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ABSTRACT  
 
Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, 
yet the cellular and genetic regulation of RNA editing is poorly described. We quantified base-specific RNA 
editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial 
ganglionic eminence GABAergic neurons, and oligodendrocytes. We found more selective editing and RNA 
hyper-editing in neurons relative to oligodendrocytes. The pattern of RNA editing was highly cell type-specific, 
with 189,229 cell type-associated sites. The cellular specificity for thousands of sites was confirmed by single 
nucleus RNA-sequencing. Importantly, cell type-associated sites were enriched in GTEx RNA-sequencing data, 
edited ~twentyfold higher than all other sites, and variation in RNA editing was predominantly explained by 
neuronal proportions in bulk brain tissue. Finally, we discovered 661,791 cis-editing quantitative trait loci across 
thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive 
repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking 
cell types to editing variation and genetic regulatory effects.  
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INTRODUCTION 
 
The complexity of the central nervous system (CNS) is largely coordinated through multiple layers of 
transcriptional regulation, generating functionally distinct RNA molecules with specialized post-transcriptional 
modifications1,2. Adenosine to inosine (A-to-I) RNA editing is abundant in the human brain and predicted to occur 
at millions of locations across the genome3,4. A-to-I editing occurs at single isolated adenosines (selective editing) 
as well in extended regions with multiple neighboring adenosines (RNA hyper-editing)5-7, and is catalyzed by 
adenosine acting on RNA (ADAR) enzymes. These base-specific changes exponentially amplify RNA sequence 
diversity and expand the functionality of many brain expressed genes, by allowing the same coding sequence to 
produce different mRNA and products. Although the growth of RNA-sequencing data sets has increased the 
catalogue of known editing sites, the functional relevance of most sites remains unknown. We reasoned that sites 
with precisely regulated differences in RNA editing across brain cell types or brain regions signal a potentially 
critical role in supporting the functional diversity of brain circuits. Moreover, dissecting the genetic regulation of 
RNA editing at these sites gives insight into their potential role in healthy and diseased brains. 
 
In the CNS, RNA editing regulates neuronal transcription, splicing and subcellular localization of mRNA 
transcripts1,8-11. RNA editing in protein-coding regions can result in recoding specific amino acids, which 
influences essential neurodevelopmental processes, including actin cytoskeletal remodeling at excitatory 
synapses1,12, regulation of gating kinetics of inhibitory receptors1,13, and modulation of neurotransmission at 
inhibitory synapses1,14. RNA editing sites are dynamically regulated throughout human cortical development15,16, 
with marked increases in editing levels occurring between mid-fetal development and infancy. These profiles are 
conserved in non-human primates and murine models of cortical development, indicating an evolutionarily 
selected function12,15. Moreover, widespread changes in RNA editing are linked to several neuropsychiatric and 
neurodevelopmental disorders17-22. Yet, the cellular specificity of RNA editing sites in the human brain remains 
largely unknown due to the lack of cell type-specific studies. 
 
The vast majority of RNA editing sites have been detected in bulk brain tissue, a mixture of dozens of neuronal 
and glial cell types with distinct transcriptional, and potentially epitranscriptional, programs. In mouse brain, 
editing levels are higher in neurons relative to glial cells, and these trends are consistent across brain 
development23,24. In Drosophila, RNA editing has been explored across several neuronal populations, each 
containing a unique editing signature composed of distinct site-specific editing levels in neuronal transcripts25. In 
the human brain, the challenge of purifying specific cell populations has so far prevented broad-based analysis of 
cell type-specific RNA editing. Single-cell RNA-sequencing has been applied in a modest number of cells26 

(ncells=268), indicating that highly edited sites in individual cells often go undetected by bulk brain RNA-seq. The 
systematic identification of bona fide, high-confidence cell type-associated RNA editing sites in the human brain 
is critical for understanding the scope and specificity of this layer of cell regulation.  
 
In addition to cell-specific factors, common genetic variation has also recently emerged as an important regulator 
of RNA editing levels in the brain17,27. Integrating paired genomic and transcriptomic data can identify RNA 
editing quantitative trait loci (edQTLs). It is estimated that anywhere between ~10-30% of RNA editing sites 
identified in bulk tissue samples of the human brain are regulated by common genetic variants17,27,28, and this 
number will continue to grow with increasing sample sizes. However, there has been no investigation of cell type-
associated edQTLs in the human brain. 
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Here we sought to expose the main cellular and genetic drivers of RNA editing variation in the human brain. We 
first quantified RNA editing among three major cell populations purified from the adult prefrontal cortex (PFC): 
medial ganglionic eminence (MGE)–derived inhibitory GABAergic interneurons (MGE-GABA), excitatory 
glutamatergic neurons (GLU), and oligodendrocytes (OLIG). These cell populations were isolated from nine 
donors using fluorescence-activated nuclei sorting (FANS), followed by transcriptomic analysis by RNA-seq29. 
By combining our high-resolution cell-type-specific data with complementary single nucleus RNA-seq, as well 
as bulk RNA-seq from multiple brain regions from the GTEx project, we provide comprehensive analysis and 
validation of cell type-specific RNA editing across the human brain, including key genetic regulators of editing 
quantitative trait loci (edQTLs).  Overall, our study suggests that RNA editing plays a critical role in regulating 
the diverse molecular identities of brain cell types.  
 
RESULTS 
 
Global editing rates in MGE-GABAergic interneurons, glutamatergic neurons and oligodendrocytes 
 
To better understand differences of RNA editing between MGE-GABA, GLU and OLIG cells, we computed an 
Alu Editing Index (AEI) as a global measure of site selective RNA editing activity for each cell type (see 
Methods). The AEI is defined as the ratio of the total number of A-to-G edited reads over the total coverage of all 
adenosines in Alu elements across the transcriptome. The AEI was higher in neurons compared to OLIG (Cohen’s 
d = 2.58, p=1.2×10-6, linear regression) and elevated in MGE-GABA relative to GLU (Cohen’s d = 1.46, p=0.009, 
linear regression) (Figure 1A, Supplemental Table 1). Given that the vast majority of RNA editing occurs in 
Alu elements and nearly all adenosines in Alu repeats are targeted by ADARs, we queried ADAR expression 
levels and identified higher expression of ADAR1 in MGE-GABA and GLU cells relative to OLIG (Cohen’s d = 
4.34, p=8.2×10-11, linear regression), higher expression of ADAR2 in MGE-GABA neurons relative to GLU and 
OLIG (Cohen’s d = 1.96, p=0.0002, linear regression), and higher ADAR3 expression in OLIG relative to neurons 
(Cohen’s d = 1.78, p=0.001, linear regression) (Figure 1B). Notably, variation in the AEI was positively 
associated with ADAR2 (R2=0.68) and ADAR1 (R2=0.64) expression and negatively associated with ADAR3 (R2=-
0.33) (Figure 1C).  
 
We also computed a global metric of A-to-G hyper-editing, defined as consecutive editing across many 
neighboring adenosines within an extended region in the same transcript, which leverages unmapped RNA reads 
(see Methods) (Supplemental Table 1). There were ~4-5 times more RNA hyper-editing sites in MGE-GABA 
(µ=345,736 sites) and GLU (µ=253,135 sites) neurons than in OLIG (µ=66,077 sites) (Cohen’s d = 2.64, 
p=2.6×10-6, linear regression) (Figure 1D). To minimize technical variability and facilitate a direct comparison 
across all cell types, we normalized the hyper-editing signal to the number of mapped bases per sample and again 
observed a preponderance of hyper-editing in neurons relative to OLIG (Cohen’s d = 2.24, p=1.0×10-5, linear 
regression) and an elevated rate in MGE-GABA relative to GLU (Cohen’s d = 1.41, p=0.03, linear regression) 
(Figure 1E). Normalized hyper-editing rates were also positively associated with ADAR1 (R2=0.38) and ADAR2 
(R2=0.61), but negatively associated with ADAR3 (R2=-0.27) (Figure S1). Hyper-editing sites commonly 
occurred in introns and 3’UTRs (Supplemental Table 1) and enriched for a local RNA editing sequence motif 
whereby guanosine is depleted -1bp upstream and enriched +1bp downstream the target adenosine (Figure S1D-
E); validating the accuracy of our hyper-editing approach. Taken together, we show that global selective editing 
and RNA hyper-editing are more prevalent in MGE-GABAergic than glutamatergic neurons, followed by OLIG 
cells. This variation in cell-specific editing activity may be due to variation in ADAR expression.  
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Identification and annotation of bona fide site selective RNA editing sites 
 
To catalogue high-confidence bona fide selective RNA editing sites, we combined de novo calling with a 
supervised approach (see Methods). All sites were subjected to rigorous down-stream filtering and quality control. 
In brief, thresholds were set to control total read coverage (>10 supporting reads), minimum edited read coverage 
(>3 supporting edited reads), minimum editing ratio (at least 5%). We further required that sites meet these criteria 
in at least 8 out of 9 donors. Sites in homopolymeric and blacklisted regions of the genome were discarded, along 
with sites masked as common genomic variants (Figure 2A). Overall, we identified a total of 107,999 sites on 
20,288 genes in MGE-GABA, 109,734 sites on 19,264 genes in GLU and 64,374 sites on 11,564 genes in OLIG 
populations (Supplemental Table 2), discovery rates consistent global editing activity (Figure 1). We defined 
~60% of these sites as “cell type-specific” as they were uniquely detected in one cell type, and their detection 
rates were largely explained by cell type-specific gene expression and read coverage differences (Figure S2).  
 
To validate the accuracy of our approach, we annotated all events and observed consistent hallmarks of RNA 
editing. First, the vast majority of sites were A-to-G edits (~86%) (Figure 2B) and resided within Alu elements 
(~68%) (Figure 2C). Second, ~73% of editing events were detected in introns, while only a small fraction 
impacted protein coding regions (~0.67%) (Figure 2D). Third, while most RNA editing sites were known events 
documented in the REDIportal database (Figure 2E), we also identified thousands of novel A-to-G events, 
including 20,929 sites in MGE-GABA, 18,452 sites in GLU and 7,366 sites in OLIG. Fourth, we confirmed a 
common local sequence motif for all known and novel A-to-G editing events, whereby guanosine is depleted -
1bp upstream and enriched +1 downstream the targeted adenosine, as previously reported (Figure 2F-G). 
Notably, novel A-to-G sites displayed significantly more supporting read coverage compared to known sites 
(Figure 2H) and exhibited consistent editing rates of ~37% on average across all cells (~3% less than known 
sites, p<2.16×10-20, linear regression) (Figure 2I). Moreover, 7,326 novel A-to-G sites validated across two or 
more cell types (Figure 2J). We also identified more than 20,000 novel editing sites with substitution types other 
than A-to-G. Of these, ~42% were C-to-T and G-to-A edits, which we treated as provisional (Supplemental 
Table 2).  
 
Partitioning the variance in RNA editing rates explained by known factors  
 
We studied 15,221 A-to-G sites detected across all three cell types and all donors to quantify the fraction of RNA 
editing variance explained by eight known biological and technical factors. Collectively, these factors explained 
~28% of RNA editing variation.  Differences between cell types had the largest genome-wide effect, explaining 
a median ~8.3% of the observed variation, followed by differences in chronological age (~6.7%), pH (~3.5%), 
ADAR2 (~1.8%) and ADAR1 expression (~1.5%) (Figure S3A). Donor as a repeated measure had a small but 
detectable effect for ~6% of editing sites. As expected, principal component analysis (PCA) accurately 
distinguished MGE-GABA and GLU neurons from OLIG along the first PC1, explaining 29.2% of the variance 
(Figure S3B). Using a linear regression model, we also catalogued a total of 6,765, 7,703 and 2,540 RNA editing 
sites that were significantly associated with ADAR1, ADAR2 or ADAR3 expression after adjusting for repeated 
measures (FDR < 0.05), respectively (Figure S3C, Supplemental Table 3).  
 
In addition to ADAR, several RNA binding proteins (RBPs) can also act as global mediators of RNA editing. We 
found a total of 470 RBPs were differentially expressed (FDR < 0.05, log fold-change > 0.5), and roughly half 
(~49%) were more highly expressed in OLIG relative to GLU and MGE-GABA (Figure S4A-B). A total of 170 
OLIG-specific RBPs, including NOP14, PTEN, and DYNC1H1 were negatively correlated with global editing 
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activity, while 161 neuron-specific RBPs, including MOV10, CELF4, and FMRP had a positive association with 
global editing rates (Figure S4C, Supplemental Table 3). We further examined whether FMRP binding sites 
were enriched near MGE-GABA, GLU and OLIG editing sites using enhanced ultraviolet crosslinking and 
immunoprecipitation (eCLIP) in human frontal cortex. FMRP eCLIP peaks were significantly enriched for MGE-
GABA (permutation p-value=0.005, Z-score=9.3) and GLU sites (permutation p-value=0.005, Z-score=6.2), and 
moderately enriched for OLIG sites (permutation p-value=0.005, Z-score=7.4) (Figure S4D-E). Thus, these 
RBPs may work alongside ADARs as trans regulators of editing levels in brain cell populations.  
 
Cell type-enriched RNA editing sites  
 
To identify quantitative differences in RNA editing levels among sites detected across two or more cell types, we 
computed three pairwise comparisons (i.e., MGE-GABA vs. GLU, MGE-GABA vs. OLIG, GLU vs. OLIG) and 
adjusted each linear model for the possible influence of post-mortem interval (PMI), age, and donor as a repeated 
measure (Figure 3A, Supplemental Table 4). Overall, we identified 9,022 “cell type-enriched” sites which 
displayed significantly higher editing in one cell population relative to another. The majority of these sites were 
more highly edited in MGE-GABA and GLU relative to OLIG (Figure 3B), are previously reported editing sites, 
and commonly mapped to introns, 3’UTRs and intergenic regions (Figure 3C). Notably, after adjusting for 
ADAR1 and ADAR2 expression, we found substantially fewer differentially edited sites (n=192 sites), suggesting 
the differential editing at the majority of these sites depends on ADAR activity (Supplemental Table 4). 
Functional annotation revealed that cell type-enriched sites in each cell type were associated with genes involved 
in neuronal differentiation and cell adhesion, but were also enriched for unique processes (Supplemental Table 
4). MGE-GABA sites were uniquely enriched for genes implicated in trans-synaptic signalling, MAPK signaling, 
as well as genes at the postsynaptic density (Figure S5). GLU sites were uniquely enriched for genes implicated 
in chromatin organization and interferon signaling. OLIG sites were uniquely enriched for genes associated with 
N-acetyltransferase activity and methylated histone binding. Notably, cell type-enrichment differences in RNA 
editing rates were not strongly associated with cell-specific differential gene expression (Figure S6). 
 
A small fraction of differentially edited sites was catalogued as RNA recoding events (~0.4%, n=38 sites), which 
alter amino acid states and displayed increased conservation relative to sites in other genic regions (Figure S7, 
Supplemental Table 5). These recoding events were mainly more highly edited in neurons relative to OLIG and 
included several well-known sites involved in tight regulation of Ca2+ permeability (Q➝R in GRIA2,), actin 
cytoskeletal remodeling at excitatory synapses (K➝E in CYFIP2) and gating kinetics of inhibitory receptors (I➝M 
in GABRA3) (Figure 3D). Twelve recoding sites were more frequently edited in MGE-GABA compared to GLU, 
including an R➝G site in cyclin-I (CCNI), a K➝R site in mitofusin 1 (MFN1), a E➝G site in calcium dependent 
secretion activator (CADPS). Notably, one I➝V site in coatomer subunit alpha (COPA) was more highly edited 
in OLIG relative to neurons. We tested the cellular specificity for four recoding sites using an independent method 
(site-specific PCR amplification of regions harboring editing sites followed by sequencing) applied to 
orbitofrontal cortex samples from six independent adult donors (Figure S8, Supplemental Table 6). We 
confirmed three R➝G sites in SON DNA binding protein (SON), GRIA3 and GRIA4, which were more highly 
edited in neurons relative to OLIG. We also validated one S➝G site in UNC80, a component of the NALCN 
sodium channel complex (UNC80), which was more highly edited in MGE-GABA neurons.  
 
We explored whether our data can resolve the cellular specificity of editing sites previously described to be 
dysregulated in bulk brain tissue across neurodevelopment and in neurological disorders (Figure 3E, 
Supplemental Table 4). We observed a strong enrichment of MGE-GABA and GLU sites among disease-linked 
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sites, most notably in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of 
schizophrenia patients (p=0.009, p=6.3×10-5, respectively). Also, MGE-GABA and GLU sites were enriched for 
sites in the DLPFC previously found to be dynamically regulated throughout prenatal and postnatal development 
(p=6.1×10-279, p=2.3×10-214, respectively). Enrichment for OLIG RNA editing sites was consistently lower across 
all independent studies and cohorts, as expected. These results reconfirm the validity of our approach and shed 
light onto some of the cellular origins of altered RNA editing in neurodevelopment and disease17-22. 
 
Genes enriched for RNA editing sites within cellular populations 
  
We found an association between gene length and the number of RNA editing sites per gene within MGE-GABA 
(R2=0.16), GLU (R2=0.15) and OLIG cells (R2=0.04) (Figure S9A, Supplemental Table 7). After normalizing 
the total number of RNA editing sites by gene length (see Methods), we found a higher density of RNA editing 
sites in OLIG cells at several genes associated with OLIG-specific expression: PCDH9 (n=560 sites), RNF220 
(n=419 sites), FRMD5 (n=277 sites) (Figure 3F, Figure S9B-C). In MGE-GABA, genes RBFOX1 (n=1696 
sites), SNHG14 (n=1083 sites) and DPP10 (n=243 sites) were enriched for editing sites. In GLU, genes KCNIP4 
(n=1831 sites), PHACTR1 (n=433 sites) and PTPRD (n=488) were enriched (Figure 3F, Figure S9B-C, 
Supplemental Table 7). Notably, genes with higher rates of editing in MGE-GABA and GLU cells were not 
associated with cell-specific differential gene expression.  
 
Validation of RNA editing sites by independent snRNA-seq data 
 
We next examined RNA editing across all brain cell types using single-nuclei RNA sequencing (snRNA-seq) of 
the adult PFC generated by PsychENCODE30 (n=3 biological replicates). A total of 24 discrete cell clusters 
comprising six major cell types were identified through unsupervised dimension reduction and annotated using 
previously defined cell marker genes (Figure 4A). To overcome data sparsity associated with snRNA-seq data, 
we binned nuclei into pseudo-bulk pools that most closely reflect the MGE-GABA, GLU and OLIG populations 
in our FANS datasets based on the expression of their markers SOX6, RBFOX3, and/or SOX10, respectively 
(Figure 4B, Figure S10). We observed that ~52% of all nuclei expressed the GLU marker (nnuclei=8957), ~21% 
expressed the MGE-GABA marker (nnuclei=3708), and ~9% expressed the OLIG marker (nnuclei=1709). Notably, 
a small subset of which were assigned to the GLU pseudo-bulk pool were also positive for markers of CGE-
derived inhibitory neurons (e.g. VIP and LAMP5), which make up ~7% of nuclei overall. This was consistent 
with our FANS strategy, which separated MGE-GABA form other neurons using the MGE-GABA specific 
marker SOX6. Thus, a small population of non MGE-derived GABA neurons (~10-12% of all GABA neurons) 
was sorted together with GLU neurons29. We generated three additional pseudo-bulk pools representing astrocytes 
(nnuclei=2,078), endothelial cells (nnuclei=464) and microglia (nnuclei=130). We examined ADAR expression and 
global editing rates within each the six cellular pool (see Methods), confirming higher global editing activity as 
well as higher expression of ADAR1 and ADAR2 in MGE-GABA and GLU relative to OLIG cells (p=0.002, linear 
regression), and relative to all remaining non-neuronal cell types (p=0.0002) (Figure 4C).  
 
Furthermore, we queried all selective RNA editing sites derived by FANS (Figure 2) within each snRNA-seq 
cellular pool and validated 9,401 sites in MGE-GABA (~8%), 21,413 sites in GLU (~27%) and 2,425 sites in 
OLIG (~3%) pools with high-confidence (Supplemental Table 8). Of these sites, a total of 1,748, 4,315 and 231 
were deemed novel sites in MGE-GABA, GLU and OLIG populations, respectively. Notably, validation rates 
depended on snRNA-seq coverage thresholds and the number of nuclei included within each pseudo-bulk pool, 
with larger pools having higher validation rates (e.g. GLU) (Figure 4D). Nevertheless, for the sites passing the 
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defined coverage thresholds, we observed a high level of concordance between editing rates quantified in purified 
nuclei via FANS relative to editing rates quantified via snRNA-seq for MGE-GABA (R2=0.54), GLU (R2=0.59) 
and OLIG (R2=0.43) (Figure 4E). RNA editing sites that did not validate in snRNA-seq were largely explained 
by the lack of supporting read snRNA-seq coverage or lower expression in FANS (Figure 4F). 
 
Imputing cell-type specific RNA editing rates in bulk RNA-seq  
 
The challenges of cell type purification and single cell sequencing have precluded broad application of those 
techniques. To leverage the extensive bulk RNA-seq datasets generated from human brains, we sought to use our 
data to infer cell type specific RNA editing in 1,129 bulk RNA-seq samples across 13 brain regions from the 
Genotype-Tissue Expression (GTEx) project (Supplemental Table 9). Given that global editing activity is 
highest in neurons, we anticipated that a substantial fraction of the variation in global selective A-to-G editing 
rates in bulk brain tissue would be explained by the proportions of neurons within each sample. Moreover, given 
the high proportion of neurons in the cerebellum, we expected that editing rates would be highest in this region 
relative to all others. We used cell type deconvolution to estimate the proportions of six major CNS cell types for 
each bulk RNA-seq sample (see Methods).  
 
We observed considerable brain region variability in global selective editing activity, defined by the AEI. The 
cerebellum and cerebellar hemisphere had higher editing activity than all other brain regions (p=2.7×10-110, 
Cohen’s d=3.00) (Figure 5A). Similarly, cellular deconvolution of all bulk tissue samples confirmed elevated 
neuronal proportions in cerebellum and cerebellar hemisphere relative to all other regions (p=1.3×10-132, Cohen’s 
d=5.65). Importantly, a significant fraction of the variance in global editing activity was explained by differences 
in neuronal fractions both within and across all brain regions (R2=0.31; Figure 5B). Donors and regions with 
higher proportions of neurons displayed elevated global editing activity. Notably, other biological and technical 
factors were unable to explain as much variation (Figure S11). Using these bulk RNA-seq data, we also confirmed 
the positive association between the proportion of neurons and ADAR1 (R2=0.55) and ADAR2 expression 
(R2=0.70), and a negative association with ADAR3 (R2=-0.22) (Figure 5C). For further context, we performed 
PCA on ADAR1, ADAR2 and the AEI metric, which accurately stratified all samples by brain region and the 
proportion of neurons (Figure S12). Collectively, these results confirm the cellular specificity of ADARs and the 
AEI in bulk tissue as observed in our FANS-derived nuclei. 
 
Next, we queried RNA editing sites in all GTEx bulk brain samples based on a list of known sites including our 
189,229 bona fide cell type-associated sites plus all other sites listed in the REDIportal database. As expected, 
the number of editing sites in the cerebellum and cerebellar hemisphere (~58,143 per donor) was threefold greater 
than all other regions (~18,456 sites per donor, p=1.3×10-132, Cohen’s d=2.99) (Figure 6A). Intra-donor variation 
in site detection was similarly associated with the proportion of neurons (R2=0.70), ADAR2 (R2=0.48) and ADAR1 
(R2=0.30) expression (Figure S13). RNA editing sites mapped primarily to 3’UTRs (~40%) and introns (~22%) 
with few recoding events (~2.9%) across regions (Figure S14A). Notably, ~20% of all detected sites per donor 
were catalogued as either cell type-specific or -enriched in either MGE-GABA, GLU and/or OLIG cells and these 
sites displayed significantly higher detection rates in the cortical regions relative to all other regions (p=2.8×10-

28, linear regression) (Figure 6B). Importantly, these sites also had twentyfold higher editing rates relative to 
detected sites that were catalogued in the REDIportal database but not by FANS (Figure 6C). Moreover, novel 
sites identified by FANS were detected at an expected low rate in bulk tissue (~213 novel sites on average across 
all donors and GTEx regions) (Figure S14B). 
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Given the substantial inter-donor variability in the number of detected RNA editing sites (Figure 6A, Figure 
S13), we asked whether cell type-specific and -enriched sites were consistently detected and edited across the 
majority of samples (Figure 6D). The number of commonly edited sites substantially decreases when gradually 
increasing the requirement of a site to be detected in larger fraction of donors per region in an incremental fashion 
(Figure 6D). Notably, following each iteration, the proportion of retained sites that identify as cell type-associated 
RNA editing sites gradually increased (Figure 6E), indicating that such sites are detectable within bulk RNA-seq 
tissues across the vast majority of donors. We tested this result by computing fold enrichment for all cell type-
associated sites relative to sites assigned to specific genic regions and found that these editing sites were 
disproportionally enriched across the majority of samples (p=6.8×10-6), followed by RNA editing sites mapping 
to downstream transcription start site positions, sites in exons and those in splice-site regions (Figure 6F, 
Supplemental Table 10). These results suggest that sites with cellular resolution comprise those that are most 
commonly detected across the majority of donors and regions in bulk tissue.  
 
Genetic variants affect the rate of selective RNA editing 
 
We used imputed genotype data from the GTEx project to detect common single nucleotide polymorphisms 
(SNPs) that associate with RNA editing levels (edQTL, editing quantitative trait loci) (see Methods). To identify 
genetic variants that could explain the variability of selective RNA editing, we ran association tests across each 
brain region and identified 661,791 cis-edQTLs (i.e. SNPs located within 1 Mbp of an RNA editing site) at a 
genome-wide FDR < 5% (Figure 7A). Each max-edQTL (defined as the most significant SNP-site pair per site, 
if any) meeting a genome-wide significance (FDR < 0.05) was located close to their associated editing site and 
acting in cis (200kb ± bp the target adenosine) (Figure 7B). Max-edQTLs were examined for cellular specificity 
according to the aforementioned analyses. A total of 5,011, 4,514, and 3,677 cis-edQTLs were annotated as either 
MGE-GABA, GLU and/or OLIG associated, respectively. We found hundreds of cis-edQTLs in each brain 
region, with an especially large number in the cerebellar regions (Figure 7C). Overall, a total of 13,438 unique 
editing sites (eSites) displayed edQTLs and these sites were predominately located in 3’UTRs (~38%) (Figure 
7C). Of these, 1,869 eSites (~13.9%) were genetically regulated across three or more brain regions, while 51 
eSites corresponding to 47 unique genes were commonly regulated across all thirteen regions (Figure 7D, 
Supplemental Table 11). For example, an RNA editing site located on the 3’UTR of glutathione-disulfide 
reductase (GSR), a site which shows strong preferential editing in neurons, is consistently associated with the 
same SNP (chr8:30536581) across all thirteen brain regions with similar direction of effect (Figure 7E). 
Importantly, our eSites enriched for 618 out of 977 eSites previously identified across GTEx brain regions27 
(p=2.1×10-31, Fisher’s exact test) and expand upon these efforts by 13-fold (Supplemental Table 11). 
 
We also compared the absolute effect sizes across all max-edQTLs and observed significantly stronger 
associations for cell type-specific max-edQTLs relative to those with RNA editing sites that were detected in 
REDIportal but not by FANS (Figure 7F). These results were consistent across brain regions (Figure S15). 
Notably, max-edQTL SNPs were moderately enriched in brain-specific enhancers and promoters across regions 
(Supplemental Table 11). Additionally, while sample size is the gold-standard metric to determine power and 
discovery for QTL studies (Figure S16), the number of unique eSites detected per brain region also correlated 
with ADAR1 (R2=0.59) and ADAR2 (R2=0.85) expression, as well as with the proportion of neurons per brain 
region (R2=0.41) (Figure 7G). We confirm these associations using a smaller set of results from an independent 
analysis of eSite discovery across GTEx brain regions27 (Figure S17). These results suggest that, in addition to 
analyzing large sample numbers, edQTL discovery is highly context dependent: tissues with higher levels of 
ADAR expression and increased neuronal content provide favorable frameworks for discovery. 
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DISCUSSION 
 
Exposing highly regulated editing sites across different cell populations, brain regions and those that are 
genetically regulated can promote studies to dissect their functional relevance within the right cellular context. 
Given the dearth of studies examining cellular features of RNA editing in the brain, we first set out to increase 
the resolution of RNA editing among three main cell populations in the human cortex. Through FANS, unique 
populations of cell types were isolated from the cortex with distinct functional differences. Using RNA-seq, we 
determined how RNA editing facilitates transcriptomic diversity more commonly in MGE-GABA and GLU 
neuronal populations relative to the major glial population in the brain – OLIG cells, documenting numerous sites 
and genes with cell-specific editing properties. snRNA-seq data was used to validate global trends in editing 
among CNS cell types and confirm the cellular resolution for a subset of RNA editing sites and genes. 
Subsequently, we applied rules of cell-specific RNA editing to quantify variability in RNA editing rates observed 
in bulk brain tissues from the GTEx project, and successfully show that: i) tissues and donors with higher neuronal 
content display increased global editing rates and exhibit increased detection rates of RNA editing sites; ii) 
commonly detected sites quantified in bulk brain tissue can be classified as cell type-specific or -enriched RNA 
editing sites; iii) hundreds of edQTLs classify as cell type-specific or -enriched and display larger effect sizes 
than edQTLs without cellular resolution; and iv) similar to RNA editing site detection, edQTL detection is also 
better powered in regions that express higher levels of ADAR2 and display increased neuronal content. These 
results illuminate new differences in RNA editing sites and rates among cortical cell populations and establish 
new frameworks for future large-scale studies of bulk RNA-seq brain tissue to interpret RNA editing sites and 
their variability.  
 
We observed increased global editing rates in neurons relative to OLIG populations, similar to previous reports 
among CNS cell types in mice and Drosophila23-25. These global trends were accompanied by increased detection 
in the number of RNA edited sites in neurons. Such differences were largely associated with differences in ADAR 
expression levels, rather than being driven by differential expression of the edited transcripts. We also uncovered 
a several editing sites in close proximity on the same transcript and co-regulated in the same cell population (e.g. 
editing sites on CSMD1 in OLIG, KCNIP4 in GLU and RBFOX1 in MGE-GABA), groups of sites which illustrate 
a regulation of editing that can exert its effect differently in different parts of the same transcript, as recently 
shown across neuronal populations in Drosophila25. While such events would be successively edited by ADAR, 
regulation by RBPs may also have a similar effect31. Several RBPs were preferentially expressed in either MGE-
GABA and GLU populations or OLIG and were either positively or negatively correlated with global editing 
activity. Such RBPs might explain a fraction of the differential RNA editing levels observed at different sites in 
distinct populations. However, follow-up functional validation is required to fully understand the trans regulation 
of editing levels by RBPs among brain cell types.  
 
Our study not only provides cellular context for already existing sites in the brain, but also identified several 
previously unknown editing sites likely masked by bulk RNA-seq sampling techniques. For example, a known 
recoding site (S➝G) in UNC80 was preferentially edited in MGE-GABA neurons (Figure 3D, Figure S8). This 
gene is essential for NALCN sensitivity to extracellular Ca2+ and mutations in UNC80 are associated with 
congenital infantile encephalopathy, intellectual disability and growth issues32. Moreover, novel sites, which were 
often found in moderate-to-lowly expressed genes, mostly overlapped Alu elements of the transcriptome, 
consistent with existing reports3,4,32,33. Further, our nuclei data, perhaps unsurprisingly, indicate that ADAR driven 
RNA editing activity occurs predominately in non-coding transcripts, also consistent with existing reports3,4,33. 
Such editing sites may regulate circular RNA biogenesis34 or RNA interference pathways35, which in turn can 
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alter heterochromatin formation. While follow-up investigations are required to elucidate the functional relevance 
of these editing sites, these data indicate that transcriptome sequencing of cell populations purified by FANS can 
accelerate the discovery of novel sites, including difficult to detect transcripts. 
 
snRNA-sequencing data was used to confirm global RNA editing trends among MGE-GABA, GLU and OLIG 
populations, and shed additional light on global editing patterns across three additional CNS cell types. We also 
validated several thousand cell-specific RNA editing sites using an in silico cellular pooling technique to 
overcome hurdles related to snRNA-seq. Specifically, calling RNA editing sites from snRNA-seq is challenging 
as the technique is limited from extremely low capture efficiency and low sequencing depth with reads covering 
only a fraction of the entire genome36,37. Moreover, intronic regions, which were highly edited in FANS-derived 
data, often represent high vulnerability to low-coverage in scRNA-seq experiments, where detection of A-to-I 
events is reduced38. Validation rates by snRNA-seq were highest for GLU and MGE-GABA populations, which 
constituted pools with the largest number of nuclei, and concordance of editing levels for these sites was 
exceptionally high between snRNA-seq and FANS-derived data sets. Until now, there has been limited 
investigation of the accuracy of RNA editing calls from snRNA-seq data26. We anticipate that future work 
applying statistical models to snRNA-seq to quantify editing will benefit from increased sample sizes (i.e. more 
biological replicates) and longer, more deeply sequenced reads, which may also award the detection of novel sites 
necessary to build cell-specific profiles.  
 
Our results also underscore several important features of RNA editing in bulk brain RNA-seq, and in doing so, 
highlight the tremendous heterogeneity of RNA editing site quantification and detection at population scale. The 
majority of randomly selected sites are detected only across a subset of donors within a particular brain region, 
and these detection rates were largely a function of ADAR2 expression and whether a region exhibited increased 
neuronal content (similar to variation in the AEI in bulk tissue). Differences in pools of cellular RNA across 
samples and randomly sequenced RNA fragments offer likely explanations to such intra-donor variability in site 
detection. Another possible explanation to account for such heterogeneity is that RNA editing is a transient 
process and such differences may simply reflect distinctions in the timing of cellular processes and signaling 
cascades. Indeed, at the level of individual cells, dynamic responses to environmental cues occur on a timescale 
that is faster than activity-induced transcription via the coordinated, activity-induced switching of internal 
molecular states and cellular metabolism1,2. Moreover, we detected 13,438 unique eSites, which occurred 
predominantly in 3’UTRs across brain regions. While this level of discovery significantly expands upon existing 
counts of genetically regulated editing sites in the brain27, we anticipate that this number is still an underestimate. 
Our edQTLs do not include rare RNA editing sites that were detected in a small subset of samples (which are the 
majority) that may also be genetically regulated. Future work considering edQTL models that account for rare 
editing sites may lead to a more resolved atlas of RNA editing sites and their genetic regulation in the brain.  
 
Finally, while our data provide new avenues for understanding cellular specificity RNA editing, one key question 
remains: ‘What is the biological explanation as to why neurons exhibit a preponderance of RNA editing activity?’. 
Here we extend some putative solutions. One possible explanation of enhanced RNA sequence diversity and 
ADAR expression in neurons might be to afford increased neural plasticity. Neurons, more than other cell types, 
must be able to quickly respond to altered environmental inputs, therefore, RNA editing may represent a 
mechanism capable of aligning with the timing required for experience-dependent plasticity, similar to other RNA 
modifications39,40. As such, editing activity in neurons might play a role in controlling the organizational 
architecture of neuronal networks implicated in higher order learning and memory. A related explanation of 
enhanced diversity of RNA editing in neurons may hint at its potential relation with essential neuronal functions. 
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This idea is reinforced by the high density of editing in neuronal transcripts that encode proteins directly involved 
in excitatory/inhibitory (E/I) functions and the significant differences in editing between excitatory GLU and 
inhibitory GABA neurons. Such differences may modulate E/I balance within the cortical circuitry. Imbalance of 
E/I activity is thought to play a critical role in the pathophysiology of several different neuropsychiatric and 
neurological disorders, including autism spectrum disorder, schizophrenia, and epilepsy41,42. Thus, functional 
relevance of the observed RNA editing differences between different populations of brain cells in health and 
disease warrants further investigation. Lastly, it remains unclear how RNA editing may play out across distinct 
cellular compartments and locations. Recent work has found discrete gene expression differences across synapses, 
dendrites, axons and neuronal bodies43,44, and RNA editing may represent a driver of activity-induced RNA 
localization1,2,11.  
 
MATERIALS AND METHODS 
 
Experimental design and RNA-sequencing samples  
 
The following RNA-seq datasets were leveraged to quantify RNA editing. Raw FASTQ files or mapped bam files 
of the following datasets were downloaded from either the sequencing read archive or Synapse.org: 

1. FANS-derived cortical cell populations: Raw FASTQ files were obtained for a total of 27 paired-end (125 
bp) nuclei samples were collected from MGE-GABA (n=9), GLU (n=9) and OLIG (n=9) populations 
(syn12034263). Antibodies against brain cell population markers NeuN, SOX6, and SOX10 were used in the 
FANS protocol, as described in our previous publication29. Briefly, NeuN (also known as RNA-binding 
protein RBFOX3) is a well-established marker of neuronal nuclei; SOX6 is a transcription factor expressed in 
MGE-GABA neurons during development and into adulthood; the use of anti-SOX6 antibodies to separate 
the nuclei of MGE-GABA from GLU neurons was described by us previously45,46; SOX10 is a transcription 
factor specifically expressed in OLIG.  

2. Single-nuclei RNA-sequencing: Mapped bam files were obtained for snRNA-seq generated from 17,093 
nuclei from the dorsolateral prefrontal cortex (DLPFC) of three adult brains (syn15672826). The 10X 
Genomics chromium platform was used to capture and barcode single nuclei using the Chromium Single Cell 
3’ Library and Gel Bead Kit v2 (10x Genomics) and the Chromium Single Cell A Chip Kit (10x Genomics) 
as previously described30.  

3. Transcriptome and genotype data from Genotype-Tissue Expression Project: We obtained approval to 
access Genotype-Tissue Expression (GTEx) Project through the database of Genotypes and Phenotypes 
(dbGaP) (phs000424.v8). Raw FASTQ files were obtained for a total of 1431 paired-end (75 bp) samples 
were collected across 13 brain regions (anterior cingulate cortex (ACC), amygdala, caudate, cerebellar 
hemisphere, cerebellum, cortex, frontal cortex, hippocampus, nucleus accumbens, putamen, spinal cord, 
substantia nigra). The VCFs for the imputed array data were available through dgGAP, in 
phg000520.v2.GTEx.MidPoint.Imputation.genotype-calls-vcf.c1.GRU.tar (the archive contains a VCF for 
chromosomes 1-22 and a VCF for chromosome X). 

Identification of site-selective RNA editing sites 
 
All FASTQ files were mapped to human reference genome (GRCh38) using STAR v2.7.347 and mapped files 
were used as input for the subsequent analysis. To quantify site-selective RNA editing sites from FANS-derived 
cortical cell populations, we used a combination of de novo calling via Reditools v2.048 (parameters: -S -s 2 -ss 5 
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-mrl 50 -q 10 -bq 20 -C -T 2 –os 5) and supervised calling of known RNA editing sites from the REDIportal 
database49 as a second pass. A number of filtering steps were applied to retain only high-quality, high-confident 
bona fide RNA editing sites: i) all multi-allelic events were discarded; ii) a minimum total read coverage of 10 
reads and at least 3 edited reads was required to classify as an editing event; iii) any sites mapping to 
homopolymeric regions or in hg38 blacklisted regions of the genome50 were discarded; iv) any sites mapping to 
common genomic variation in dbSNP(v150) and those in gnomAD with minor allele frequency greater than 0.05 
were discarded; v) for FANS-derived cell populations, sites were further filtered using a rate of detection in at 
least 8 out of 9 samples per cell type. All remaining sites were annotated using ANNOVAR51 to gene symbols 
using RefGene and repeat regions using RepeatMasker v4.1.152. Conservation metrics were gathered from the 
phastConsElements30way table of the UCSC Genome Browser, which consists of evolutionary conservation 
using phastCons and phyloP from the PHAST package53.  Importantly, for sites uniquely detected in one cell 
type, we performed a third round of RNA editing quantification in the remaining two cell types to determine 
whether those sites in the neighboring cell types displayed high coverage and little-to-no editing (escaping the 
minimum coverage and edited read threshold) or simply little-to no read coverage (escaping the minimum 
coverage threshold). Resulting RNA editing data frames per cell type contained no more than ~6% missing data. 
These values were imputed in a cell-specific manner using median imputation (i.e. taking the median editing rate 
across 8 donors per cell type). Resulting sites from these steps were subsequently referred to as high-confidence 
selective RNA editing sites and were used for downstream analysis. 
 
To quantify RNA editing in snRNA-sesq and GTEx data, we called known sites from the REDIportal database in 
addition to any novel sites identified from FANS-derived cell populations. To this end, to quantify RNA editing 
sites and rates from a list of given sites, nucleotide coordinates for all such sites were used to extract reads from 
each sample using the samtools mpileup function, as previously described by us17. This approach quantifies the 
total number of edited reads and the total number of unedited reads that map to each RNA editing site detected. 
All analyses considered read strandedness when appropriate.  
 
Commonly used terms and definitions used in this study  
 
Cell type-specific RNA editing site: Sites uniquely detected in one cell population and with zero coverage (or with 
insufficient detection rates) in the other two cellular populations.  
Cell type-enriched RNA editing site: Sites detected in at least two cell population but with significantly higher 
RNA editing levels in one of the two cell types, determined by linear regression analysis.   
 
Computing the Alu Editing Index  
 
The AEI method v1.054 was leveraged to compute the Alu Editing Index for each sample using the STAR mapped 
bam files as input. The AEI is computed as the ratio of edited reads (A-to-G mismatches) over the total coverage 
of adenosines and is a robust measure that retains the full Alu editing signal, including editing events residing in 
low-coverage regions with a low false discovery rate.  
 
Quantification of RNA hyper-editing  
 
RNA reads that undergo extensive hyper-editing of many neighboring adenosines within an extended region or 
cluster on the same transcript will not align to the reference genome due to the high degree of dissimilarity. 
Therefore, to identify hyper-edited reads in the current study, all unmapped reads from the original STAR 
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alignment were converted to FASTQ and used as input for hyper-editing analysis. We adopted a well-established 
RNA hyper-editing pipeline33 with minor additional processing steps15, including: (1) extending cluster 
boundaries by the average distance between editing sites per cluster and subsequently merged clusters with 
overlapping coordinates (cluster length is a commonly product of read length); (2) all resulting hyper-editing sites 
were annotated using ANNOVAR (described above); (3) sites mapping to common genomic variation in 
dbSNP(v150) and those in gnomAD (maf>0.05) were discarded; (4) sites mapping to paired high-confidence 
private genomic calls were also discarded.  
 
To minimize any batch effects, we computed a normalized hyper-editing signal per million mapped bases as 
previously described33. The normalized hyper-editing signal was computed by dividing the total number of 
resulting high-quality RNA hyper-editing sites over the total number of mapped bases from the STAR alignment. 
The number of total uniquely mapped bases for each sample were collected using Picard Tools v2.22.3 
(http://broadinstitute.github.io/picard/) on each mapped bam file.  
 
Local motif enrichment analysis 
 
EDLogo was used to quantify local sequence motifs55. We pulled sequences 4bp (±) the target adenosine to 
evaluate enrichment and depletion of specific nucleotides neighboring A-to-G RNA editing sites.  
 
Analysis of RNA editing by gene length 
 
The total number of selective A-to-G RNA editing events were computed for each gene within each cell 
population. The total number of edits per gene were compared in a series of pairwise comparisons across each 
cell populations. To adjust for gene length, we residualized the number of A-to-G editing events per gene for each 
cell type by the log of gene length (geneEdits~log(gene length)) using the resid function in the R package.  
Subsequent pairwise comparisons of the residualized number of RNA editing events per gene were performed 
(MGE-GABA vs. GLU, MGE-GABA vs OLIG, GLU vs. OLIG). Genes displaying an enrichment of residualized 
RNA editing sites were those dented as outlier genes beyond the 99% confidence intervals from the grand mean.   
 
RNA binding protein and eCLIP enrichment analysis 
 
RNA binding proteins (RBPs) were first defined based on a consensus list of 837 high-confidence human RBPs 
from the hRBPome database56. A total of 470 RBPs were detected in FANS-derive cell populations and subjected 
to further analysis. Differential expression of these RBPs was computed using a linear model through the limma 
R package57 covarying for the possible influence of age and PMI. Donor as a repeated measure was controlled 
for using the duplicateCorrelation function in limma57. A matching approach was used to test for all genes 
genome-wide for subsequent analyses. To explore putative trans regulators of RNA editing, we further studied 
all RBPs that were significantly differentially expressed. RBPs were further subjected to correlation analysis with 
the AEI metric using a Pearson’s correlation coefficient.  
 
Next, we collected transcriptome-wide binding patterns of FMRP (an RBP in the current analysis known to 
interact with ADAR1 and ADAR2). Data from two eCLIP experiments and an input control experiment were 
obtained using postmortem frontal cortex from control subjects, as previously described18. The regioneR R 
package58 was used test overlaps of FMRP binding regions for each replicate separately with cell type-specific 
RNA editing sites based on permutation sampling. We repeatedly sampled random regions from the genome 1000 
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times, matching size and chromosomal distribution of the region set under study. By recomputing the overlap 
with FMRP binding sites in each permutation, statistical significance of the observed overlap was computed.  
 
Cell type-enrichment of RNA editing levels by differential editing analysis 
 
To identify sites with differing levels of RNA editing between two given cell types, we implemented linear model 
though the limma R package57 covarying for the possible influence of age, PMI and donor as a repeated measure 
using the duplicateCorrelation function. Secondary models covaried for ADAR1 and ADAR2 expression (the 
enzymatically active editing enzymes) to explore potential ADAR-dependent editing activity. All significance 
values were adjusted for multiple testing using the Benjamini and Hochberg (BH) method to control the false 
discovery rate (FDR). Sites passing a multiple test corrected P-value < 0.05 were labeled significant. 
 
Gene ontology enrichment of differentially edited sites 

Genes harboring differentially edited sites were functionally annotated using the ToppFunn module of ToppGene 
Suite software59. We set a genomic background defined as all genes harboring at least one editing site and tested 
for significance using a one-tailed hyper-geometric distribution with a Bonferroni correction. This is a proportion 
test that assumes a binomial distribution and independence for probability of any gene belonging to any set. We 
use a one-sided test because we are explicitly testing for over-representation of genes that harbor editing sites 
across hundreds of GO categories, without any a priori selection of candidate gene sets.  

Enrichment of cell-specific sites across neurodevelopment and neurological disorders 

Both cell-specific and –enriched RNA editing sites were interrogated for over-representation of RNA editing sites 
previously found to be dysregulated across neurodevelopment and in neuropsychiatric disorders. Transcriptome-
derived sets of RNA editing sites were curated based the following curation of RNA editing sites: two lists of 
sites found to change in editing rates across prenatal and postnatal cortical development15,16; dysregulated RNA 
editing sites in schizophrenia17, Fragile X Syndrome and ASD18. To compute significance of all intersections, we 
used the GeneOverlap function in R which uses a Fisher’s exact test and an estimated odds-ratio for all pair-wise 
tests based on a background set of genes detected in the current study.  

Validation of recoding sites by targeted PCR amplification and high-throughput sequencing 

We selected four cell type-specific recoding RNA editing events detected in our study to validate the results using 
an independent approach. We employed brain tissue samples from orbitofrontal cortex (OFC) in an independent 
cohort of 6 adult individuals without a neuropsychiatric diagnosis. Nuclei of MGE-GABA, GLU, and OLIG cells 
were isolated by FANS, followed by RNA extraction and library construction, as described above. PCR primers 
were designed to target four recoding RNA sites in: UNC80, GRIA3, GRIA4, and SON (Figure S8, 
Supplemental Table 6). The rhAmpSeq targeted amplicon sequencing kit (Integrated DNA Technologies) was 
used in two rounds of PCR amplification, to obtain the targeted PCR products (PCR1) and to introduce unique 
indexes for multiplex sequencing (PCR2), according rhAMPSeq protocol. Three µg of RNA-seq library was used 
in the first round of PCR for each subject and cell-type. The resulting rhAmpSeq libraries were cleaned using 
Agencourt AMPure XP beads, pooled, and sequenced on MiSeq obtaining at least 15,000 reads per sample 
(median read number per sample: 15,700 reads). The sequencing data (FASTQ files) were used to quantify the 
RNA editing read numbers and editing percentages at the four studied sites by counting reads which mapped 
identically to the +/- 10 bases surrounded the edited site. 
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snRNA-seq to identify and validate RNA editing sites 

Mapped bam files were obtained following the alignment of short-reads to the reference genome (GRCh38/hg38). 
Reads were filtered for low quality, and counts were quantified (cell barcode counts and unique molecular 
identifier counts for each annotated gene) using CellRanger count, as previous described46. To optimize cell 
classification and reduce unwanted variance, we quality filtered, normalized, and scaled data according to Seurat’s 
guidelines, as previously described for this data set46. Like the original report, we identified 29 transcriptionally 
distinct cell clusters representing various populations of glutamatergic excitatory projection neurons, GABAergic 
interneurons, oligodendrocyte progenitor cells, oligodendrocytes, astrocytes, microglia, endothelial cells, and 
mural cells. Here, we further reduced these clusters into 24 cell clusters by collapsing five highly similar GLU 
cell subsets based on NEUROD6 expression. Additionally, we further collapsed these cell clusters into six main 
cellular pools that constitute MGE-GABA, GLU and OLIG populations (based on the presence/absence of 
markers RBFOX1, SOX6, SOX10) and astrocyte (GFAP), microglia (TNEN119) and endothelial cell (CLDN5) 
populations.  

To quantify RNA editing sites from snRNA-seq data, each mapped bam files was parsed into six unique bam files 
(per donor) reflective of the six main cellular pools (described above) using each cells unique molecular identifier 
(UMI). In this way, we pooled cells with matching cell type markers and gene expression patterns for subsequent 
RNA editing analysis. Next, we quantified RNA editing levels for all high-confidence sites identified in the 
FANS-derived cell populations using the samtools mpileup function (described above). Given the challenges 
related to the limited number of cells per pool and low sequencing depth, we explored validation rates under 
varying read coverage thresholds (minimum of 3-20 reads), but ultimately required a minimum coverage of 10 
reads per site, as applied for all other sites in the current study.  

GTEx data pre-processing and cell type deconvolution 
 
All GTEx FASTQ files were mapped to human reference genome (GRCh38) using STAR v2.7.347 and counted 
using featureCounts60. Count matrices were assembled for each brain region, filtered to retain genes with at least 
1 count per million in at least half of samples per region, and VOOM normalized using limma57. Each resulting 
normalized data frame was subjected to principal component analysis to identify and remove any outlier samples 
that lay beyond two standard deviations from the grand mean. Following outlier removed, a total of 1,129 samples 
were retained for all subsequent analyses. 
  
To compute cellular composition, we applied non-negative least squares (NNLS) from the MIND R package61 
and utilized the Darmanis et al., signature matrix62 which contained a mixture of six major cell types: astrocytes, 
oligodendrocytes, microglia, endothelial cells, excitatory and inhibitory neurons. NNLS, executed through the 
est_frac function, was applied to log2 count per-million (CPM) transformed data using the limma package in R. 
For each sample, both excitatory and inhibitory neuronal predictions were summed into one ‘neuronal’ cell 
population. We focus our predictions on these major cell types in an effort to reduce noise and to evaluate a 
distribution of cell types that reflect an approximate expected distribution in the human brain based on prior work.  
 
GTEx bulk brain cis-edQTL analysis 

We conducted cis-eQTL mapping within the 13 brain regions. We leveraged existing VCFs for high quality 
imputed genotype array data from dbGAP (phg000520.v2.GTEx.MidPoint.Imputation.genotype-calls-
vcf.c1.GRU.tar), using SNPs with an and estimated minor allele frequency ≥ 0.05. Only RNA editing sites 
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detected in at least 50% of samples per region were considered for cis-edQTL mapping. Each data matrix for each 
region exhibited ~17% missing values, which were imputed using the well-validated predictive mean matching 
method in the mice R package using 5 multiple imputations and 30 iterations63. The genomic coordinates for all 
RNA editing sites were lifted over to GRCh37. Subsequently, to map genome-wide edQTLs, a linear model was 
used on the imputed genotype dosages and RNA editing levels using MatrixEQTL64. RNA editing levels were 
covaried for sex, age, RIN and type of death. To control for multiple tests, the FDR was estimated for all cis-
edQTLs (defined as 1Mb between SNP marker and editing position), controlling for FDR across all chromosomes. 
Significant cis-edQTLs were identified using a genome-wide significance threshold (FDR < 0.05). To assess 
whether cis-edQTLs relate to brain promoter and enhancer regions, overlap between max cis-edQTLs and 
promoter and enhancer regions was tested for from the FANTOM project collected from the SlideBase database65. 
A permutation-based approach with 1,000 random permutations was used to determine statistical significance of 
the overlap between edSNP coordinates and enhancer regions using the R package regioneR58.  

Data and code availability 
 
To promote the exchange of this information, we developed an interactive Rshiny app with an easily searchable 
interface to act as a companion site for this paper: https://breenms.shinyapps.io/CNS_RNA_Editing/. This 
application allows users to download sites along a specific gene of interest. Additionally, all code, major data 
tables and matrices as well as summary statistics are provided in GitHub: https://github.com/BreenMS/RNA-
editing-in-CNS-cell-types and https://github.com/ryncuddleston/RNA-hyper-editing. 
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MAIN FIGURES  
 

 
Figure 1. Global selective editing and hyper-editing in purified cortical cell types. (A) The Alu editing index 
(AEI) (y-axis) and (B) expression profiles for ADAR1, ADAR2, and ADAR3 (y-axis) were computed for each 
FANS-derived cell population from autopsied human adult prefrontal cortex (PFC, n=9): MGE-GABA, GLU, 
and OLIG populations. (C) The amount of AEI variance explained (R2, y-axis) by ADAR expression was 
quantified. (D) The total number of hyper-editing sites (y-axis) and (E) normalized hyper-editing rates (hyper-
editing sites per million mapped bases, y-axis) were calculated across all cell types. For panels A, B, D, and E, 
regression analysis computed significance in mean differences between MGE-GABA vs GLU and GLU vs. 
OLIG. In all panels, MGE-GABA vs. OLIG is statistically significant (p < 0.05).  
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Figure 2. Identification and annotation of selective RNA editing sites. (A) Workflow for detecting high-
confidence cell type-associated RNA editing sites using conjunctional de novo and supervised RNA editing 
detection approaches. The total number of sites detected per cell type are displayed in Venn diagram. (B) The 
total number of RNA editing sites by substitution class. (C) The fraction of RNA editing sites that map to Alu 
and L1-line elements relative to all other elements. (D) The total number of RNA editing sites by genic region. 
Inset plot shows the breakdown in coding regions. (E) The number of A-to-G editing sites (y-axis) were grouped 
based on novelty (known or novel) and independently numerated per cell type. Local sequence motif enrichment 
analysis for both (F) known and (G) novel RNA editing depicting a depletion of guanosine +1 bp upstream and 
enrichment of guanosine -1 bp downstream of the target adenosine. Known and novel sites for each cell population 
were further scrutinized by comparison of (H) read coverage (log10, y-axis) and (I) editing level (%, y-axis). (J) 
An upset plot highlights the cell-type convergence/divergence specifically of novel A-to-G sites.  
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Figure 3. Quantifying variance in RNA editing rates. (A) Differential RNA editing analysis was computed in 
a pairwise fashion between all three FANS-derived cell populations, including GLU vs. GABA (left), OLIG vs. 
MGE-GABA (center) and OLIG vs. GLU (right). RNA editing sites are uniquely shaped by genic region and 
colored by novelty. (B) UpSet plot reporting counts for all cell type-enriched sites are reported with their overlaps. 
(C) The percentage (%, y-axis) of differentially edited sites by novelty (left) and genic region (right). (D) Heatmap 
displaying differential editing levels at recoding sites across MGE-GABA (blue), GLU (purple), and OLIG 
(green) cells. Grey color indicates sites that were not detected in a given cell type. Arrows pointing to specific 
sites indicate sites validated by independent methods (see Figure S8). (E) The convergence (%, y-axis) for each 
cell-type specific set of editing sites was compared to several published reports of editing sites dysregulated in 
bulk brain tissue (see Methods). A Fisher’s exact test and an estimated odds-ratio was used to compute 
significance of the overlap. (F) Spider plot of the top three genes for each cell type that display enrichment for 
A-to-G RNA editing sites after accounting for gene length.  
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Figure 4. Confirmation of cell-specific editing in snRNA-seq. (A) snRNA-seq performed on adult PFC (n= 3) 
classified 24 unique cell populations. Values in brackets indicate number of cells per subset. (B) Cells were further 
collapsed into six major cell classes, which were evaluated for expression of our FANS-derived cell populations 
(RBFOX3, SOX6, and/or SOX10) to identify cells that define ‘FANS-like cellular pools’. (C) The AEI and 
expression profiles for ADAR1, ADAR2, and ADAR3 (y-axes) were computed for each ‘FANS-like cellular pool’ 
in addition to microglia, astrocytes, and endothelial cells. (D) The percentage of RNA editing sites (y-axis) from 
the original FANS-derived cell populations that validated in each respective ‘FANS-like pool’ was determined 
across varying read coverage thresholds. (E) Comparison of the median editing rates (%) within each cell-type 
for sites validated by both approaches with a minimum coverage of 10 reads illustrates correlation of the two 
approaches. (F) Sites which failed to validate by snRNA-seq were largely explained by difference in read 
coverage and total number of cells sequenced.  
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Figure 5. Variance in global editing activity in bulk tissue explained by neuronal content. (A) Alu editing 
index (AEI) (y-axis, upper) was computed across 13 brain regions from the GTEx consortium projects and 
neuronal cell type proportions (y-axis, lower) were estimated. Cellular deconvolution was applied using the 
Darmanis et al., 2015 reference signature matrix. (B) The amount of AEI variance and (C) ADAR expression 
explained by neuronal proportions was determined using a linear regression model across all 13 brain tissues. 
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Figure 6. Annotation of cell type-associated sites in bulk tissue. (A) Total number of editing sites (y-axis) 
identified is reported along with coefficient of variance (blue diamond) for each GTEx brain tissue to describe 
intraregional fluctuation observed amongst donors. (B) The percentage of cell type-associated RNA editing sites 
out of total number of editing sites per donor (y-axis), with a clear enrichment in the cortex. (C) Density 
distribution plots delineate that the editing levels of cell type-associated relative to all other sites detected in bulk 
tissue. (D) A sliding threshold was used to identify sites shared amongst a given percentage of samples per region 
(x-axis). (E) Following each threshold, the fraction of cell type-associated RNA editing sites were computed, 
further highlighting cortical enrichment. (F) Fold-enrichment analysis informs cell type-associated sites are most 
commonly detected across the majority of donors. 
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Figure 7. Identification and annotation of edQTLs across brain regions. (A) QQ-plot depiction of observed 
versus expected P-values for genome wide cis-edQTLs. (B) Max edQTLs are highly enriched within +/-200bp of 
their respective editing sites. (C) Counts of cell type-associated max edQTLs in each brain region. (D) The total 
number of eSites (unique editing sites with associated edQTL) are broken down by genic region. Inset plot counts 
the number of eSites commonly detected across more than one region. (E) An example of one commonly detected 
edQTL across all regions with neuronal cell type enriched editing rates (left) with consistent direction of edQTL 
effect across all regions (right). (F) The absolute effect size (β, x-axis) is compared for edQTLs annotated as cell 
type-associated or edQTLs without cellular identify. (G) Regression analysis indicates that eSite discovery is 
dependent upon regions expressing higher levels of ADAR1, ADAR2 and those with higher proportions of 
neurons.  
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SUPPLEMENTAL FIGURES 

 
Figure S1. RNA hyper-editing across cell types.  The amount of normalized hyper-editing per million mapped 
bases (HE/MM, x-axis) variance explained by expression of (A) ADAR1, (B) ADAR2, and (C) ADAR3 was 
evaluated by linear regression. (D) The total number of hyper-editing sites (y-axis) by genic region per cell type 
(x-axis). Hyper-editing sites were scrutinized for conserved local sequence motifs, that is (E) enrichment of 
guanosine +1 bp downstream (F) and depletion of guanosine -1 bp upstream of the target adenosine. Values are 
aggregated across all three cell types.  
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Figure S2. Annotation of A-to-G sites detected in only one cell type. The number of donors (out of 9 per cell 
type) with a coverage of at least 10 reads for sites uniquely classified as cell type-specific in (A) MGE-GABA, 
(B) GLU, and (C) OLIG cells. Read coverage plots for sites uniquely classified as cell type-specific in (D) MGE-
GABA, (E) GLU, and (F) OLIG cells.  Plots demonstrate that sites uniquely detected per each cell type are largely 
associated with differences in cell type-associated read coverage differences. RNA editing levels for both known 
and novel A-to-G cell-specific sites parsed by genic region for (H) MGE-GABA, (I) GLU, and (J) OLIG cells.  
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Figure S3. Quantifying variance in RNA editing rates by known factors. Sites commonly detected across all 
cell types were leveraged for the analyses presented in all current panels. (n=15,221 sites). (A) Mixed linear 
models were used to compute variance explained (%, y-axis) by several known factors and FANS-derived cell 
population (cell type) explained the largest source of variance (8.31%). (B) Principal component analysis of all 
donors (n = 9) stratifies neuronal (MGE-GABA, GLU) from non-neuronal (OLIG) cells. Samples are shaped 
differently based on donor (D) as a repeated measure. (C) Density plot distributions illustrate the number of A-
to-G editing sites which correlate with ADAR expression across all cell-types. The total number of sites that are 
significantly associated (FDR P-value < 0.05) with ADAR expression are displayed in the top left corner for each 
enzyme.  
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Figure S4. RNA editing variation and RNA binding protein analysis. (A) Heatmap displaying the relative 
expression of 470 differentially expressed RNA binding proteins (RBPs) between MGE-GABA (purple) and GLU 
(green) neurons relative to OLIG (blue) cells. (B) Correlation of 470 RBPs with the AEI measurement across all 
cell types depicting a 161 RBPs strongly associated with the AEI in neuronal cells (MGE-GABA and GLU) and 
170 RBPs strongly associated with the AEI in OLIG cells. Analyses were adjusted for repeated measures using 
Benjamini-Hochberg method. (C) Example of three RBPs strongly associated with the AEI in OLIG cells (top) 
and three RBPs strongly associated with the AEI in neuronal cells (bottom). Genomic coordinates for all cell 
type-associated RNA editing sites were assessed for enrichment for FMRP eCLIP binding sites across two 
technical replicates (D-E). The regioneR R package was used test overlaps of genomic regions based on 
permutation sampling. We repeatedly sampled random regions from the genome1000 times, matching size and 
chromosomal distribution of the region set under study. By recomputing the overlap with FMRP binding sites in 
each permutation, statistical significance of the observed overlap was computed.  
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Figure S5. Synaptic gene-set enrichment analysis. SynGO sunburst plots portray synaptic gene ontology 
enrichment associated with cell-type enriched RNA editing sites in (A) MGE-GABA, (B) GLU, and (C) OLIG 
cells. The top six cell-specific pathways (i.e. uniquely enriched for one cell type only) for the genes encompassing 
identified editing sites for in (D) MGE-GABA, (E) GLU, and (F) OLIG cells. 
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Figure S6. Overlap of differentially edited sites and differentially expressed genes. Cell-specific gene 
expression was defined as genes with significantly higher expression (FDR P-value < 0.05) in one cell type 
relative to other cell types. A Fisher’s Exact Test and an estimated odds-ratio (OR) was used to compute the 
significance of the overlap between cell-specific gene expression and genes harboring editing sites with cell-
specific editing rates. We observed (A) ~66% of differentially edited sites in MGE-GABA nuclei were not 
explained by differential gene expression, (B) ~62% of differentially edited sites in GLU nuclei were not 
explained by differential gene expression, and (C) ~48% of differentially edited sites in OLIG nuclei were not 
explained by differential gene expression. 
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Figure S7. PhastCons scores by genic regions.  Editing sites reported for all three cell types binned by genic 
region and PhastCons, highlighting an increased proportion of highly conserved recoding sites across all three 
cell types, with less conservation in editing sites throughout other genic regions.  
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Figure S8. Validation of cell-specific recoding events in independent samples.  Four recoding sites were 
validated in six independent OFC samples from healthy age matched donors.  
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452690
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S9. RNA editing sites as a function of gene length. (A) Gene length as a function of the total number of 
selective RNA editing sites across all MGE-GABA (left), GLU (center) and OLIG cells (right). (B) Pairwise 
comparisons of concordance for the number of RNA editing sites per gene between two cell types – MGE-GABA 
vs. GLU (left), MGE-GABA vs OLIG (center), GLU vs. OLIG (right). (C) Pairwise comparisons of concordance 
for the number of residualized RNA editing sites by gene length per gene between two cell types – MGE-GABA 
vs. GLU (left), MGE-GABA vs OLIG (center), GLU vs. OLIG (right). Outlier genes were classified as genes 
enriched with RNA editing sites and are denoted as those outside the 99% confidence intervals from the grand 
mean.  
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Figure S10. tSNE of snRNA-seq. Cells were examined for expression markers: GLU (RBFOX3+/SOX6-), 
MGE-GABA (RBFOX3+/SOX6+), and OLIG (RBFOX3-/SOX10+) (top row) and ADAR1, ADAR2 and ADAR3 
expression (bottom row).  
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Figure S11. Correlation of AEI with known factors in GTEx data.  The AEI was correlated with 12 biological 
factors, including cell type proportions, using a Pearson’s correlation. Correlations were performed across all 
regions. ADAR2, ADAR1 and neuronal proportions display the strongest positive associations with AEI where as 
non-neuronal cell types and ADAR3 display the strongest negative associations with the AEI.  
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Figure S12. Principal component analysis on features of RNA editing in the brain. We performed PCA on 
ADAR1, ADAR2 and the AEI for each sample across all brain regions. We then color coded each sample by the 
proportions of neurons per donor, from red- (high, more neuronal) to-white (low, less neuronal). This result 
indicates that PC1 (based on features of RNA editing in bulk brain tissues) is largely associated with differences 
in neuronal proportions.  
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Figure S13. Variance in RNA editing site detection per donor in bulk GTEx tissues. The amount of variance 
explained in the total number of RNA editing sites detected (y-axis) across all brain regions (denoted by point 
shape) according to differences in (A) neuronal proportions, (B) ADAR1, (C), ADAR2, (D) and ADAR3 
expression. Linear regression was used to test the strength of significance for each association.  
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Figure S14. Annotation of sites detected in bulk GTEx brain tissue. (A) The fraction of RNA editing sites per 
genic region according to brain regional differences. (B) The number of novel cell type-associated RNA editing 
sites detected in bulk brain RNA-sequencing data across all regions (~213 novel sites per region were detected). 
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Figure S15. Absolute effect sizes of edQTLs across GTEx brain regions. Independent boxplots for each brain 
region express that the absolute effect sizes (β) are consistently higher for edQTLs related to cell-associated 
editing sites and lower for all other edQTLs for editing sites without cellular annotation.  
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Figure S16. edQTL discovery as a function of sample size. (A) cis-edQTL (B) and eSite discovery as a function 
of sample size per brain region.   
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