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ABSTRACT 

Functional tissue units (FTUs) composed of multiple cells like the glomerulus in the kidney 

nephron play important roles in health and disease. Histological staining is often used for 

annotation or segmentation of FTUs, but chemical stains can introduce artefacts through 

experimental factors that influence analysis. Secondly, many molecular -omics techniques are 

incompatible with common histological stains. To enable FTU segmentation and annotation in 

human kidney without the need for histological staining, we detail here the use of widefield 

autofluorescence (AF) microscopy as a simple, label-free modality that provides detailed renal 

morphology comparable to periodic acid-Schiff (PAS) stained tissue in both formalin-fixed 

paraffin-embedded (FFPE) and fresh frozen samples and with no tissue processing beyond 

sectioning. We demonstrate automated deep learning-based glomerular unit recognition and 

segmentation on PAS and AF images of the same tissue section from 9 fresh frozen samples and 

9 FFPE samples. All training comparisons were carried out using registered AF microscopy and 

PAS stained whole slide images originating from the same section, and the recognition models 

were built with the exact same training and test examples. Measures of recognition performance, 

such as the Dice-Sorensen coefficient, the true positive rate, and the positive predictive value 

differed less than 2% between standard PAS and AF microscopy for both preservation methods. 

These results demonstrate that AF is a potentially powerful tool to study human kidney tissue, 

that it can serve as a label-free source for automated and manual annotation of tissue structures. 
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INTRODUCTION 

Recent kidney atlas programs have emerged with the goal of characterizing normal human 

tissues and discovering drivers of disease using cellular and molecular phenotypes spanning wide 

spatial scales and biomolecular classes.1,2 Functional tissue units (FTUs), multicellular structures 

that perform vital functions, including components of the nephron in the kidney, such as glomeruli, 

proximal tubules, distal tubules, and collecting ducts, are an important intermediate between 

whole organ and individual cells.3 Indeed, kidney diseases like diabetic nephropathy, acute kidney 

injury, and chronic kidney disease are a direct result of damage to the aforementioned FTUs.4–6 

Efficiently and accurately identifying these FTUs for exploration, and being able to perform this 

recognition task at scale, is critical for linking their location to -omics modalities and characterizing 

the molecular signatures specific to these FTUs.  

Digitization of microscopy slides as whole slide images (WSIs) provides the histological data 

necessary to identify and assess FTUs in tissue sections for basic research and histopathology.7 

The proliferation of kidney WSIs in renal pathology has led to the development of computational 

approaches for automated analysis and interpretation.8–10 Deep learning approaches have 

achieved state-of-the-art results in image analysis tasks (classification, object detection, 

segmentation)11 and perform remarkably well in complex tasks like segmentation followed by 

diagnosis.12  

In most studies incorporating WSIs in kidney, traditional histological stains are used.10 While 

versatile and widely understood, staining can be variable due to experimental factors like reagents 

and protocols that introduce artefacts13, which in turn affects reproducibility in downstream 

computational analysis14 with that effect potentially magnified across multi-center studies. Further, 

histological stains are not always compatible with or diminish the quality of other informative 

techniques that probe molecular biology, e.g. transcriptomics or proteomics, as the chemical 

reagents used in the staining protocol may irreversibly alter the molecular content of the sample. 

Instead, tissue section imaging approaches that can achieve subcellular resolution, provide high 

quality morphology, induce minimal tissue degradation, and are also stain/label-free have 

particular potential to enable more reproducible WSI studies and more robust annotation results. 

Further, label-free techniques safe-guard the ability to perform measurements with molecular 

analysis techniques on the exact same tissue section that has been annotated. 

We demonstrate herein the use of one such imaging modality, namely multi-channel widefield 

autofluorescence microscopy (AF), as a complement to standard histological morphology of 

periodic acid–Schiff (PAS) staining in human kidney tissue sections. We describe qualitative 

comparisons between AF and PAS and compare the two modalities for automated deep learning-

based detection of the glomerular FTU using a cohort of fresh frozen and formalin fixed paraffin 

embedded (FFPE) human kidney tissue sections.  
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RESULTS 

AF and PAS morphological comparison 

Figure 1 is a side-by-side example of registered PAS and AF images from an FFPE block at low 

and high magnification, showing AF readily distinguishes both gross (Fig. 1 - A&B) and 

microscopic morphology with many FTUs qualitatively distinguishable by either method (Fig. 1 - 

C-H).  

Comparison of performance of PAS versus AF for glomerulus unit segmentation by deep 

learning 

Figure 2 outlines the data preparation and analysis workflow to compare the performance of PAS 

versus AF for glomerular detection using random, but matched-across-modalities sampling of 

glomerular unit annotations (fresh frozen - n=1612 , FFPE - n=2480). for training, 10 initial 

randomizations were made creating 10 models per subset of 1, 5, 10, 15, and 25% of the data 

(50 models/modality). Each subset after random initialization is cumulative, i.e., random 

initialization 1 with 10% of annotations includes all glomeruli in the 5% subset. The performance 

of the models on an independent test set (the glomeruli excluded from training) inclusive of all 

glomeruli not in the training set is shown in Figure 3. The segmentation accuracy was compared 

using the Dice-Sorensen coefficient15, a method that computes the overlap of the ground truth 

annotation and the predicted segmentation masks. To assess the ability to detect and accurately 

segment glomerular units, predictions were considered true positives if their Dice-Sorensen 

coefficient was >0.75. The positive predictive value assessed the amount of false positive 

detections. 

Glomerular segmentation in whole slide images and histological staining artefacts 

Figure 4 A shows glomerular unit segmentation by CNN across a fresh frozen example WSI, 

showing a CNN trained on AF data’s adaptability to large microscopy images typical of pathology. 

The AF images are collected prior to any processing of the tissue sample where artefacts may be 

introduced. In Figure 4 B & C, a glomerulus is shown that exhibits artefacts introduced by  

histological staining. The glomerulus is shown intact in the AF image (Fig 4B), which takes place 

pre-PAS staining, and with the tuft area partially destroyed by the staining process in the PAS 

image (Fig 4C). 

DISCUSSION 

Considered on its own merits, AF is a straightforward and label-free microscopy approach, 

requiring no tissue block processing beyond sectioning (and deparaffinization in the case of FFPE 

blocks). Gross morphology such as renal papilla, medulla, and cortex can be distinguished in AF 

images through changes in both fluorescence intensity and image texture (Fig. 1 A&B). 

Furthermore, FTUs like glomerular units and tubules can also be qualitatively distinguished by AF 

(Fig. 1 C-H), demonstrating broad potential for driving kidney annotation and analysis.   

Using a spatially matched dataset of AF and PAS WSIs capturing identical tissue morphology and 

pulled from both fresh frozen and FFPE blocks (n=9 for each), we compare the performance a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452703doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?40hnaX
https://doi.org/10.1101/2021.07.16.452703


 

 

 

CNN-driven method for automated recognition of glomerular units between using AF images 

versus PAS stained images as inputs. The recognition scenarios yielded less than 2% difference 

between the PAS and AF inputs when using at least 5% of the total data available (80 & 124 

annotations in FF and FFPE cohorts, respectively), as reported by the Dice-Sorensen coefficient, 

the true positive rate, and the positive predictive value (Figure 3). Further, none of the differences 

were determined to be statistically significant using a threshold of 0.05. While similar performance 

was noted using a small training set, using 25% of the available annotations as a training set 

(leaving 75% of the ground truth glomeruli as a test set for evaluation) and using over 10 random 

selections of the training data, differences were <1% between PAS and AF for all metrics. AF 

inputs performed slighter poorer in comparison to PAS inputs when using a very limited training 

set of <50 annotations, which corresponds to 1% of available data. This may be due to increased 

morphological heterogeneity captured by AF compared to PAS, such as in schlerotic glomeruli 

where  there is a  difference in PAS, but the difference is more stark in AF as shown in Figure 5. 

This does indicate the need for a slightly larger training set in AF prediction versus PAS, but our 

modality-specific models achieved near parity at 10% of the annotations (160 and 248 training 

examples in FF and FFPE, respectively). Fresh frozen samples also showed a worse 

performance for positive predictive value, indicating more false positives in both PAS and AF; this 

is likely due to the relatively poorer quality of the morphology in fresh frozen tissue sections 

compared to FFPE sections. 

Using AF to automatically map the position of each glomerulus in the WSI without altering the 

tissue section creates new possibilities for highly automated sample collection in microscopy-

guided -omics analyses such as laser capture microdissection16 or liquid extraction surface 

analysis17. As shown in Figure 4, AF has less risk of morphological artefacts that would prevent 

or limit analysis of FTUs with these technologies. 

Conceptually similar work using virtual staining has recently been employed to predict stained 

images from unstained AF images18, but only recently have virtual stainings been used for 

computational analysis.19 Our work shows the possibility to employ virtual staining for qualitative 

evaluations where useful, but use the underlying, untransformed, and empirically measured AF 

data for computational analysis. This effectively shortcuts the need to first transform the data in a 

virtual stain and mitigates uncertainty around the transformation. However, in reiteration, as AF 

is label-free, both approaches can be deployed simultaneously. 

Finally, AF’s compatibility with traditional stains and immunohistochemistry permits facile transfer 

of knowledge simply through registration of the images as demonstrated herein. One example of 

this is that training data for tissue structure recognition models can be rapidly developed by 

acquiring ground truth annotations on registered and established stained image types while 

building machine learning models using AF measurements as inputs. This would enable easy 

transfer of automated annotation capability to AF images while maintaining a firm grasp on how 

well the performance of AF-based computational models compares to ground truth annotations 

on established stained images. This strategy alongside the instrumental and experimental 

simplicity make AF microscopy an attractive label-free modality that can complement standard 

histopathology and also serve as a robust and reproducible spatial map for advanced molecular 

experiments downstream. Further, while AF is explored herein, it may not be alone as the only 
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label-free microscopy modality that can serve for FTU segmentation, as many other modalities 

may be overlooked because the visual information is unappealing. However, computationally, 

these modalities may provide competitive results in analysis tasks.  

With the public release of this registered AF-PAS dataset through the HuBMAP Data Portal 

(https://hubmapconsortium.com), we hope this serves the kidney community in assessing AF for 

their own purposes and opens the door to more expansive computational developments of AF for 

FTU segmentation. 

METHODS 

Sample curation and microscopy 

Normal portions of renal cancer nephrectomies from adult patients were studied. Tissue blocks 

were collected from areas distant to the tumor.  

Microscopy and image registration 

Images were collected from the entire tissue section using brightfield and epi-fluorescence 

modes. For registration, images were imported into wsireg 

(https://github.com/nhpatterson/wsireg) for registration. WSI registration was carried out as 

described elsewhere.20 Further details on microscopy settings and image processing are available 

in the supplemental information.  

Whole slide image annotation 

Registered WSIs were imported into QuPath21 and glomerular annotations were made with the 

polygon tool. Annotations were reviewed for accuracy by kidney histology experts.  

Deep learning 

Transfer learning was employed using a Mask-RCNN (101 ResNet backbone) convolutional 

neural network implemented in the detectron2 package. Additional method details for deep 

learning are available in the supplemental information. 

Data analysis 

Detection and segmentation results were evaluated using true positive rate (TPR), positive 

predictive value (PPV), and Dice-Sorensen Coefficient (DSC). Each metric is a value between 0 

and 1 that indicates the agreement between the trained model and the ground truth glomerular 

unit annotation. TPR and PPV metrics describe the number (true positives), incorrect detections 

(false positives), and missing detections (false negatives). DSC is the pixel-wise spatial measure 

that computes how well the pixels belonging to the glomerular unit are segmented by the model22. 

DSC values of 0 indicate the model did not detect a glomerular unit (false negative) and 1 would 

indicate a perfect match between model segmentation and ground truth annotation. DSC values 

>0.75 were used to determine correct segmentations (true positives) in TPR and PPV calculations 

true positive glomeruli were well-segmented. 
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Data availability 

The data described in this paper is available through the HuBMAP Data Portal 

(https://hubmapconsortium.com). 
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FIGURES 

 
Figure 1. Morphology of FFPE human kidney section reported by autofluorescence and PAS stain 

images. A: Low magnification view of autofluorescence microscopy. B: Low magnification view of PAS 

staining. C, F: High magnification view of an area of the renal papilla with distal collecting ducts visible (thin 

white arrows). D, G: High magnification view of an area of the inner stripe of the outer medulla. E.H: High 

magnification view of the juxtamedullary renal cortex with a glomerulus (thin red arrow), intratubular casts 

(thin solid green arrow), arcuate arteries (red asterisk), arcuate veins (purple asterisks), proximal tubules 

(dashed blue arrow), and distal tubules (dashed thick green arrow) visible.  
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Figure 2. Workflow for performance comparison of glomerulus segmentation using spatially 

matched training data from PAS and AF. Data preprocessing - Top: Data preprocessing and preparation 

to sets of matched data tiles after image registration of the PAS and AF WSIs. First, WSI images are 

registered and then glomeruli are annotated. The WSIs and corresponding annotations are split into tiles 

for use in CNN modeling to fit in GPU memory. Modality performance comparison - Bottom: The split tiles 

are subset into training data with the random selection being the same for AF and PAS data to ensure 

modeling on the same exact set of spatially matched images and annotations. WSI detection occurs by 

tiling the unknown image, segmenting glomeruli, then stitching the resulting glomerular predictions back 

onto the WSI. In modality-specific performance evaluation, ground truth is the manually annotated 

glomerular units and AF and PAS are the CNN predictions.  WSI- whole slide image. AF- autofluorescence. 

CNN - Convolutional neural network. DSC- Dice-Sorensen coefficient. TPR - true positive rate, PPV - 

positive predictive value.  
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Figure 3. Performance comparison between AF and PAS images as basis for glomerular 

unit segmentation , reported through the Dice-Sorensen coefficient, true positive rate, and 

positive predictive value in function of proportion of total training data, both in FFPE and 

fresh frozen sample cohorts. In each case, 10 random initializations for developing subsets for 

training data of glomerular unit annotations (fresh frozen - n=1612 , FFPE - n=2480) were made 

to prevent potential bias in performance due to outlier samples. The average (point) and standard 

deviation (error bars) are determined from the performance of the 10 models on the proportion of 

the data that wasn’t used in training. AF- autofluorescence. FrFr - fresh frozen. FFPE - formalin 

fixed paraffin embedded. 
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Figure 4. Glomerular unit segmentation in a fresh frozen AF whole slide image and a 

glomerular tuft artefact from PAS staining. A. Low magnification view of fresh frozen AF WSI 

of normal human kidney with green contours outlining predicted glomerular unit segmentation 

borders. The red box indicates the glomerulus shown in panels B and C. B. High magnification of 

the selected glomerulus, showing intact tuft filling the glomerular area. C. The same glomerulus 

after PAS staining, showing an artefact of the staining process where the glomerular tuft is lost. 

Artefacts such as this highlight the morphological fidelity benefits that can be obtained if staining 

can be avoided and annotation can be accomplished directly from a low-sample preparation 

modality such as AF. PAS - periodic-acid schiff stain. AF - autofluorescence. WSI - whole slide 

image.  
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Figure 5. Differentiation of sclerotic glomeruli by autofluorescence. White arrows point to 

sclerotic glomeruli. The yellow arrow points to a nearby glomerulus without sclerosis in a fresh 

frozen tissue example. AF captures a great deal of glomerular heterogeneity in FF. The stronger 

blue signal in the bottom right panel corresponds to stronger staining at shorter wavelengths and 

represents the accumulation of elastin and collagen (both autofluorescent proteins) typical of 

glomerular sclerosis.  FFPE - formalin fixed paraffin embedded. FF - fresh frozen. PAS - periodic-

acid schiff stain. AF - autofluorescence.  
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