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ABSTRACT 

In complex diseases, causal structure learning across biological variables is critical to identify 

modifiable triggers or potential therapeutic agents. A limitation of existing causal learning methods is 

that they cannot identify indirect causal relations, those that would interact through latent mediating 

variables. We developed the first computational method that identifies both direct and indirect 

causalities, causal inference using deep-learning variable-selection (causalDeepVASE). To accurately 

identify indirect causalities and incorporate them with direct causalities, causalDeepVASE develops a 

deep neural network approach and extends a flexible causal inference method. In simulated and 

biological data of various contexts, causalDeepVASE outperforms existing methods in identifying 

expected or validated causal relations. Further, causalDeepVASE facilitates a systematic 

understanding of complex diseases. For example, causalDeepVASE uniquely identified a possible 

causal relation between IFNγ and creatinine suggested in a polymicrobial sepsis model. In future 
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biomedical studies, causalDeepVASE can facilitate the identification of driver genes and therapeutic 

agents. 

INTRODUCTION 

In complex biological systems such as humans, molecular and clinical features demonstrate variable 

associations in diseases such as cancer, asthma, and sepsis (1)(2)(3). Identifying the causal relations 

in the association is critical to improving translational understanding since causal relations can be 

used to identify potential therapeutic agents that can control the diseases. For example, if an 

abnormal expression of certain genes plays causative roles in developing a disease, then further 

efforts could be made to use these genes for diagnostics and control these genes to treat the disease.  

Bioinformatic methods have been developed to identify the causal structure from associations 

between variables. Among the methods, causalMGM (causal mixed graphical model) and the 

Degenerated Gaussian (DG) score have been shown to achieve great sensitivity and specificity in 

simulated and biological data and can handle mixed types of variables (4)(5). CausalMGM first 

identifies variable associations by testing the significance of the interaction terms in a pseudo-

likelihood function (mixed graphical model (MGM)) (6). From the variable associations, it learns the 

causal structure using the constraint-based PC (Peter and Clark) algorithm or its variants (e.g., PC-

Stable (7), FCI-MAX (8), etc.). Especially, MGM-FCI-MAX can learn a causal graph in a dataset with 

latent confounders. The other method, DG, does not directly identify variable associations, but, given 

variable associations, learns the causal structure by evaluating the direction of the interaction terms in 

a conditional Gaussian likelihood score with certain assumptions (see Methods).  

    However, both methods share a critical limitation in learning causalities in complex biological 

systems. Although they can identify direct associations between variables by testing their interaction, 

they cannot identify indirect associations that would interact through latent mediating variables. 

Recent studies show that complex biological systems with multiple biological layers (such as 

transcriptome, methylome, and proteome) can have indirect relationships between variables through 

mediators in the multiple layers (9), illustrating the necessity to consider not only direct but also 

indirect associations in causal structure learning. For example, in childhood asthma, 366 (88%) of 418 

eQTL SNPs affect gene expression levels both directly and indirectly through DNA methylation (10). 

Therefore, to learn comprehensive causalities in complex biological systems such as asthma, it is 

critical to identify both direct and indirect causalities.  

    In this manuscript, we developed one of the first computational methods that identifies direct and 

indirect causalities among the input variables, causal inference using deep-learning variable selection 

(causalDeepVASE). This novel method decomposes the task of learning causalities into three steps: 

identifying direct and indirect associations and learning causalities from both types of associations. In 

the first step, to identify direct associations, we employed the MGM approach implemented in 

causalMGM due to its validated performance (11). In the second step, to identify indirect associations, 

we utilized a deep-learning approach by modelling the mediating layers with perceptron layers (layers 

of linear classifiers) and inferring their interactions through computational optimization. In addition, we 

use causalDeepVASE to estimate the effect size of the associations using knockoff variables (12) as 
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the negative control. Knockoff variables are to mimic the correlation structure of the input variables in 

a very specific way that will allow for effect size estimation and FDR control of the corresponding input 

variables. Estimating the effect size can facilitate a translatable understanding of the causal structure 

since downstream experiments or clinical trials can target only a limited number of strong causalities 

for technical and practical limitations. Using knockoff variables as the negative control allowed for 

successful estimation of the effect size of important variables in Deep feature selection using Paired-

Input Nonlinear Knockoffs (deepPINK) (13). This approach will successfully estimate the effect size of 

indirect associations.  

    In the third step, we address the main challenge to learn causalities from both direct and indirect 

associations, as such associations were not previously considered. To develop a causality learning 

approach for this purpose, we considered two conditions, decomposability and flexibility. First, the 

optimal causal structure based on any novel approach must be decomposable to the optimal causal 

relation in each association. This decomposability will allow us to determine the causal relation of 

each association without referring to other associations, whether it is a direct or indirect association. 

Second, the approach needs to be flexible in learning causalities generated outside of the assumed 

class. This flexibility will allow us to hypothesize that it can learn causalities from indirect associations. 

Identifying that the Degenerate Gaussian (DG) score satisfies these conditions with certain 

assumptions, we extended DG to learn causalities in causalDeepVASE. Altogether, by identifying and 

incorporating indirect associations and extending DG to learn indirect causality, causalDeepVASE 

increases the power to learn causal relations in complex biological systems compared to existing 

methods that only identify direct causalities.  

    Previously, deep-learning approaches have been applied to learn causal relations in biological and 

clinical data. However, causalDeepVASE is the first one utilizing a deep-learning approach to learn 

indirect causal relations. For example, Yu et al. used a deep-learning generative model to search for 

optimal causal relations under an optimization criterion (14). Also, Young et al. used a deep-learning 

approach to model latent mediators between cause and the effect variables (15). Although Young et 

al.’s approach is close to our design, the difference is that they assume to know which of the input 

variables are the cause and which are the effect variables. On the other hand, causalDeepVASE does 

not assume to know the cause and the effect variables and identify the cause-and-effect relationship 

in the data. 

 

MATERIAL AND METHODS 

Biological data 

TCGA breast invasive carcinoma (BRCA) data in this work were downloaded 

from https://tcga.xenahubs.net. It consists of the gene expression RNAseq dataset (dataset ID: 

TCGA.BRCA.sampleMap/HiSeqV2) and the clinical phenotype dataset (dataset ID: 

TCGA.BRCA.sampleMap/BRCA_clinicalMatrix). For the gene expression dataset, we selected 500 

expressed genes based on their variances and added another gene ERBB2 to the selected gene set. 

For the clinical dataset, we used 10 well-known clinical status features: PAM50Call_RNAseq, 
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HER2_Final_Status_nature2012, Converted_Stage_nature2012 , Node_nature2012, 

breast_carcinoma_progesterone_receptor_status, breast_carcinoma_estrogen_receptor_status, 

lymph_node_examined_count, person_neoplasm_cancer_status, pathologic_stage; and then we only 

kept 601 samples who have no missing values in the 10 selected features.The body-mass index (BMI) 

data has 90 samples and 301 features, where 214 of these 301 features micronutrients and the rest 

87 of them are bacteria genera. We used the same data pre-processing procedure as (13) used in 

their work. The pediatric sepsis data contains 283 septic patients and 56 clinical and laboratory 

features. The data were collected from 9 PICUs in the Eunice Kennedy Shriver National Institutes of 

Child Health and Human Development Collaborative Pediatric Critical Care Research Network 

(including Children’s Hospital of Pittsburgh, Children’s Hospital of Philadelphia, Children’s National 

Medical Center, Children’s Hospital of Michigan, Nationwide Children’s Hospital, Children’s Hospital 

of Los Angeles, St. Louis Children’s Hospital, C. S. Mott Children’s Hospital, and Mattel Children’s 

Hospital at the University of California Los Angeles) (16). Another work analyzing this data is in 

progress. This data is currently not deposited in the public domain yet.  

causalDeepVASE 

To select variables linearly and non-linearly associated with each of the input variables, 

causalDeepVASE develops regularized linear and non-linear model. For linear model, 

causalDeepVASE identifies associated variables in a pairwise Markov Random Field or undirected 

graphical model. Recently, Lee and Hastie proposed the log-likelihood of graphical model  of M 

continuous variables (following normal distribution, denoted by ) and N categorical variables 

(denoted by ) as follows.  

 

where  is the interaction between two continuous variables,  and ,  is the potential 

of continuous variable ,  is a matrix of interaction parameters between the continuous variable 

 with each index of the categorical variable ,  is a matrix of interaction parameters 

between the discrete variable  and  (indexed by their levels) (6). While calculating the partition 

function  can be expensive, it is possible to optimize the log-likelihood edge by edge (5). Overall, 

this equation models the log-likelihood of interactions of continuous variables and categorical 

variables as a multinomial linear regression. To ensure sparsity and select associated variables in the 

regression model, Sedgewick et al. introduced data sparsity penalties for interactions between 
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continuous, categorical, and across continuous and categorical variables ( , respectively) 

as follows. 

 

    To identify non-linear variable associations, causalDeepVASE sets multiple perceptron layers to 

model the multiple hidden layers possibly operating on the associated variables. To address the 

second consideration and select variables  for , causalDeepVASE considers model-X 

knockoff variable for each  according to the following definition (17).  

Definition 1. Model-X knockoff variables for the family of random variables  

are a new family of random variables  that satisfies two properties: (1) 

) for any subset , where  means swapping  

and  for each  and  denotes equal in distribution, and (2) , that is,  is 

independent of response  given variable . By pairing knockoff variables  with the 

corresponding input variables in  in the multiple layers of perceptrons for each response  and 

running optimization concerning , one can quantify strong variables based on , 

where  and  indicate the node weight determined in the optimization. Based on , 

causalDeepVASE determines the associated variables using stopping criteria for 

the user-specific FDR level  as follows 31. When causalDeepVASE embeds this process in our 

module , it identifies all non-linearly associated variables as 

.  

    Also, while the derivation above considers continuous variables, causalDeepVASE transforms 

categorical variable  with  categories into a set of  random variables that can be taken as 

continuous as follows.  where  is the indicator function such that 

 if  and  otherwise (one-hot vector).  Since this transformation originally 

leads to a degenerate distribution that supports only space with one less dimension, 

causalDeepVASE drops the last indicator variable in each one-hot vector as suggested. Then, 

causalDeepVASE ensures to produce a directed acyclic graph (DAG) by manually removing the 

causal relations that create the cycle. If there are multiple causal relations, the removal of which will 

lead to a DAG, causalDeepVASE removes the one with the least effect size. 
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PC  

To estimate the degree of the association between variable  and , the regression model typically 

tests conditional dependence of them given a conditioning set of variables . If  and  are 

independent given , then the following equation would hold.  

 

So, to test the independence of  and  given , it suffices to test if  which can 

be done via likelihood ratio test (LRT) of two regression models that model  given  with and without 

. Since this is known to follow the chi-squared distribution, causality is learned based on the chi-

square test formulated as follows.  

 

where  represents the regression coefficients of the corresponding model. 

 

Degenerate Gaussian score  

Assume a dataset contains  random variables  where the dataset is 

generated from a causal mechanism. Generally, this causal mechanism is represented using a 

directed acyclic graph (DAG) .  consists of a set of numeric vertices  and a set of directed edges 

, where the vertices  are the numeric representations of the random variable set  and  are a set 

of edges that link the vertices in . If vertex  causes another vertex ,  a parent of  and  is a 

child of , which is denoted as .  may have multiple parents, which is denoted as .  

may have multiple children, which is denoted as . Intuitively, the distribution of a variable  is 

impacted by its parents in a DAG or by nothing if it does not have any parents, which can be defined 

as . In other words, it should be conditionally independent of other vertices given its 

parents according to Markov's condition and d-separation theory. The joint distribution of all the 

vertices in a DAG would be defined as the product of the distribution of each vertex in it: 

 

If we log transform the above equation, we get: 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.17.452800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452800


 

    The transformation above enables us to score subgraphs of the original DAG as the original 

equation naturally decomposes into sub-problems. DG utilizes this decomposability attribute as its 

score criteria to locally score subgraphs to find an optimal causal structure: 

 

    Score-based algorithms can use it because of the following reasons: 1) it is decomposable since 

those algorithms greedily search and score the subgraph space; 2) it gives the same score while 

scoring any two Markov equivalent DAGs; 3) it can consistently produce correct scores. 

     The first step of DG score is to embeds all the discrete variables into a continuous space. For each 

variable , DG score checks to what data type it belongs, discrete or continuous. Do nothing if it is a 

continuous variable. If it is a discrete variable, DG score embeds it into a continuous space using their 

one-hot vector representations as the following equation does: 

 

 

 

where  is the indicator function that creates one-hot vector representations for a discrete 

variable (in each new vector  if  and  otherwise). 

    For the newly generated dataset, a full covariance matrix is computed as the covariance matrix will 

be used for calculating the Gaussian log-likelihood. With this new dataset, the DG score is defined as: 

 

where 
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And  is a penalty discount used to tune the density of the resulting graph. , which is 

the log-likelihood of a subset of Z, is computed using the Gaussian log-likelihood function: 

where  is the partial covariance matrix for the variables in . 

 

Single Index model  

The nonlinear simulation datasets were generated using a single index model, which is widely used in 

economics, statistics, and machine learning. Each simulation dataset consists of two parts: a 

response variable ; a set of independently and identically distributed random variables 

 which have no associations with ; and a set of independently and identically distributed 

random variables  which have a nonlinear association with . The following model was 

used for generating these nonlinear datasets: 

 

where  is an unknown link function,  is the  response value,  is the feature vector 

corresponding to the  observation, and  is the noise added to the  response variable. The 

matrix  and  together was simulated independently from a distribution  with a precision 

matrix  with . The distribution for noise  was simulated from 

, where  is set as 1. 

Pre- and post-processing  

To reduce false-positive discoveries, causalDeepVASE carries out several pre- and post-processing 

steps. As a preprocessing step, causalDeepVASE filters out variable pairs that are conditionally 

independent on all the other variables since their surficial association must represent their causal 

relations to the variables the independence is conditioned on, not to each other. Thus, we filtered 

those whose inverse covariance value is less than 0.0001 after calculating the value using 

scipy.linalg.inv. Also, as an optional postprocessing step, causalDeepVASE can detect cycle 

components among the associated variables, so users can refine an acyclic graph with their prior 

knowledge.  

    To investigate the dietary effect on the human gut microbiome, we downloaded the nutrient 

intake/bacteria genera and BMI data from deepPINK site that has 214 micronutrients and 87 genera. 

For a consistent computation using both the data, the nutrient values are normalized using the 

residual method to adjust for caloric intake and then standardized (18). Furthermore, the genera data 

are extracted using 16S rRNA sequencing from stool samples. This data is first log-ratio transformed 

to get rid of the sum-to-one constraint and then centralized. Following (18), 0s are replaced with 0.5 
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before converting the data to a compositional form. With both the nutrient intake and genera 

composition as predictors, we treat BMI as the response. 

 

RESULTS 

causal inference using deep-learning variable selection (causalDeepVASE)  

Given biomedical data of mixed types (Figure 1A), causalDeepVASE exploits not only direct (Figure 

1B) but also indirect associations (Figure 1C). For this, causalDeepVASE formulated this problem as 

a set of variable selection problems; it sets each variable as response and selects the other variables 

related to the response variable. To identify variables directly related to the response variable, 

causalDeepVASE develops a penalized regression function with the interaction terms connecting the 

response variable and each of the other variables and maximizes the likelihood with sparsity penalties 

(Figure 1B1). This approach was implemented in causalMGM (11) and showed a good performance 

at identifying direct associations in simulated and biological data. To identify variables indirectly 

related to the response variable, it is difficult to use a statistical model, since it requires identifying and 

incorporating all variables mediating the indirect associations in the model. Instead, causalDeepVASE 

incorporates a deep learning approach, where multiple perceptron layers are put between the 

response variable and all the other variables to select the variables that function as mediators (Figure 

1C1). Another novelty of causalDeepVASE is the uniform estimation of the effect size across direct 

and indirect associations. To this end, the input variables are paired with the corresponding knockoff 

variables. Since knockoff variables mimic the arbitrary dependence structure among the input 

variables while conditionally independent from the response given the input variables (12), this paring 

allows estimating the strength of each input variable in reference to the corresponding knockoff 

variables.  

    In the second step, after causalDeepVASE identifies the direct and indirect associations (Figure 

1B2, 1C2), it combines the associations (Figure 1D) and uses DG to learn causalities (Figure 1E) 

since this score criterion satisfies the two conditions to uniformly learn direct and indirect causalities, 

decomposability and flexibility. First, the DG score is proven to be decomposable under the 

assumption that the joint distribution over the independent variables factorizes according to the true 

causal structure such that a more parsimonious factorization does not exist. To be compatible with 

this assumption, which is the basis of several causal inference methods (4), causalDeepVASE 

removes variable associations that would violate this assumption, those that are conditionally 

dependent on any of the other variables (see Methods). Second, simulation studies showed that the 

DG score is flexible to identify the optimal causal structure that is generated outside of the assumed 

class. While the simulation studies showed this flexibility only using models of direct associations, the 

conditional Gaussian model and Lee and Hastie model (4), we confirmed that DG is flexible for 

indirect causalities in various simulated and biological data. Then, causalDeepVASE ensures to 

produce a directed acyclic graph (DAG) by manually removing the causal relations that create a cycle 
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in reference to the effect size (see Methods). By using the DG score possessing decomposability and 

flexibility, causalDeepVASE learns direct and indirect causalities in a uniform and accurate fashion.  
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Figure 1. Overview of causalDeepVASE. (A) An input data matrix consisting of m variables, 
either molecular (transcriptomic, epigenetic, genotypic) and clinical variables, either continuous or 
ordinal categorical values, collected from n samples. (B-1) Identifying direct associations: 
causalDeepVASE incorporates a statistical graphical model that selects interaction terms to identify 
associated variable pairs (B-2) An example of the identified direct associations (blue line). (C-1) 
Identifying indirect associations: causalDeepVASE utilizes deep neural network model to identify 
associated variable pairs interacting through mediating layers that are modeled with perceptron layers, 
which are indicated as orange nodes. After the first run sets V1 as response and identifies its 
association with other variables, causalDeepVASE will run this model with each of the other variables 
(V2, V3, ..,Vm) as response to identify all indirect associations. (C-2) An example of the identified 
direct associations (red line) (D) Incorporating the direct and indirect from both statistical learning 
model and deep learning model (E) Learning the causalities: causalDeepVASE utilizes degenerate 
gaussian (DG) to evaluate the causal direction for each association from (C, D). 
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causalDeepVASE identifies the true causal relations in simulated data 

To assess the performance of causalDeepVASE, we will compare it to causalMGM, DG, and PC. 

Since DG learns causality based on the variable associations identified by an external method, we 

used the MGM graph using causalMGM’s implementation to learn causal relations with DG. Since the 

MGM implementation identifies the variable associations based on the interaction terms, we will refer 

to this model as the direct-DG model. Since causalDeepVASE runs DG on the direct and indirect 

associations, PC will be run on the direct and indirect associations to compare DG and PC. We will 

refer to this model as the direct-indirect-PC model (Figure 2A). Note that direct-DG and direct-

indirect-PC models were developed in this paper for comparison purposes. In this section, we 

simulated data sets in the following way. With various sample sizes (n=200, 600, 1000), we simulated 

different numbers of variables (p = 50, 100, 200, 400, 600, 800, 1000, 1500, 2000, 2500, and 3000) 

where ten of the variables were selected to collectively determine the response value (see Methods). 

We simulated indirect causal relations to mimic complex biological mechanisms by implementing 

several unknown link functions between the ten true positives and the response (see Methods). We 

ran 20 repetitions in each simulation scenario. In the first step of identifying the variables associated 

with response, we compared four methods, causalDeepVASE, causalMGM, direct-DG, and direct-

indirect-PC. For these methods, we reported the empirical power, which is the number of the true 

positives that are identified by each method. On average over the 20 repetitions, causalDeepVASE 

and the direct-indirect-PC outperform the other methods by identifying 80% of the true positives in 

most simulation scenarios, whereas causalMGM and the direct-DG consistently identified less than 

half of the true positives compared to causalDeepVASE and the direct-indirect-PC (Figure 2B, 

Supplemental Table 1).  

In the second step where causalities are learned from the identified associations, we compared the 

number of true and false causalities (the 10 independent variables to response and response to the 

independent variables, respectively) of causalDeepVASE with those of the competing methods 

(Supplemental Table 1). In all scenarios, causalDeepVASE outperforms the other methods in 

identifying true causalities. Especially, for larger numbers of samples (n=600 and 1,000), 

causalDeepVASE identified most of the true causalities. On the other hand, causalMGM and direct-

indirect-PC returned bidirectional causalities on the identified associations, which are counted as both 

true and false positives. Direct-DG learned the correct causalities on 4 associations (Figure 2C) it 

identified. Further, in distinguishing false-positive causalities, causalDeepVASE and direct-DG 

outperform other methods by returning 0 false-positive causalities, whereas causalMGM and indirect-

direct-DG return some false positive causalities due to the bidirectional causalities (Figure 2D).  

Altogether, causalDeepVASE outperforms other methods, identifying most of the true indirect 

associations and learning most causalities across various simulation scenarios without false positives, 

while competing methods could identify less than a half of true indirect causalities with some false 

positives.  
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Figure 2. Performance assessment of four causal inference methods on the simulated data (A) 
Combinations of association identifying modules (direct and indirect) and causality inference modules 
(DG and PC). (B) Average number of true associations identified by causalDeepVASE (blue), direct-
indirect-PC (orange), causalMGM (gray), or direct-DG (yellow) over 20 runs across various 
simulation scenarios, varying the number of features and the number of samples. The (C) Number of 
true causalities and (D) Number of false causalities identified by causalDeepVASE (blue), direct-
indirect-PC (orange), causalMGM (gray), or direct-DG (yellow) at the 20th run. CausalDeepVASE 
and direct-DG did not identify any false causalities.  
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causalDeepVASE identifying indirect associations plays a critical role to understand complex 

biological systems 

To understand why causalDeepVASE outperforms competing methods in identifying variable 

associations, we compared causalDeepVASE with causalMGM in identifying both direct and indirect 

associations on our pediatric sepsis data. We excluded direct-DG and direct-indirect-PC because they 

identify the same set of associations with causalMGM and causalDeepVASE, respectively. Our 

pediatric sepsis data (see Methods, n=283) consists of 56 demographic features (e.g. age, sex, health 

history) and cytokine variables (blood serum). Both causalDeepVASE and causalMGM identify 123 

direct associations. An interesting finding among the direct associations is that serum level of soluble 

CD163 (sCD163) (19), a macrophage activator, associates with other biomarkers of macrophage 

activation, such as M-CSF (macrophage colony-stimulating factor) (20), MCP-1 (monocyte 

chemoattractant protein-1) (21), and other key drivers of macrophage response including hemoglobin 

(22) (Figure 3A). Also, heart rate and lymphocyte level (Figure 3A), whose normal ranges are 

defined based on age, are identified to have a direct association with age.  

    In addition to this, causalDeepVASE identifies 201 indirect associations (Supplemental Table 2). 

After excluding the 48 associations that are identified also as direct associations, there are 153 

unique indirect and 72 unique direct associations, identifying 2.1 times more indirect associations than 

direct associations (Figure 3B). Since the associations between cytokines are mostly mediated 

through multiple signal transduction pathways (23) (24), it is reasonable to identify more indirect 

associations than direct ones. Further inspection validated many of the indirect associations. 

Especially, we found that certain cytokines interact with other cytokines either only directly or 

indirectly (Figure 3C). For example, as the systemic inflammatory response syndrome (SIRS) status 

is clinically defined by four clinically recognizable criteria including elevated heart rate (25), SIRS is 

expected to be associated with heart rate. causalDeepVASE identified their association as indirect. 

Further, causalDeepVASE found indirect associations between SIRS and other cytokine features that 

are related to the immunologic state including IL-1β (26) and IFN-γ (27) (Figure 3A). Since SIRS 

represents immunological activation in tissues, this result together supports the value of identifying 

indirect associations. 

By putting both direct and indirect associations together, causalDeepVASE allows us to look into 

the complex causal relationships, which would not be possible if considering only either direct or 

indirect associations. For example, the IFNγ levels have been suggested to interact with creatinine 

level (28) and causalDeepVASE can detect the interactions by incorporating direct and indirect 

associations (Figure 3A), whereas direct or indirect associations alone cannot connect creatinine to 

IFNγ. Altogether, in complex biological systems, biomedical variables may interact directly and/or 

indirectly. And causalDeepVASE enables the understanding of the complex biological systems by 

identifying both direct and indirect associations. 
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Figure 3. Direct and indirect associations in pediatric sepsis data (A) Associations involving 
SIRS, AGE, and sCD163 identified as direct (blue) or indirect (red). (B) Ven diagram showing the 
intersection of feature associations, direct and indirect. While causalDeepVASE identified both direct 
and indirect associations, causalMGM identified only direct associations. (C) Number of associations 
involving each of the cytokines in the data. 
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causalDeepVASE identifies complex and non-linear associations validated between 

nutrients/gut bacteria and body-mass index (BMI) 

In this section, we investigated how causalDeepVASE outperforms the other methods in learning true 

causalities by incorporating indirect causalities. We analyzed a cross-sectional data set consisting of 

214 nutrient intakes as well as 87 bacteria genera in the gut and body-mass index (BMI) collected 

from 90 healthy volunteers. To evaluate the performance of causalDeepVASE, we investigated 16 

indirect associations that were validated (13), 8 nutrient intakes and 8 bacteria genera. For these 

associations, causalDeepVASE and direct-indirect-PC outperform causalMGM and direct-DG again, 

where causalDeepVASE and direct-indirect-PC identified all 16 associations, while causalMGM and 

direct-DG identified 5 associations (31.3%) to BMI (Figure 4A). To further understand why the 11 

associations were identified by causalDeepVASE and direct-indirect-PC, but not by causalMGM and 

direct-DG, we examined how 16 nutrient intake/bacteria genera levels change by the BMI values. The 

5 associations identified by all the methods show a single linear association throughout the BMI 

region (Figure 4B, S. Figure 1A-J). On the other hand, the other 11 associations identified by 

causalDeepVASE and direct-indirect-PC show multiple sub-trends in various BMI ranges (Figure 4C, 

S. Figure 1K-O). For example, a nutrient intake, Choline, Phosphatidylcholine w/o suppl., (Figure 4C) 

shows an increasing trend in the lower BMI region (BMI 1~3), a decreasing trend right after (BMI 3~4), 

then another increasing trend (BMI 4~5). While there should be multiple mediating layers between the 

intake of Choline, Phosphatidylcholine w/o suppl. and the BMI status, the mediating layers may affect 

differently in different parts of the BMI region.  

For the causalities from the associations, we deemed the causal direction from either nutrient intake 

or bacteria genera to BMI true. While causalDeepVASE identified the true causal direction in all the 

16 identified associations, causalMGM and direct-indirect-PC identified 3 bidirectional causalities and 

direct-DG identified the true causal direction in the 5 identified associations (Figure 4D). Altogether, 

causalDeepVASE outperforms existing methods both in identifying associations (Figure 4A) and 

learning causalities (Figure 4D), since it identifies and incorporates linear (Figure 4B, S. Figure A-J) 

and non-linear associations (Figure 4C, S. Figure K-O).  
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Figure 4. Performance assessment of four causal inference methods on BMI/bacteria/gut microbiome data 
(A) Number of associations the methods (causalMGM, direct-DG, direct-indirect-PC, and causalDeepVASE) 
identified between the BMI status and 8 nutrient intake (blue) and 8 bacteria genera in the gut (red) that are 
validated associated with the BMI status. (B) Variable association relationship identified as direct association 
between BMI and Firmicutes-Allisonella. (C) Variable association relationship identified as indirect association 
between BMI and Choline, Phosphatidylcholine w/o suppl. In the relationship figures, KS is the KS test statistic, 
p-value is estimated from the KS test, rval is from a linear regression model, pval is from the linear regression, 
and importance is measured in causalDeepVASE. The gray indicates confidence intervals, the blue line indicates 
median values, and the red line represents the linearly regressed line. (D) Number of true causalities and false 
causalities identified by causalDeepVASE (blue), direct-indirect-PC (orange), causalMGM (gray), or direct-DG 
(yellow) at the 20th run. CausalDeepVASE and direct-DG did not identify any false causalities. 
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causalDeepVASE identifies the causal relations across molecular and clinical variables 

To understand how causalDeepVASE facilitates the understanding of complex biochemical 

mechanisms, we applied causalDeepVASE and the competing methods to learn causalities among 

gene expression and clinical variables of the TCGA breast cancer (29), including PAM50. PAM50 is 

an important clinical feature to categorize breast tumors with, which is defined by the expression 

information of 50 genes. To learn causalities from the genes to the PAM50 status, we considered 10 

of the genes that are included in the 500 genes that are highly varying across 601 tumor samples in 

the data (high variance gene set). Therefore, the 10 genes are expected to have causal effects on the 

PAM50 status (PAM50-defining genes). We also considered 5 clinical variables, which are known to 

be associated with the PAM50 status: estrogen receptor (ER), human epidermal growth factor 

receptor (HER), and progesterone receptor (PER), lymph node status, and tumor staging code (see 

Methods).  

    In the first step of identifying associations, causalDeepVASE and direct-indirect-PC identified 9 

associations out of 10 associations between PAM50-defining genes and PAM50, while causalMGM 

and direct-DG identified only 5 of them, increasing the power by 40% due to the identification of 

indirect associations (Figure 5A, S. Figure 2A). To examine the 9 associations, we estimated the 

effect size of the associations (see Methods). The effect size is significantly higher for the 9 PAM50-

defining genes than the 491 other genes in the high variance set (P-val=0.027, Figure 5B), showing 

that this estimation is valid in identifying the known and thus strong associations. In terms of the 

clinical variables associated with PAM50, causalDeepVASE and direct-indirect-PC identified all 5 

associations while causalMGM and direct-DG identified only one association (Figure 5A, S. Figure 

2B), suggesting that the 4 associations identified only by causalDeepVASE and direct-indirect-PC are 

indirect associations. The high true positive rate of causalDeepVASE and direct-indirect-PC is 

partially related to its ability to identify both direct and indirect associations, unlike the other methods. 

    In the second step of learning causalities from the identified associations in the first step, we 

compared the performance of the methods in various parameter settings (Supplemental Table 3). 

Between the PAM50-defining genes and the PAM50 status, we consider the inferred causalities from 

the genes to the PAM50 status as true positives since the PAM50-defining genes define the PAM50 

status. causalDeepVASE outperforms both causalMGM and direct-DG, identifying true causalities 

from all 9 identified associations (Figure 5C). On the other hand, causalMGM and direct-indirect-PC 

identified bidirectional causalities for 3 associations and direct-DG identified the right causalities on all 

the 5 identified associations (Figure 5D, E). We do not assess true and false positives in the clinical 

variables, since the causal direction is not clear in the clinical variables.  

To examine how causalDeepVASE’s high sensitivity helps understand the complex breast tumor 

biology, we ran causalDeepVASE and causalMGM across the 10 molecular variables and the 6 

clinical features, including PAM50 (Figure 5F, S. Figure 2C). Within the molecular variables, 2 of 8 

(25%) causalities are identified uniquely by causalDeepVASE. However, within the clinical features 

and across molecular variables and clinical features, 13 out of 15 (86.7%) and 34 out of 43 (79.1%) 
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causalities are identified uniquely by causalDeepVASE respectively, identifying 3-fold more 

causalities uniquely by causalDeepVASE. This high number of causalities within the clinical features 

and across molecular variables and clinical features is supported by recent studies demonstrating that 

the clinical features interact extensively both within and with the molecular variables in complex breast 

tumor biology (e.g., (30)(31)(32)(33)). Further, while the causalDeepVASE-unique causalities are 

likely indirect, their indirect relationships are supported by the fact that the clinical features are 

hormone receptor status and the PAM50 status, which are generated and regulated through multiple 

endocrine factors. Altogether, causalDeepVASE identifies indirect causalities across biological 

variables and clinical features in complex biological systems due to its sensitivity in identifying indirect 

associations and learning indirect causalities. 
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Figure 5. causalDeepVASE on TCGA breast cancer data. (A) Number of validated associations from 
molecular (blue) and clinical (orange) variables to PAM50. (B) Distribution of the association strength 
causalDeepVASE estimated for 9 PAM50-defining genes and 491 other genes in the high variance set. (C, D, E) 
Number of causalities identified by causalDeepVASE, causalMGM, DG in the default parameter settings, 
respectively. (F) Causalities over 10 molecular variables, 5 clinical variables, and the PAM50 status inferred by 
both the methods (causalMGM and causalDeepVASE) or by causalDeepVASE only.  
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DISCUSSION 

In this paper, we developed one of the first computational methods, causalDeepVASE to learn both 

direct and indirect causalities in complex biological systems. It combines both statistical- and deep-

learning models: the statistical-learning model identifies direct associations, and the deep-learning 

model identifies indirect associations. Applying causalDeepVASE to the simulated and biological data 

(pediatric sepsis, TCGA breast cancer, BMI with nutrients and gut bacteria) shows that 

causalDeepVASE outperforms existing methods (1) in identifying true associations because it 

incorporates indirect associations in the first step (Fig. 1B, C) and (2) in learning indirect causalities 

because of the decomposability and flexibility of the causal learning module, DG, in the second step 

(Fig. 1D, E). Due to the increased power, causalDeepVASE reveals a novel causal structure across 

molecular and clinical variables in complex biological systems. For example, causalDeepVASE 

uniquely identifies multiple causal relations across genes and clinical features (4.8 fold more than 

causalMGM) and within clinical features (7.5 fold more than causalMGM) in the TCGA breast cancer 

data (Fig. 5F, S. Fig. 2C).  

    In addition to the increased power, causalDeepVASE’s unique feature is to estimate effect size 

uniformly for both direct and indirect associations. Based on this estimate, we showed that the 

validated casualties are stronger than non-validated ones in both the breast cancer (P-value=0.03, 

Fig. 5B) and the BMI data (P-value=0.02, S. Fig. 1P). Assuming that validated associations are more 

apparent and stronger, these results suggest that causalDeepVASE’s effect size estimation 

successfully distinguishes strong associations from less strong ones, either direct or indirect.  

    causalDeepVASE is the first method that identified both direct and indirect causal relations. 

Especially, to learn causalities from direct and indirect associations, causalDeepVASE utilizes DG. 

DG was reported to perform well for learning direct causal relations when learning causal models, e.g., 

Lee and Hastie model, are generated outside of its assumed class (4), e.g., conditional Gaussian. 

With our experiments on identifying indirect causalities, we showed that DG outperforms the other 

established causal learning algorithm, PC (Fig. 4D, 5F), and identifies almost all true causalities.  

    In our data sets, causalMGM learned bidirectional causalities on most associations (Fig. 4D, 5D). 

Previous studies pointed out that the causal inference algorithm may return bidirectional causalities 

between two variables if there is a latent variable that causes both the variables8. Thus, collecting 

more data and thus including the latent variables may refine some of the bidirectional causalities into 

unidirectional causal relations.  

    In conclusion, we developed causalDeepVASE, which learns causal structure in complex biological 

systems. causalDeepVASE is one of the first methods to use a deep neural network approach to 

learn both direct and indirect causalities. Using causalDeepVASE, we found that complex biological 

systems have indirect causal relationships between molecular and clinical variables. In identifying 

such causal relationships, causalDeepVASE outperforms existing methods, causalMGM and DG. 
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With these advantages, future application of causalDeepVASE can facilitate the identification of driver 

genes and therapeutic agents in biomedical studies and clinical trials.  

 

AVAILABILITY 

The open-source causalDeepVASE program (version 0.9.1) is freely available at 

https://github.com/ZhenjiangFan/causalDeepVASE with necessary example data for this analysis. 

 

SUPPLEMENTARY DATA 

Supplementary Table 1. Performance of the four methods (causalMGM, direct-DG, direct-indirect-

PC, and causalDeepVASE) on the simulated data over various simulation settings 

Supplementary Table 2. 201 Indirect feature associations identified by causalDeepVASE on our 

pediatric sepsis data  

Supplementary Table 3. Performance of the four methods (causalMGM, direct-DG, direct-indirect-

PC, and causalDeepVASE) on the breast cancer data over various parameter settings 

 

Supplementary Data are available at NAR online. 
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Supplementary Figure 1. (A-J) Variable association relationship identified as indirect association 

between BMI and the feature indicated in the y-axis (K-O) Variable association relationship identified 

as direct association between BMI and the feature indicated in the y-axis. In the relationship figures, 

KS is the KS test statistic, p-value is estimated from the KS test, rval is from a linear regression model, 

pval is from the linear regression, and importance is measured in causalDeepVASE. The gray area 

indicates confidence intervals, the blue line indicates median values, and the red line represents 

regressed line. (P) Distribution of causalDeepVASE’s strength measure for the 16 validated factors 

and 285 other factors to BMI. (Q) K-S test statistic for 16 validated factors and 285 other factors to 

BMI (R) Distribution of the P-values from the K-S test estimated for 16 validated factors and 285 other 

factors to BMI. 

Supplementary Figure 2. (A) PAM50-defining genes associated with the PAM50 status of patients 

identified by both causalDeepVASE and causalMGM (purple) or uniquely by causalDeepVASE (red). 

Both causalDeepVASE and causalMGM could not identify a PAM50-defining gene (MIA) in a dotted 

line. (B) clinical features (e.g. hormone status) of the breast cancer samples associated with PAM50. 

(C) Causalities inferred by causalDeepVASE over 10 molecular variables, 5 clinical variables, and the 

PAM50 status indicating how many causalities are inferred by both the methods (causalMGM and 

causalDeepVASE) or by causalDeepVASE only. ‘person_neoplasm_cancer_status’ refers to the state 

or condition of an individual's neoplasm. ‘PR_status’, ‘ER_status’, and ‘HER2_status’ refer to the 

status of progesterone receptor, estrogen receptor, and human epidermal growth factor 2 receptor in 

the tumor sample. 
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