1	Interferon-Induced Transmembrane Proteins Inhibit Infection by the Kaposi's Sarcoma-
2	Associated Herpesvirus and the Related Rhesus Monkey Rhadinovirus in a Cell Type-Specific
3	Manner.
4	
5	Bojan F. Hörnich ¹ , Anna K. Großkopf ¹ , Candice J. Dcosta ^{1, *} , Sarah Schlagowski ¹ , Alexander S.
6	Hahn ^{1, #}
7	¹ Junior Research Group Herpesviruses, German Primate Center – Leibniz-Institute for Primate
8	Research, Göttingen, Germany
9	*Current address: JMIR Publications, Toronto, Ontario
10	[#] Correspondence to: ahahn@dpz.eu
11	
12	RUNNING TITLE: IFITM-mediated restriction of KSHV and RRV
13	
14	ABSTRACT
15	
16	The interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins
17	that inhibit the entry of enveloped viruses. We analyzed the effect of IFITMs on the gamma2-
18	herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus
19	monkey rhadinovirus (RRV). We used CRISPR/Cas9-mediated gene knockout to generate A549,
20	human foreskin fibroblast (HFF) and human umbilical vein endothelial cells (HUVEC) with
21	combined IFITM1/2/3 knockout and identified IFITMs as cell type-dependent inhibitors of KSHV

22	and RRV infection in A549 and HFF but not HUVEC. IFITM overexpression revealed IFITM1 as the
23	relevant IFITM that inhibits KSHV and RRV infection. Fluorescent KSHV particles did not
24	pronouncedly colocalize with IFITM-positive compartments. However, we found that KSHV and
25	RRV glycoprotein-mediated cell-cell fusion is enhanced upon IFITM1/2/3 knockout. Taken
26	together, we identified IFITM1 as a cell type-dependent restriction factor of KSHV and RRV that
27	acts at the level of membrane fusion. Strikingly, we observed that the endotheliotropic KSHV
28	circumvents IFITM-mediated restriction in HUVEC despite high IFITM expression, while influenza
29	A virus (IAV) glycoprotein-driven entry into HUVEC is potently restricted by IFITMs even in the
30	absence of interferon.

32 IMPORTANCE

33 IFITM proteins are the first line of defense against infection by many pathogens, which may also 34 have therapeutic importance, as they, among other effectors, mediate the antiviral effect of 35 interferons. Neither their function against herpesviruses nor their mechanism of action are well 36 understood. We report here that in some cells, but not in, for example, primary umbilical vein 37 endothelial cells, IFITM1 restricts KSHV and RRV, and that, mechanistically, this is likely effected 38 by reducing the fusogenicity of the cell membrane. Further, we demonstrate potent inhibition 39 of IAV glycoprotein-driven infection of cells of extrapulmonary origin by high constitutive IFITM 40 expression.

41

42

43 INTRODUCTION

44	The family of interferon-induced transmembrane proteins (IFITMs) are small membrane
45	proteins that exhibit antiviral activity toward a broad variety of viruses (1–6). There are five
46	IFITMs present in the human genome, but only IFITM1, IFITM2, and IFITM3 are known to be
47	immune-related and interferon(IFN)-inducible (reviewed in (6) and (7)). IFITM1 localizes to the
48	plasma membrane, while IFITM2 and IFITM3 localize to endosomes/lysosomes (5, 8).
49	The exact mechanism of IFITM-mediated restriction of viral replication is not completely
50	understood. It is, however, clear that restriction mainly occurs at the viral entry stage (3, 9, 10).
51	According to some reports, IFITMs modify the overall membrane fusogenicity, by modification
52	of the membrane lipid composition and/or the membrane rigidity and thus prevent virus-host
53	membrane fusion (11–14), probably causing arrest of the fusion pore opening following
54	hemifusion (11, 12, 15). Other modes of action such as e.g. recruitment of additional antiviral
55	factors, altered endocytic trafficking or interference with vacuolar ATPase have been postulated
56	as well (reviewed in (16)).
57	The majority of IFITM-restricted viruses are RNA viruses. The interplay of IFITMs with DNA-
58	viruses has been studied less extensively and with more ambiguous results. While vaccinia virus
59	and herpes simplex virus (HSV-1) are restricted by overexpression of individual IFITM proteins
60	(17, 18), human papillomavirus 16 (HPV16) and the non-enveloped adenovirus type 5 are not
61	(19). Interestingly, for the human cytomegalovirus (HCMV), small interfering RNA (siRNA)-
62	mediated IFITM knockdown resulted in reduced infection and disturbed virus assembly (20).
63	Varying results were obtained for Epstein-Barr virus (EBV), a gammaherpesvirus. While the
64	initial entry of EBV was enhanced by overexpression of IFITM1 (21, 22), incorporation of
65	IFITM2/3 into viral particles reduced the infectivity of progeny virus, whereas IFITM1
66	incorporation had no effect (23). Together, the literature on IFITM-mediated effects on the

67	alphaherpesvirus HSV-1, the betaherpesvirus HCMV, and the gammaherpesvirus EBV indicate
68	differences in the activity of IFITM proteins toward different herpesvirus subfamilies.
69	The Kaposi's sarcoma-associated herpesvirus (KSHV) and the related rhesus monkey
70	rhadinovirus (RRV) belong to the γ -herpesvirus subfamily (24). KSHV is associated with Kaposi's
71	sarcoma (KS), multicentric Castleman's disease, primary effusion lymphoma (reviewed in (25)),
72	osteosarcoma (26), and KSHV inflammatory cytokine syndrome (KICS) (27). The incidence of
73	KSHV-related disease and KSHV seroprevalence are low in industrial countries (28, 29), but KSHV
74	represents a significant health burden in Sub-Saharan Africa, where KSHV-related cancers are
75	common (30, 31).
76	KSHV and RRV exhibit broad cell tropism in vitro (32, 33). Both viruses encode for a set of
77	glycoproteins (g) that mediate entry and are conserved among herpesviruses. Of these gH, gL,
78	and gB are the most extensively studied (reviewed in (34)). KSHV and RRV enter many cell types
79	through the interaction of the gH/gL complex with members of the Ephrin receptor tyrosine
80	kinase family (Ephs) (35–37) and, in case of RRV also with members of the Plexin domain-
81	containing protein family (38). KSHV also interacts with heparan sulfate and integrins (39–41).
82	Entry of both viruses mainly occurs via endocytotic routes (33, 42–44). Following internalization,
83	the viral membrane fuses with the host membrane. Several reports implicate the gH/gL complex
84	together with gB as the minimal set of glycoproteins required for membrane fusion (45, 46, 38).
85	One study reported an enhancing role of IFITMs in the infection of the BJAB B cell line and
86	human dermal microvascular endothelial cells (HMVEC-D) cells by KSHV, EBV, and herpes
87	simplex virus 2 (HSV-2) (21). However, given the considerable differences between KSHV and
88	RRV entry into B cells and different adherent cells (33, 36, 37), in particular, as KSHV infection of
89	B cell lines is, with a few exceptions, only efficient through cell-to-cell transfer (47–49), we

90	hypothesized that IFITM-mediated restriction may be dependent on the type of target cell.
91	Another question that we sought to address is whether IFITMs restrict RRV in human cells.
92	
93	
94	RESULTS
95	
96	KSHV induces IFITM expression in A549 cells.
97	We first validated the specificity of the antibodies used in this study for Western blot analysis
98	after directed expression (Fig. 1 A). Next, we examined expression of IFITM proteins at baseline
99	levels and after stimuli such as virus infection in the human lung epithelial cell line A549, which
100	has been well characterized with regard to IFN signaling and IFITM expression (50–53). We
101	infected the cells with KSHV BAC16 recombinant virus carrying a green fluorescent protein (GFP)
102	reporter gene, and RRV-YFP carrying a yellow fluorescent protein (YFP) reporter gene (Fig. 1 B).
103	Treatment with H_2O and IFN- $lpha$ served as negative and positive controls for IFITM induction,
104	respectively. IFITM2 and IFITM3 were detected at low levels without IFN treatment, while
105	IFITM1 and human myxovirus resistance gene 1 (MxA), another IFN-induced protein, were not
106	detectable without stimulation (Fig. 1 C). At the 1 h timepoint, neither treatment induced IFITM
107	or MxA expression relative to the background. At the 24 h timepoint, induction over background
108	levels of IFITM1, IFITM2, IFITM3, and MxA was observed in IFN- $lpha$ -treated or KSHV-infected cells,
109	but not in RRV-infected cells. At 48 h, IFITM3 was also slightly induced by RRV, and IFITM2
110	induction relative to H_2O treatment was barely discernable anymore. Basal IFITM expression
111	also increased slightly over time after plating. In summary, KSHV-containing inoculum and IFN- $lpha$
112	induced IFITM expression.

113

114 Triple knockout of IFITM1/2/3 enhances KSHV and RRV infection of A549 and HFF. 115 Overexpression of IFITMs alters their subcellular localization ((6), own observations), IFITMs are 116 usually induced together, and recent studies report that IFITMs form homo- and hetero-117 oligomers (54–56) and might thus act synergistically. We therefore used CRISPR/Cas9 to 118 generate triple IFITM1/2/3 knockout cells to study the effects of basal IFITM expression as well 119 as IFN-induced IFITM expression on KSHV and RRV infection. We identified two single guide 120 RNAs (sgRNAs) (sgIFITM1/2/3-a, sgIFITM1/2/3-b), which target the second exon of all three 121 immune-related IFITMs (Fig. 2 A, 2 B). These sgRNAs were transduced together with Cas9 using 122 the lentiCRISPRv2 system (57). 123 We chose the lung epithelial cell line A549 as an epithelial cell model. KSHV is occasionally 124 detected in lung tissue (58) and A549 are well characterized with regard to IFITM-mediated 125 restriction of different viruses (1, 9, 53). HFF were chosen as a fibroblast model and HUVEC as a 126 model for endothelial cells. Knockout or substantial knockdown of IFITM1, IFITM2, and IFITM3 127 was achieved (Fig. 3 A-C, right panel). Lentiviral particles (LP) encoding a GFP reporter gene 128 pseudotyped with IAV-hemagglutinin (HA)/neuraminidase (NA) (IAV-LP) served as positive 129 control for IFITM-mediated restriction, while particles pseudotyped with IFITM-resistant 130 amphotropic murine leukemia virus (MLV) envelope (MLV-LP) served as negative control (1). 131 Infections were performed with or without prior IFN- α stimulation. IFN- α treatment resulted in 132 a significant reduction of KSHV, RRV, and IAV-LP infection in A549 (Fig. 3 A, left panel). Both 133 KSHV and RRV infection were enhanced in non-IFN- α -treated IFITM1/2/3 knockout A549, 134 indicating that basal IFITM levels or IFITM expression induced upon contact with the inoculum 135 affect KSHV and RRV infection of A549. In IFN- α -treated IFITM1/2/3 knockout cells, infection

136 nearly reached levels of non-IFN- α -treated sgNT-transduced cells without IFITM1/2/3 knockout. 137 IAV-LP infection was dramatically increased upon IFITM1/2/3 knockout, while MLV-LP infection 138 was not affected by IFITM1/2/3 knockout in A549, in keeping with published results (1). 139 IFN- α pre-treatment reduced KSHV and RRV infection of HFF more potently than infection of 140 A549 (Fig. 3 B, left panel). However, IFITM1/2/3 knockout in HFF only enhanced KSHV infection 141 of IFN- α -treated cells, while RRV infection was slightly but significantly enhanced in both IFN- α 142 and non-IFN- α -treated IFITM1/2/3 knockout cells. We observed relatively high basal IFITM2/3 expression in HFF, which was only marginally increased by IFN- α (Fig. 3 B, right panel). Infection 143 144 of IFN- α -treated IFITM1/2/3 knockout HFF by KSHV or RRV did not reach levels of untreated 145 sgNT-transduced cells, unlike what was observed with A549, suggesting that IFITM-mediated restriction of KSHV and RRV infection plays a comparatively minor role in the overall IFN- α -146 mediated restriction of these two herpesviruses in HFF. The most potent effect of IFITM1/2/3 147 148 knockout was observed with IAV-LP infection, which was increased in both IFN- α - and control-149 treated cells. MLV-LP infection of HFF was not significantly affected by IFITM1/2/3 knockout. 150 Like HFF, HUVEC expressed IFITM2 and IFITM3 at high basal levels (Fig. 3 C, right panel). IFN- α 151 treatment of HUVEC resulted in a reduction of KSHV infection and an even more pronounced 152 reduction of RRV infection (Fig. 3 C, left panel). However, IFITM1/2/3 knockout had no 153 significant effect on KSHV or RRV infection. Again, IAV-LP infection was strongly enhanced by 154 IFITM1/2/3 knockout in both IFN- α - and non-treated HUVEC cells, while MLV-LP was not affected. 155 156 Overall, these results demonstrate IFITM-mediated restriction of KSHV and RRV infection of

157 A549 and HFF, but not HUVEC.

159	IFITM1 overexpression reduces KSHV and RRV infection in a cell type-dependent manner.
160	We next investigated the effect of individual IFITMs through directed expression by retroviral
161	transduction (Fig. 4 A-D, right panel) and included additional cell lines: i) 293T cells as another
162	cell line of either epithelial or neuroendocrine origin (59), and ii) SLK cells, a clear renal
163	carcinoma cell line (60) that is an established model for KSHV infection and propagation (61).
164	We excluded HUVEC here, as IFITM1/2/3 knockout was without effect in these cells, despite
165	high IFITM expression, which makes it unlikely that additional overexpression yields meaningful
166	results.
167	Overexpression of IFITM1 in A549 reduced KSHV and RRV infection by over 50%, whereas
168	overexpression of IFITM2 and IFITM3 only resulted in a non-significant reduction (Figure 4 A left
169	panel), identifying IFITM1 as the IFITM that restricts KSHV and RRV in A549 cells. In agreement
170	with the results in IFITM1/2/3 knockout experiments and published results (1), IAV-LP infection
171	was reduced by all IFITMs, most prominently by IFITM3, and infection of MLV-LP was not
172	affected.
173	IFITM1 overexpression also reduced RRV and KSHV infection of HFF (Fig. 4 B, left panel), but the
174	effect did not reach statistical significance, mostly because of a rather high pooled variance in
175	this set of experiments, which may reflect the primary nature of HFF combined with
176	comparatively high constitutive IFITM expression. In addition, we observed a non-significant but
177	noticeable enhancement of RRV infection in IFITM2-overexpressing HFF. Again, these
178	observations are in agreement with the effects observed in IFITM1/2/3 knockout HFF. While
179	IAV-LP infection was reduced in HFF, MLV-LP infection was enhanced by overexpression of all
180	IFITMs, significantly for IFITM2 and IFITM3.

181	A trend similar to that observed in A549 was also observed in 293T	(Fi	g. 4	ŧС,	left	panel	: IFITN	Л1
-----	--	-----	------	-----	------	-------	---------	----

- 182 overexpression reduced KSHV and RRV infection, although not significantly for RRV. MLV-LP
- 183 infection was slightly increased by overexpression of IFITM3 in 293T.
- 184 A different observation was made in SLK (Figure 4 D, left panel), where neither IFITM1 nor
- 185 IFITM3 overexpression resulted in reduced KSHV or RRV infection. Again, IFITM2 overexpression
- in SLK slightly enhanced KSHV infection and significantly enhanced RRV infection. An
- 187 enhancement of infection by all IFITMs was observed with MLV, significantly for IFITM3.
- 188 Taken together, our IFITM overexpression experiments corroborated the results observed in our
- 189 IFITM1/2/3 knockout experiments and a cell type-dependent activity of individual IFITMs
- 190 towards KSHV and RRV. Furthermore, IFITM1 was identified as the major contributor to IFITM-
- 191 mediated restriction of KSHV and RRV.
- 192

193 KSHV does not specifically colocalize with IFITMs.

194 IFITM localization was reported to play a critical role in their antiviral effect (62, 63). For the 195 highly restricted IAV, IFITM3-mediated restriction might be partially explained by the 196 observation that IAV specifically colocalizes with IFITM3-positive vesicles (15, 53). As expected, 197 we observed different subcellular localizations of IFITM1, IFITM2, and IFITM3 in IFN- α -treated 198 A549 (Fig. 5 A). IFITM2 and IFITM3 partially colocalized with the early endosome marker EEA1 199 and to a larger extent with the late endosome/lysosome marker LAMP1, while IFITM1 localized 200 to the plasma membrane and was distributed more toward the perimeter of the cell. IFITM1 201 was also found colocalized with EEA1 and LAMP1, but not as pronounced as IFITM2/IFITM3. 202 Next, we analyzed colocalization of KSHV particles with IFITMs. We utilized a KSHV mNeon-203 orf65, which is tagged with mNeonGreen at the capsid protein orf65, to visualize virions in IFN-

204 α -treated cells at different timepoints (Fig. 5 B). KSHV mNeon-orf65 particles were detectable 205 at the perimeter at the 0-min timepoint and were detected inside the cells from the 30-min 206 timepoint on. Some particles reached the nucleus at the 240-min timepoint. As IFITMs are 207 widely distributed throughout the cell, partial overlap with KSHV mNeon-orf65 particles was 208 observed for all IFITMs, most prominently at later time points and for IFITM1. While some 209 particles localized to areas of high intensity in the IFITM staining, KSHV mNeon-orf65 particles 210 were also frequently found in regions with overall lower IFITM signal. These areas were often 211 adjacent to IFITM-positive areas, which might be compatible with the luminal spaces of large 212 vesicles. 213 214 KSHV and RRV glycoprotein-mediated cell-cell fusion is reduced by IFITMs. 215 IFITMs were reported to modulate overall membrane fusogenicity and thereby entry of viral 216 particles (11, 12, 64). We therefore utilized a cell-cell fusion assay to determine whether KSHV 217 and RRV glycoprotein-mediated fusion activity is modulated by IFITMs. 293T effector cells were

transfected with KSHV gH/gL or RRV gH/gL together with RRV gB and a plasmid encoding a

219 VP16-Gal4 transactivator fusion protein. RRV gB was used because KSHV gB does not allow for

efficient cell-cell fusion (46). Transfected effector cells were added to IFN- α -treated A549

221 IFITM1/2/3 knockout cells transduced with a lentiviral Gal4-driven TurboGFP-luciferase reporter

222 construct or 293T cells transfected to express IFITM1, IFITM2, or IFITM3, and a Gal4-driven

223 TurboGFP-luciferase reporter construct. Luciferase activity was measured as a readout for

fusion.

Treatment with IFITM-targeting sgRNAs resulted in an increase of KSHV and RRV gH/gL/gB mediated cell-cell fusion compared to non-targeting controls (Fig. 6 A). Viral glycoprotein

227	expression and IFITM1/2/3 knockout in target cells was confirmed by Western blot (Fig. 6 B).
228	Under conditions of recombinant overexpression, all three IFITMs were capable of reducing
229	KSHV and RRV gH/gL/gB-mediated cell-cell fusion, with IFITM1 being the most effective (Fig. 6
230	C). To exclude the possibility that the inhibition of KSHV and RRV glycoprotein-mediated cell-cell
231	fusion occurs in response to changes in cell surface protein composition upon IFITM1/2/3
232	knockout, we measured cell surface expression of a set of selected cell-surface receptors. Cell
233	surface expression of the KSHV receptors EphA2 and integrin $lpha$ V as well as transferrin receptor
234	(TrfR) remained unchanged upon IFITM1/2/3 knockout (Fig. 6 D). This suggests that IFITMs
235	reduce cell-cell fusion through a mechanism distinct from receptor regulation.
236	
237	
238	DISCUSSION
239	
240	Differences in the activity of IFITMs against several members of the herpesvirus family have
241	already been reported (18–21, 23). Here, we report that human IFITM1 inhibits the entry of
242	KSHV and of the closely related rhesus macaque virus RRV in a cell type-dependent manner. We
243	identified inhibition of membrane fusion as a potential mechanism through which IFITMs can
244	modulate KSHV and RRV infection.
245	Combined knockout of all three IFITMs enabled us to study IFITM-mediated restriction through
246	loss-of-function at expression levels that are induced through IFN signaling and free from
247	potential artefacts through overexpression-induced mislocalization. Our approach revealed that
248	KSHV and RRV infection are enhanced upon IFITM1/2/3 knockout in A549 and HFF but not in

250 to enter these different cell types. KSHV was shown to enter HFF (65) and RRV rhesus fibroblasts 251 (33, 44) via clathrin-mediated endocytosis, whereas KSHV enters HUVEC via macropinocytosis 252 (42). While most viruses that are restricted by IFITMs enter cells via clathrin- or caveolin-253 mediated endocytosis, only Ebola and Marburg viruses are restricted and enter their target cells 254 predominantly via macropinocytosis (reviewed in (66)). However, Ebola and Marburg virus 255 glycoproteins are activated by endosomal cathepsins, which are mainly found in endolysosomal 256 vesicles that also contain IFITMs (reviewed in (67, 68)). In contrast, KSHV might already fuse in 257 acidified IFITM-negative macropinocytotic compartments and thereby avoid IFITM restriction in 258 HUVEC cells. Although IFITM1/2/3 knockout enhanced KSHV and RRV infection in A549 and HFF, 259 the overall contribution to the IFN-mediated block to infection was different. In HFF, the 260 enhancement was mainly observable in IFN- α -treated cells, while in A549 the enhancement was 261 also observable in non-IFN-treated cells. In A549, the IFITM1/2/3 knockout-mediated 262 enhancement practically cancelled out the IFN- α -mediated inhibition of KSHV and RRV 263 infection, similar to what was observed for the highly restricted IAV-LP. Unfortunately, the 264 detailed mechanism of KSHV and RRV entry into A549 cells is presently unknown. Differences in 265 the response to IFITM1/2/3 knockout may very well represent differences in the viral entry 266 routes. Despite minor differences, IFITM1/2/3 knockout similarly impacted KSHV and RRV 267 infection, compatible with a broadly acting mechanism like decreasing membrane fusogenicity. 268 Vice versa it was also shown that primate IFITMs are effective against human viruses (69, 70), in 269 line with the high degree of conservation of IFITMs in primate species (71, 72). 270 Overexpression of individual IFITMs in different cell types revealed IFITM1 as the major 271 contributor to IFITM-mediated restriction of KSHV and RRV. Similar to our observations, an 272 antiviral effect of IFITM1 in A549 cells was also identified for the alphaherpesvirus HSV-1 in

273	IFITM1 overexpression and siRNA-mediated knockdown experiments (18), which suggests broad
274	activity of IFITM1 against herpesviruses. Of note, an effect of IFITM1 on KSHV infection has
275	already been described by Hussein et al.; however, in contrast to our study, their study reported
276	that infection by KSHV, EBV, and HSV-2 was enhanced upon overexpression of IFITM1 in the
277	BJAB B-cell cell line and in HMVEC-D cells (21). While we did not observe this phenomenon in
278	the cell types analyzed in this study, our observations of cell-type dependent antiviral activity do
279	not rule out the possibility that in some cell types infection might actually be enhanced by
280	IFITM1 expression. In line with this notion, overexpression of IFITM2 resulted in a mild
281	enhancement of RRV infection in SLK and HFF (Fig. 4).
282	IFITM1-mediated inhibition of KSHV or RRV infection was less pronounced than inhibition of IAV
283	glycoprotein-driven entry, and inhibition by IFITM2 and IFITM3 was not observable. This is
284	compatible with our results in colocalization experiments. Several groups reported that IAV
285	colocalized strongly with IFITM3 (15, 53, 73). We were unable to observe a pronounced
286	colocalization of IFITMs with KSHV particles. Rather, KSHV_mNeon-orf65 particles that entered
287	the cell were frequently observed in regions with low IFITM signal. While these findings argue
288	against concentration of IFITMs at viral particles, they would be compatible with indirect
289	mechanisms of action such as rerouting of endocytotic pathways or reduction of membrane
290	fusogenicity.
291	Mechanistically, we found that IFITMs modulate KSHV and RRV glycoprotein-induced
292	membrane fusion at IFN- $lpha$ -induced levels. Overexpression of IFITM1, IFITM2, and IFITM3
293	revealed that all three IFITMs can in principle reduce the KSHV and RRV glycoprotein-induced
294	cell-cell fusion to a different degree. It should be noted that overexpression of IFITMs leads to
295	abnormal localization, thereby potentially broadening activity. This supports the theory that all

296 IFITMs are, in principle, capable of restricting fusion (6, 16, 74), which might be counteracted by 297 avoidance of IFITM-positive compartments. In line with our experiments, IFITM overexpression 298 was reported to reduce the fusion activity of other viral fusion proteins including the IAV-HA 299 (12, 13, 15) and severe acute respiratory syndrome coronavirus 2 spike (75) as well as the 300 glycoprotein of the otherwise non-restricted Lassa virus (15). Although cell-cell fusion does not 301 universally mirror virus-cell fusion (76), our findings support a model of IFITM1 rendering the 302 membrane less fusogenic. A general impact of IFITMs on membrane properties is also 303 supported by a report that IFITMs inhibit trophoblast fusion (64). While our approach of a triple 304 knockout was also intended to identify potential synergism between the three IFITMs, it did not 305 do so. In HFF, IFITM1 might even counteract the mild enhancing effect that IFITM2 had on RRV 306 infection (Fig. 4 B). Overexpression of IFITM1 was sufficient to effect inhibition with a similar 307 magnitude as the enhancement that was observed after knockout. In light of our results and a 308 recent report that IFITM3 blocks the IAV fusion process through increasing membrane stiffness 309 (13), one might speculate that the three IFITMs exert their inhibitory activity through a similar 310 mechanism at different locations. 311 Entry driven by the HA and NA glycoproteins of IAV, a respiratory pathogen, was far more 312 potently restricted by IFITMs in fibroblasts and endothelial cells, particularly at constitutive 313 expression levels, than in A549 lung epithelial cells. KSHV and likely RRV (77) are 314 endotheliotropic viruses and were restricted in lung epithelial cells but not endothelial cells. This 315 suggests that IFITMs, which are constitutively expressed at high levels in HUVEC and fibroblasts, 316 constitute a major line of defense against disseminated infection of extrapulmonary tissues by 317 the respiratory pathogen IAV, and that KSHV and RRV may have evolved to avoid IFITM-318 mediated restriction in their biological niche.

MATERIALS AND METHODS
Cell culture
All cell lines in this study (Table 1) were incubated at 37° C and 5% CO ₂ and cultured in
Dulbecco's modified Eagle medium, high glucose, GlutaMAX, 25 mM HEPES (Thermo Fisher
Scientific) supplemented with 10% fetal calf serum (FCS; Thermo Fisher Scientific) and 50 $\mu g/ml$
gentamicin (PAN-Biotech) (D10) except for HUVEC, which were maintained in standard
Endothelial Cell Growth Medium 2 (PromoCell), and iSLK cells, which were maintained in D10
supplemented with 2.5 µg/ml puromycin (InvivoGen) and 250 µg/ml G418 (Carl Roth). IFN- $lpha$
treatment was performed by supplementing the respective culture medium with IFN- $lpha$ 2b
(Sigma; 5000 U/ml). For seeding and subculturing of cells, the medium was removed, the cells
were washed with phosphate-buffered saline (PBS; PAN-Biotech), and detached with trypsin
(PAN-Biotech). All transfections were performed using polyethylenimine (PEI; Polysciences) at a
1:3 ratio (mg DNA/mg PEI) mixed in Opti-MEM (Thermo Fisher Scientific).
Retroviral vectors and pseudotyped lentiviral particles
Retroviruses, lentiviruses and lentiviral pseudotypes were produced by PEI-mediated
transfection of 293T cells (see Table 2 for plasmids). For retrovirus production, plasmids
encoding gag/pol, pMD2.G encoding VSV-G, and the respective pQCXIP-contructs were
transfected (ratio 1.6:1:1.6). For production of lentiviruses used for transduction, psPAX2
encoding gag/pol, pMD2.G encoding VSV-G and the respective lentiviral construct, Gal4-driven

342	TurboGFP-luciferase reporter lentivirus (AX526) or plentiCRISPRv2 were used (ratio 2.57:1:3.57).
343	For lentiviral pseudotypes psPAX2, pLenti CMV GFP Neo and expression plasmids for pCAGGS
344	IAV_WSN-HA and pCAGGS IAV_WSN-NA for IAV-LP or paMLV_env for MLV-LP were used (ratio
345	1:1.4:2.4). Viruses were harvested twice, 24-48 h and 72-96 h after transfection, passed through
346	a 0.45- μ m CA filter and frozen at -80°C. Transduction was performed by adding retroviruses and
347	lentiviruses to cells for 48 h. Afterwards, selection was performed using 10 μ g/mL puromycin
348	(InvivoGen; pQCXIP and plentiCRISPRv2 constructs) or 10 μ g/mL blasticidin (InvivoGen; AX526
349	lentivirus).
350	
351	Production of KSHV, KSHV_mNeon-orf65, and RRV
352	For the construction of KSHV_mNeon-orf65, the GFP open reading frame of BAC16 was replaced
353	with a Zeocin resistance gene by amplifying the resistance gene from pcDNA6 (Invitrogen) using
354	Phusion PCR (NEB) and primers BAC16_downstream_of_GFP_STOP_overhang_plus_Zeo_3' and
355	BAC16_upstream_of_GFP_ATG_antisense_strand_overhang_plus_EM7_P_start
356	and inserting it into BAC16 via recombination. A shuttle construct, Ax185_
357	pCNSmNeonGreen_Kana, was created by inserting the i-Scel/Kanamycin cassette of pEPkan-S
358	(78) into pNCSmNeonGreen using primers mNeonGreen_463-482_for plus
359	mNeonGreen_504-523_rev for the vector and
360	EPKansS_reverse_mNeon_463-482_ov plus
361	EPKans_forward_mNeon_504-523_ov for the insert, followed by Gibson assembly.
362	KSHV_mNeon-orf65 was generated by inserting the mNeonGreen cassette 5' of the first amino
363	acid of orf65 with the addition of a glycine-serine linker according to the protocol described by

364	Tischer et al.	(78)). The recombination	cassette was	generated	using prime	rs mNeon-GS-

- 365 KSHVorf65_for
- 366 plus mNeon-GS-KSHVorf65_rev and Ax185_ pCNSmNeonGreen_Kana as a template.
- 367 Infectious KSHV and RRV reporter viruses were produced as described previously (36). See Table
- 368 3 for oligonucleotide sequences.
- 369
- 370 Western blot
- 371 Western blotting was performed as described previously (36) using the respective antibodies
- 372 (Table 4).
- 373

374 CRISPR/Cas9-mediated knockout of immune-related IFITMs

- 375 IFITM1-, IFITM2-, and IFITM3-knockout cell pools were generated by CRISPR/Cas9-mediated
- 376 knockout following the protocol described by Sanjana et al. (57), except that PEI transfection
- 377 was used. In short, the cells intended for knockout were transduced with lentiviruses harboring
- 378 the CRISPR/Cas9 gene and sgRNAs targeting IFITM1-3 (sgIFITM1/2/3-a, sgIFITM1/2/3-b) or non-
- 379 targeting sgRNAs (sgNT-a, sgNT-b). For detection of CRISPR/Cas9-mediated knockout, the cells
- 380 were treated with IFN- α (5000 U/ml) for 16 h. Thereafter, the cells were harvested and
- 381 subjected to Western blot analysis.

382

383 Infection experiments

- 384 IFITM-overexpressing cells were seeded in 48-well plates at 90% confluency 16 h prior to
- infection. IFITM1/2/3 knockout cells were seeded in 48-well-plates at 70%-80% confluency.
- 386 After attachment, cells were treated with IFN- α (5000 U/ml) or H₂O (control) for 16 h prior to

387	infection with either KSHV, RRV, IAV-LP or MLV-LP. 48 h post infection, cells were trypsinized,
388	trypsin activity was inhibited by adding 5% FCS in PBS, and the cells were washed and fixed with
389	4% methanol-free formaldehyde (Roth) in PBS. Infection was determined by detection of
390	GFP ⁺ /YFP ⁺ cells using a LSRII flow cytometer; at least 5000 cells were analyzed.
391	
392	Cell-cell fusion assay
393	293T effector cells were seeded in 6-well plates or 10-cm dishes at 70%-80% confluency and
394	transfected with either empty vector, $gH/gL_{KSHV}gB_{RRV}$ or $gH/gL_{RRV}gB_{RRV}$, and Vp16-Gal4. 293T
395	transfected with Gal4-TurboGFP-Luc and pQCXIP-IFITM1-3 were seeded in 48-well plates at
396	50,000 cells/well. A549 double transduced with lentiviruses encoding a Gal4-driven TurboGFP-
397	luciferase reporter and lentiviruses encoding the CRISPR/Cas9 gene and the respective sgRNAs
398	were seeded in 96-well-plates at 20,000 cells/well, 6 h after seeding the cells were treated with
399	IFN- $lpha$ (5000 U/ml) for 16 h. Cell-cell fusion was started by adding the glycoprotein-expressing
400	effector cells to the target cells in a 1:1 ratio. After 48 h, the cells were lysed in Luciferase Cell
401	Culture Lysis Reagent (Promega) and luciferase activity was determined using Beetle-Juice
402	luciferase assay (PJK Biotech) according to the manufacturer's instructions and a BioTek Synergy
403	2 plate reader.
404	
405	Flow cytometry
406	For detection of cell surface proteins, A549 IFITM1/2/3 knockout cells were H2O or IFN- $lpha$
407	treated for 16 h, washed with PBS, detached using EDTA/EGTA (5 mM/5 mM) at 37°C and
408	washed with cold PBS (4°C). The cells were fixed with 4% methanol-free formaldehyde for 5min
409	and washed twice with PBS. Following blocking with 10% FCS (blocking buffer) in PBS, the cells

410	were incubated with primary antibody (Table 4) in blocking buffer for 90 min at 4°C. After
411	washing with PBS, the cells were incubated with secondary antibody (Table 4) in blocking buffer
412	for 45 min at RT in the dark. The cells were washed and post-fixed with 2% methanol-free
413	formaldehyde in PBS. Analysis was performed using an LSRII flow cytometer (BD Biosciences)
414	and Flowing software (University of Turku, version 2.5).
415	
416	Immunofluorescence.
417	A549 were seeded on 12-mm coverslips (YX03.1, Carl Roth) in 24-well plates at
418	150,000 cells/well. After attachment, the cells were treated with either H2O (control) or IFN- $lpha$
419	(5000 U/ml) for 16 h. After 24 h, cold KSHV_mNEON-ORF65 was added. Cells were centrifuged
420	(4,200 rpm, 4°C, 30 min), followed by a 10-min incubation at 4°C. After 3 washes with cold PBS,
421	cells were either fixed in 4% methanol-free formaldehyde in PBS for 10 min (0-min timepoint) or
422	shifted to 37°C after addition of D10. At the indicated timepoints, cells were washed once in PBS
423	and fixed in 4% methanol-free formaldehyde in PBS for 10 min. After fixation, cells were washed
424	three times in PBS. Cell permeabilization and blocking was performed in IF buffer (5% FCS,
425	0.05% saponin (Sigma) in PBS) for 1 h. Primary antibody (see Table 4) incubation was performed
426	in IF buffer overnight at 4°C. Secondary antibody (see Table 4) incubation or incubation with a
427	directly labeled phalloidin probe was performed after three washes with IF buffer for 1 h at RT.
428	Cells were washed once in IF buffer and stained with Hoechst 33342 1:10000 in PBS (#62249,
429	Thermo Scientific) for 5 min, followed by a final wash with PBS. The coverslips were dried and
430	mounted in anti-Fade Fluorescence Mounting Medium (ab104135, abcam). Images were
431	acquired on a confocal laser scanning microscope (Zeiss LSM800). Laser intensity and signal

- 432 amplification were maintained between different conditions for each antibody staining. All
- 433 images were processed using Fiji/ImageJ software.
- 434
- 435

436 ACKNOWLEDGEMENTS

- 437 This work was supported by grants from the Deutsche Forschungsgemeinschaft (www.dfg.de,
- 438 HA 6013/4-1) and the Wilhelm-Sander Foundation (www.wilhelmsander-
- 439 stiftung.de, project 2019.027.1).
- 440 We thank Stefan Pöhlmann and Michael Farzan for sharing plasmids; Klaus Korn for sharing
- 441 human foreskin fibroblasts; Rüdiger Behr for sharing rhesus monkey fibroblasts; Scott Wong for
- 442 sharing RRV gB antibodies.

443	
444	
445	REFERENCES
446	
447	1. Brass AL, Huang I-C, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL,
448	van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ. 2009. The IFITM
449	Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue
450	Virus. 7. Cell 139:1243–1254.
451	2. Huang I-C, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL,
452	Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison
453	MR, Choe H, Farzan M. 2011. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses,
454	SARS Coronavirus, and Influenza A Virus. 1. PLoS Pathog 7:e1001258.
455	3. Wrensch F, Karsten CB, Gnirß K, Hoffmann M, Lu K, Takada A, Winkler M, Simmons
456	G, Pöhlmann S. 2015. Interferon-Induced Transmembrane Protein–Mediated Inhibition of Host
457	Cell Entry of Ebolaviruses. suppl 2. J Infect Dis 212:S210–S218.
458	4. Shi G, Kenney AD, Kudryashova E, Zani A, Zhang L, Lai KK, Hall-Stoodley L,
459	Robinson RT, Kudryashov DS, Compton AA, Yount JS. 2021. Opposing activities of IFITM
460	proteins in SARS-CoV-2 infection. EMBO J 40.
461	5. Mudhasani R, Tran JP, Retterer C, Radoshitzky SR, Kota KP, Altamura LA, Smith JM,
462	Packard BZ, Kuhn JH, Costantino J, Garrison AR, Schmaljohn CS, Huang I-C, Farzan M, Bavari
463	S. 2013. IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus. Journal of
464	Virology 87:8451–8464.
465	6. Bailey CC, Zhong G, Huang I-C, Farzan M. 2014. IFITM-Family Proteins: The Cell's
466	First Line of Antiviral Defense. 1. Annu Rev Virol 1:261–283.
467	7. Siegrist F, Ebeling M, Certa U. 2011. The Small Interferon-Induced Transmembrane
468	Genes and Proteins. Journal of Interferon & Cytokine Research 31:183–197.
469	8. Weston S, Czieso S, White IJ, Smith SE, Kellam P, Marsh M. 2014. A Membrane
470	Topology Model for Human Interferon Inducible Transmembrane Protein 1. 8. PLoS ONE
471	9:e104341.
472	9. Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen L-M, Gaiha GD, Ryan BJ, Donis
473	RO, Elledge SJ, Brass AL. 2011. IFITM3 Inhibits Influenza A Virus Infection by Preventing
474	Cytosolic Entry. 10. PLoS Pathog 7:e1002337.
475	10. Narayana SK, Helbig KJ, McCartney EM, Eyre NS, Bull RA, Eltahla A, Lloyd AR, Beard
476	MR. 2015. The Interferon-induced Transmembrane Proteins, IFITM1, IFITM2, and IFITM3
477	Inhibit Hepatitis C Virus Entry. 43. J Biol Chem 290:25946–25959.
478	11. Li K, Markosyan RM, Zheng Y-M, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C,
479	Lee JC, Gratton E, Cohen FS, Liu S-L. 2013. IFITM Proteins Restrict Viral Membrane
480	Hemifusion. PLOS Pathogens 9:18.
481	12. Desai TM, Marin M, Chin CR, Savidis G, Brass AL, Melikyan GB. 2014. IFITM3
482	Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-
483	Endosome Hemifusion. 4. PLoS Pathog 10:e1004048.
484	13. Guo X, Steinkühler J, Marin M, Li X, Lu W, Dimova R, Melikyan GB. 2021. Interferon-
485	Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering
.00	interest in the second in the second in the second of the second in the

486 Mechanical Properties of Cell Membranes. ACS Nano 15:8155–8170.

- 487 14. Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi M, Huang I-C, Farzan M, Jung JU. 2013.
- 488 The Antiviral Effector IFITM3 Disrupts Intracellular Cholesterol Homeostasis to Block Viral
- 489 Entry. Cell Host Microbe 13:452–464.
- 490 15. Suddala KC, Lee CC, Meraner P, Marin M, Markosyan RM, Desai TM, Cohen FS, Brass
- 491 AL, Melikyan GB. 2019. Interferon-induced transmembrane protein 3 blocks fusion of sensitive
- but not resistant viruses by partitioning into virus-carrying endosomes. 1. PLoS Pathog15:e1007532.
- 494 16. Shi G, Schwartz O, Compton AA. 2017. More than meets the I: the diverse antiviral and 495 cellular functions of interferon-induced transmembrane proteins. 1. Retrovirology 14:53.
- 496 17. Li C, Du S, Tian M, Wang Y, Bai J, Tan P, Liu W, Yin R, Wang M, Jiang Y, Li Y, Zhu
- N, Zhu Y, Li T, Wu S, Jin N, He F. 2018. The Host Restriction Factor Interferon-Inducible
- 498 Transmembrane Protein 3 Inhibits Vaccinia Virus Infection. Front Immunol 9:228.
- 499 18. Smith SE, Busse DC, Binter S, Weston S, Diaz Soria C, Laksono BM, Clare S, Van
- 500 Nieuwkoop S, Van den Hoogen BG, Clement M, Marsden M, Humphreys IR, Marsh M, de Swart
- 501 RL, Wash RS, Tregoning JS, Kellam P. 2018. Interferon-Induced Transmembrane Protein 1
- Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. J Virol 93:e02003 18, /jvi/93/6/JVI.02003-18.atom.
- Warren CJ, Griffin LM, Little AS, Huang I-C, Farzan M, Pyeon D. 2014. The Antiviral
 Restriction Factors IFITM1, 2 and 3 Do Not Inhibit Infection of Human Papillomavirus,
- 505 Restriction Factors IFTI M1, 2 and 5 Do Not Innibit Infection of Human Paj 506 Cytomegalovirus and Adenovirus. 5. PLoS ONE 9:e96579.
- 507 20. Xie M, Xuan B, Shan J, Pan D, Sun Y, Shan Z, Zhang J, Yu D, Li B, Qian Z. 2015.
- Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins To Facilitate
 Morphogenesis of the Virion Assembly Compartment. 6. J Virol 89:3049–3061.
- 510 21. Hussein HAM, Akula SM. 2017. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of
- cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). 1. Sci Rep7:17972.
- 513 22. Hussein HAM, Briestenska K, Mistrikova J, Akula SM. 2018. IFITM1 expression is
 514 crucial to gammaherpesvirus infection, in vivo. 1. Sci Rep 8:14105.
- 515 23. Tartour K, Nguyen X-N, Appourchaux R, Assil S, Barateau V, Bloyet L-M, Burlaud
- 516 Gaillard J, Confort M-P, Escudero-Perez B, Gruffat H, Hong SS, Moroso M, Reynard O,
- 517 Reynard S, Decembre E, Ftaich N, Rossi A, Wu N, Arnaud F, Baize S, Dreux M, Gerlier D,
- 518 Paranhos-Baccala G, Volchkov V, Roingeard P, Cimarelli A. 2017. Interference with the
- 519 production of infectious viral particles and bimodal inhibition of replication are broadly
- 520 conserved antiviral properties of IFITMs. PLoS Pathog 13:e1006610.
- 521 24. Damania B, Desrosiers RC. 2001. Simian homologues of human herpesvirus 8. Phil Trans
 522 R Soc Lond B 356:535–543.
- 523 25. Wen KW, Damania B. 2010. Kaposi sarcoma-associated herpesvirus (KSHV): Molecular
 524 biology and oncogenesis. Cancer Letters 289:140–150.
- 525 26. Chen Q, Chen J, Li Y, Liu D, Zeng Y, Tian Z, Yunus A, Yang Y, Lu J, Song X, Yuan Y.
 526 Kaposi's sarcoma herpesvirus is associated with osteosarcoma in Xinjiang populations 8.
- 527 27. Polizzotto MN, Uldrick TS, Hu D, Yarchoan R. 2012. Clinical Manifestations of Kaposi
- 528 Sarcoma Herpesvirus Lytic Activation: Multicentric Castleman Disease (KSHV-MCD) and the
- 529 KSHV Inflammatory Cytokine Syndrome. Front Microbiol 3:73.
- 530 28. Stiller CA. 2007. International patterns of cancer incidence in adolescents. Cancer
 531 Treatment Reviews 33:631–645.
- 532 29. Chatlynne LG, Ablashi DV. 1999. Seroepidemiology of Kaposi's sarcoma-associated
- 533 herpesvirus (KSHV). Seminars in Cancer Biology 9:175–185.

Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R, Wabinga H. 2008. Part I: Cancer in 534 30. 535 Indigenous Africans—burden, distribution, and trends. The Lancet Oncology 9:683–692. 536 Amir H, Kaaya EE, Manji KP, Kwesigabo G, Biberfeld P. 2001. Kaposi's sarcoma before 31. 537 and during a human immunodeficiency virus epidemic in Tanzanian children: The Pediatric 538 Infectious Disease Journal 20:518-521. 539 Bechtel JT, Liang Y, Hvidding J, Ganem D. 2003. Host Range of Kaposi's Sarcoma-32. 540 Associated Herpesvirus in Cultured Cells. JVI 77:6474–6481. 541 Hahn AS, Desrosiers RC. 2013. Rhesus Monkey Rhadinovirus Uses Eph Family 33. 542 Receptors for Entry into B Cells and Endothelial Cells but Not Fibroblasts. PLOS Pathogens 543 9:e1003360. 544 34. Dollery SJ. 2019. Towards Understanding KSHV Fusion and Entry. Viruses 11:1073. 545 Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K, Holzer 35. 546 A, Schmidt M, Chen J, König S, Ensser A, Myoung J, Brockmeyer NH, Stürzl M, Fleckenstein 547 B, Neipel F. 2012. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi's 548 sarcoma-associated herpesvirus. Nat Med 18:961-966. 549 36. Großkopf AK, Ensser A, Neipel F, Jungnickl D, Schlagowski S, Desrosiers RC, Hahn AS. 550 2018. A conserved Eph family receptor-binding motif on the gH/gL complex of Kaposi's 551 sarcoma-associated herpesvirus and rhesus monkey rhadinovirus. 2. PLoS Pathog 14:e1006912. 552 37. Großkopf AK, Schlagowski S, Hörnich BF, Fricke T, Desrosiers RC, Hahn AS. 2019. 553 EphA7 Functions as Receptor on BJAB Cells for Cell-to-Cell Transmission of the Kaposi's 554 Sarcoma-Associated Herpesvirus and for Cell-Free Infection by the Related Rhesus Monkey 555 Rhadinovirus. J Virol 93:e00064-19, /jvi/93/15/JVI.00064-19.atom. Großkopf AK, Schlagowski S, Fricke T, Ensser A, Desrosiers RC, Hahn AS. 2021. Plxdc 556 38. 557 family members are novel receptors for the rhesus monkey rhadinovirus (RRV). PLoS Pathog 558 17:e1008979. 559 39. Hahn A, Birkmann A, Wies E, Dorer D, Mahr K, Sturzl M, Titgemeyer F, Neipel F. 2009. 560 Kaposi's Sarcoma-Associated Herpesvirus gH/gL: Glycoprotein Export and Interaction with 561 Cellular Receptors. J Virol 83:396-407. 562 Akula SM, Pramod NP, Wang F-Z, Chandran B. 2002. Integrin α3β1 (CD 49c/29) Is a 40. 563 Cellular Receptor for Kaposi's Sarcoma-Associated Herpesvirus (KSHV/HHV-8) Entry into the 564 Target Cells. Cell 108:407–419. 565 Garrigues HJ, DeMaster LK, Rubinchikova YE, Rose TM. 2014. KSHV attachment and 41. 566 entry are dependent on $\alpha V\beta 3$ integrin localized to specific cell surface microdomains and do not 567 correlate with the presence of heparan sulfate. Virology 0:118–133. 568 Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Chandran B. 2009. Kaposi's 42. Sarcoma-Associated Herpesvirus Utilizes an Actin Polymerization-Dependent Macropinocytic 569 570 Pathway To Enter Human Dermal Microvascular Endothelial and Human Umbilical Vein 571 Endothelial Cells. JVI 83:4895-4911. 572 Akula SM, Naranatt PP, Walia N-S, Wang F-Z, Fegley B, Chandran B. 2003. Kaposi's 43. 573 Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Infection of Human Fibroblast Cells 574 Occurs through Endocytosis. JVI 77:7978-7990. 575 Zhang W, Zhou F, Greene W, Gao S-J. 2010. Rhesus Rhadinovirus Infection of Rhesus 44. 576 Fibroblasts Occurs through Clathrin-Mediated Endocytosis. Journal of Virology 84:11709-577 11717. 578 Pertel PE. 2002. Human Herpesvirus 8 Glycoprotein B (gB), gH, and gL Can Mediate 45. 579 Cell Fusion. JVI 76:4390-4400. 580 Chen J, Schaller S, Jardetzky TS, Longnecker R. 2020. Epstein-Barr Virus gH/gL and 46. Kaposi's Sarcoma-Associated Herpesvirus gH/gL Bind to Different Sites on EphA2 To Trigger 581

- 582 Fusion. J Virol 94:e01454-20, /jvi/94/21/JVI.01454-20.atom.
- 583 47. Myoung J, Ganem D. 2011. Infection of Lymphoblastoid Cell Lines by Kaposi's
- Sarcoma-Associated Herpesvirus: Critical Role of Cell-Associated Virus. Journal of Virology
 85:9767–9777.
- 586 48. Jarousse N, Chandran B, Coscoy L. 2008. Lack of Heparan Sulfate Expression in B-Cell
- 587 Lines: Implications for Kaposi's Sarcoma-Associated Herpesvirus and Murine
- 588 Gammaherpesvirus 68 Infections. Journal of Virology 82:12591–12597.
- 589 49. Dollery SJ, Santiago-Crespo RJ, Kardava L, Moir S, Berger EA. 2013. Efficient infection
- of a human B cell line with cell-free Kaposi's sarcoma-associated herpesvirus. J Virol
 https://doi.org/10.1128/JVI.03063-13.
- 592 50. Stoltz M, Klingström J. 2010. Alpha/Beta Interferon (IFN- α/β)-Independent Induction of 593 IFN- λ 1 (Interleukin-29) in Response to Hantaan Virus Infection. JVI 84:9140–9148.
- 594 51. Tissari J, Sirén J, Meri S, Julkunen I, Matikainen S. 2005. IFN-α Enhances TLR3-
- 595 Mediated Antiviral Cytokine Expression in Human Endothelial and Epithelial Cells by Up-
- 596 Regulating TLR3 Expression. J Immunol 174:4289–4294.
- 597 52. Thube MM, Shil P, Kasbe R, Patil AA, Pawar SD, Mullick J. 2018. Differences in Type I
 598 interferon response in human lung epithelial cells infected by highly pathogenic H5N1 and low
 599 pathogenic H11N1 avian influenza viruses. Virus Genes 54:414–423.
- 600 53. Spence JS, He R, Hoffmann H-H, Das T, Thinon E, Rice CM, Peng T, Chandran K, Hang
- HC. 2019. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. 3. Nat
 Chem Biol 15:259–268.
- 54. Zhao X, Guo F, Liu F, Cuconati A, Chang J, Block TM, Guo J-T. 2014. Interferon
- induction of IFITM proteins promotes infection by human coronavirus OC43. 18. Proceedings ofthe National Academy of Sciences 111:6756–6761.
- 55. Winkler M, Wrensch F, Bosch P, Knoth M, Schindler M, Gärtner S, Pöhlmann S. 2019.
- Analysis of IFITM-IFITM Interactions by a Flow Cytometry-Based FRET Assay. 16. IJMS20:3859.
- 609 56. Rahman K, Coomer CA, Majdoul S, Ding SY, Padilla-Parra S, Compton AA. 2020.
 610 Homology-guided identification of a conserved motif linking the antiviral functions of IFITM3 to
 611 its oligometric state. eLife 9:e58537.
- 57. Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for
 613 CRISPR screening. Nat Meth 11:783–784.
- 58. Tang Y-W, Johnson JE, Browning PJ, Cruz-Gervis RA, Davis A, Graham BS, Brigham
- 615 KL, Oates JA, Loyd JE, Stecenko AA. 2003. Herpesvirus DNA Is Consistently Detected in
- Lungs of Patients with Idiopathic Pulmonary Fibrosis. Journal of Clinical Microbiology 41:2633–
 2640.
- 618 59. Lin Y-C, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, Reumers J, Moisse M,
- 619 Plaisance S, Drmanac R, Chen J, Speleman F, Lambrechts D, Van de Peer Y, Tavernier J,
- 620 Callewaert N. 2014. Genome dynamics of the human embryonic kidney 293 lineage in response
- to cell biology manipulations. 1. Nature Communications 5:4767.
- 622 60. Stürzl M, Gaus D, Dirks WG, Ganem D, Jochmann R. 2013. Kaposi's sarcoma-derived
- 623 cell line SLK is not of endothelial origin, but is a contaminant from a known renal carcinoma cell624 line. Int J Cancer 132:1954–1958.
- 625 61. Myoung J, Ganem D. 2011. Generation of a doxycycline-inducible KSHV producer cell
- 626 line of endothelial origin: Maintenance of tight latency with efficient reactivation upon induction.627 Journal of Virological Methods 174:12–21.
- 628 62. Jia R, Xu F, Qian J, Yao Y, Miao C, Zheng Y-M, Liu S-L, Guo F, Geng Y, Qiao W,
- 629 Liang C. 2014. Identification of an endocytic signal essential for the antiviral action of IFITM3:

- Endocytosis of IFITM3 and its antiviral activity. Cell Microbiol 16:1080–1093.
- 631 63. Chesarino NM, McMichael TM, Hach JC, Yount JS. 2014. Phosphorylation of the
- 632 Antiviral Protein Interferon-inducible Transmembrane Protein 3 (IFITM3) Dually Regulates Its
- Endocytosis and Ubiquitination. Journal of Biological Chemistry 289:11986–11992.
- 634 64. Zani A, Zhang L, McMichael TM, Kenney AD, Chemudupati M, Kwiek JJ, Liu S-L,
- Yount JS. 2019. Interferon-induced transmembrane proteins inhibit cell fusion mediated by
 trophoblast syncytins. Journal of Biological Chemistry 294:19844–19851.
- 637 65. Dutta D, Chakraborty S, Bandyopadhyay C, Valiya Veettil M, Ansari MA, Singh VV,
- 638 Chandran B. 2013. EphrinA2 Regulates Clathrin Mediated KSHV Endocytosis in Fibroblast
- 639 Cells by Coordinating Integrin-Associated Signaling and c-Cbl Directed Polyubiquitination.
- 640 PLoS Pathog 9:e1003510.
 641 66. Perreira JM, Chin CR, Feeley EM, Brass AL. 2013. IFITMs Restrict the Replication of
- 642 Multiple Pathogenic Viruses. Journal of Molecular Biology 425:4937–4955.
- 643 67. Hunt CL, Lennemann NJ, Maury W. 2012. Filovirus Entry: A Novelty in the Viral Fusion 644 World. Viruses 4:258–275.
- 645 68. Vidak E, Javoršek U, Vizovišek M, Turk B. 2019. Cysteine Cathepsins and their
- 646 Extracellular Roles: Shaping the Microenvironment. Cells 8:264.
- 647 69. Winkler M, Gärtner S, Wrensch F, Krawczak M, Sauermann U, Pöhlmann S. 2017.
- 648 Rhesus macaque IFITM3 gene polymorphisms and SIV infection. 3. PLoS ONE 12:e0172847.
- 649 70. Wilkins J, Zheng Y-M, Yu J, Liang C, Liu S-L. 2016. Nonhuman Primate IFITM Proteins
 650 Are Potent Inhibitors of HIV and SIV. PLoS ONE 11:e0156739.
- 651 71. Hickford D, Frankenberg S, Shaw G, Renfree MB. 2012. Evolution of vertebrate
- 652 interferon inducible transmembrane proteins. BMC Genomics 13:155.
- 72. Zhang Z, Liu J, Li M, Yang H, Zhang C. 2012. Evolutionary Dynamics of the InterferonInduced Transmembrane Gene Family in Vertebrates. PLoS ONE 7:e49265.
- 655 73. Kummer S, Avinoam O, Kräusslich H-G. 2019. IFITM3 Clusters on Virus Containing
- Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells.6. Viruses 11:548.
- 658 74. Ren L, Du S, Xu W, Li T, Wu S, Jin N, Li C. 2020. Current Progress on Host Antiviral
 659 Factor IFITMs. Front Immunol 11:543444.
- 660 75. Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F,
- Guivel-Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T, Schwartz O. 2020.
 Syncytia formation by SARS-CoV-2-infected cells. EMBO J 39.
- 663 76. Hörnich BF, Großkopf AK, Schlagowski S, Tenbusch M, Kleine-Weber H, Neipel F,
- 664 Stahl-Hennig C, Hahn AS. 2021. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell
- Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. J Virol95.
- 667 77. Ensser A, Yasuda K, Lauer W, Desrosiers RC, Hahn AS. 2020. Rhesus Monkey
- 668 Rhadinovirus Isolated from Hemangioma Tissue. Microbiol Resour Announc 9.
- 669 78. Tischer BK, von Einem J, Kaufer B, Osterrieder N. 2006. Two-step red-mediated
- 670 recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli.
- 671 BioTechniques 40:191–197.
- 672
- 673
- 674 **TABLES**

675 Table 1. Cell lines.

Cell line	Origin
293T cells	a kind gift from Vladan Rankovic, Göttingen,
	Germany, and originally purchased from the
	ATCC
A549	Laboratory of Stefan Pöhlmann, German
	Primate Center-Leibniz Institute for Primate
	Research, Göttingen, Germany
SLK cells	(RRID:CVCL_9569) (NIH AIDS Research and
	Reference Reagent program)
human foreskin fibroblasts (HFF)	(laboratory of Klaus Korn,
	Universitätsklinikum Erlangen, Institute for
	Clinical and Molecular Virology, Erlangen,
	Germany)
rhesus monkey fibroblasts (RF)	(laboratory of Prof. Rüdiger Behr, German
	Primate Center-Leibniz Institute for Primate
	Research, Göttingen, Germany)
Human vascular endothelial cells (HUVEC)	(PromoCell)
iSLK cells	A kind gift from Don Ganem (61)

676

677 Table 2. Plasmids.

Plasmid	Source	Reference/Identifier
---------	--------	----------------------

psPAX2	Addgene (kind gift from	Addgene #12260
	Didier Trono)	
VSV-G (pMD2.G)	Addgene Addgene (kind gift	Addgene #12259
	from Didier Trono)	
plentiCRISPRv2	Addgene (kind gift from	Addgene #52961 (57)
	Feng Zhang)	
gag/pol	Addgene (kind gift from	Addgene #14887
	Tannishtha Reya)	
pLenti CMV GFP Neo	Addgene (kind gift from Eric	Addgene #17447
	Campeau & Paul Kaufman)	
AX526 (Gal4-driven	Laboratory of Alexander	(38)
TurboGFP-luciferase	Hahn	
reporter lentivirus)		
Gal4-TurboGFP-Luc (Gal4-	Laboratory of Alexander	(76)
driven TurboGFP-luciferase	Hahn	
reporter plasmid)		
Vp16-Gal4	Laboratory of Alexander	(76)
	Hahn	
pCAGGS IAV_WSN-HA	Laboratory of Michael	(3)
	Farzan	
pCAGGS IAV_WSN-NA	Laboratory of Stefan	(3)
	Pöhlmann	

paMLV_env	Laboratory of Michael	(3)
	Farzan	
pQXCIP	Laboratory of Stefan	(3)
	Pöhlmann	
pQCXIP-IFITM1	Laboratory of Stefan	(3)
	Pöhlmann	
pQCXIP-IFITM2	Laboratory of Stefan	(3)
	Pöhlmann	
pQCXIP-IFITM3	Laboratory of Stefan	(3)
	Pöhlmann	
pEPkan-S	Addgene (kind gift from	Addgene #41017
	Nikolaus Osterrieder)	

Table 3. Oligonucleotides.

Oligonucleotides	Sequence
BAC16_downstream_of_GFP_STOP_over	GGCGGAATTCCTCTAGTGCGGCCGAGTCGCGGCCGC
hang plus Zoo 2'	TTTATCAGTCCTGCTCCTCGGCC
hang_plus_Zeo_3'	
BAC16 upstream of GFP ATG antisens	GTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCGC
e_strand_overhang_plus_EM7_P_start	CACCTGTTGACAATTAATCATCGG)
mNeonGreen_463-482_for	TACCCCAACGACAAAACCAT
mNeonGreen_504-523_rev	TGCCATTTCCAGTGGTGTAA

EPKansS_reverse_mNeon_463-482_ov	ATGGTTTTGTCGTTGGGGTACAACCAATTAACCAATT
	CTGATTAG
EPKans_forward_mNeon_504-523_ov	TTACACCACTGGAAATGGCAGGATGACGACGATAAG
	TAGGGATAAC
mNeon-GS-KSHVorf65_for	TGTTGCGGGAAGTGTTCCTCCTGAGGCTATTTCGCCC
	GCCTGTGTGGAAGATGGTGAGCAAGGGC
mNeon-GS-KSHVorf65_rev	TGATCCAGTCGCTCCTGGATCACGGGGTCTCTCACCT
	TAAAGTTGGACATGCTTCCCTTGTACAGCTCGTCC

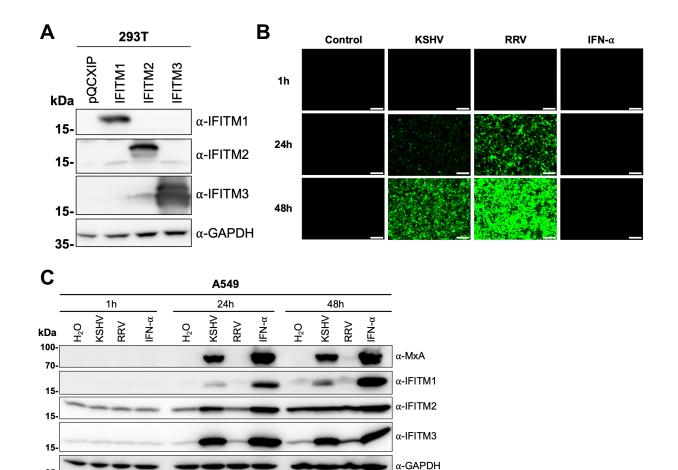
Table 4. Antibodies.

target	manufactur	Clone/	species	dilutio	Secondary	manufactur	species	dilution
	er	Cat.		n	antibody	er		
		number						
Weste	rn Blot							
IFITM1	R&D	AF4827	goat	1:500	anti-goat	Proteintech	rabbit	1:5000
					HRP-coupled			
IFITM2	Proteintech	66137-1-	mouse	1:500-	anti-mouse	Dianova	donkey	1:1000
		lg		1:1000	HRP-coupled			
IFITM3	Cell Signal	D8E8G	rabbit	1:1000	anti-rabbit	Life	goat	1:1000
	Technology				HRP- coupled	Technologie		
						S		

с-Мус	Santa Cruz	9E10	mouse	1:1000	anti-mouse	Dianova	donkey	1:1000
epitope	Biotechnolo				HRP-coupled			
	gу							
MxA	R&D	AF7946	goat	1:1000	anti-goat	Proteintech	rabbit	1:5000
					HRP-coupled			
GAPDH	GenScript	N/A	mouse	1:1500	anti-mouse	Dianova	donkey	1:1000
				0	HRP-coupled			
V5-tag	Bio-Rad	N/A	mouse	1:1000	anti-mouse	Dianova	donkey	1:1000
					HRP-coupled			
DYKDD	Cell Signal	D6W5B	rabbit	1:1000	anti-rabbit	Life	goat	1:1000
DDK	Technology				HRP- coupled	Technologie		
(Flag)						S		
Tag								
RRV gB	Scott W.	3H8.1	mouse	1:1000	anti-mouse	Dianova	donkey	1:1000
	Wong				HRP-coupled			
	(Oregon							
	Health &							
	Science							
	University)							
Flow C	ytometry							

lgG1	Thermo	N/A	mouse	1:500	anti-mouse	Life	donkey 1:500
Isotype	Fisher				Alexa Fluor	Technologie	
	Scientific				647	S	
EphA2	Merck	clone F2-	mouse	1:500	anti-mouse	Life	donkey 1:500
		27			Alexa Fluor	Technologie	
					647	S	
integrin	R&D	P2W7	mouse	1:500	anti-mouse	Life	donkey 1:500
alpha	Systems				Alexa Fluor	Technologie	
V/CD51					647	S	
CD71	Thermo	ОКТ9	mouse	1:500	anti-mouse	Life	donkey 1:500
(TrfR)	Fisher				Alexa Fluor	Technologie	
	Scientific				647	S	
Immuno	ofluorescence	!					
IFITM1	R&D	AF4827	goat	1:250	anti-goat	Life	donkey 1:500
					Alexa Fluor	Technologie	
					594	S	
IFITM2	Proteintech	12769-1-	rabbit	1:250	anti-rabbit	Life	donkey 1:500
		AP			Alexa Fluor	Technologie	
					594	S	
IFITM3	Cell Signal	D8E8G	rabbit	1:250	anti-rabbit	Life	donkey 1:500
	Technology				Alexa Fluor	Technologie	
					594	S	

EEA1	BD	610456	mouse	1:400	anti-mouse	Life	donkey 1:500
	Laboratories	5			Alexa Fluor	Technologie	
					647	S	
LAMP-1	L Santa Cruz	H5G11	mouse	1:750	anti-mouse	Life	donkey 1:500
	Biotechnolo				Alexa Fluor	Technologie	
	gy				647	S	
					directly		
					labeled		
					probes		
					Phalloidin-	AAT	1:1000
					iFluor 647	Bioquest	

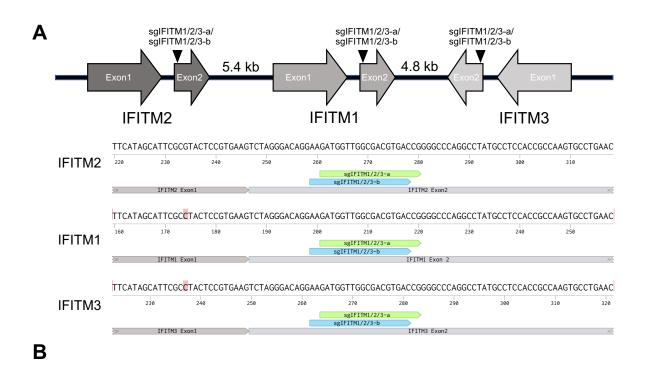

Conjugate

682

683

684

685 FIGURES AND FIGURE LEGENDS



686

35-

687 **Figure 1.** KSHV induces IFITM1, IFITM2 and IFITM3 expression in A549 cells.

(A) Western blot of 293T cells transduced with pQCXIP-constructs to express IFITM1-3 or pQCXIP (empty vector). IFITMs were detected using the respective IFITM-antibody, GAPDH served as loading control. (B) Fluorescence microscopy images (scale 200 μ m) and (C) Western blot analysis of A549 cells infected with KSHV-GFP or RRV-YFP or treated with H₂O or IFN- α (5000 U/ml) for the indicated time and harvested using SDS sample buffer. IFITM expression was detected with antibodies shown in (A). MxA served as control for IFN-stimulated gene induction; GAPDH served as loading control.

sgRNA	Target	Target-Sequence
sgNT-a	non- targeting	ATCGTTTCCGCTTAACGGCG
sgNT-b	non- targeting	TTCGCACGATTGCACCTTGG
sgIFITM1/2/3-a	IFITM1- IFITM3	GATGGTTGGCGACGTGACCG
sgIFITM1/2/3-b	IFITM1- IFITM3	AAGATGGTTGGCGACGTGAC

- 696 Figure 2. Localization of the IFITM-cluster on chromosome 11 in the human genome and sgRNAs
- 697 used in this study.
- 698 (A) Schematic drawing (not to scale) of the localization of IFITM1, IFITM2, and IFITM3 on
- 699 chromosome 11 in the human genome with target sites of sgRNAs targeting exon2 of IFITM1-3
- 700 (sgIFITM1/2/3-a, sgIFITM1/2/3-b; upper panel). Alignment of the target sites of sgIFITM1/2/3-a
- and sgIFITM1/2/3-b (lower panel). (B) Sequences of sgRNAs used in this study.

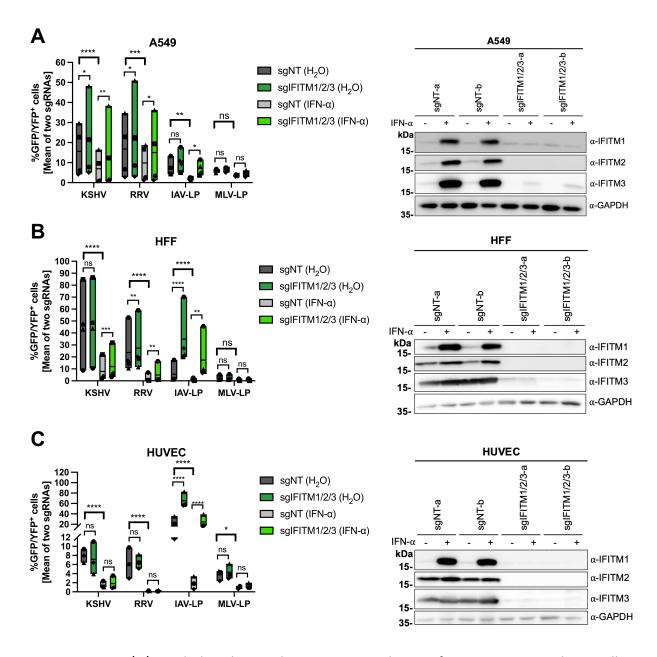
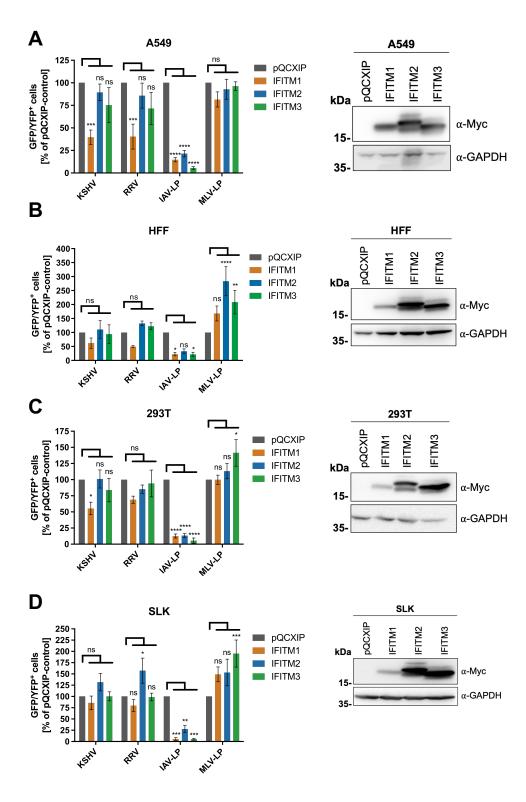
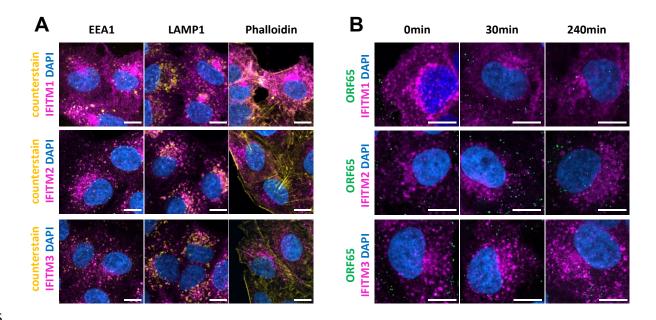
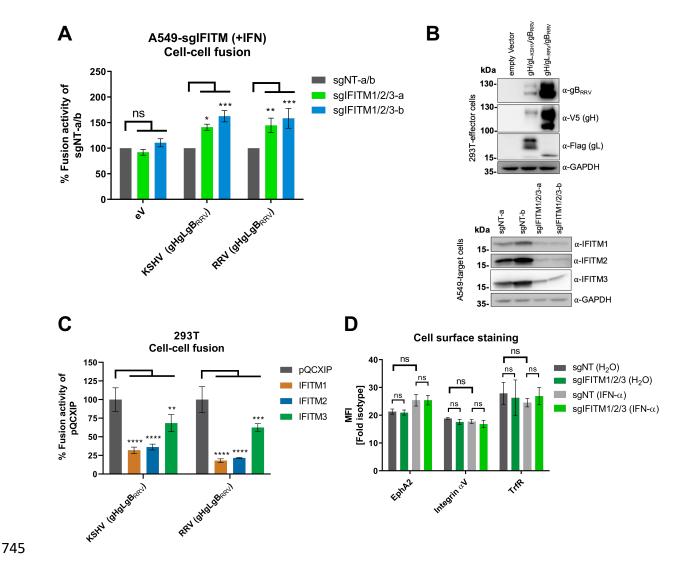



Figure 3. IFITM1/2/3 triple-knockout enhances KSHV and RRV infection in A549 and HFF cells.
(A) A549, (B) HFF and (C) HUVEC cells were transduced with lentiviral vectors encoding Cas9 and
the sgRNAs shown in Fig. 2. (A-C, left panel) IFITM-knockout (sgIFITM1/2/3-a, sgIFITM1/2/3-b)
or control cells (sgNT-a, sgNT-b) treated with IFN-α (5000 U/ml) or H₂O (control) and infected
with KSHV-GFP, RRV-YFP, IAV lentiviral pseudotype (IAV-LP), or MLV lentiviral pseudotype (MLVLP). Infection was measured using flow cytometry to detect expression of the fluorescent


709	reporter gene. The graph shows individual data points representing averaged values for
710	GFP ⁺ /YFP ⁺ cells of either two non-targeting (sgNT-a, sgNT-b) or IFITM1/2/3 knockout
711	(sgIFITM1/2/3-a, sgIFITM1/2/3-b) transduced cells and floating bars representing the mean
712	averaged from four independent experiments for A549 and HFF (A,B) and three independent
713	experiments for HUVEC (C). Infections for each single experiment were performed in triplicates
714	for each condition. Datapoints from the same experiment are labeled with identical symbols.
715	The different sgRNAs were treated as biological replicates within each experiment. Statistical
716	significance was determined by two-way ANOVA, p-values were corrected for all possible
717	multiple comparisons within one family by Tukey's method (p>0.05, ns; p≤0.05, *; p≤0.01, **;
718	p≤0.001, ***; p≤0.0001, ****). Representative Western blots (A-C, right panel) of IFITM-
719	knockout (sgIFITM1/2/3-a or sgIFITM1/2/3-b) or control (sgNT-a or sgNT-b) cells treated with
720	IFN- α (5000 U/ml) or H ₂ O. Indicated IFITM expression was detected with antibodies shown in
721	Fig. 1A; GAPDH served as loading control.

723 **Figure 4.** Overexpression of IFITM1 inhibits KSHV and RRV infection in a cell type-dependent

724 manner.


725	(A) A549, (B) HFF, (C) 293T and (D) SLK cells were transduced with pQCXIP-constructs to express
726	IFITM1-3 or pQCXIP (empty vector). (A-D, left panel) IFITM overexpressing cells were infected
727	with KSHV-GFP, RRV-YFP, IAV lentiviral pseudotype (IAV-LP) or MLV lentiviral pseudotype (MLV-
728	LP). Infection was measured using flow cytometry to detect expression of the fluorescent
729	reporter genes. The data shows values normalized to pQCXIP empty vector, which was set to
730	100%, and the error bars represent the standard error of the mean of four independent
731	experiments, each performed in triplicates. Statistical significance was determined by ordinary
732	two-way ANOVA, p-values were corrected for multiple comparisons by Dunnett's method
733	(p>0.05, ns; p≤0.05, *; p≤0.01, **; p≤0.001, ***; p≤0.0001, ****). Representative Western blots
734	(A-C, right panel) of IFITM-overexpressing cells. Expression of myc-tagged IFITMs was
735	determined using anti-myc antibody; GAPDH served as loading control.

737 Figure 5. KSHV virus particles do not extensively colocalize with IFITM1, IFITM2, and IFITM3 in

738 A549 cells.

(A) Confocal microscopy images of IFN-α-treated (5000 U/ml) A549 cells stained with IFITM1,
IFITM2, or IFITM3 antibody (magenta). Co-staining was performed with antibodies to EEA1,
LAMP1, or phalloidin conjugate (yellow) and Hoechst (blue). (B) Confocal microscopy images of
IFN-α-treated (5000 U/ml) A549 cells, infected with KSHV_mNeon-orf65 (green). Staining was
performed using IFITM1, IFITM2, or IFITM3 antibody (magenta) and Hoechst (blue). The Scale
bars represents 10 µm.

746 **Figure 6.** IFITMs inhibit KSHV and RRV glycoprotein-mediated cell-cell fusion.

747	(A) Cell-cell fusion assay. Effector cells (293T transfected with either empty vector (eV) or				
748	expression plasmids for the indicated viral glycoproteins together with Vp16-Gal4 expression				
749	plasmid) were added to target cells (A549 cells transduced with a Gal4-driven TurboGFP-				
750	Luciferase construct and the respective CRISPR/Cas9 sgRNA-construct), which had been pre-				
751	incubated for 16h with IFN- $lpha$ (5000 U/ml). After 48 h, luciferase activity was measured. Values				
752	were normalized to the mean of the two non-targeting controls sgNT-a and sgNT-b (sgNT-a/b),				
753	which was set to 100, for each experiment. Error bars represent standard error of the mean of				
754	four independent experiments, each performed in triplicates. Statistical significance was				
755	determined by two-way ANOVA; p-values were corrected for multiple comparisons by Dunnet's				
756	method (p>0.05, ns; p≤0.05, *; p≤0.01, **; p≤0.001, ***; p≤0.0001, ****).				
757	(B) The expression of proteins in 293T effector and A549 target cells after co-cultivation was				
758	analyzed by Western blot from lysates harvested for determination of luciferase activity shown				
759	in (A) using the indicated antibodies. GAPDH served as loading control.				
760	(C) Cell-cell fusion assay. Effector cells (293T transfected with expression plasmids for the				
761	indicated viral glycoproteins together with Vp16-Gal4 expression plasmid) were added to target				
762	cells (293T cells transfected with a Gal4-driven TurboGFP-Luciferase construct and the				
763	respective pQCXIP-IFITM construct). After 48 h, luciferase activity was measured. Values were				
764	averaged from three independent experiments, each performed in triplicates. The data was				
765	normalized to empty vector control pQCXIP, which was set to 100, error bars represent the				
766	standard deviation. Statistical significance was determined by two-way ANOVA, p-values were				
767	corrected for multiple comparisons by Dunnet's method (p>0.05, ns; p≤0.05, *; p≤0.01, **;				
768	p≤0.001, ***; p≤0.0001, ****).				

769	D A549 cells were transduced	with a lentiviral ve	ector encoding Cas9 a	nd sgRNAs shown in Figure
-----	-------------------------------------	----------------------	-----------------------	---------------------------

- 2. IFITM-knockout (sgIFITM1/2/3-a, sgIFITM1/2/3-b) or control cells (sgNT-a and sgNT-b) treated
- with IFN- α (5000 U/ml) or H₂O (control) were stained for cell surface expression of indicated
- proteins. The graph shows values for the mean fluorescence intensity fold over isotype control
- averaged from two non-targeting (sgNT-a, sgNT-b) or IFITM1/2/3 knockout (sgIFITM1/2/3-a,
- sgIFITM1/2/3-b) transduced cells from one representative experiment performed in triplicates.
- 775 Error bars represent the standard deviation. Statistical significance was determined by two-way
- ANOVA, p-values were corrected for multiple comparisons by Tukey's method (p>0.05, ns;
- 777 p≤0.05, *; p≤0.01, **; p≤0.001, ***; p≤0.0001, ****).
- 778
- 779
- 780