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Abstract 18 
 19 
Pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure to SARS-20 
CoV-2 has been reported in several studies. While emerging evidence hints toward prior 21 
exposure to common-cold human coronaviruses (HCoV), the extent of- and conditions for- 22 
cross-protective immunity between SARS-CoV-2 and HCoVs remain open. Here, by 23 
leveraging a comprehensive pool of publicly available functionally evaluated  SARS-CoV-2 24 
peptides, we report 126 immunogenic SARS-CoV-2 peptides with high sequence similarity to 25 
285 MHC-presented target peptides from at least one of four HCoV, thus providing a map 26 
describing the landscape of SARS-CoV-2 shared and private immunogenic peptides with 27 
functionally validated T cell responses. Using this map, we show that while SARS-CoV-2 28 
immunogenic peptides in general exhibit higher level of dissimilarity to both self-proteome 29 
and -microbiomes, there exist several SARS-CoV-2 immunogenic peptides with high 30 
similarity to various human protein coding genes, some of which have been reported to have 31 
elevated expression in severe COVID-19 patients. We then combine our map with a SARS-32 
CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls and show 33 
that whereas the public repertoire for the majority of convalescent patients are dominated by 34 
TCRs cognate to private SARS-CoV-2 peptides, for a subset of patients, more than 50% of 35 
their public repertoires that show reactivity to SARS-CoV-2, consist of TCRs cognate to shared 36 
SARS-CoV-2-HCoV peptides. Further analyses suggest that the skewed distribution of TCRs 37 
cognate to shared and private peptides in COVID-19 patients is likely to be HLA-dependent. 38 
Finally, by utilising the global prevalence of HLA alleles, we provide 10 peptides with known 39 
cognate TCRs that are conserved across SARS-CoV-2  and multiple human coronaviruses and 40 
are predicted to be recognised by a high proportion of the global population. Overall, our work 41 
indicates the potential for HCoV-SARS-CoV-2 reactive CD8+ T cells, which is likely 42 
dependent on differences in HLA-coding genes among individuals. These findings may have 43 
important implications for COVID-19 heterogeneity and vaccine-induced immune responses 44 
as well as robustness of immunity to SARS-CoV-2 and its variants. 45 
Introduction 46 
 47 
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After more than a year, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 48 
pandemic remains a global health challenge and causes huge economic burden. SARS-CoV-2 49 
virus gives rise to COVID-19 disease, which is characterised by a heterogenous clinical 50 
outcome ranging from asymptomatic infection to severe acute respiratory distress and death. 51 
The virus has proven to be dynamic, and the emergence of ‘variants of concern’ (e.g., the delta 52 
variant) challenges the existing mitigation strategies including vaccine rollouts 1.     53 
 54 
Although disease morbidity is associated with several factors including age, sex and aberrant 55 
immune response; the mechanisms and factors underpinning the heterogeneity of disease are 56 
incompletely understood 2. Furthermore, reports of differential immune responses following 57 
vaccination have started to emerge, demonstrating prior SARS-CoV-2 infection can enhance 58 
COVID-19 vaccine response compared with naïve individuals 3,4. Indeed, many questions 59 
regarding the magnitude and robustness of immune response in disease, variants of concern 60 
and/or COVID-19 vaccination in different individuals remain open despite the great recent 61 
efforts.  62 
 63 
Several studies5,6 have illustrated that the correlates of immunity to SARS-CoV-2 are 64 
implicated by the presence of pre-existing immunological memory conferred from cross-65 
reactivity to other viruses. On the one hand such cross-reactivity could modulate disease 66 
severity, vaccine response and/or protection against SARS-CoV-2 and its variants via presence 67 
of antigen-specific memory T cells 7. Conversely, cross-reactivity may provoke 68 
immunopathology through mechanisms such as antibody-dependent enhancement of infection, 69 
with the potential for virus-induced autoimmune disease in years to come 8. 70 
 71 
Coronavirus strains that infect humans belong to either alpha or beta genera. The 72 
alphacoronaviruses contain HCoV-229E and -NL63 while the four lineages of 73 
betacoronaviruses include HCoV -OC43 and -HKU1, SARS-CoV and -CoV-2, MERS-CoV 74 
and other viruses only identified in bats. HCoV-OC43, -HKU1, -NL63 and -229E strains are 75 
known to cause mild to moderate ‘common cold’ symptoms whereas MERS-, SARS-CoV-1 76 
and -2 can cause severe respiratory tract disease and death. Previous natural and experimental 77 
infection studies in humans suggest antibody cross-reactivity within- but minimal reactivity 78 
between- endemic human alpha and beta coronaviruses. Unlike antibodies, T cell cross-79 
reactivity to SARS-CoV-2 appears to be more prevalent. Several recent studies have reported 80 
existence of SARS-CoV-2-specific T cells in unexposed individuals 9–15, although it appears 81 
that T cell cross reactivity is more pronounced in CD4+ than CD8+ T cells in these subjects. 82 
 83 
Recent studies have provided varying insights regarding the presence of pre-existing CD8+ T 84 
cell immunity to SARS-CoV-2 conferred by HCoV. In an investigation into the 85 
immunodominant SARS-CoV-2 SPR* epitope – associated with HLA-B*07:02 – Nguyen et 86 
al16., found little evidence of cross-reactive exposure in pre-pandemic Australian samples. On 87 
the other-hand, Francis et al15., found evidence of pre-existing memory CD8+ T cells in naïve 88 
samples and have shown that HLA genotype conditions pre-existing CD8+ T cell memory to 89 
SARS-CoV-2, and they suggest that unexposed individuals with specific HLA alleles (such as 90 
HLA-B*07:02), may be more likely to possess cross-reactive memory T cells specific for the 91 
SPR* SARS-CoV-2 epitope. These disparate results may stem from differences in regional 92 
HLA allele frequencies and / or experimental methodology. Nevertheless, the extent to which 93 
patients’ haplotypes and SARS-CoV-2-HCoV cross-reactivity - amongst other factors - are 94 
linked to heterogeneous COVID-19 disease, robustness of immunity against SARS-CoV-2 and 95 
its variants, and/or protection after vaccine-induced immune response, remains to be 96 
elucidated. 97 
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 98 
In this study, we examined the evidence for SARS-CoV-2-specific T cell cross-reactivity with 99 
common-cold HCoVs and identifying 126 immunogenic SARS-CoV-2 peptides that are highly 100 
similar to 285 predicted HCoV pMHC. We additionally identified a set of SARS-CoV-2 101 
peptides with high similarity to several human genes. We found that public TCR repertoires 102 
reactive to SARS-CoV-2 in COVID-19 patients who carry specific HLA alleles primarily 103 
recognise SARS-CoV-2 peptides with high similarity to HCoVs, suggesting that common-cold 104 
HCoV cross-reactivity is variable and likely to be conditioned by HLA. It is plausible that 105 
patients carrying these HLAs may exhibit more robust protection against SARS-CoV-2 and its 106 
variants. We lastly identified a set of 10 peptides that are highly conserved across multiple 107 
coronavirus strains, to serve not only as potential pan-coronavirus T cell targets, but we propose 108 
are leading candidates as cross-reactive CD8+ T cell epitopes. 109 
 110 
Results 111 
 112 
Curation of functionally evaluated SARS-CoV-2 peptides 113 
 114 
To investigate the potential for T cell cross-reactivity against SARS-CoV-2 as conferred by 115 
common-cold HCoVs, we curated a comprehensive pool of SARS-CoV-2 class I and II 116 
peptides from three datasets (see Methods), which have been functionally evaluated for CD4+ 117 
and CD8+ T cell responses (see Figure 1 for study overview). The data comprise 1799 and 118 
1005 immunogenic and non-immunogenic SARS-CoV-2 peptides respectively (Fig 2A). Many 119 
of these peptides were tested for T cell reactivity in the context of multiple HLA alleles and/or 120 
by multiple assays (IFNg, IL-5 production etc). Furthermore, some peptides are described by 121 
qualitative labels corresponding to varying response magnitude (Positive-high and Positive-122 
low etc). Taking these combinations into account, we found 3979 and 2427 immunogenic and 123 
non-immunogenic complexes (Fig 2B). For immunogenic complexes, the most common 124 
lengths are 9-mers, followed by 15- and 10-mers (Fig 2C), and 36.0% are presented by class I 125 
MHC, 32.9% by class II (Fig 2D) and for 31% MHC type is unknown (Fig S1A). For non-126 
immunogenic complexes, 36.1% are presented by class I, 26.4% by class II and for 37.51% the 127 
MHC is unknown. At the gene level, HLA-allele specific information was available for 934 128 
(56.5%) and 607 (42.2%) of immunogenic class I and II complexes respectively (Fig S1A).  129 
 130 
Given the high proportion of missing MHC information, we employed netMHCpan 4.1 and 131 
netMHCIIpan to predict presenting class I and class II alleles respectively for immunogenic 132 
peptides (see Methods). Here, we were able to identify 98% of known MHC molecules, 133 
providing confidence in predictions for unknown alleles (Fig S1B).  134 
 135 
We next sought to examine whether HLAs exhibit preferences towards presenting peptides 136 
from certain SARS-CoV-2 proteins. By employing a similar methodology to Karnaukhov et 137 
al17, we gauged the enrichment and depletion of HLA ligands arising from these proteins (see 138 
Methods). Indeed, we observed differential antigen presentation by HLAs e.g., HLA-C*07:02 139 
appears to be the most consistently enriched in presenting 9mers from the examined proteins 140 
(Fig 2E), while HLA-A*02:01 is enriched in presenting 9mers from ORFs but depleted for 141 
10mers across most assessed proteins. This disparity may be due to a known preference of 9-142 
mers for HLA-A*02:01 18. Furthermore, despite the prevalence of HLA A*02:01 in the global 143 
population and in MHC presentation experiments, this allele appears to be depleted for 144 
presenting ligands from SARS-CoV-2 proteins that have been the focus of intense experimental 145 
work e.g., spike and nucleocapsid phosphoprotein. 146 
 147 
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These patterns of HLA preferences in presenting SARS-CoV-2 peptides appear to differ for 9- 148 
and 10-mers. For example, whereas HLA-C*07:02 is enriched for presenting 9mers, this allele 149 
appears to be a poor presenter of 10mers from each examined protein. It is unclear why 150 
substantially fewer 10-mer HLA-C*07:02 ligands are predicted than 9mers, however it is 151 
plausible that this allele may prefer 9mers, as appears to be the case with HLA-A*02:01, -152 
A*11:01 and -B*40:01 18, or that this may be a SARS-CoV-2 specific effect. 153 
 154 
Although it is of great interest to reveal the rate to which SARS-CoV-2 MHC-bound peptides 155 
are immunogenic in humans 19, it cannot be examined directly with existing data because not 156 
all MHC-bound SARS-CoV-2 peptides have been evaluated for immunogenicity. 157 
Nevertheless, we explored the pool of MHC-bound peptides in our dataset that have been 158 
examined for a T cell response, to gauge the proportion that SARS-CoV-2 pMHC are 159 
immunogenic. Overall, we observed low rates of immunogenic pMHC (Fig 2F), although 160 
ligands of HLA-B*40:01 appear to be commonly immunogenic. Interestingly we observed that 161 
HLA-C*07:02 does not present any 10-mers in our dataset. This apparent preference for 9-162 
mers is consistent with availability of HLA-C*07:02 ligands tested for T cell response in 163 
humans from the IEDB, where there exist only 121 unique peptides, of which 73% are 9mers 164 
and only 12% are 10mers. In summary, these data suggest length and source protein 165 
preferences for HLA alleles presenting SARS-CoV-2 peptides and that HLA-B*40:01 SARS-166 
CoV-2 ligands are commonly immunogenic.  167 
 168 
Identification of Shared and Private Immunogenic SARS-CoV-2 peptides 169 
 170 
To discriminate SARS-CoV-2-HCoV shared (herby referred to as ‘sCoV-2-HCoV’) peptides, 171 
we compared immunogenic SARS-CoV-2 peptides to HCoV protein sequences. For this, we 172 
define a metric that considers 1) sequence homology, 2) physicochemical similarities 173 
(MatchScore20) and 3) presentation status for which the source peptide from SARS-CoV-2  and 174 
the target peptide from one of the HCoVs are required to be presented by the same HLA. A 175 
source peptide is defined as shared if it fulfils all these three conditions otherwise is considered 176 
as a private peptide (see Methods). 177 
 178 
Using our metric, we identified 126 unique SARS-CoV-2 (immunogenic) peptides pointing to 179 
285 highly similar peptides in HCoVs (Supplementary Data File 1). Hence, we provide a 180 
comprehensive map of private and shared SARS-CoV-2 functionally evaluated immunogenic 181 
peptides, and for sCoV-2-HCoV peptides, their matches from each HCoV. 182 
 183 
Out of the HLAs tested (see Methods) 33 and 28 class I and II HLAs respectively were 184 
predicted to present the target HCoV pMHCs (Fig3A). HLA-A*02:01 and HLA-B*27:05 were 185 
the most and least common class I presenters respectively. For class II, DRB1-1501 and DRB5-186 
0101 were the most common presenters, while DRB1-0301 and DRB1-1303 were the least. 187 
Most shared class I and II peptides were predicted to bind multiple HLA allelic variants (Fig 188 
2SA). Compared with private peptides it appears that sCoV-2-HCoV peptides are presented by 189 
less HLAs, although this was not significant (Fig S2C). Nevertheless, the range of predicted 190 
alleles for these peptides suggests recognition in broad geographical and ethnic settings 21. 191 
 192 
For the 126 SARS-CoV-2 peptides with high similarity to HCoV, we also observed binding to 193 
multiple HLAs (FigS2B). In addition, we found that 9mers comprise 54% of the 126 SARS-194 
CoV-2 peptides with high-similarity matches to HCoV, followed by 15mers (19%) and 10mers 195 
(17.5%) (FigS2C). Consistent with previous reports 22, the betacoronaviruses HKU1 and OC43 196 
were most enriched in target matches (Fig3B), perhaps due to higher total sequence homology 197 
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among betacoronavirus strains 23. We next examined the extent to which immunogenic SARS-198 
CoV-2 peptides exhibit homology to multiple HCoV strains. Surprisingly, we found that 42 199 
SARS-CoV-2 immunogenic peptides exhibit matches to at least three strains (Fig3C). 200 
However, we observed small clusters of peptides that only possess homology with one strain, 201 
e.g OC43 or HKU1. ORF1ab protein and spike surface glycoprotein produced the highest 202 
quantity of shared SARS-CoV-2-HCoV peptides in both strains, and the protein regions from 203 
which these peptides were found are similar in both HKU1 and OC43 (Fig S2E-H).  204 
 205 
Of particular note about our map of shared and private peptides is that this map is subject to 206 
thresholds that we used in our metric. The sequence homology threshold that was used here is 207 
50% and most peptides had greater than or equal to 70% sequence homology (Fig S2E) 208 
Although, more stringent sequence homology parameter will result a map containing fewer 209 
shared peptides (Fig 3D), our main conclusions in this manuscript remain the same even with 210 
sequence homology threshold of 70% (data are not shown).  211 
 212 
Lastly, we compared the amino acid distribution between shared and private SARS-CoV-2 213 
peptides for 9-mers, which is the most common peptide length in our dataset (Fig 3E). We 214 
observed some moderate differences, e.g., increased prominence of Valine at position 9 within 215 
shared peptides. 216 
 217 
We have therefore identified a pool of 126 SARS-CoV-2 immunogenic peptides - that exhibit 218 
high similarity to 291 peptides in HCoV strains - which are likely to be presented by an array 219 
of class I and II HLA molecules. This array of presenting alleles suggests the potential for 220 
broad global population coverage, which is explored later. We propose that this pool of 221 
experimentally confirmed immunogenic SARS-CoV-2 peptides and their counterpart high 222 
similarity matches be considered as potential targets for T cell cross-reactivity, therefore 223 
warranting investigation into pre-existing immune memory from HCoV or a role in protection 224 
from SARS-CoV-2 variants.  225 
 226 
Identification of peptides with high similarity to self and self-microbiomes 227 
 228 
To prevent aberrant T cell mediated inflammation and tissue damage, the immune system has 229 
evolved several checkpoint mechanisms. These include thymus negative selection and 230 
peripheral tolerance. Indeed, dissimilarity to self is increasingly recognised as a component of 231 
peptide immunogenicity 25, which may assist in calibrating a balance between immunogenicity 232 
and inflammatory pathogenesis. 233 
 234 
To evaluate the extent to which dissimilarity to self and self-microbiomes contribute to SARS-235 
CoV-2 peptide immunogenicity, we took a similar approach and used our metric to compare 236 
SARS-CoV-2 peptides to human self-proteome and microbiomes that include 457 gut and 50 237 
airway microbiota. (see Methods). Here, for SARS-CoV-2 HLA class I presented 9- and 10-238 
mer peptides we observed that  immunogenic SARS-CoV-2 peptides were significantly more 239 
dissimilar to the human proteome than their non-immunogenic counterparts (Fig 4A, S3A). 240 
Using this approach, we could not detect any significant difference between immunogenic and 241 
none immunogenic class II peptides in their dissimilarity to self-proteome (Fig S3B).  242 
 243 
Interestingly however, for peptides of both lengths 9 and 10, we identified several 244 
immunogenic SARS-CoV-2 peptides with considerable sequence similarity to the human 245 
proteome (Fig 4A-B, Table S1). For the top 10% of these peptides with highest similarity to 246 
self, the mean amino acid conservation (the proportion of the amino acid sequence which is 247 
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exactly conserved) between these peptides and corresponding self matches is 72.1% with 248 
8.33% standard deviation (see Supplementary Data File 2 for number of substitutions under 249 
column ‘Hamming’). In general, T cells specific for these peptides should be subject to 250 
negative selection otherwise it is plausible that aberrant immune responses may occur during 251 
the course of the disease in the form of immunopathology or in the future in the form of 252 
autoimmunity 8,26,27.  253 
 254 
To investigate the potential association of these peptides in immunopathology further, we 255 
predicted MHC presentation by a set of class I HLA alleles (see Methods) for the top 10% of 256 
peptides most similar to the human proteome for 9mers and 10mers. We observed that these 257 
peptides with high similarity to self are predicted to bind multiple HLAs (Fig 4C), and 258 
interestingly, we found that in most cases, the SARS-CoV-2 immunogenic peptide and the 259 
match from the human proteome are predicted to be presented by the same allele (Fig4C).  260 
 261 
Next, we examined the list of genes with high sequence similarities to these SARS-CoV-2 262 
immunogenic peptides (Table S1 & Supplementary Data File 2). Of particular interest, we 263 
found e.g. CCL3 and CCL3L1 which are linked to cytokine storms and the expression of which 264 
have been reported to be elevated in severe COVID-19 patients 28–33 (Fig 4D, Supplementary 265 
Data File: 1). We additionally observed CD163, similarly associated with severe COVID-19, 266 
however the predicted presentation score of HLA-B*15:01 for peptides from CD163 with high 267 
similarity to SARS-CoV-2 were slightly beyond the generally accepted ‘binding’ cutoff. 268 
Interestingly, the SARS-CoV-2 peptides exhibiting sequence homology to CCL3 and CCL3L1 269 
(and CD163) were private to SARS-CoV-2 (Fig 4D & Table 1) - which may increase the 270 
likelihood of being involved in immunopathology after infection. Additionally, we observed 271 
considerable amino acid conservation with matches from these genes, with 77.8% for 9mers 272 
and 70% for 10mers (Table 1).  273 
 274 
CCL3 and CCL3L1 are both ligands for CCR1 and CCR5. Interestingly, CCR1 variants are 275 
linked to pulmonary macrophage infiltration in severe COVID-1934 and inhibition of CCR5 in 276 
critical COVID-19 patients has been associated with a decrease in plasma IL-6 and SARS-277 
CoV-2 RNA and an increase in CD8+ T cells 35. Additionally, intermediate monocytes which 278 
constitutively express high levels of CCR5 have recently been suggested as playing a role in 279 
post-acute sequelae of COVID-19 36 (often referred to as ‘long-COVID’). Of further interest, 280 
we found SMPD4 and SLC1A4, which together with CCL3 and CCL3L1 are involved in the 281 
response to TNF, which is part of the cytokine storm following COVID-19 disease. 282 
 283 
By comparing SARS-CoV-2 peptides to human microbiomes, we observed subtle higher 284 
dissimilarity of SARS-CoV-2 immunogenic peptides to the gut (Fig S3C) and airways (Fig 285 
S3D) microbiomes, which may suggest a link between the diversity of both microbiota and 286 
heterogeneity of the disease in populations, although this warrants further investigation. 287 
 288 
Given the magnitude of the global pandemic and the widespread vaccination required to 289 
combat it, future virus-induced autoimmune disease and immunopathology is of concern. 290 
Overall, this analysis suggests dissimilarity of viral peptides to self-proteins as a correlate of 291 
peptide immunogenicity. Furthermore, we present candidate genes and peptides with high 292 
similarity to SARS-CoV-2 T cell targets, which we suggest as prime targets for further 293 
investigations into their role in autoimmune disease and immunopathology following SARS-294 
CoV-2 infection and/or vaccination. 295 
 296 
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CD8+ T cell cross-reactivity and common-specificity within SARS-CoV-2 297 
 298 
A valuable characteristic of our map of SARS-CoV-2 shared and private peptides, is that for 299 
245 of these (out of 1279 class I immunogenic peptides), cognate TCRs at the beta chain 300 
resolution are available in the IEDB. We therefore set out to map the TCR landscape through 301 
a network approach to explore the potential for cross-reactivity among SARS-CoV-2 specific 302 
CD8+ T cells, and their common-specificity. Here, to avoid overestimating connectivity, any 303 
peptides of different lengths, which share starting positions in the SARS-CoV-2 proteome and 304 
are recognised by identical sets of TCRs, are considered as one peptide.  305 
 306 
Through a two-mode (bipartite) network-graph illustrating the connectivity of SARS-CoV-2 307 
immunogenic peptides with their cognate TCRs, amongst a highly connected topography we 308 
observed considerable connectivity for some sCoV-2-HCoV peptides e.g. “FLN..” (Fig S4A). 309 
Exploring this further, we projected the bipartite network-graph into a one-mode graph where 310 
nodes represent peptides and an edge between two nodes requires existence of a TCR 311 
recognising both peptides (Fig S4B). The clustering around a small set of hubs suggests that 312 
many experimentally assessed TCRs target a small set of SARS-CoV-2 peptides. Indeed, we 313 
found that in this dataset, 80% of the TCRs are reported to recognise only 40 (16%) peptides, 314 
of which 4 are sCoV-2-HCoV shared peptides and 36 are SARS-CoV-2 private (Fig S4C). This 315 
dominant set of peptides may be due to experimental biases e.g., research may be heavily 316 
biased toward several protein regions. However, this may also reflect a selection bias by SARS-317 
CoV-2 specific TCRs. In this regard, amongst these 80% of TCRs, we observed high usage of 318 
V gene TRBV20-1  37 and J gene TRBJ2-1 38 (Fig S4D), that have been previously reported to 319 
have implications in COVID-19 patients.  320 
 321 
Similarly, we examined the extent of common specificity in SARS-CoV-2 specific T cells by 322 
a one-mode graph in which nodes represent TCRs and an edge represents whether two nodes 323 
(TCRs) recognize the same peptide (Fig S4E). Interestingly, this graph reveals a set of highly 324 
connected hubs reflecting levels of common specificity, however there are many TCRs which 325 
recognise only a single unique peptide. Comparing these two sets of TCRs, we did not observe 326 
considerable differences in their CDR3b sequences (Fig S4F-G), however we observed 327 
differences in V and V-J gene usage (Fig S4H-J). 328 
 329 
In summary, we employed peptides with known cognate TCRs in the IEDB database - although 330 
limited in numbers – to explore SARS-CoV-2 CD8+ T cell cross-reactivity. Our network 331 
approach demonstrates that SARS-CoV-2 CD8+ T cells can cross-react and exhibit common-332 
specificities. 333 
 334 
Presence of public TCRs recognising sCoV-2-HCoV peptides in COVID-19 convalescents and 335 
healthy subjects   336 
 337 
We next integrated our map of SARS-CoV-2 shared and private peptides with a recently 338 
published dataset known as ‘MIRA’ 39 to track the patterns of public TCRs recognizing sCoV-339 
2-HCoV peptides in convalescents and/or healthy subjects. Here, Nolan et al., employed the 340 
‘Multiplex Identification of Antigen-Specific T cell receptors’ (MIRA) assay to identify 341 
SARS-CoV-2 specific TCRs from PBMCs and naïve T cells. These data include more than 342 
160k high confidence SARS-CoV-2-specific TCRs mapped to target peptides from 39 Healthy 343 
controls (HC) (defined as unexposed to SARS-CoV-2) and 90 COVID-19 convalescent 344 
patients. These data consist of 792 unique SARS-CoV-2 peptides, 54 of which are sCoV-2-345 
HCoV shared peptides.  346 
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 347 
To elucidate the landscape of public TCRs in HC and convalescent patients, we generated a 348 
bipartite graph comprising all public TCRs (defined as CDR3b+V +J gene(s) present in at least 349 
two subjects) cognate for SARS-CoV-2 private and sCoV-2-HCoV shared peptides (Fig 5A). 350 
This graph revealed two clear hubs. In the first (green nodes), we observed that healthy subjects 351 
were connected to public TCRs which recognise both sCoV-2-HCoV and SARS-CoV-2-352 
private peptides. In the second hub (red nodes) comprising convalescent patients, we observed 353 
that generally their public TCR repertoires predominately recognise SARS-CoV-2-private 354 
peptides. Indeed, it appears that cognate TCRs of sCoV-2-HCoV peptides are more pronounced 355 
in HC (Fig S5A-Shared, wilcoxon p=0.00029) whereas cognate TCRs of SARS-CoV-2-private 356 
peptides appear enriched in the convalescent cluster (Fig S5A-Private). Interestingly, we 357 
observed a considerable number of TCRs recognising shared peptides which are common 358 
between these two subject clusters, indicating that sCoV-2-HCoV-specific public TCRs are 359 
present not only in COVID-19 patients but are also expanded from unexposed individuals (Fig 360 
5A-B).  361 
 362 
Given that in these healthy donors, the TCRs are generally from naïve CD8+ T cells which are 363 
expanded and stimulated with SARS-CoV-2 peptide pools and analysed with the ‘MIRA’ 364 
assay, the presence of cognate TCRs recognising sCoV-2-HCoV peptides in HC as well as 365 
COVD-19 patients may not necessarily translate into pre-existing T cell immunity. Rather, due 366 
to the high similarity between the cognate SARS-CoV-2 antigens and (predicted) HCoV 367 
presented peptides, we suggest it is plausible that these SARS-CoV-2 specific TCRs are cross-368 
reactive with HCoV peptides. Indeed, consistent with Francis et al.,15 who demonstrate pre-369 
existing memory CD8+ T cells to SPR* peptide in 80% of unexposed individuals, we found a 370 
set of public TCRs – which are observed in both convalescent and unexposed individuals - 371 
recognising this sCoV-2-HCoV peptide. In this light, we reveal candidate public TCRs and 372 
corresponding SARS-CoV-2 peptides with high similarity to HCoVs, which should be 373 
examined further for cross-reactive potential. 374 
 375 
From these two bipartite graphs, we observed that healthy individuals respond to a balance of 376 
SARS-CoV-2 private and sCoV-2-HCoV peptides, although it appears that infection primarily 377 
dictates a dominant recognition of private SARS-CoV-2 peptides (Fig S5B). For convalescent 378 
patients, we observed that public TCR repertoires of the majority (51/86) of patients are almost 379 
entirely (>=99%) occupied by TCRs recognising SARS-CoV-2 private peptides (Fig 5C). 380 
However, in a subset of convalescent patients, public TCRs recognising sCoV-2-HCoV 381 
peptides comprise a substantial fraction of the public repertoire. In fact, for 12 convalescent 382 
patients, >50% of their public TCRs recognise sCoV-2-HCoV peptides.  383 
 384 
Comparing these two groups of patients, we did not find evidence of a link toward biological 385 
sex or age. To explore potential correlates, we first gathered the 12 patients whose public TCRs 386 
most dominantly (>50%) recognise sCoV-2-HCoV peptides (labelled PubTCR-SharedEp), and 387 
then via sampling 12 patients 10 times from the set of 51 patients whose public TCRs almost 388 
entirely recognise SARS-CoV-2 private peptides (labelled PubTCR-Private), we compared 389 
HLA coding genes of these two groups. We observed that the PubTCR-SharedEp group is 390 
statistically enriched for carrying HLA-B*07:02, HLA-C*07:02 and HLA A*03:01, whereas 391 
the former group includes a broader set of HLAs among which HLA A*01:01 was more 392 
pronounced (Fig 5D). The enrichment of HLA-B*07:02 in the PubTCR-SharedEp group is 393 
consistent with recent work from Francis et al15, and these data are in agreement with their 394 
claim that CD8+ T Cell HCoV-CoV-2 cross-reactivity may be conditioned by HLA. 395 
 396 
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Employing these two groups and sampling a set of healthy patients (n=12), we reveal the set 397 
of epitopes only recognised by public TCRs in these healthy patients, and those shared with 398 
the convalescent PubTCR-SharedEp group (Fig S5C, Supplementary Data File 3 and 4). 399 
Additionally, we reveal the peptides only observed in the PubTCR-Private convalescent group, 400 
adding to previous insights that SARS-CoV-2 infection can provoke T cell responses to a novel 401 
set of peptides compared to those expanded from unexposed patients 7.  402 
 403 
Recent work shows cross-reactive private TCRs from unexposed subject repertoires, capable 404 
of recognising both the SARS-CoV-2 SPR* peptide and its LPR* homolog from HCoVs OC43 405 
and HKU1. By mapping out which SARS-CoV-2 peptides are recognised in which individuals 406 
by private TCRs, we observed SPR* but also an additional set of sCoV-2-HCoV peptides 407 
recognised in both healthy and convalescent patients (Fig S5D, Supplementary Data Files 5-408 
6). Lineburg et al., 40 recently reported private TCRs in HLA-B*07:02+ unexposed individuals 409 
which cross-react with both the SARS-CoV-2 SPR* peptide and the OC43/HKU1 homolog 410 
LPR*, which indicates a level of pre-existing immunity. Of these TCRs, we found two (defined 411 
as CDR3b, TRBV, TRBJ) which appear in two HLA-B*07:02+ unexposed individuals within 412 
the MIRA dataset (Table S2). As these TCRs are now observed in two separate datasets, we 413 
therefore propose these as public TCRs, capable – as identified by Lineburg et al., - of cross-414 
reacting with both SARS-CoV-2 SPR* and OC43/HKU1 LPR* peptides. 415 
 416 
Taken together, we report existence of a set of CD8+ TCRs in both HC and COVID-19 417 
convalescent patients that recognise SARS-CoV-2 peptides with high sequence similarity to a 418 
pool of predicted HCoV pMHC. This high sequence similarity indicates cross-reactive 419 
potential of these TCRs. Primarily however, we observed that COVID-19 patients develop 420 
public TCR responses to private peptides – many of which are not observed in unexposed 421 
individuals - indicating that any cross-reactive potential is limited. For the subset of COVID-422 
19 patients whose public TCRs are directed towards sCoV-2-HCoV peptides - and are observed 423 
in HC - we found distinct HLA profiles. Therefore, in agreement with recent data from Francis 424 
et al., we suggest that CD8+ T cell HCoV-CoV-2 cross-reactive potential is apparent, although 425 
likely conditioned by patient HLA genotype. It is plausible that these patients may exhibit more 426 
robust protection against SARS-CoV-2 and its variants. 427 
 428 
Potential conserved coronavirus CD8+ T cell targets with broad population coverage  429 
 430 
Given the emergence of new SARS-CoV-2 variants and concern over the theoretical capacity 431 
of future mutants to evade current vaccine strategies1, conserved CD8+ T cell targets across 432 
multiple coronavirus strains with the potential to elicit T cell responses in a large percentage 433 
of global populations are of interest. We therefore searched our peptide map for SARS-CoV-2 434 
peptides with ‘high-similarity’ matches to multiple HCoVs, and with cognate TCRs in the 435 
MIRA dataset. To select only the top ‘high-similarity’ SARS-CoV-2-HCoV matches for this 436 
analysis, we applied a more stringent sequence homology threshold. Indeed, in addition to the 437 
‘MatchScore’ and peptide presentation criteria outlined previously (see Methods: 438 
Discriminating shared and private SARS-CoV-2 peptides), we only retained matches with at 439 
least 70% sequence conservation (i.e. allowing 30% amino acid substitution).  440 
 441 
We found 86 peptides that match these criteria, 84 of which are recognised by TCRs in both 442 
convalescent and HC (Fig 6A-B). We next focused on SARS-CoV-2 peptides with high 443 
similarity matches in >=3 HCoV strains (Table 2, Supplementary Data File 7). Of these SARS-444 
CoV-2-HCoV matches, the number of amino acid substitutions ranged between 0-3, with a 445 
mean of 1.79 and standard deviation of 0.78. Additionally, while each of these peptides 446 
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exhibited a high similarity match to either MERS or SARS-CoV, the majority exhibited 447 
homology with both of these viruses (Fig S6A). As well as high conservation across many 448 
coronavirus strains, collectively these SARS-CoV-2 peptides are predicted to bind multiple 449 
HLA alleles (Fig 6C), raising the possibility that this set of peptides may elicit T cell responses 450 
in a substantial proportion of the global population. 451 
 452 
We next sought to determine the extent in global and regional populations that these CD8+ T 453 
cell targets may elicit T cell responses individually and accumulatively. We therefore used the 454 
IEDB population coverage tool 41, which employs global HLA allele prevalence data to predict 455 
the percentage of individuals in a regional population to respond to a given epitope set. Starting 456 
with each SARS-CoV-2 peptide and predicted HLAs individually, we find considerable 457 
coverage of 55.32% for “LLLD*”, while “VQID*” exhibits the lowest predicted coverage of 458 
7.09% (Fig 6D). 459 
 460 
Similarly to a previous approach by Ahmedid et al 42, we set out to predict the accumulated 461 
global population coverage of the set. We found that 8 peptides collectively produce >90% 462 
global coverage, while the entire set is predicted to elicit T cell responses in 92.93% of the 463 
global population (Fig 6E). Regionally, Europe and North America exhibited the highest 464 
predicted coverage (Fig 6F). Of note, Africa and Asia also exhibited high predicted coverage. 465 
Central America (defined as Guatemala and Costa Rica) exhibited low coverage of 7%. It is 466 
unclear why, and further investigation is necessary to produce a peptide set with high coverage 467 
in these countries. 468 
 469 
Overall, we identified a set of 10 SARS-CoV-2 immunogenic peptides, each highly conserved 470 
across coronavirus strains, which collectively provide global population coverage of ~93%. 471 
We believe that this is an encouraging insight in the search for pan-coronavirus T cell targets, 472 
and additionally propose these as top candidates for cross-protective immunity. 473 
 474 
Discussion 475 
 476 
Our work demonstrates that T cells specific to SARS-CoV-2 peptides with high similarity to 477 
HCoV pMHC can be expanded from naïve individuals, and that these cognate public TCRs are 478 
also observed in a subset of recovered COVID-19 patients. This finding firstly suggests that 479 
SARS-CoV-2-unexposed individuals could mount T cell responses to HCoVs that – due to 480 
peptide similarity - could be cross-reactive with SARS-CoV-2 antigens. Furthermore, we 481 
propose that while COVID-19 disease appears to primarily direct responses against SARS-482 
CoV-2-private peptides, patients with certain HLA alleles (e.g HLA-B*07:02, -C*07:02, -483 
A*03:01) may be more likely to possess sCoV-2-HCoV cross-reactive CD8+ T cells. It is 484 
therefore plausible that SARS-CoV-2 naïve individuals with certain HLAs may be at lower 485 
risk of severe disease – or experience augmented vaccine responses - if previously exposed to 486 
endemic coronaviruses, however a direct link to pre-existing immunity requires further 487 
investigation. 488 
  489 
Indeed, our analysis indicates that after SARS-CoV-2 infection, a subset of individuals has 490 
memory T cells that primarily recognize sCoV-2-HCoV peptides. In these convalescent 491 
patients, it is unclear whether infection itself, and/or prior exposure to HCoVs are driving this 492 
subset of individuals to select for these peptides. There is conflicting evidence surrounding the 493 
existence of memory SARS-CoV-2 cross-reactive CD8+ T cells in unexposed 494 
individuals15,16,40, and a limitation of our work is that we could not to provide a direct link to 495 
pre-existing immunity, because from healthy donors the MIRA dataset only evaluated 496 
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expanded naïve T cells and did not examine anti-viral efficacy of the responding T cells. 497 
Indeed, although we cannot determine the cause or timeframe of this selection of sCoV-2-498 
HCoV peptides in this subset of individuals, the potential implications are interesting. It is 499 
plausible that these patients may exhibit more robust protection against SARS-CoV-2 variants, 500 
HCoVs or even future emerging coronavirus strains. Future work should explore any immunity 501 
benefit of infection-induced cross-reactive T cell responses, and in addition, it will be 502 
interesting to examine whether vaccination against SARS-CoV-2 can induce T cell memory 503 
that is cross-reactive with SARS-CoV-2 variants and/or wider coronaviruses in such 504 
individuals. Furthermore, by our identification of a set of 10 potentially cross-reactive peptides 505 
with broad population coverage, it is possible that these peptides could be employed to test 506 
which patients exhibit cross-reactive phenotypes e.g., after vaccination with relevant antigens. 507 
 508 
More broadly, data are beginning to demonstrate distinct vaccine-induced responses linked to 509 
differential patient exposure to SARS-CoV-2 3,4. In turn, it is possible that COVID-19 vaccine 510 
boosted cross-reactive immune responses may influence vaccine-induced protection 7. Indeed, 511 
it will be important to explore whether COVID-19 vaccination can boost any infection-induced 512 
cross-reactive T cell memory, and whether this affects robustness of protection from SARS-513 
CoV-2 variants or wider coronaviruses.  514 
 515 
SARS-CoV-2 reactive CD8+ T cells have been associated with milder disease 43, and as 516 
previously mentioned, conflicting evidence has recently emerged regarding the presence of 517 
pre-existing CD8+ T cells in unexposed patients. Nguyen et al16., found that SARS-CoV-2 518 
CD8+ T cells in Australian pre-pandemic samples, including those recognising the 519 
immunodominant HLA-B*07:02-SPR* complex, predominately displayed a naïve phenotype, 520 
indicating a lack of pre-existing memory conferred by HCoV. In contrast, Francis et al15., found 521 
that ~80% of unexposed individuals carrying HLA-B*07:02 show a pre-existing CD8+ T cell 522 
response to HLA-B*07:02-SPR*. Francis et al argue that these pre-existing memory pools are 523 
likely induced by prior exposure to HCoV, and that only a subpopulation of individuals 524 
carrying specific HLA would possess such memory T cells. Our work is consistent with a 525 
subset of COVID patients enriched for carrying HLA-B*07:02, and observed that in these 526 
patients, their public T cells respond primarily to shared peptides. Despite not providing a link 527 
to memory vs naïve responses, we build upon existing work by proposing additional alleles 528 
which may be carried by individuals who possess cross-reactive T cells, as well as those which 529 
appear depleted or absent in these individuals. Few studies have examined associations 530 
between HLA type and COVID disease or its severity 15,44,45. Nevertheless, the emerging 531 
picture is indicating that HCoV-SARS-CoV-2 cross-reactivity is conditioned by HLA 532 
genotype. Together, we provide a landscape of TCR-pMHC interactions (all TCR-pMHC 533 
interactions used in the analyses are found in Supplementary Data File 8) which may be 534 
involved in HCoV-SARS-CoV-2 cross-reactivity and provide a framework for further anti-535 
viral mechanistic studies. 536 
 537 
Although our study provides a map of shared and private SARS-CoV-2 peptides to date and 538 
offers the extent to which one may expect CD8+ T cells cross-reactivity between HCoVs and 539 
SARS-CoV-2, a limitation is that for cross-reactivity insights, we had to limit ourselves only 540 
on CD8+ T cells for which both peptides and their cognate TCRs information were available. 541 
Additionally, our approach for identifying homologous sequences seems to work better for 542 
MHC class I peptides that are considerably shorter in length than their class II counterparts. 543 
With a more suitable metric for longer peptides, one may substantiate our insights for class II. 544 
 545 
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Our metric for discriminating shared and private peptides is based on three factors: 1) sequence 546 
homology at 50%, 2) physicochemical similarity of 75% and 3) that both source and target 547 
peptides must be presented by the same HLA. Of these three, 50% sequence homology may 548 
seem too relaxed. In support of our use of this threshold we note that: a) factors 2 and 3 are 549 
additionally applied to compensate for this, b) we have checked our results with 70% sequence 550 
homology and observed that main conclusions are robust, 3) as this map is suggested for further 551 
functional validation we favour minimizing false negatives at the cost of potential false 552 
positives.  553 
 554 
Through examining the potential for cross-reactivity between SARS-CoV-2 and HCoV strains, 555 
we have predicted that a set of 10 highly conserved immunogenic peptides could mount CD8+ 556 
T cell responses in 99% of the global population. These peptides have been reported previously 557 
in in silico and experimental work 46–50 however to our knowledge their large accumulated 558 
global population coverage has not yet been reported. Some of these peptides exhibit similar 559 
population coverage although with different HLA profiles, therefore it may be possible to tailor 560 
a smaller set of peptides to specific regions of interest (based on local HLA frequency), thus 561 
maximising coverage with a minimal set of peptides. Our work firstly identifies these peptides 562 
as top candidates for cross-reactivity. Secondly, we propose that their high conservation across 563 
strains may be of interest as pan-coronavirus targets, to assist ongoing work in search of 564 
mitigation strategies to reduce the threat from mutant variants or emerging coronaviruses 51–53. 565 
 566 
A complex facet of severe COVID-19 disease and its diverse clinical manifestation is 567 
immunopathogenesis. Indeed, exacerbated immune responses including cytokine storm are a 568 
primary clinical characteristic in severe COVID-19 patients. Aberrant transcriptional 569 
programming has been observed in response to SARS-CoV-2 54, characterised by a failure of 570 
type-1 and -3 interferon responses and simultaneous high induction of chemoattractants. While 571 
the growing evidence for pre-existing HCoV cross-reactive memory T cell responses may 572 
simply translate into an immunity benefit in some patients, in concert with data from MERS 573 
and SARS-CoV-1, there are considerable evidence that cross-reactive T and B cell responses 574 
may on the other hand be involved in immunopathology with SARS-CoV-2.  575 
 576 
Venkatakrishnan et al.,55 identified peptides that are identical between SARS-CoV-2 and the 577 
human proteome. Their work demonstrates that the genes giving rise to these peptides are 578 
expressed in tissues implicated in COVID-19 pathogenesis. Our work expands their insights, 579 
by identifying SARS-CoV-2 peptides that are experimentally confirmed to be immunogenic, 580 
with high similarity to the human proteome. Consistent with their conclusions, we find 581 
similarity of immunogenic SARS-CoV-2 peptides to human genes e.g., CCL3, CCL31 and 582 
CD163. These insights are of particular interest given the elevated cytokine and chemokine 583 
responses in severe COVID patients. More broadly, there is evidence that viral antigens that 584 
are structurally similar to self-antigens can be involved in inducing autoimmunity via 585 
molecular mimicry 8. For these reasons, we propose these peptides as candidates which may 586 
exhibit immunopathological or autoimmune associations.  587 
 588 
In conclusion, we have employed an in-silico approach to examine the evidence surrounding 589 
cross-reactive SARS-CoV-2 CD8+ T cell responses. We observed a set of SARS-CoV-2 590 
candidates with high similarity to the human proteome and suggest investigation into whether 591 
they provoke immunopathology. We have also provided evidence of CD8+ T cell cross-592 
reactivity, not only to an extent which indicates that naïve individuals could mount cross-593 
reactive responses to SARS-CoV-2 and common-cold coronaviruses, but we also found that 594 
SARS-CoV-2 infection induces CD8+ T cell responses against peptides with high similarity to 595 
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HCoV in some COVID-19 patients. We build upon existing evidence that such cross-reactivity 596 
is conditioned by presence of specific HLA alleles and envision that the insights presented here 597 
are leveraged to explore whether these potentially cross-reactive T cells and cognate pMHCs 598 
influence COVID-19 disease heterogeneity, vaccine- or infection-induced protection from 599 
SARS-CoV-2 and its emerging variants of concern. 600 
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Methods 615 
 616 
Data Processing and Analysis 617 
 618 
All data processing and analysis was performed using the R plugin for Pycharm 2020, in either R 619 
4.0.3 or 4.0.1.  620 
 621 
Curating a pool of SARS-CoV-2 class I and II peptides 622 
 623 
Human immunogenic and non-immunogenic SARS-CoV-2 peptide data were gathered from the both 624 
the IEDB and the Virus Pathogen Resource (VIPR) (accessed 11-02-2021). ‘T cell’ assay, ‘Human’ 625 
host and SARS-CoV-2 organism options were selected. If an observation was found in both datasets, 626 
the one from the IEDB was retained. Protein names were cleaned and standardised where possible. 627 
Immunogenic peptides not observed in either the IEDB or VIPR were also gathered from the ‘MIRA’ 628 
dataset which maps cognate TCRs and SARS-CoV-2 peptides. 629 
 630 
Retrieval of Coronavirus Proteome Sequences 631 
 632 
NCBI reference genomes were gathered for OC43 633 
(https://www.ncbi.nlm.nih.gov/nuccore/1578871709/), HKU1 634 
(https://www.ncbi.nlm.nih.gov/nuccore/NC_006577.2), 229E 635 
(https://www.ncbi.nlm.nih.gov/nuccore/NC_002645.1), NL63 636 
(https://www.ncbi.nlm.nih.gov/nuccore/49169782/), and SARS-CoV-2-Wuhan 637 
(https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2). 638 
 639 
MHC Presentation Prediction 640 
 641 
Antigen presentation by MHC class I was predicted using NetMHCpan v4.1 against HLA-A*0101, 642 
0201, 0301, 2402, HLA-B*0702, 4001, 0801, and HLA-C*0702, 0401, 0701 alleles. Antigen 643 
presentation by MHC class II was predicted using netMHCIIpan against the most common sets of 644 
alleles found in the IEDB, for which this model can make predictions to. The alleles are: DRB1-0101, 645 
0102, 0301, 0401, 0402, 0402, 0404, 0701, 0801, 0901, 1001, 1101, 1104, 1201, 1202, 1301,1302, 646 
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1303, 1401,  1406, 1501, 1502, 1601, 1602, DRB3_0101, 0202 and DRB5_0101, 0102. Peptides with 647 
a rank score <=2.0 were classified as binders.  648 
 649 
HLA ligand enrichment analysis for SARS-CoV-2 proteins 650 
 651 
To provide reasonable statistical inference, we only examined proteins longer than 100 amino acids. 652 
To compute enrichment or depletion, we followed the approach by Karnaukhov et al. First, we 653 
predicted using netMHCpan v 4.1 the number of ligands Ni of length l from each SARS-CoV-2 654 
protein i which adheres to the criteria. Probability of a HLA allele presenting a peptide was computed 655 
as the average number of ligands per allele: 656 
 657 

𝑝 = 	𝜇𝑁𝑖/𝜇𝐿𝑖 658 
 659 
where Li is the corrected protein length (length of protein – l), and µ denotes the average over the 660 
assessed SARS-CoV-2 proteins. It follows that the probability of observing a given number of ligands 661 
from each SARS-CoV-2 protein is computed using the binomial distribution as: 662 
 663 

𝑃(𝑁𝑖) = 𝑃,-./0(𝑁𝑖|𝑝, 𝐿𝑖) 664 
 665 
The logs odds ratio (enrichment or depletion) is calculated as: 666 
 667 

log(
𝑁𝑖
𝑝𝐿𝑖

) 668 

 669 
Discriminating Shared and Private SARS-CoV-2 Peptides 670 
 671 
To compare a SARS-CoV-2 peptide a, of length N to a proteome of interest, all possible linear 672 
peptides of length N were generated from said proteome. This can be thought of as scanning along the 673 
proteome of interest with a step size of 1, generating all peptides of length N. The deriving protein 674 
was recorded. Three metrics – which all must be satisfied - were used determine whether a peptide is 675 
considered shared with HCoV or private to SARS-CoV-2. We below describe each metric, and then 676 
explain the three thresholds which all must be achieved for a peptide to be classified as ‘shared.’. 677 
 678 
Firstly, once all peptides from the proteome of interest of length N are generated, a similarity index 679 
we call the ‘MatchScore’ is calculated for each pairwise comparison. This metric is charged with 680 
assessing physicochemical similarity between two peptides of interest. For each SARS-CoV-2 681 
peptide, the highest ‘MatchScore’ against each HCoV protein is retained and the rest are discarded. 682 
To calculate the ‘MatchScore’, we employ the method designed by Bresciani et al 24. Briefly, for two 683 
peptides a or b of length N, the similarity score is given as; 684 
 685 

𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒 =
𝑏𝑙(𝑎, 𝑏)

Abl(a, a) × 𝑏𝑙(𝑏, 𝑏)
 686 

 687 
where bl(a,b) is the BLOSUM62 score for peptide a vs b, and bl(a,a) is the BLOSUM62 score for 688 
peptide a vs a, etc. BLOSUM62 local-global alignment scores (local or global would produce the 689 
same score for a pairwise alignment of lengths N vs N) were computed using the pairwiseAlignment 690 
function from the R package Biostrings, with high gap penalties (opening and extension of both 100). 691 
The MatchScore function produces a score where 1 reflects an exact match, i.e no mismatches in two 692 
sequences, and 0 reflects high dissimilarity.  693 
Criteria 1: A shared peptide and its HCoV match must have a MatchScore of >0.75. 694 
 695 
The second metric is based on sequence homology between two sequences, essentially reflecting the 696 
proportion of amino acid positions in the SARS-CoV-2 peptide, which are conserved in the HCoV 697 
match. This is calculated as: 698 
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 699 

	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = 	
𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐿𝑒𝑛𝑔𝑡ℎ
 700 

 701 
where ‘HammingDistance’ is the hamming distance between two peptides of interest, which 702 
calculates the number of different positions, and ‘Length’ is the length of the compared peptides.  703 
Criteria 2: The ProportionMismatched between a shared peptide and its HCoV match must be < 0.5 704 
(50%). 705 
 706 
Naturally, the inverse of this is true, in that at least 50% amino acid conservation between a SARS-707 
CoV-2 peptide and a HCoV match must be observed for the peptide to be considered ‘shared’. 708 
 709 
The third metric is based on predicted presentation by HLA of the SARS-CoV-2 peptide and its 710 
HCoV match.  711 
Criteria 3: Both the SARS-CoV-2 peptide and its HCoV match must be predicted to bind at least one 712 
common HLA allele. 713 
 714 
All three criteria must be satisfied for a SARS-CoV-2 peptide to be classified as a shared peptide and 715 
also for a match from HCoV to be considered a homologous match. doParallel and foreach functions 716 
were used to parallelise the processing. 717 
 718 
Sequence Similarity with the Human Proteome and Human Microbiomes 719 
 720 
Here, the same similarity criteria were employed as in the previous HCoV section. However, in 721 
contrast with HCoV comparison, due to the size of the human proteomes and microbiomes, the best 722 
match against the whole proteome is retained. doParallel and foreach functions were used to 723 
parallelise the processing.  724 
 725 
Gathering human proteome sequence 726 
 727 
The human proteome was downloaded in fasta format from UniProt 728 
https://www.uniprot.org/proteomes/UP000005640 729 
 730 
Gathering human microbiome sequences 731 
 732 
Human gut and airways microbiomes were downloaded from the HMP Data Analysis and 733 
Coordination Center http://www.hmpdacc.org/HMRGD. The complete set of genomes were 734 
downloaded in fasta format in ‘Protein multifasta (PEP) format’. For gut, the body site was specified 735 
as ‘gastrointestinal tract’. 457 and 50 gut and airway microbiota were available respectively. 736 
 737 
Human gene sets with sequence similarity to SARS-CoV-2 immunogenic peptides 738 
 739 
The SARS-CoV-2 peptides of lengths 9 and 10 with a similarity score to the human proteome in the 740 
top 10 percentile were gathered. Only predicted binders (see MHC presentation prediction) were 741 
retained.  742 
 743 
CD8+ T cell cross-reactivity maps using IEDB receptor data 744 
  745 
The entire IEDB receptor data for SARS-CoV-2 peptides was downloaded. Bipartite graphs were 746 
generated using iGraph and Matrix libraries in R. Bipartite graphs were projected into one-mode 747 
graphs using the bipartite_projection function. All graphs were exported from iGraph into Cytoscape 748 
v3.82 using the R function createNetworkFromIgraph from package RCy3. From Cytoscape, 749 
‘.graphml’ files were exported and opened with Gephi. Gephi was used to finalise the diagrams and 750 
improve visual aesthetics. Either ‘ForceAtlas’ or ‘Fructerman-Reingold’ templates were used. Gravity 751 
and repulsion parameters were altered to improve visual aesthetics. 752 
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 753 
CD8+ T cell CDR3 Kmer Enrichment 754 
 755 
R Package immunarch 56was used to compute Kmer (K=5 in this case) statistics for CDR3 sequences, 756 
and to visualise enrichment. See https://immunarch.com/articles/web_only/v9_kmers.html for full 757 
details.  758 
 759 
Gathering clinical and TCR repertoire data for COVID-19 patients and healthy subjects 760 
 761 
The COVID-19 MIRA dataset (>160k high-confidence SARS-CoV-2-specific TCRs) was 762 
downloaded from https://clients.adaptivebiotech.com/pub/covid-2020 with corresponding sample 763 
metadata. These data contain TCR repertoire data mapped to SARS-CoV-2 epitopes from 5 patient 764 
cohorts, including COVID convalescent patients and healthy subjects with no known exposure to 765 
SARS-CoV-2. Only convalescent patients and healthy subjects were used in the analysis due to low 766 
numbers of subjects for other cohorts. 767 
https://clients.adaptivebiotech.com/pub/covid-2020 768 
 769 
Networks of TCRs recognising Shared and/or Private Peptides 770 
 771 
A public TCR is defined as a CDR3 sequence and V and J gene which is observed in more than one 772 
patient in the MIRA dataset. All graphs were first generated using iGraph in R, exported to Cytoscape 773 
using the createNetworkFromIgraph function in the RCy3 package. From cytoscape, all graphs were 774 
exported as .graphml files and read into Gephi. In Gephi, either ‘ForceAtlas’ and ‘Fruchterman-775 
Reingold’ templates were used. In almost all cases, gravity and repulsion parameters were adjusted to 776 
improve visual aesthetics. 777 
 778 
Estimating population coverage of SARS-CoV-2 peptides with high conservation to three or 779 
more HCoV 780 
 781 
We followed the approach by Ahmedid et al42. Population coverage is an estimate of the proportion of 782 
individuals in a given population that may mount a T cell response against a peptide. Population 783 
coverage is predicted based on HLA alleles for each immunogenic peptide as predicted by 784 
netMHCpan 4.1, leading to individual population coverage of a peptide. To predict accumulated 785 
coverage, we began with the peptide with the highest individual coverage “FVDG*”, and 786 
incrementally added a peptide and predicted accumulated coverage.  The population coverage of a set 787 
of peptides (i.e accumulated coverage), is defined as the proportion of individuals able to mount a T 788 
cell response to at least one peptide in the set. Python code for the IEDB tool to compute the 789 
population coverage was downloaded from http://tools.iedb.org/population/download on 24-11-20. 790 
 791 
 792 
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Figure 1: Overview of the study. A) Functionally evaluated SARS-CoV-2 peptides are gathered from three online repositories. Data are cleaned and 
integrated, thus curating a comprehensive pool of SARS-CoV-2 class I and II peptides. Exploratory data analysis followed. B) Next, each immunogenic 
SARS-CoV-2 peptide of length l is compared to each possible linear peptide of length l from four common-cold causing human coronavirus strains. Based 
on similarity criteria and following confirmation that the target hit from HCoV is predicted to bind HLA, peptides are classified as ‘shared’ SARS-CoV-2-
HCoV peptides. Those which do not adhere to the criteria are classified as SARS-CoV-2 private. C) The entire set of SARS-CoV-2 shared and private, 
immunogenic and non-immunogenic peptides is compared to the human proteome and gut and airways microbiomes. D) 245 peptides from our SARS-CoV-
2 peptide dataset have known cognate TCRs in the IEDB. These peptide-TCR associations were examined to explore the extent of cross-reactivity and 
common-specificity within SARS-CoV-2. E) Both shared and private immunogenic SARS-CoV-2 peptides are integrated with the COVID-19 MIRA TCR 
repertoire dataset and employed to examine the presence of TCRs recognizing shared/private SARS-CoV-2 peptides in health and/or disease. F) The entire 
set of 126 shared SARS-CoV-2 peptides is searched for those most highly conserved across coronaviruses. This resulted in 17 peptides, of which we used to 
predict global and regional population coverage, given predicted HLA alleles. 
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Figure 2: A comprehensive pool of functionally validated SARS-CoV-2 peptides. Barplots showing A) The number of SARS-CoV-2 peptides 
deemed ’positive’ or ‘negative’. A ‘negative’ label reflects that for a peptide, there are only negative (nonimmunogenic) qualitative observations while 
‘positive’ reflects at least one immunogenic observation. B) The number of total pMHC complexes observed in the dataset, including all assay and 
HLA combinations for each peptide. C) The distribution of lengths of complexes amongst our SARS-CoV-2 dataset. Left plot shows nonimmunogenic 
‘Negative’ peptides. Right plot shows immunogenic or ‘Positive’ peptides. MHC class is colour coded. D) The frequencies of immunogenic or non-
immunogenic class I or II observations, for peptides where specific HLA allele information is available. Numeric labels show the number of peptides 
in each group. E) The logs odd ratio of observed and expected number of presented peptides of lengths 9 and 10 by common HLA alleles for SARS-
CoV-2 proteins > 100 amino acids in length. Significance calculated using binomial distribution. F) The frequency of immunogenic and 
nonimmunogenic peptides as presented by common class I HLA alleles arising from SARS-CoV-2. Numeric labels show the number of observations 
per immunogenicity status.  
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Figure 3: A set of peptides from human coronavirus strains with high similarity to immunogenic SARS-CoV-2 peptides. A) A barplot showing 
the number of high similarity matches predicted to bind a set of common HLA class I and class II alleles. B) A barplot showing the number of unique 
high similarity matches derived from each human common-cold-causing coronavirus. Each hit is defined as a unique observation with MatchScore 
> 0.75, between an immunogenic SARS-CoV-2 peptide with length x, and a stretch of length x from one viral protein. C) A dot and line plot showing 
each SARS-CoV-2 peptide and to which common-cold-causing coronavirus it exhibits a high similarity match. The size of each point reflects the 
MatchScore, i.e the primary similarity metric. D) Barplots showing the number of unique SARS-CoV-2 peptides (left) and SARS-CoV-2-HCoV 
matches (right), at different thresholds of the sequence homology metric, i.e the % of the amino acids that must be conserved between the SARS-
CoV-2 peptide and its HCoV match. E) Sequence logo plots comparing amino acid usage amongst SARS-CoV-2 shared and private 9-mer peptide 
sequences. 
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  Figure 4: A pool of immunogenic SARS-CoV-2 peptides with high similarity to human genes. A) Notched boxplots showing the similarity (evaluated 
by the MatchScore) of nonimmunogenic and immunogenic SARS-CoV-2 peptides with sequences derived from the human proteome of lengths 9 
(immunogenic n = 906, nonimmunogenic n=734 peptides) and 10 (immunogenic n=394 and nonimmunogenic n=394 peptides). The green dot shows the 
median of each group, red line represents the median of the immunogenic group. B) A barplot showing the MatchScores of hits with high similarity to the 
human proteome, colour-coded by protein length. C) A dotplot showing the predicted HLAs of candidate peptides with high similarity to SARS-CoV-2 
proteome. The size of the point reflects the MatchScore. An ‘X’ shows where the SARS-CoV-2 derived peptide and the match are predicted to bind the 
same allele. D) A bar chart showing the genes from which the high similarity match peptides arise in the human proteome, separated by the “Private” or 
“Shared” epitope status of the SARS-CoV-2 epitope. 
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  Figure 5: A landscape of T cell responses against SARS-CoV-2-HCoV Shared and SARS-CoV-2-private peptides in healthy or COVID-19 

convalescent individuals: A) A bipartite network graph showing SARS-CoV-2-specific public TCRs which recognize shared or private SARS-CoV-2 
peptides in healthy or convalescent patients. TCRs are colour-coded by whether they recognize only shared peptides (blue), only private peptides 
(orange) or both (yellow). COVID-19 convalescent patients are labelled red while healthy controls are labelled green. Node size reflects degree of 
connectivity, i.e. the quantity of an individual’s TCRs which are shared with other patients. B) A bipartite network graph showing SARS-CoV-2 public 
TCRs that recognize SARS-CoV-2-HCoV shared peptides. Patient node size reflects the quantity of their TCRs which are shared with another patient. 
Healthy patients are labelled green, COVID-19 convalescent are labelled red, and (public) TCRs are labelled blue. C) A barplot showing the frequency 
that each convalescent patient’s public TCRs recognize SARS-CoV-2-private (red) or SARS-CoV-2-HCoV-shared (blue) peptides. Patients with 
identical frequencies are ordered by the number of TCRs. D) Barplots showing the quantities of COVID-19 convalescent patients who carry 14 class I 
HLA alleles of interest. Patients are grouped by whether their public TCRs predominately recognize “Private” (PubTCR_Private, n=12, sampled 10 
times) or “Shared” (PubTCR_SharedEp, n=12) peptides. For the PubTCR-Private group, 12 patients were sampled 10 times and the number of patients 
carrying alleles was measured. The mean number of patients carrying each allele and the error are visualized. For the PubTCR-SharedEp group, the 
data contain only 12 patients of interest, thus the number of patients carrying each allele is measured and visualised.  
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Figure 6: T cell epitopes with known cognate TCRs which are conserved across multiple HCoVs and SARS-CoV-2 exhibit broad population 
coverage: A) A dot plot showing SARS-CoV-2 peptides with high similarity to more than one HCoV that are recognized by TCRs in the MIRA dataset. 
Size of the dot represents the MatchScore. B) The frequency of cognate TCRs which recognize these peptides from the COVID-19 convalescent or healthy 
cohorts. C) The HLA alleles predicted to present SARS-CoV-2 peptides with high similarity matches to 3 or 4 HCoV strains. D) Global population 
coverage as calculated by the ‘IEDB population coverage tool’ for each individual SARS-CoV-2 peptide with high similarity matches to 3 or 4 HCoV 
strains. E) Accumulated global population coverage predicted by the IEDB population coverage tool. F) Regional population coverage for the entire set of 
10 SARS-CoV-2 peptides with matches to 3 or 4 HCoV. 
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Human 
Match 

MatchScore SARS-CoV-2 
Peptide 

HLA Allele Shared/Private Protein Length Proportion Conserved 

STAALAVLL 0.806 STAALGVLM HLA-
A*26:01 

Private >sp|P10147|CCL3_HUMAN C-C 
motif chemokine 3 OS=Homo 
sapiens OX=9606 GN=CCL3 PE=1 
SV=1 

9 0.778 

STAALAVLL 0.806 STAALGVLM HLA-
A*26:01 

Private >sp|P16619|CL3L1_HUMAN C-C 
motif chemokine 3-like 1 
OS=Homo sapiens OX=9606 
GN=CCL3L1 PE=1 SV=1 

9 0.778 

ILGVVLLAIF 0.818 IVGVALLAVF HLA class I Private >sp|Q86VB7|C163A_HUMAN 
Scavenger receptor cysteine-rich 
type 1 protein M130 OS=Homo 
sapiens OX=9606 GN=CD163 
PE=1 SV=2 

10 0.7 

ILGVVLLAIF 0.818 IVGVALLAVF HLA class I Private >tr|F5GZZ9|F5GZZ9_HUMAN 
Scavenger receptor cysteine-rich 
type 1 protein M130 OS=Homo 
sapiens OX=9606 GN=CD163 
PE=1 SV=1 

10 0.7 

ILGVVLLAIF 0.818 IVGVALLAVF HLA class I Private >tr|H0YFM0|H0YFM0_HUMAN 
Scavenger receptor cysteine-rich 
type 1 protein M130 (Fragment) 
OS=Homo sapiens OX=9606 
GN=CD163 PE=1 SV=1 

10 0.7 

ILGVVLLAIF 0.818 IVGVALLAVF HLA class I Private >tr|C9JHR8|C9JHR8_HUMAN 
Scavenger receptor cysteine-rich 
type 1 protein M130 OS=Homo 
sapiens OX=9606 GN=CD163 
PE=1 SV=1 

10 0.7 

 
Table 1: SARS-CoV-2 peptides with high similarity to the human proteome, from genes reported to be involved 
with severe COVID-19. Note, peptides derived from CD163 were not predicted to bind HLA. 
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SARS-CoV-2 Peptide Virus Protein MatchScore 
AIMTRCLAV 229E,OC43,HKU1,NL63,SARS-

CoV,MERS_CoV 
replicase polyprotein 
1ab,ORF1ab 
polyprotein,ORF1ab 
polyprotein,replicase 
polyprotein 1ab,ORF1ab 
polyprotein,1AB 
polyprotein 

1,1,0.977,0.977,1,0.977 

KLFAAETLK NL63,229E,HKU1,OC43,SARS-
CoV,MERS_CoV 

replicase polyprotein 
1ab,replicase polyprotein 
1ab,ORF1ab 
polyprotein,ORF1ab 
polyprotein,ORF1ab 
polyprotein,1AB 
polyprotein 

0.881,0.857,0.847,0.847,1,0.929 

LLLDDFVEI HKU1,229E,NL63,OC43,SARS-CoV ORF1ab 
polyprotein,replicase 
polyprotein 1ab,replicase 
polyprotein 1ab,ORF1ab 
polyprotein,ORF1ab 
polyprotein 

0.894,0.871,0.86,0.777,1 

LQLGFSTGV OC43,HKU1,229E,NL63,MERS_CoV,SARS-
CoV 

ORF1ab 
polyprotein,ORF1ab 
polyprotein,replicase 
polyprotein 1ab,replicase 
polyprotein 1ab,1AB 
polyprotein,ORF1ab 
polyprotein 

0.977,0.955,0.809,0.809,1,1 

LSDDAVVCFNSTY 229E,HKU1,OC43,SARS-CoV,MERS_CoV replicase polyprotein 
1ab,ORF1ab 
polyprotein,ORF1ab 
polyprotein,ORF1ab 
polyprotein,1AB 
polyprotein 

0.843,0.789,0.789,0.872,0.789 

VLQAVGACV HKU1,OC43,229E,NL63,SARS-
CoV,MERS_CoV 

ORF1ab 
polyprotein,ORF1ab 
polyprotein,replicase 
polyprotein 1ab,replicase 
polyprotein 1ab,ORF1ab 
polyprotein,1AB 
polyprotein 

0.876,0.876,0.795,0.773,1,0.832 

VQIDRLITGR HKU1,229E,NL63,OC43,SARS-
CoV,MERS_CoV 

spike protein (all) 0.887,0.845,0.845,0.804,1,0.804 

YEQYIKWPW HKU1,OC43,NL63,229E,SARS-CoV spike protein (all) 0.903,0.873,0.855,0.794,1 
YEQYIKWPWY HKU1,OC43,NL63,SARS-CoV spike protein (all) 0.913,0.886,0.775,1 
YVFCTVNAL 229E,NL63,HKU1,OC43,SARS-CoV replicase polyprotein 

1ab,replicase polyprotein 
1ab,ORF1ab 
polyprotein,ORF1ab 
polyprotein,ORF1ab 
polyprotein 

0.84,0.818,0.809,0.809,1 

Table 2: Highly conserved CD8+ T cell peptides across SARS-CoV-2 and HCoV strains, with high population 
coverage 
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Supplementary 

 
  

Supplementary Figure 1: A-B) Barplots showing A) the frequency of immunogenic epitopes amongst HLA labels that do not designate a 
specific allele. B) the frequency of antigen presentation predictions where the correct allele for the SARS-CoV-2 peptide (where known) 
was identified. C-E) Line plots showing the immunogenic regions of the most immunodominant SARS-CoV-2 proteins, C) membrane 
glycoprotein, D) nucleocapsid phosphoprotein, E) ‘spike’ surface glycoprotein. 
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Supplementary Figure 2A-E, continued overleaf. 
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  Supplementary Figure 2: A) A dot plot showing predicted HLA alleles for peptides from HCoV with high-similarity to immunogenic SARS-CoV-2 
peptides. Size of the point reflects the similarity score to the corresponding SARS-CoV-2 peptide. Lines link predicted alleles. An ‘X’ indicates – where 
possible - if there is experimental evidence that the corresponding SARS-CoV-2 peptide binds the predicted HLA allele for the HCoV match. B) a dot 
plot showing predicted HLA alleles for the 129 shared SARS-CoV-2 immunogenic peptides. C) Density plots showing the mean number of alleles for 
which shared peptides are predicted to bind (solid black line), compared with a background distribution generated by randomly shuffling the dataset 
using both private and shared peptides (left) or private peptides only (right). Dashed lines show +/- 2 standard deviations from the mean. D) Bar plot 
showing the distribution of lengths for 129 shared SARS-CoV-2 immunogenic peptides. E) Bar plot showing the distribution of amino acid conservation 
between the 285 matches and the 126 SARS-CoV-2 shared peptides. F-I Line plots showing the HCoV protein regions which produce immunogenic 
HCoV-CoV-2 shared peptides from F) HKU1 ORF1ab polyprotein, G) HKU1 spike glycoprotein, H) OC43 ORF1ab polyprotein, I) OC43 spike 
glycoprotein. 
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Supplementary Figure 3: A) Empirical cumulative distribution plots for HLA class I peptides of length 9 and 10, showing the cumulative % of peptides to 
reach a specific MatchScore, color labelled by immunogenicity status. B) A notched boxplot and empirical cumulative distribution plot showing the 
similarity -as evaluated by the MatchScore - of nonimmunogenic and immunogenic class II SARS-CoV-2 peptides with sequences derived from the human 
proteome of length 15 (immunogenic n=955, nonimmunogenic n=953 peptides). C-D) Notched boxplots and empirical cumulative distribution plots 
showing the similarity of nonimmunogenic and immunogenic SARS-CoV-2 peptides with sequences derived from gut C) and airway microbiomes D). 
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Supplementary Figure 4 A-D, continued overleaf.  
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Supplementary Figure 4: CD8
+ 

T cell cross-reactivity against SARS-CoV-2. A) A bipartite network graph depicting the interactions with 
SARS-CoV-2 immunogenic peptides (SARS-CoV-2-shared are colored red, -private are coloured yellow) and their cognate TCRs (blue). Node 
size represents the degree of connectivity. B) A one-mode network graph showing shared and private SARS-CoV-2 peptides. An edge between 
a peptide node demonstrates that a peptide is recognized by the same TCR. Node size reflects the degree of connectivity. C) A barplot showing 
the top 80% of the cumulative SARS-CoV-2-specific CD8+ T cell response and the peptides recognized, as per the cognate TCR dataset from 
the IEDB. D) A heatmap showing common V and J gene usage for SARS-CoV-2 specific TCRb sequences. E) A one-mode network graph 
showing the common specificity of SARS-CoV-2 specific TCRs. Each node is a TCR, and an edge reflects whether two TCRs recognize the 
same peptide.  Node size reflects the number of peptides recognized by a TCR. F) A sequence logo plot visualizing the position weight matrix 
for CDR3b 5mers in the IEDB dataset, for “Hub TCRs”, those with considerable common-specificity. G) A sequence logo plot visualizing the 
position weight matrix for CDR3b 5mers in the IEDB dataset, for “Singletons”, those recognizing only one unique SARS-CoV-2 peptide H) A 
barplot contrasting the Kmer distribution for “Hub” and “Singleton” TCRs. The count is normalized by the number of TCRs in each group 
(Hub or Singletons). I) A barplot contrasting the V gene usage of ”Hub” and “Singleton” TCRs. Y axis shows the frequency to which the V 
gene is used in each group. J) A barplot contrasting the V-J gene usage of ”Hub” and “Singleton” TCRs. Y axis shows the frequency to which 
the V-J gene combination is used in each group.  
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Supplementary Figure 5: A) Boxplot showing for each patient, the frequency of public TCRs recognizing SARS-CoV-2 private or 
SARS-CoV-2-HCoV shared peptides, grouped by Private/Shared epitopes and contrasting patient cohort. B) Boxplot showing for each 
patient, the frequency of public TCRs recognizing SARS-CoV-2 private or SARS-CoV-2-HCoV shared peptides, grouped by patient 
cohort and contrasting Private/Shared epitopes. C) Line graph showing the peptides recognized by public TCRs in different patient 
cohorts: Healthy patients (PubTCR_Healthy) (n=12), COVID convalescent patients whose public TCRs predominately recognize Private 
(PubTCR_Private) or Shared (PubTCR_SharedEp) peptides (both n=12). D) A bipartite graph showing the common-specificity of private 
TCRs recognizing SARS-CoV-2 shared and private peptides. An edge between a patient and a peptide is observed if a patient posseses a 
private TCR recognizing that peptide. 
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Supplementary Figure 6: A) A dot and line plot showing each SARS-CoV-2 peptide on the x-axis. A dot shows a high similarity match 
to MERS or SARS-CoV. The size of each point reflects the MatchScore, i.e the similarity metric. 
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SARS-CoV-2 Peptide Qualitative_Measure HLA_Allele HitSeq MatchScore SharedEpitope Length SYMBOL HitSeq_Binder AASeq_Similarity 

RQLLFVVEV Positive HLA class I RQLLFVVDI 0.892 TRUE 9 GTPBP10 TRUE 0.778 
YIATNGPLK Positive HLA-A*11:01 YIATQGPLK 0.884 TRUE 9 PTPRG TRUE 0.889 

LLSAGIFGA Positive HLA class I LITAGIFGA 0.871 TRUE 9 SLC12A3 FALSE 0.778 
ALNTLVKQL Positive-Low HLA-A*02:01 SLNTLLKQL 0.854 FALSE 9 CCDC169 TRUE 0.778 

GLTVLPPLL Positive,Positive HLA-A*02:01,HLA-
A*02:01 

GLTVLPALL 0.851 FALSE 9 SLC2A4 TRUE 0.889 

SSRGTSPAR Positive HLA class I SSRDTSPAR 0.841 FALSE 9 CLASP1 TRUE 0.889 
LLFNKVTLA Positive,Positive HLA class I,HLA-A*02:01 LLYNKMTLA 0.837 FALSE 9 MME TRUE 0.778 

QEILGTVSW Positive,Positive HLA-B*44:03,HLA-B*44:03 QEVLGSMSW 0.833 FALSE 9 NWD1 TRUE 0.667 

SPRRARSVA Positive HLA-B*07:02 SPRRSRSIS 0.833 FALSE 9 SRSF7 TRUE 0.667 

AIMTRCLAV Positive HLA class I AVLTRCLVV 0.828 TRUE 9 LSM14B TRUE 0.667 
LALLLLDRL Positive,Positive HLA-A*02:01,HLA-

A*02:01 
LALALLDRI 0.821 FALSE 9 NUP205 TRUE 0.778 

FLLPSLATV Positive,Positive,Positive HLA-A*02:01,HLA-
A*02:01,HLA-A*02:01 

FLIPSLAAI 0.819 FALSE 9 OR2AG1 TRUE 0.667 

RLFRKSNLK Positive,Positive,Positive HLA class I,HLA-
A*31:01,HLA-A*03:01 

RLFKKSNIR 0.818 FALSE 9 GPR87 TRUE 0.667 

NLNESLIDL Positive,Positive-
Low,Positive 

HLA class I,HLA-
A*02:01,HLA-A*02:01 

NVNQSLLDL 0.814 FALSE 9 FTHL17 FALSE 0.667 

SELLTPLGI Positive HLA-B*40:01 SELLKPLGL 0.814 FALSE 9 MBD4 TRUE 0.778 

EAFEKMVSL Positive-Low HLA-B*08:01 EEFEKLVSL 0.81 FALSE 9 BHLHB9 TRUE 0.778 

RLDKVEAEV Positive HLA class I RLDSMEAEV 0.81 FALSE 9 CCDC151 TRUE 0.778 

STAALGVLM Positive HLA-A*26:01 STAALAVLL 0.806 FALSE 9 CCL3 TRUE 0.778 

STAALGVLM Positive HLA-A*26:01 STAALAVLL 0.806 FALSE 9 CCL3L1 TRUE 0.778 

VPHISRQRL Positive HLA-B*07:02 VPHVSKERI 0.804 FALSE 9 KNL1 TRUE 0.556 

EYVSQPFLM Positive HLA-A*24:02 EYIEKPFLM 0.8 FALSE 9 TTLL7 TRUE 0.667 

LLLDRLNQL Positive,Positive-
Low,Positive-Low,Positive-
Low,Positive,Positive 

HLA-A*02:01,HLA-
A*02:01,HLA-
A*02:01,HLA-
A*02:01,HLA-
A*02:01,HLA-A*02:01 

LLLDRVNDL 0.8 FALSE 9 DNAH5 TRUE 0.778 

STNVTIATY Positive,Positive HLA-A*01:01,HLA-
A*32:01 

STHVTISTY 0.8 FALSE 9 RIOX2 TRUE 0.778 

VLKGVKLHY Positive HLA-A*29:02 VLKGSKLHF 0.796 FALSE 9 KIF14 TRUE 0.778 

GMSRIGMEV Positive-
Low,Positive,Positive,Positive 

HLA-A*02:01,HLA-
A*02:01,HLA-
A*02:01,HLA-A*02:01 

GMSRLGEEV 0.795 FALSE 9 EXD2 TRUE 0.778 

MASLVLARK Positive HLA-A*68:01 MASLIVARQ 0.795 TRUE 9 SLC24A3 FALSE 0.667 

MASLVLARK Positive HLA-A*68:01 MASLIVARQ 0.795 TRUE 9 SLC24A4 FALSE 0.667 

VLQAVGACV Positive HLA class I VLEAVGSCL 0.795 TRUE 9 ATM TRUE 0.667 
KQEILGTVSW Positive,Positive HLA-B*44:02,HLA-B*44:03 KQEVLGSMSW 0.849 FALSE 10 NWD1 TRUE 0.7 

SQASSRSSSR Positive HLA class I SRSSSRSSSR 0.837 TRUE 10 CLASRP TRUE 0.8 
SQASSRSSSR Positive HLA class I SRASSRASSR 0.837 TRUE 10 GJA1 TRUE 0.8 
IVGVALLAVF Positive HLA class I ILGVVLLAIF 0.818 FALSE 10 CD163 FALSE 0.7 
TNVLEGSVAY Positive HLA-B*35:01 TNLLEGAVAF 0.804 FALSE 10 AUP1 TRUE 0.7 

IEYPIIGDEL Positive HLA-B*40:01 VEYPLIEDEL 0.796 TRUE 10 DNAH11 TRUE 0.7 

VENPDILRVY Positive HLA-B*44:02 VESPKILRVY 0.792 TRUE 10 F11 TRUE 0.8 

ILPDPSKPSK Positive HLA class I ILPDPDDPSK 0.789 FALSE 10 ZNF592 TRUE 0.8 
KVAGFAKFLK Positive HLA-A*11:01 SVAGFSRFLK 0.784 FALSE 10 FBXL4 TRUE 0.7 

FTISVTTEIL Positive HLA class I FTIRVTSEVL 0.783 FALSE 10 PNPT1 TRUE 0.7 

  
Table S1: Peptides identified with high similarity to human proteome. HitSeq shows the match from the self proteome. SharedEpitope shows whether the peptide is a 
sCoV-2-HCoV shared peptide or not. SYMBOL shows the gene from which the hit peptide is derived. HitSeq_Binder shows whether the hit peptide is predicted to 
bind an HLA allele. AASeq_Similarity shows the proportion of amino acids conserved between the SARS-CoV-2 peptide and the human proteome match. 
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Experiment Cohort Age Gender HLA-B TCR Peptide 

eAV91 Healthy (No known 
exposure) 

31 M B*07:02 CASSELPGPPGEQYF+TCRBV0201+TCRBJ0207 LSPRWYFYY 

eAV91 Healthy (No known 
exposure) 

31 M B*07:02 CASSELPGPPGEQYF+TCRBV0201+TCRBJ0207 SPRWYFYYL 

eXL31 Healthy (No known 
exposure) 

28 M B*07:02 CASTLAGGPYNEQFF+TCRBV0501+TCRBJ0201 LSPRWYFYY 

eXL31 Healthy (No known 
exposure) 

28 M B*07:02 CASTLAGGPYNEQFF+TCRBV0501+TCRBJ0201 SPRWYFYYL 

 
 
 
 
 
Supplementary Data File description 
 
1: Data file containing each of the 126 SARS-CoV-2 peptides which map to 285 targets from HCoV. 
 
2: Data file containing the full set of SARS-CoV-2 peptides which have high similarity to the human 
proteome. 
 
3: Data file containing a summary of the peptides recognized By public TCRs in the PubTCR-
SharedEp and PubTCR-Private groups, supplemented with those recognized in a sampled set of 
healthy patients. File contains a 1 or a 0 demonstrating whether a public TCR in each group of 
patients recognizes the peptide. 
 
4: Data file containing the information from data file 3, but also includes information pertaining to 
whether key class I HLA alleles are observed in a patient with a public TCR recognizing each peptide. 
 
5: Data file containing cohort information regarding the peptides most commonly recognized by 
private TCRs in the MIRA dataset. 
 
6: Data file reporting the private TCRs which recognize the sCoV-2-HCoV shared peptides shown in 
data file 5. 
 
7: Data file containing information from Figure 6, exhibiting the peptides with hits to >=3 HCoV 
strains. File provides detailed information regarding SARS-CoV-2 peptide and the corresponding hit 
to HCoV. 
 
8: Data file contains every TCR from the IEDB and the MIRA datasets which we used in this 
analysis, mapped to the recognized SARS-CoV-2 peptide.  

Table S2: Two previously reported private TCRs are identified in additional HLA-B*07:02+ individuals at beta chain resolution, indicating these 
are cross-reactive public TCRs.  
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