 287 

quality, effective mapping percentage or number of reads mapping with Phred mapping quality 0) on 288 

the genomic prediction accuracy from ONT sequence data was modelled using: 289 

 𝐲 ~ 𝐱 + e 290 

Where 𝐱 was an array of the covariate values (read length, base quality, effective mapping percentage 291 

or number of reads mapping with Phred mapping quality 0) as a random effect; and y was the 292 

difference between the SNP-based genomic prediction and the ONT-based genomic prediction.  293 

 294 
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