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Abstract 

 

Researchers often claim that sibling analysis can be used to separate causal genetic effects from 

the assortment of biases that contaminate most downstream genetic studies.  Indeed, typical 

results from sibling models show large (>50%) attenuations in the associations between 

polygenic scores and phenotypes compared to non-sibling models, consistent with researchers’ 

expectations about bias reduction.  This paper explores these expectations by using family 

(quad) data and simulations that include indirect genetic effect processes and evaluates the 

ability of sibling models to uncover direct genetic effects. We find that sibling models, in 

general, fail to uncover direct genetic effects; indeed, these models have both upward and 

downward biases that are difficult to sign in typical data. When genetic nurture effects exist, 

sibling models create “measurement error” that attenuate associations between polygenic 

scores and phenotypes. As the correlation between direct and indirect effect changes, this bias 

can increase or decrease.  Our findings suggest that interpreting results from sibling analysis 

aimed at uncovering direct genetic effects should be treated with caution.   
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Introduction 

 

Due to the high correlation in genetic measurement between offspring and parents, it is difficult 

to separate “direct” genetic effects of offspring genotype on phenotype with “indirect” genetic 

effects of parental genotype on offspring phenotype.  This issue was demonstrated empirically 

by Kong et al. (2018), who showed that associations between non-transmitted parental alleles 

and offspring phenotype explained approximately 30% of the r-squared of the offspring 

polygenic scores (PGS) on offspring phenotype in the case of educational attainment.   

 

Researchers have since made the conjecture that sibling models can solve this and other 

problems, since biological siblings share the same parents and therefore may share the same 

indirect genetic effects[1]. Indeed, many subsequent analyses have demonstrated important 

reductions in the estimated associations between PGS and phenotypes after controlling for 

sibling fixed effects, often on the order of 50% (Trejo and Domingue 2018, Selzam et al. 2019). 

This theory and evidence have increased researchers’ confidence in interpreting sibling models 

as producing causal (direct) genetic effects—both in upstream GWAS analysis (Howe et al. 

2021) and in downstream PGS analysis (Belsky et al. 2018).   

 

While intuitive, these interpretations have not been subject to theoretical and empirical scrutiny. 

We use family data (quads) combined with simulation evidence to show that this intuition relies 

on very simple models of genotype-to-phenotype associations, where direct and indirect 

genetic effects are separable (and thus differenced out in sibling models). While researchers 

have suggested that using a sibling model would purge the indirect effects, we show that, even 

in our simplified cases, researchers have failed to recognize the dual role of indirect genetic 

effects as a confounder that produces both positive and negative bias on the estimated effects 
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of offspring PGS. We build the intuition for the negative bias by considering a scenario where 

all SNP effects are causal and there are no indirect genetic effects and show that sibling analysis 

leads to attenuated estimates of PGS effects.  Essentially, the attenuation stems from sibling 

analysis’ elimination of both confounding and true genetic effects.  We then extend this 

scenario to allow correlation between indirect and direct genetic effects to show that a 

combination of biases in general can be negative or positive and depend on the strength of 

indirect effects, the correlation between indirect and direct genetic effects, and also the extent 

to which sibling’s environments are correlated.  In summary, even our simple data generating 

process shows that sibling analysis is unlikely to produce accurate estimates of direct effects 

and, worse, does not suggest clear correctives or bounding exercises that are effective.     

 

 

Result 

 

The detailed simulation procedures are described in the Materials and methods section. Briefly, 

we draw the direct and indirect effect sizes for each SNP as well as the environmental effect 

for each individual following a specific set of parameters in each scenario. Then, we regressed 

the phenotype constructed by adding up the components above on the theoretical PGS 

estimation that can be obtained from outcome of genome-wide association studies (GWAS). 

We compared either the regression coefficient or R2 of both between- and within-family 

regression to imitate real PGS analysis and investigate the impact of changes of parameters in 

the data generating process on the performance of sibling PGS analysis.  

 

 

The influence of the correlation of environmental effects between siblings 
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We performed simulations under the simple scenario where the phenotype has no indirect 

genetic effect contribution (𝜎! = 0). In this case, from formula (10, 11) in the method section, 

we can see that sibling PGS models are not guaranteed to estimate the variance component of 

direct effects even when genetic nurture is absent. This is because the elimination of family 

effects that occur in sibling models also eliminate true direct genetic effects.  Our formulas 

show that the elimination of true genetic effects can be offset in the (unlikely) case where 

siblings have a correlation of 0.5 in their environmental effects (⍴"= 0.5); in this case, the 

correlation in both environmental and genetic effects are the same. In general, when siblings 

have a correlation in their environmental effects higher than 0.5, the R2 of sibling PGS model 

is overestimated; when this correlation drops below 0.5, the R2 of sibling PGS model 

underestimates (Fig 1). Since the environmental effect is assumed to be independent of genetic 

components in this study, this factor does not interact with other potential factors. Therefore, 

to focus on the influence of other parameters (and not ⍴"), we will assume that siblings have a 

correlation of 0.5 in their environmental effects throughout the rest of the simulations. Results 

under correlations of 0 and 1 are included in the supplementary table. 
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Fig 1. Comparison of the ratio of PGS regression R2 and true direct effect variance 

component under different values of sibling environmental correlation 

Two estimates of interest included are the R2 obtained from between-family (yellow) and 

within-family regressions (blue) when indirect effect is absent. Boxplots display the ratio of 

the R2 estimated on 15 simulation repetitions over the designed population-level direct effect 

variance component on y-axis versus various values of sibling environmental correlation from 

0 to 1 on x-axis. The ratio for between-family R2 remain at 1 while the ratio for within-family 

R2 fluctuate except when the sibling environmental correlation equals 0.5 under our 

assumptions. This suggests that sibling environmental correlation is an additional factor that 

impacts the performance of sibling PGS analysis even with no indirect genetic effects. 

 

 

The influence of indirect genetic effects 

 

We performed simulations with the variance of direct genetic effects normalized to 1, the 

variance of the environmental effect is assumed to be three times the variance of the direct 

genetic effect, and we assume no correlation between direct and indirect genetic effects to 

concentrate on the influence of indirect genetic effects. With we increase the contribution of 

indirect genetic effects, we found that sibling PGS models produce estimates of the direct effect 

variance component that is attenuated compared to the estimates for the population (i.e. non-

sibling) PGS models (Fig 2). When indirect genetic effects are absent, the sibling PGS model 

estimates accurately (see formula (10, 11)) (recall, we assume ⍴"= 0.5 so that we can focus only 

on other biases from indirect genetic effects). Then, as the indirect genetic effect is introduced, 

the downward bias of the sibling model becomes larger. This is consistent with empirical 

results from other work cited above. However, since the ratio of these estimated R2 values 
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compared with the expected direct effect component variance is smaller than 1, our results 

demonstrate that the sibling PGS model does not accurately recover the direct effect heritability. 

The figure also shows that the population model cannot recover direct effects, and that the 

estimated effects are biased upward (as is commonly understood).   

 

We now consider the regression that sibling PGS model (i.e. sibling difference model) performs, 

∆𝑌! 	~	∆𝑃𝐺𝑆"( . When taking the difference in sibling phenotypes, the genetic nurture effect 

cancels out since full siblings share the same parents (formula (6)). Whereas in estimated PGS, 

the transmitted genetic nurture remains different between siblings (formula (7)). To better 

understand the impact of indirect genetic effects on a sibling PGS analysis, we plot the ratio of 

sibling model R2 estimated with ∆𝑃𝐺𝑆"(  compared with the R2 estimated with the sibling 

difference in direct effect component (formula (12)). This compares the regular sibling model 

estimated R2 with the R2 of true direct effects. Note in the third box in each group, we see 

results below 1, we can see that the indirect effect reduces the regression R2 more as its 

contribution to the phenotype increases.  
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Fig 2. Comparison of the ratio of PGS regression R2 compared with the true direct effect 

component variance under different values of indirect genetic effect variance component 

Two estimates of interest included are the R2 obtained from between-family and within-family 

regression when direct and indirect effects are independent. Boxplots display the ratio of these 

two R2 estimated on 15 simulation repetitions over the designed population-level direct effect 

component variance (yellow and blue) and the ratio of within-family R2 over expected within-

family R2 estimated with only direct effect (purple) on y-axis versus various values of indirect 

effect component variance from 0 to 1 on x-axis. The downward trend from 1 of blue and 

purple boxes as indirect effect component variance increases suggests that indirect effect only 

biases the sibling R2 downward as opposite to biasing the between-family R2 upwards as 

indicated by yellow boxes. 

 

 

The influence of correlation between direct and indirect effects 

 

As above, we constructed phenotypes with the variance of direct effect normalized to 1, the 

variance of indirect genetic effect as either a half or equal to the variance of the direct genetic 

effect, and the variance of environmental effect as three times the variance of the direct genetic 

effect. We now relax the assumption from above that the correlation between indirect and direct 

genetic effects is zero.  Now, we varied the correlation between direct and indirect effects 

between -1 and 1, and we found that sibling PGS models, in general, produce estimates of the 

variance component of direct effect that are smaller than estimates of population PGS models 

(Fig 3). We note that previous literature viewed reductions in estimated direct effect 

contribution using sibling models as evidence that these models were eliminating confounds 
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(such as indirect genetic effects), whereas our results show that sibling models actually 

underestimate direct genetic effects in many scenarios.  

 

For each of the two settings that fix the variances of direct and indirect genetic effects, we show 

that increasing the correlation between direct and indirect effects increases the ratio of sibling 

PGS estimates and the direct effect component variance from below 1 (underestimate) to above 

1 (overestimate).  R2 can be viewed as a function of the correlation between direct and indirect 

effects given specific values of other parameters, such as the variance of indirect effect. So, the 

ratio of sibling PGS estimate and the direct effect variance component defined on population 

does not change linearly (formula (10), Appendix 3). Whether we allow indirect genetic effects 

to be modest (0.5) or large (1) and also allow correlations between the direct and indirect 

genetic effects, we find that it is rare that sibling analysis will accurately estimate direct genetic 

effects (i.e the horizontal line at 1, where the estimated R2 is equal to the expected R2).  The 

results also suggest that the estimated R2 can be up to twice the size of the true R2 or less than 

half the size of the true R2, depending on the data generating process.  We also note again that 

we have assumed in these analyses that the environmental effects are correlated at 0.5 between 

siblings.  Otherwise, these results would “shift down”, as we show in Fig 1.  
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Fig 3. Comparison of the ratio of PGS regression R2 over true direct effect component 

variance under different values of direct and indirect effect correlation 

Two estimates of interest included are the R2 obtained from between-family and within-family 

regression when indirect effect component variance equals to 0.5 (A) and 1 (B) respectively. 

Boxplots display the ratio of these two R2 estimated on 15 simulation repetitions over the 

designed population-level direct effect component variance (yellow and blue) and the ratio of 

within-family R2 over expected within-family R2 estimated with only direct effect (purple) on 

y-axis versus various values of direct and indirect effect correlation from -1 to 1 on x-axis. As 

the correlation deviates from 0, the PGS regression R2 is either inflated or deflated. 

 

 

The performance of PGS regression coefficients 

 

As another important measurement of PGS models’ performance, regression coefficients have 

also drawn attention in the past. One study showed that between-family PGS regression would 

yield coefficients that are biased upwards and within-family PGS regression would yield 

coefficients that bias downwards (Trejo & Domingue, 2018). To verify this in our framework, 

we estimated the regression coefficients under our setup on a wider value range of rho.  We 

also noted a divergence between our framework and the previous one in terms of the 

standardization of PGS. Our framework does not standardize the PGS variable in the estimation, 

so that the between-family regression will estimate a coefficient of 1, which equals the 

theoretical value when direct effect variance component is accurately recovered (Fig 4). For 

the sibling PGS model, with unstandardized PGS estimates, regression coefficients could be 

over- or under-estimated depending on the ratio of indirect and direct effect variance and the 

value of their correlation. Overall, the larger the ratio is, the more the sibling regression 
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coefficients converge to a downwardly biased value. The larger the correlation is, the more the 

sibling regression coefficients are biased downwards (Fig 4). We also confirmed these with our 

derivation and rewrite Trejo and Domingue’s derivation without standardization of PGS 

(Appendix 5). 

 

Fig 4. Comparison of the ratio of PGS regression coefficients over true direct effect 

component variance under different values of direct and indirect effect correlation 

Two estimates of interest included are the regression coefficients obtained from between-

family (yellow) and within-family (blue) regression when indirect effect variance component 

equals to 0.5 (A) and 1 (B) respectively. Boxplots display the ratio of these two coefficients 

estimated on 15 simulation repetitions over the expected coefficient for direct effect component, 

1, on y-axis versus various values of direct and indirect effect correlation from -1 to 1 on x-

axis. They suggest that between-family regression coefficient is always estimated to be 1 

regardless of the direct and indirect effect correlation whereas within-family regression 

coefficients are mostly biased downwards but also depend on the indirect effect variance 

component. 

 

 

Discussion 
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To examine the performance of the estimated R2 of sibling PGS analysis in recovering the direct 

genetic effect variance component from data generating process that includes both direct and 

indirect genetic effects, we performed our analysis on simulated phenotypes based on 

genotypic data of quads in the SPARK cohort. Our analytical results demonstrated that sibling 

PGS analysis generally does not yield R2 that accurately reflects the direct effect variance 

component.  

 

In the simplified scenario where a phenotype is not impacted by indirect genetic effects, sibling 

PGS analysis could yield R2 biases either upward or downward depending on the 

environmental correlation between siblings. In this study, we assumed a genotypic correlation 

of 0.5 between siblings which set a scale for the variance of the difference between their 

estimated PGS. More importantly, when taking the difference in sibling phenotypes, the 

indirect effect that is shared between siblings is eliminated, leaving only the difference in direct 

effect PGS and difference in environmental effects. However, PGS constructed from GWAS 

estimates will, in most cases, contain both direct and indirect effects. When taking a difference 

between siblings, direct genetic effect and transmitted genetic nurture effects remain in the beta 

weights that are used to construct the PGS in downstream analysis. Given these issues, three 

aspects of the sibling PGS model are found to generate biases. 

 

Firstly, based on the composition of sibling phenotype difference, sibling PGS regression only 

retains the proportion explained in direct genetic effect and environmental effect differences. 

Essentially, when the phenotype is also affected by indirect genetic effects, the total variance 

of the phenotype is reduced when using sibling analysis compared to the variance defined in 

population-based PGS regression. Even with accurate direct effect PGS, sibling PGS would 
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still fail to fully recover the direct effect variance component for the population. Then, in order 

to examine the impact of other factors, we turned to comparing the sibling R2 estimates with 

the theoretical sibling R2 when regressing phenotype difference on true direct PGS difference.  

 

We found that, as the contribution of indirect genetic effects increases from 0, the ratio of 

estimated sibling R2 and the theoretical sibling R2 of direct effect PGS continues to decline 

from its target value of 1. This means the indirect effect component is similar to “measurement 

error” in this case, attenuating the direct effect estimates. Additionally, when the contribution 

of direct, indirect, and environmental effects is held fixed, changes in the correlation between 

direct and indirect effect will also lead to bias in sibling R2. As the correlation reduces from 1 

to -1, the estimated R2 is increasingly biased downwards. We label this as an “LD-like” 

relationship between direct and indirect genetic components, which survives sibling 

differencing or sibling fixed effects analysis. When compared with the direct effect variance 

component defined at the population level, this could lead to either downward or upward bias.  

Similarly, we make slight adjustments on the previous results from Trejo and Domingue on the 

bias of regression coefficients obtained from sibling PGS analysis. Our conclusion shows that 

sibling analysis would still be biased upwards or downwards depending on the combinations 

of variances of direct genetic effects, indirect genetic effects, and their correlation.  

 

It is important to note that our results are from a “simple” data generating processes, where we 

assumed no assortative mating, no gene-environment interaction or correlation, and sibling 

genetic correlations of exactly 0.5.  Adding these other elements to the framework will further 

complicate evaluating the performance of the sibling analysis, but, we suspect, will lead to 

additional biases rather than fewer. Thus, our view of the results from a relatively simple 

framework is that sibling analysis, coupled with conventional PGS, can rarely uncover a key 
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target—direct genetic effects. Solving this issue will rely on dissecting each individual 

variant’s direct and indirect effects and calculating respective PGS for direct and indirect 

genetic components, possibly through sibling GWAS and multi-generational analysis (Howe 

et al., 2021; Wu et al., 2021).  

 

 

Materials and methods  

 

Data 

 

We leverage family-based genetic data from quads (2 parents, 2 children) in the SPARK 

(Simons Foundation Powering Autism Research for Knowledge) study (Feliciano et al 2018) 

in order to seed the model with realistic genetic information. Specifically, we obtained 

7,026,791 SNPs from 1813 families with two parents and two full siblings. Following previous 

work (Huang et al. 2021), we filtered out single nucleotide polymorphisms (SNPs) with a minor 

allele frequency less than 1%, with an imputation quality score less than 0.8, that are duplicated, 

or strand-ambiguous. Then we pruned the SNPs with linkage disequilibrium (LD) with a 

pairwise r2 higher 0.1. From the remaining 127,310 SNPs, we randomly picked 10,000 SNPs 

as causal variants and simulated phenotypes based on them.  

 

 

Model specifications 

 

We assume a data generating process for the phenotype Yij that includes both direct and indirect 

genetic effects. Our model follows Kong et al. (2018) by assuming additive separable direct 
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(𝛽#!$,&) and indirect (𝛽!'#,&) genetic effects that are drawn from a bivariate normal distribution 

with a correlation parameter. The indirect genetic effect behaves as a family fixed effect that is 

shared between siblings. We denote the genotype of the ith child/sibling in the jth family as Gij; 

the genotype of mother and father in the jth family as Gm,j and Gp,j respectively. We can write 

the model as 

	 𝑌#! = ∑ 𝐺#!$𝛽%#&,$(
$)* + ∑ (𝐺+,!$ + 𝐺,,!$)𝛽#-%,$(

$)* + 𝑒#! ,	 (1)	

where eij is the environmental residual. We assume equal indirect paternal and indirect 

maternal effect, both being 𝛽#-%,$. We note that this parameter can also be viewed as the 

average indirect parental effect if maternal and paternal effects are in fact unequal (Wu et al. 

2021). We also assume that the direct and indirect effect sizes of the kth SNP on the 

phenotypes follow 

*
𝛽#!$,&
𝛽!'#,&

+~𝑀𝑉𝑁01
0
02
,
1
𝑀
*

𝜎#( 𝜌#!𝜎#	 𝜎!	

𝜌#!𝜎#	 𝜎!	 𝜎!(
+5 .	

(2)	

where 𝜎%. represents the variance of the direct effect component of the phenotype; 𝜎#. 

represents the variance of the indirect effect component of the phenotype; and  𝜌%# represents 

the correlation between direct and indirect genetic effect sizes; M denotes the number of 

causal SNPs with direct effect size 𝛽%#&,$ and indirect effect size 𝛽#-%,$. For families whose 

genotypes are used in the simulation, we assume that the environmental effects for the 2 

children in the jth family also follow a bivariate normal distribution 

	
8"!""#"

9~𝑀𝑉𝑁0:**;, *
𝜎"( 𝜌"𝜎"(

𝜌"𝜎"( 𝜎"(
+5,	

(3)	

where 𝜎/. represents the variance of environmental effects shared between 2 siblings; and 𝜌/ 

represents the environmental correlation between 2 siblings. We further assume all genotypes 

involved are standardized.  
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Formula (1) can be rearranged to separate the effects of transmitted (Gij) and non-transmitted 

(Nij) alleles as  

	
𝑌#! =3𝐺#!$4𝛽%#&,$ + 𝛽#-%,$5

(

$)*

+3𝑁#!$𝛽#-%,$

(

$)*

+ 𝑒#! .	
(4)	

 

We assumed transmitted and non-transmitted alleles to be independent (supported by genotypic 

data, Appendix 1). It is clear to see from the rearrangement that a GWAS on phenotype will 

capture both the true direct and indirect genetic effects. Following the conventions in the 

literature, we constructed the downstream PGS estimation with the theoretical GWAS 

estimated allelic weights 	𝛽&> = 𝛽#!$,& + 𝛽!'#,&  , assuming all causal SNPs are accurately 

estimated, which we denote as 𝑃𝐺𝑆0"( =∑ 𝐺𝑖𝑗𝑘	𝛽𝑘8𝑀
𝑘=1  (Lee et al. 2018). We obtained between-

family PGS regression coefficients 𝛾123 and r-squared 𝑅2123 by regressing the phenotype of 

one sibling from each family on their estimated PGS as 

	 𝑌*! = 𝛾123	𝑃𝐺𝑆*"( +𝑒123,! .	 (5)	

Derivations on the theoretical regression coefficient and r-squared for between-family analysis 

are included in the Appendix 2. For sibling analysis, we took the difference in the phenotype 

between two siblings in a family as the within-family outcome 

	 ∆𝑌! = 𝑌*! − 𝑌.! 	

= 3𝐺*!$𝛽%#&,$ + 4𝐺+,!$ + 𝐺,,!$5𝛽#-%,$

(

$)*

+ 𝑒*!

− <3𝐺.!$𝛽%#&,$ + 4𝐺+,!$ + 𝐺,,!$5𝛽#-%,$

(

$)*

+ 𝑒.!=	

= 3(𝐺*!$ − 𝐺.!$)𝛽%#&,$

(

$)*

+ (𝑒*! − 𝑒.!).	

(6)	

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2021. ; https://doi.org/10.1101/2021.07.16.452740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452740
http://creativecommons.org/licenses/by-nc-nd/4.0/


The shared indirect effect is eliminated between siblings. We took the difference in the 

estimated PGS between two siblings in a family as the within-family predictor 

	
∆𝑃𝐺𝑆"( =𝑃𝐺𝑆1"( −𝑃𝐺𝑆2"( =3(𝐺1𝑗𝑘 − 𝐺2𝑗𝑘)(𝛽𝑑𝑖𝑟,𝑘 + 𝛽𝑖𝑛𝑑,𝑘)

𝑀

𝑘=1

.	
(7)	

 

Then we obtained within-family PGS regression coefficients 𝛾∆ and r-squared 𝑅2∆  by 

regressing the difference in the phenotype on the difference in the estimated PGS as 

	 ∆𝑌! = 𝛾∆	∆𝑃𝐺𝑆( + 𝑒∆,! .	 (8)	

When we assume siblings from the same families have a correlation of 0.5 in their genotypes, 

𝐺1!$ and 𝐺2!$ (also supported by the genotypic data we use for simulation, details in Appendix 

1), the within-family regression coefficients and r-squared can be derived as 

	
𝛾∆ =

𝜎#( + 𝜌#!𝜎#𝜎!
𝜎#( + 𝜎!( + 2𝜌𝜎#𝜎!

 
(9)	

 

and 

	
𝑅∆( =

:𝜎#( + 𝜌#!𝜎#𝜎!;
(

(𝜎#( + 𝜎!( + 2𝜌#!𝜎#𝜎!) ∗ (𝜎#( + 𝑉𝑎𝑟:𝑒56 − 𝑒(6;)
. 

(10)	

 

To quantify the performance of both analyses on recovering the direct effect component, we 

compared the outcome regression coefficient with 1 (as direct effect component in model (2) 

takes a coefficient of 1) and r-squared with the proportion of direct effect variance component 

defined on population base 

	
ℎ.%#&,123 =

𝜎%.

𝜎%. + 2𝜎#. + 2⍴%#	𝜎%𝜎# + 𝜎/
. .	

(11)	
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We also compared the outcome r-squared of sibling analysis with the proportion of direct effect 

variance component defined on sibling differences which allowed us to better understand the 

impact of the change of parameters on sibling analysis alone. That is, we performed regression 

	
∆𝑌! = 𝛾%#&,∆ 	A34𝐺*!$ − 𝐺.!$5𝛽%#&,$

(

$)*

B + 𝑒%#&,∆,! 		
(12)	

and obtained  

	
ℎ.%#&,∆ =

𝜎%.

𝜎%. + Var4𝑒*! − 𝑒.!5
.	

(13)	

(Appendix 4) 

 

Simulation  

 

We generated direct effect and indirect effect allelic weights for each offspring from a normal 

distribution from each combination of parameters and apply them to offspring’s standardized 

genotypes. We also generated environmental effects for each offspring from a normal 

distribution following the parameters in each setting. By adding these components up for each 

offspring, we obtain their phenotypes. 

 

Setting 1 

From the derivations of our estimates above, we found that even in the simplest scenarios with 

unbiased GWAS effect sizes and genetic nurture absent, sibling analysis does not accurately 

estimate the variance component of direct effect. As a special case of formula (11), here we 

have the population-based direct effect variance component defined as  

ℎ%#&,123. =
𝜎%.

𝜎%. + 𝜎/.
. 
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However, R2 from sibling analysis is expected to be 

𝑅∆. =
𝜎%.

𝜎%. + 𝑉𝑎𝑟4𝑒*! − 𝑒.!5
=

𝜎%.

𝜎%. + 2𝜎/. − 2𝜌/𝜎/.
. 

Comparing these two formulas, one can see that the difference between them depends on the 

correlation between the environmental effect of siblings, 𝜌/. Only when 𝜌/ = 0.5, these two 

quantities equal. Therefore, we designed a setting where we kept the variance of direct genetic 

effect constant and set indirect genetic effect to be 0. Then, the correlation between direct and 

indirect effect is also 0. We also set the variance of the environmental residual and set the 

correlation between siblings’ environmental residual, 𝜌/ , to 0, 0.5, or 1. Thus, a total of 3 

scenarios were examined in setting 1.  

 

Setting 2 

We kept the variance of direct genetic effect constant (normalized to 1) and varied the indirect 

genetic effect and the correlation between direct and indirect genetic effect to evaluate the 

influence of each factor on the sibling analysis R2 when the other was held constant. 

Specifically, we set the variance of indirect effect to be either 0, 0.5, or 1. For each variance of 

indirect effect, we varied the correlation between direct and indirect effect from -1 to 1 by a 

step of 0.2. We also set the variance of environmental residual to be 3. A total of 33 scenarios 

(3 variance of indirect effect x 11 correlation between direct and indirect effect) were examined 

in setting 2. 
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