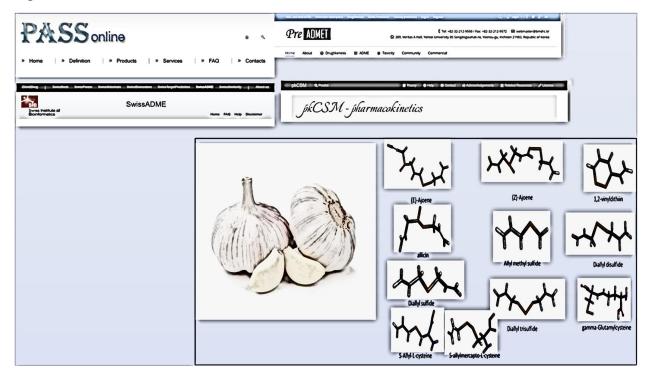
ARTICLE

Open access in silico tools to predict the ADMET profiling and PASS (Prediction of Activity Spectra for Substances of Bioactive compounds of Garlic (Allium sativum L.)


Ivan Vito Ferrari, ¹

1. Department of Industrial Engineering and LIME Laboratory, University of Rome Tor Vergata,

Via del Politecnico 1, 00133 Rome, Italy; <u>Ivan.Vito.Ferrari@uniroma2.it</u> (I.V.F.)

*Corresponding Author: Ivan.Vito.Ferrari@uniroma2.it

Graphical abstract

Keywords: in silico; ADMET; drug; open access; prediction; PASS Online ((Prediction of Activity Spectra for Substances), Garlic Compounds; S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC)

Abstract

Background: Garlic (Allium sativum L.) is a common spice with many health benefits, mainly due to its diverse bioactive compounds, (see below) such as organic sulphides, saponins, phenolic compounds, and polysaccharides. Several studies have demonstrated its functions such as anti-inflammatory, antibacterial, and antiviral, antioxidant, cardiovascular protective and anticancer

property. In this work we have investigated the main bioactive components of garlic through a bioinformatics approach. Indeed, we are in an era of bioinformatics where we can predict data in the fields of medicine. Approaches with open access in silico tools have revolutionized disease management due to early prediction of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of the chemically designed and eco-friendly next-generation drugs. **Methods:** This paper encompasses the fundamental functions of open access in silico prediction tools, as PASS database (Prediction of Activity Spectra for Substances) that it estimates the probable biological activity profiles for compounds. This paper also aims to help support new researchers in the field of drug design and to investigate best bioactive compounds in garlic. **Results:** screening through each of pharmacokinetic criteria resulted in identification of Garlic compounds that adhere to all the ADMET properties. **Conclusions:** It was established an open-access database (PASS database, available bioinformatics tool SwissADME, PreADMET pkCSM database) servers were employed to determine the ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of garlic molecules and to enable identification of promising molecules that follow ADMET properties.

1. Introduction

Garlic (Allium sativum L.) is a species in the onion genus Allium. This is a common spice with many health benefits, mainly due to its diverse bioactive compounds, (see below fig.1) such as organic sulphides, saponins, phenolic compounds, and polysaccharides. Garlic has been demonstrated to exhibit potentially beneficial for cancer prevention. Several studies have demonstrated its functions such as anti-inflammatory, antibacterial, and antiviral, antioxidant, cardiovascular protective. anticancer property. [1-2] Observations over the past years have shown that the consumption of garlic in the diet provides strong protection against cancer risk. [2]. In literature we can find some papers, where it was demonstrated decreased rates stomach cancer associated with garlic intake. [3-5]

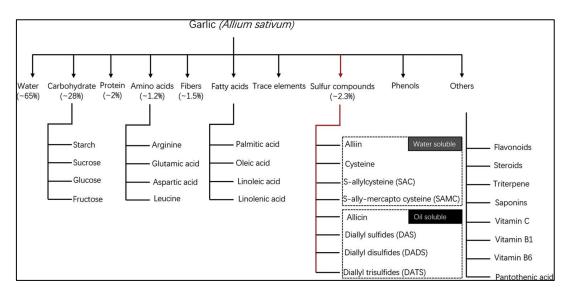


Fig. 1. Major classification of the bioactive constituents in garlic. Generally, garlic bulb contains approximately 65 % water, 28 % carbohydrates (mainly fructans), 2 % protein (mainly alliin), 1.2 % free amino acids (mainly arginine), 1.5 % fiber, and 2.3 % organosulfur compounds [2]

In this work we have investigated the main bioactive components of garlic through a bioinformatics approach. Indeed, we are in an era of bioinformatics where we can predict data in the fields of medicine. Approaches with open access in silico tools have revolutionized disease management due to early prediction of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of the chemically designed and eco-friendly next-generation drugs. [6-7] This paper encompasses the fundamental functions of open access in silico prediction tools, as PASS database (Prediction of Activity Spectra for Substances) that it estimates the probable biological activity profiles for compounds. [8-9] This paper also aims to help support the researchers in the field of drug design and to investigate best bioactive compounds in garlic. As it has been before, Garlic contains 0.1-0.36% of a volatile oil these volatile compounds are generally considered to be responsible for most of the pharmacological properties of garlic. Garlic contains at least 33 sulfur compounds like aliin, allicin, ajoene, allylpropl, diallyl, trisulfide, s-allylcysteine, vinyldithiines, Sallylmercaptocystein, and others. Particular attention has been given to sulphide compounds of garlic for their anti-tumour properties, S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) (See below fig.1-2) [10-20] It was established an open-access database (PASS database, available bioinformatics tool SwissADME, PreADMET pkCSM database) servers were employed to determine the ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of garlic molecules and to enable identification of promising molecules that follow ADMET properties. [6-9]

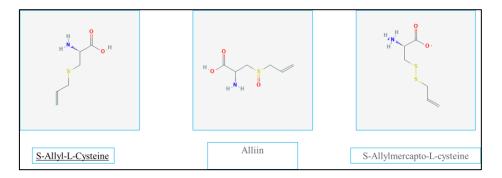


Fig 2 bioactive constituents in garlic sulphur compounds

2. Materials and methods

This paper encompasses the fundamental functions of open access in silico prediction tools, as PASS database, PreADMET and pkCSM (http://biosig.unimelb.edu.au/pkcsm/) servers were employed to determine the ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of target molecules. PASS (Prediction of Activity Spectra for Substances) Online predicts over 4000 kinds of biological activity, including pharmacological effects, mechanisms of action, toxic and adverse effects, interaction with metabolic enzymes and transporters, influence on gene expression, etc. The first strategy is based on the suggestion that the more kinds of activity are predicted as probable for a compound, the more probable to find any useful pharmacological action in it. Prediction is based on the analysis of structure activity-relationships for more than 250,000 biologically active substances including drugs and drug-candidates. [8] The available bioinformatics tool SwissADME (http://www.swissadme.ch/index.php) [7] was used for finding drug-likeness attributes. Lipinski's rule of five [6] was used to analyze the properties such as; hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), molecular weight (MW), and lipophilicity (log P).

PreADMET (https://preadmet.bmdrc.kr/) and pkCSM (http://biosig.unimelb.edu.au/pkcsm/) servers were employed to determine the ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of target molecules.

2.1 Classification of the bioactive constituents in garlic

3D Conformer of several bioactive constituents in garlic were download from PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/</u>) and create by Discovery Studio Biovia Visualizer Software [21] (see fig.3)

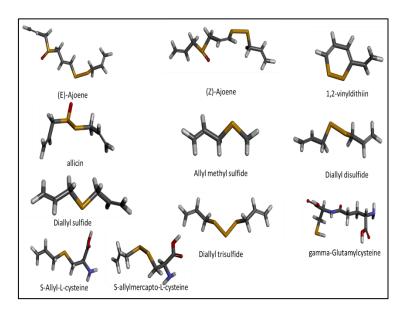


Fig 3 Principal Organosulfur Compounds From Garlic. Reproduced by Discovery Studio Biovia Visualizer Software [21]

3. Results and discussion

3.1 PASS database (Prediction of Activity Spectra for Substances)

PASS Online predicts over 3500 kinds of biological activity, including pharmacological effects, mechanisms of action, toxic and adverse effects, interaction with metabolic enzymes and transporters, influence on gene expression, etc. Prediction is based on the analysis of structure activityrelationships for more than 250,000 biologically active substances including drugs, drug-candidates, leads and toxic compounds. The concept of the biological activity spectrum was introduced to describe the properties of biologically active substances. The PASS (prediction of activity spectra for substances) software product, which predicts more than 300 pharmacological effects and biochemical mechanisms on the basis of the structural formula of a substance, may be efficiently used to find new targets (mechanisms) for some ligands and, conversely, to reveal new ligands for some biological targets. Average accuracy of prediction estimated in leave-one-out cross-validation procedure (each compound is excluded from the training set and its activity predicted based on SAR model obtained on the rest part of the training set) for the whole PASS training set is about 95% (Filimonov and Poroikov, 2008) [22]. Since PASS service is used by medicinal chemists, pharmacologists and toxicologists for several years (Lagunin et al., 2000) [23], there are many publications where PASS predictions were confirmed by subsequent synthesis and biological testing. To provide more accurate predictions for compounds belonging to new chemical classes and to extend the predictable area onto

new biological activities, we are permanently working on enlargement of PASS training set. Input data represents a structural formula of a compound in MOL file format. The output file represents a list of activities with two probabilities Pa (probability to be active) and Pi (probability to be inactive). Pa (probability "to be active") estimates the chance that the studied compound is belonging to the sub-class of active compounds (resembles the structures of molecules, which are the most typical in a sub-set of "actives" in PASS training set). Pi (probability "to be inactive") estimates the chance that the studied compound is belonging to the structures of molecules, which are the most typical in a sub-set of "actives" in PASS training set). Pi (probability "to be inactive") estimates the chance that the studied compound is belonging to the sub-class of inactive compounds (resembles the structures of molecules, which are the most typical in a sub-set of "inactives" in PASS training set). The first strategy is based on the suggestion that the more kinds of activity are predicted as probable for a compound, the more probable to find any useful pharmacological action in it. For each compound from available set of samples the following value can be calculated: [8-9]; [22-23]

$$\mathbf{P} = \frac{1}{n} \sum \frac{P_a}{P_a + P_i}$$

Fig 4 Prediction of Activity Spectra for Substances calculated : the output file represents a list of activities with two probabilities Pa (probability to be active) and Pi (probability to be inactive [8-9]; [22-23]

In Tab 1 we report chemical-physical properties of Principal Organosulfur Compounds, Sallylcysteine (SAC) and S-allylmercaptocysteine (SAMC) in Garlic investigated by Pass Online Server (Prediction of Activity Spectra for Substances) that it estimates the probable biological activity profiles for compounds. As we can see from the table 1, SAMC and SAC demonstrated to a suppressive agent against several tumours and they have several functions such as antiinflammatory, antibacterial, and antiviral, antioxidant, cardiovascular protective. [10-20] Sallylcysteine (SAC) and S-allylmercaptocysteine (SAMC) have a high value of 0.96-0.98 Pa (probability to be active) in human flavin-containing monooxygenase 3 (FMO3) and it has impact on enzyme activity, drug metabolism and disease. [28-29] Indeed, A flavin-containing monooxygenase (FMO) produced by A. sativum (AsFMO) was previously proposed to oxidize Sallyl-L-cysteine (SAC) to alliin, an allicin precursor. 30. Ferreira F, et all., (2013)have investigated the activity of the human flavin-containing monooxygenase (FMO) has been proposed to be impact on enzyme activity, drug metabolism and disease, like Trimethylaminuria (TMAu) or "fish odor syndrome" is a metabolic disorder characterized by the inability to convert malodorous dietarily-derived trimethylamine (TMA) to odourless TMA N-oxide by the flavin-containing monooxygenase 3 (FMO3). [30]

S-Allyl-L-cysteine	$C_6H_{11}NO_2S$	161.22	Pa	Pi	Acitivity
			0,965	0,002	Flavin-containing monooxygenase substrate
			0,963	0,003	CYP2E1 substrate
			0,962	0,003	CYP2E substrate
			0,942	0,001	S-alkylcysteine lyase inhibitor
			0,939	0,002	NADPH peroxidase inhibitor
			0,933	0,002	FMO3 substrate
			0,928	0,002	Lysine 2,3-aminomutase inhibitor
			0,924	0,003	Acylcarnitine hydrolase inhibitor
			0,905	0,004	Arylacetonitrilase inhibitor
S-allylmercapto-L-cysteine	$C_6H_{11}NO_2S_2$	193.3	Ра	Pi	Acitivity
			0,974	0,002	Flavin-containing monooxygenase substrate
			0,967	0,001	FMO3 substrate
			0,939	0,002	NADPH peroxidase inhibitor
			0,939	0,002	Protein-disulfide reductase (glutathione) inhibitor
			0,934	0,003	CYP2E1 substrate
			0,933	0,003	CYP2E substrate
			0,932	0,003	Antiseborrheic
			0,928	0,003	Lipid metabolism regulator
			0,925	0,004	Apoptosis agonist
			0,924	0,003	Acylcarnitine hydrolase inhibitor
			0,919	0,001	Cysteamine dioxygenase inhibitor
			0,916	0,003	Arylacetonitrilase inhibitor
			0,909	0,002	S-alkylcysteine lyase inhibitor
			0,903	0,005	TP53 expression enhancer

Tab 1 Prediction of Activity Spectra for Substances of Principal Organosulfur Compounds, as S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC)

3.2 In silico Organosulfur Compounds analysis and ADMET profiling

The available bioinformatics tool SwissADME (http://www.swissadme.ch/index.php) [7,24] was used for finding drug-likeness attributes. Lipinski's rule of five [6] was used to analyze the properties such as; hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), molecular weight (MW), and lipophilicity (log P). PreADMET (https://preadmet.bmdrc.kr/) and pkCSM (http://biosig.unimelb.edu.au/pkcsm/) servers were employed to determine the ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of target molecules.

3.2.1 SwissADME (http://www.swissadme.ch/index.php)

This website allows you to compute physicochemical descriptors as well as to predict ADME parameters, pharmacokinetic properties, druglike nature and medicinal chemistry friendliness of one or multiple small molecules to support drug discovery. This web service is a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.[24]

	LIPO	Log S (ESOL) 📀	0.79
		Solubility	1.00e+03 mg/ml ; 6.23e+00 mol/l
	FLEX SIZE	Class 📀	Highly soluble
NH	2	Log S (Ali) 😣	0.74
	0	Solubility	8.77e+02 mg/ml ; 5.44e+00 mol/l
H ₂ C // // //		Class 📀	Highly soluble
	ОН	Log S (SILICOS-IT) 😗	-0.30
	INSATU	Solubility	8.10e+01 mg/ml; 5.02e-01 mol/l
		Class 📀	Soluble
	INSOLU		Pharmacokinetics
	INSOLU	GI absorption 📀	High
SMILES NC(C(=O)O)CSC	C=C	BBB permeant 📀	No
P	sicochemical Properties	P-gp substrate 📀	No
Formula	C6H11NO2S	CYP1A2 inhibitor 📀	No
Molecular weight	161.22 g/mol	CYP2C19 inhibitor 📀	No
Num. heavy atoms	10	CYP2C9 inhibitor 📀	No
Num. arom. heavy atoms	0	CYP2D6 inhibitor 📀	No
Fraction Csp3	0.50	CYP3A4 inhibitor 📀	No
Num. rotatable bonds	5	Log K _n (skin permeation) 📀	-8.75 cm/s
Num. H-bond acceptors	3		Druglikeness
Num. H-bond donors	2	Lipinski 📀	Yes; 0 violation
Molar Refractivity	42.55	Ghose 🔞	Yes
TPSA 😣	88.62 Ų	Veber	Yes
	Lipophilicity	Egan 📀	Yes
Log P _{o/w} (iLOGP) 😣	1.22	Muegge 😗	No; 2 violations: MW<200, XLOGP3<-2
Log P _{o/w} (XLOGP3) 📀	-2.07	Bioavailability Score 0	0.55
Log P _{o/w} (WLOGP) 📀	0.32	,	Medicinal Chemistry
Log P _{o/w} (MLOGP) 📀	-1.93	PAINS 😣	0 alert
Log P _{o/w} (SILICOS-IT) 📀	0.22	Brenk 😗	1 alert: isolated_alkene 📀
Consensus Log P _{o/w} 📀	-0.45	Leadlikeness 📀	No; 1 violation: MW<250
		Synthetic accessibility 📀	2.80

Fig 5 physicochemical descriptor, ADME parameters, pharmacokinetic properties, druglike nature and medicinal chemistry friendliness of Sallylcysteine (SAC) predicted by SwissADME Database SwissADME (<u>http://www.swissadme.ch/index.php</u>)

	LIPO	Log S (ESOL) 0	0.64
		Solubility	8.49e+02 mg/ml; 4.39e+00 mol/l
	FLEX SIZE	Class 🔕	Highly soluble
N	H ₂	Log S (Ali) 🚯	0.17
たいへ ふ ふ		Solubility	2.88e+02 mg/ml; 1.49e+00 mol/l
	¥ X	Class 😡	Highly soluble
	он	Log S (SILICOS-IT) 🚷	-0.42
	INSATU POLAR	Solubility	7.28e+01 mg/ml ; 3.77e-01 mol/l
		Class Θ	Soluble
	INSOLU		Pharmacokinetics
	110000	GI absorption 0	High
SMILES N[C@H](C(=O)O))CSSCC=C	BBB permeant	No
Pt	hysicochemical Properties	P-gp substrate	No
Formula	C6H11NO2S2	CYP1A2 inhibitor 0	No
Molecular weight	193.29 g/mol	CYP2C19 inhibitor 0	No
Num. heavy atoms	11	CYP2C9 inhibitor 0	No
Num. arom. heavy atoms	0	CYP2D6 inhibitor 0	No
Fraction Csp3	0.50	CYP3A4 inhibitor 0	No
Num. rotatable bonds	6	Log K _n (skin permeation)	-8.93 cm/s
Num. H-bond acceptors	3	- p	Druglikeness
Num. H-bond donors	2	Lipinski 🥹	Yes: 0 violation
Molar Refractivity	50.14	Ghose 0	Yes
TPSA 🥹	113.92 Ų	Veber	Yes
1	Lipophilicity	Egan	Yes
Log P _{o/w} (iLOGP) 😣	1.48	Muegge 0	No; 2 violations: MW<200, XLOGP3<-2
Log P _{o/w} (XLOGP3) 😣	-2.04	Bioavailability Score 0	0.55
Log P _{o/w} (WLOGP) 🜖	0.97		Medicinal Chemistry
Log P _{o/w} (MLOGP) 🧐	-1.93	PAINS 😣	0 alert
Log P _{o/w} (SILICOS-IT) Θ	0.42	Brenk 😣	2 alerts: disulphide, isolated_alkene
Consensus Log Poly 📀	-0.22	Leadlikeness 😣	No; 1 violation: MW<250
		Synthetic accessibility 📀	3.15

Fig 6 physicochemical descriptors), ADME parameters, pharmacokinetic properties, druglike nature and medicinal chemistry friendliness of Sallylmercaptocysteine (SAMC) predicted by SwissADME Database SwissADME (http://www.swissadme.ch/index.php)

3.2.2. PreADMET (https://preadmet.bmdrc.kr/)

PreADMET is a web-based application for predicting ADME data and building drug-like library using in silico method. It was describe a new web-based application called PreADMET, which has been developed in response to a need for rapid prediction of drug-likeness and ADME/Tox data. [25-26] In figure 7 we report ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylcysteine (SAC) predicted by PreADMET (https://preadmet.bmdrc.kr/):

- BBB (in vivo blood-brain barrier penetration (C.brain/C.blood) >> 0.229899 Value
- Calculated water solubility value in buffer system by SK atomic types (mg/L) >> 92985.4 Value
- in vitro Caco2 cell permeability (Human colorectal carcinoma; nm/sec) >> 6.65342 Value
- in vitro Cytochrome P450 2C19 inhibition >> Inhibitor
- in vitro Cytochrome P450 2C9 inhibition >> Inhibitor
- in vitro Cytochrome P450 2D6 inhibition >> Inhibitor
- in vitro Cytochrome P450 2D6 substrate >> No value
- in vitro Cytochrome P450 3A4 inhibition >> No value
- Human intestinal absorption (HIA, %) >> 81.972219 Value
- in vitro MDCK cell permeability (Mandin Darby Canine Kidney) >> 209.694
- in vitro P-glecoprotein inhibition>> No value
- in vitro plasma protein binding (%) >> 11.674627
- in vitro skin permeability (transdermal delivery) >> -3.10116 Value

ID	Value	Molecule Depiction	
BBB	0.229899	0H	
Buffer_solubility_mg_L	92985.4		
Caco2	6.65342		\checkmark
CYP_2C19_inhibition	Inhibitor		
CYP_2C9_inhibition	Inhibitor	NH ₂	
CYP_2D6_inhibition	Inhibitor	SMILES	
CYP_2D6_substrate	Non		
CYP_3A4_inhibition	Non	Molecule properties:	
CYP_3A4_substrate	Non	Descriptor	Value
HIA	81.972219	Molecular Weight	161.226
MDCK	209.694	LogP	0.3175
Pgp_inhibition	Non	#Rotatable Bonds	5
Plasma_Protein_Binding	11.674627	#Acceptors	3
Pure_water_solubility_mg_L	7685.37	#Donors	2
Skin_Permeability	-3.10116	Surface Area	64.293
SKlogD_value	-1.888110		
SKlogP_value	0.698990		
SKlogS_buffer	-0.239000		
SKlogS_pure	-1.321750		

Fig 7 ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylcysteine (SAC) predicted by PreADMET (https://preadmet.bmdrc.kr/)

In figure 8 we report ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylmercaptocysteine (SAMC) predicted by PreADMET (https://preadmet.bmdrc.kr/):

- BBB (in vivo blood-brain barrier penetration (C.brain/C.blood) >> 0.190643 Value
- Calculated water solubility value in buffer system by SK atomic types (mg/L) >> 2537.48 Value
- in vitro Caco2 cell permeability (Human colorectal carcinoma; nm/sec) >> 1.60099 Value
- in vitro Cytochrome P450 2C19 inhibition >> Inhibitor
- in vitro Cytochrome P450 2C9 inhibition >> Inhibitor
- in vitro Cytochrome P450 2D6 inhibition >> Weakly
- in vitro Cytochrome P450 2D6 substrate >> No value
- in vitro Cytochrome P450 3A4 inhibition >> No value
- Human intestinal absorption (HIA, %) >> 82.576618 Value
- in vitro MDCK cell permeability (Mandin Darby Canine Kidney) >> 201.239
- in vitro P-glecoprotein inhibition>> No value
- in vitro plasma protein binding (%) >> 0.000000
- in vitro skin permeability (transdermal delivery) >> -2.8397 Value

D	Value	Molecule Depiction	
BBB	0.190643		
Buffer_solubility_mg_L	2537.48		ОН
Caco2	1.60099	/s.	
CYP_2C19_inhibition	Inhibitor		
CYP_2C9_inhibition	Inhibitor		l.
CYP_2D6_inhibition	Inhibitor		NH ₂
CYP_2D6_substrate	Weakly	SMILES	
CYP_3A4_inhibition	Non		
CYP_3A4_substrate	Non		
HIA	82.576618	Molecule properties:	
MDCK	201.239	Descriptor	Value
Pgp_inhibition	Non	Molecular Weight	193.293
Plasma_Protein_Binding	0.000000	LogP	0.9657
Pure_water_solubility_mg_L	1235.7	-	
Skin_Permeability	-2.8397	#Rotatable Bonds	6
SKlogD_value	-1.458690	#Acceptors	4
SKlogP_value	1.128410	#Donors	2
SKlogS_buffer	-1.881780	Surface Area	73.816
SKlogS_pure	-2.194270		

Fig 8 ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylmercaptocysteine (SAMC) predicted by PreADMET (<u>https://preadmet.bmdrc.kr/</u>)[27]

3.2.3 pkCSM (http://biosig.unimelb.edu.au/pkcsm/)

Drug development has a high attrition rate, with poor pharmacokinetic and safety properties a significant hurdle. Computational approaches may help minimize these risks It was seen that pkCSM performs as well or better across different pharmacokinetic properties than other freely available methods. This server is useful for Small-molecule pharmacokinetics prediction. In figure 9- 10 we report Prediction of pharmacokinetic properties: ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylcysteine (SAC) and S-allylcysteine (SAMC) predicted by pkCSM, respectively. (http://biosig.unimelb.edu.au/pkcsm/ [27]

Property Model Name Predicted Value Unit Sin Permeability 2.736 Numeric (log Papp in 10 ⁴ cm(s)) Sin Permeability 2.736 Numeric (log Ko) Sin Permeability 2.736 Numeric (log Ko) Sin Permeability No Categorical (Yes No) Sin Permeability No Categorical (Yes No) Categorical (Yes No) Sin Permeability No Categorical (Yes No) Sin Permeability No Categorical (Yes No) Categorical (Yes No) No Categorical (Yes No) Sin OrYP2D6 substrate No Categorical (Yes No) No Categorical (Yes No) Sin OrYP2D6 substrate No Categorical (Yes No) No Categorical (Yes No) Sin OrYP2D6 substrate No Categorical (Yes No) No Categorical (Yes No) Sin OrYP2D6 substrate No Categorical (Yes No) No Categorical (Yes No) Sin OrYP2D6 substrate No Categorical (Yes No) No Categorical (Yes No) Sin OrYP2D6 substrate No Categorical (Yes No) Sin Sensitisation No Categorical (Yes No) Sin OrYP2D6 substrate No Categ	rty M	odel Name	Predicted Value	Unit				
Geod Cod Code permeability 0.704 Numeric (top Papp in 10**cms) geod Intestinal absorption (human) 78.971 Numeric (top Kp) geod Skin Permeability -2.736 Numeric (top Kp) geod Paplycoprotein Linhibitor No Categorical (Yes/No) geod Paplycoprotein Linhibitor No Categorical (Yes/No) geod Paplycoprotein Linhibitor No Categorical (Yes/No) geod CodP permeability No Categorical (Yes/No) geod CodP perturb Linhibitor No Categorical (Yes/No) geod CodP pertur	orption W	ater solubility	-2.888	Numeric (log mol/L)				
Second intesting and addigited information (space integrating and addigited information (space integrating addigited informadingited information (space integrating addigi	sorption Ca	aco2 permeability	0.704	Numeric (log Papp in 10 ⁻⁶ cm/s)	Property	Model Name	Predicted Value	Unit
Resulting Public opticial (Ves/No) Resulting No Categorical (Ves/No) Resulting Public opticial in linibitor No Categorical (Ves/No) Resulting CVP2CIB substrate No Categorical (Ves/No) Resulting CVP2CIB inhibitor No <td< td=""><td>sorption In</td><td>testinal absorption (human)</td><td>79.971</td><td>Numeric (% Absorbed)</td><td>Excretion</td><td>Total Clearance</td><td>0.591</td><td>Numeric (log ml/m</td></td<>	sorption In	testinal absorption (human)	79.971	Numeric (% Absorbed)	Excretion	Total Clearance	0.591	Numeric (log ml/m
No Categorical (Yes/No) Bogicon P.glycoprotein II inhibitor No Categorical (Yes/No) Property Model Name Predicted Value Unit Model Name Predicted Value Unit Categorical (Yes/No) Model Name Predicted Value Unit Categorical (Yes/No) Model Name Predicted Value Unit Categorical (Yes/No) Mactalian CYP2D6 substrate No Categorical (Yes/No) Mactalian CYP2A4 substrate No Categorical (Yes/No) Mactalian CYP2A6 inhibitor No Categorical (Yes/No) Ma	sorption SI	kin Permeability	-2.736	Numeric (log Kp)	Excretion	Renal OCT2 substrate	No	Categorical (Yes/N
No Categorical (Yes/No) Model Name Predicted Value Unit Mactiona CYP2D6 substrate No Categorical (Yes/No) Mactiona CYP2D6 substrate No Categorical (Yes/No) Mactiona CYP2D6 substrate No Categorical (Yes/No) Mactiona CYP2D6 inhibitior No Categorical (Yes/No) <	sorption P-	glycoprotein substrate	No	Categorical (Yes/No)				
Model Name Predicted Value Unit Croperty Model Name Predicted Value Unit Concepts CYP2D6 substrate No Categorical (Yes/No) Metaolana CYP1A2 inhibitior No Categorical (Yes/No) Metaolana CYP1A2 inhibitior No Categorical (Yes/No) Metaolana CYP1A2 inhibitior No Categorical (Yes/No) Metaolana CYP2C9 inhibitior No Categorical (Yes/No) </td <td>sorption P-</td> <td>glycoprotein I inhibitor</td> <td>No</td> <td>Categorical (Yes/No)</td> <td></td> <td></td> <td></td> <td></td>	sorption P-	glycoprotein I inhibitor	No	Categorical (Yes/No)				
Nodel Name Predicted Value Unit Ketabolism CYP2D6 substrate No Categorical (Yes/No) Ketabolism CYP2A4 substrate No Categorical (Yes/No) Ketabolism CYP2C6 inhibitior No Categorical (Yes/No) Ketabolism CYP2C9 inhibitior No Categorical (Yes/No) Ketabolism CYP2Ai (inhibitor No Categorical (Yes/No) Ketabolism CYP2Ai (inhibitor No Categorical (Yes/No)	sorption P-	glycoprotein II inhibitor	No	Categorical (Yes/No)				
Nodel Name Predicted Value Unit Medablism CYP2D6 substrate No Categorical (Yes/No) Metabolism CYP1A2 inhibitor No Categorical (Yes/No) Metabolism CYP2OF substrate No Categorical (Yes/No) Metabolism CYP2OF inhibitor No Categorica					Property	Model Name	Predicted Value	Unit
Metabolism CYP2D6 substrate No Categorical (Yes/No) Metabolism CYP1A2 inhibitior No Categorical (Yes/No) Metabolism CYP1A2 inhibitior No Categorical (Yes/No) Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP2A4 inhibitior No Categorical (Yes/No) Model Name Predicted Value Unit Toxicity Skin Sensitisation No Categorical (Yes/No) Distribution VDss (human) -0.561 Numeric (log UKg) Toxicity Toxicity Minnow toxicity 2.088 Numeric (log					Toxicity	AMES toxicity	No	Categorical (Yes/N
Metabolism CYP3A4 substrate No Categorical (Yes/No) Metabolism CYP1A2 inhibitior No Categorical (Yes/No) Metabolism CYP2C19 inhibitior No Categorical (Yes/No) Metabolism CYP2C19 inhibitior No Categorical (Yes/No) Metabolism CYP2C19 inhibitior No Categorical (Yes/No) Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP2A4 inhibitior No Categorical (Yes/No) Metabolism CYP3A4 inhibitior No Categorical (Yes/No) Toxicity Hepatotoxicity Oral Rat Acute Toxicity (LOAEL) 2.635 Numeric (log mg/N Model Name Predicted Value Unit Toxicity Hepatotoxicity No Categorical (Yes/N Toxicity Toxicity T.Pyriformis toxicity 0.166 Numeric (log mg/N Distribution VDss (human) 0.444 Numeric (log LKg) Minnow toxicity 2.088 <					Toxicity	Max. tolerated dose (human)	1.115	Numeric (log mg/k
Metabolism CYP1A2 inhibitior No Categorical (Yes/No) Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP3A4 inhibitior No Categorical (Yes/No) Model Name Predicted Value Unit Toxicity Skin Sensitisation No Categorical (Yes/No) Distribution VDss (human) -0.561 Numeric (log L/kg) Toxicity Tioxicity Minow toxicity 2.088 Numeric (log mM) No Distribution Fraction unbound (human) 0.444 Numeric (Fu) No Categorical (Yes/No)					Toxicity	hERG I inhibitor	No	Categorical (Yes/N
Model Name Predicted Value Unit Distribution VDss (human) -0.561 Numeric (Hog Mag) Distribution Fraction unbound (human) 0.444 Numeric (Fu)					Toxicity	hERG II inhibitor	No	Categorical (Yes/N
Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP2C9 inhibitior No Categorical (Yes/No) Metabolism CYP2A4 inhibitior No Categorical (Yes/No) Metabolism CYP3A4 inhibitior No Categorical (Yes/No) Metabolism CYP3A4 inhibitior No Categorical (Yes/No) Model Name Predicted Value Unit Toxicity Skin Sensitisation No Categorical (Yes/No) Distribution VDss (human) -0.561 Numeric (log Ukg) Toxicity Tioxicity Minnow toxicity 2.088 Numeric (log mM) Distribution Fraction unbound (human) 0.444 Numeric (Fu) Autor of the second secon					Toxicity	Oral Rat Acute Toxicity (I D50)	2.02	Numeric (mol/kg)
Metabolism CYP2D6 inhibitior No Categorical (Yes/No) Verbabilism CYP3A4 inhibitior No Categorical (Yes/No) Property Model Name Predicted Value Unit Distribution VDss (human) -0.561 Numeric (log L/kg) Distribution Fraction unbound (human) 0.444 Numeric (Fu)								
Model Name Predicted Value Unit Distribution VDss (human) 0.561 Numeric (log L/kg) Distribution Fraction unbound (human) 0.444 Numeric (Fu)								
Model Name Predicted Value Unit Distribution VDss (human) -0.561 Numeric (log L/kg) Distribution Fraction unbound (human) 0.444 Numeric (Fu)					Toxicity	Hepatotoxicity	No	Categorical (Yes/N
Model Name Predicted Value Unit Distribution VDss (human) -0.561 Numeric (log L/kg) Distribution Fraction unbound (human) 0.444 Numeric (Fu)	eabonsin	off off innoted	iio	outogonou (rosno)	Toxicity	Skin Sensitisation	No	Categorical (Yes/N
VDss (human) -0.561 Numeric (log L/kg) Distribution Fraction unbound (human) 0.444 Numeric (Fu)					Toxicity	T.Pyriformis toxicity	0.166	Numeric (log ug/L)
Distribution Fraction unbound (human) 0.444 Numeric (Fu)					Toxicity	Minnow toxicity	2.088	Numeric (log mM)
Distribution BBB permeability -0.277 Numeric (log BB)	istribution							
	istribution	BBB permeability	-0.277	Numeric (log BB)				

Fig 9 Prediction of pharmacokinetic properties: ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylcysteine (SAC) SAMC) predicted by pkCSM (<u>http://biosig.unimelb.edu.au/pkcsm/</u>) [27]

roperty	Model Name	Predicted Value	Unit				
bsorption	Water solubility	-2.888	Numeric (log mol/L)				
bsorption	Caco2 permeability	0.75	Numeric (log Papp in 10 ⁻⁶ cm/s)	Property	Model Name	Predicted Value	Unit
bsorption	Intestinal absorption (human)	83.932	Numeric (% Absorbed)	Excretion	Total Clearance	0.264	Numeric (log ml/min/kg)
Absorption	Skin Permeability	-2.736	Numeric (log Kp)	Excretion	Renal OCT2 substrate	No	Categorical (Yes/No)
bsorption	P-glycoprotein substrate	No	Categorical (Yes/No)				
lbsorption	P-glycoprotein I inhibitor	No	Categorical (Yes/No)				
Absorption	P-glycoprotein II inhibitor	Running	Categorical (Yes/No)				
				Property	Model Name	Predicted Value	Unit
Property	Model Name	Predicted Value	Unit	Toxicity	AMES toxicity	No	Categorical (Yes/No)
Metabolism	CYP2D6 substrate	No	Categorical (Yes/No)	Toxicity	Max. tolerated dose (human)	1.095	Numeric (log mg/kg/day)
Metabolism	CYP3A4 substrate	No	Categorical (Yes/No)	Toxicity	hERG I inhibitor	No	Categorical (Yes/No)
Metabolism	CYP1A2 inhibitior	No	Categorical (Yes/No)	Toxicity	hERG II inhibitor	No	Categorical (Yes/No)
Metabolism	CYP2C19 inhibitior	No	Categorical (Yes/No)				
Metabolism	CYP2C9 inhibitior	No	Categorical (Yes/No)	Toxicity	Oral Rat Acute Toxicity (LD50)	2.025	Numeric (mol/kg)
Metabolism	CYP2D6 inhibitior	No	Categorical (Yes/No)	Toxicity	Oral Rat Chronic Toxicity (LOAEL)	1.985	Numeric (log mg/kg_bw/
Metabolism	CYP3A4 inhibitior	No	Categorical (Yes/No)	Toxicity	Hepatotoxicity	No	Categorical (Yes/No)
				Toxicity	Skin Sensitisation	No	Categorical (Yes/No)
Property	Model Name	Predicted Val	ue Unit	Toxicity	T.Pyriformis toxicity	0.169	Numeric (log ug/L)
Distribution	VDss (human)	-0.57	Numeric (log L/kg)	Toxicity	Minnow toxicity	1.693	Numeric (log mM)
Distribution	Fraction unbound (human)	0.434	Numeric (Fu)				
Distribution	BBB permeability	-0.278	Numeric (log BB)				
Distribution	CNS permeability	-3.443	Numeric (log PS)				

Fig 9 Prediction of pharmacokinetic properties: ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of S-allylcysteine (SAMC) predicted by pkCSM (http://biosig.unimelb.edu.au/pkcsm/)[27]

Conclusions

This paper encompasses the fundamental functions of open access in silico prediction tools, as PASS database (Prediction of Activity Spectra for Substances) that it estimates the probable biological activity profiles for compounds. This paper also aims to help support new researchers in the field of drug design and to investigate some of bioactive compounds in garlic. Particular attention we investigated Pharmacokinetic properties by several server, of S-allylcysteine (SAC) and Sallylmercaptocysteine (SAMC) for their as anti-inflammatory, antibacterial, and antiviral, antioxidant, cardiovascular protective and anticancer property. Screening through each of pharmacokinetic criteria resulted in identification of Garlic compounds that adhere to all the ADMET properties. It was established an open-access database (PASS database, available bioinformatics tool SwissADME, PreADMET pkCSM database) servers were employed to determine the ADMET (metabolism, distribution, excretion, absorption, and toxicity) attributes of garlic molecules and to enable identification of promising molecules that follow ADMET properties. Further investigations will be conducted in Vitro and In vito by the SAMC, using Layered double hydroxides (LDH), which are one type of layered materials and are also known as anionic clays, are promising layered materials due to some of their interesting properties, such as to facile tunability of their composition, structure morphology and biocompatibility vehicle, against several cancer cells.

Author contributions

I.V.F. conceived, designed and wrote the paper and performed the calculations and analyzed the data.

Declaration of Competing Interest

The authors declare they have no potential conflicts of interest to disclose.

REFERENCES

- Shang , Ao., Cao , Shi-Yu., Xu , Xiao-Yu., Gan , Ren-You., Tang , Guo-Yi., Corke ,H., Mavumengwana, V. and Li ,Hua-Bin. "Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.) (2019) Foods, 8, 246; doi:10.3390/foods8070246
- Zhang, Y., Xingping, Liu Ruan, J., Zhuang, X., Zhang, X. and Li, Z. "Phytochemicals of garlic: Promising candidates for cancer therapy". Biomedicin & (2020) Pharmacotherapy 123, 109730
- 3. Zhou, Yong, et al. "Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis." Gastroenterology 141.1 (2011): 80-89.
- 4. Kodali, R. T., and Guy D. Eslick. "Meta-analysis: Does garlic intake reduce risk of gastric cancer?." Nutrition and cancer 67.1 (2015): 1-11.
- 5. Turati, Federica, et al. "Colorectal cancer and adenomatous polyps in relation to allium vegetables intake: A meta-analysis of observational studies." Molecular nutrition & food research 58.9 (2014): 1907-1914.
- 6. Lipinski, Christopher A. "Lead-and drug-like compounds: the rule-of-five revolution." Drug Discovery Today: Technologies 1.4 (2004): 337-341.
- 7. Daina, Antoine, Olivier Michielin, and Vincent Zoete. "SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules." Scientific reports 7.1 (2017): 1-13.
- 8. Alexey Lagunin, Alla Stepanchikova, Dmitrii Filimonov, Vladimir Poroikov, PASS: prediction of activity spectra for biologically active substances, Bioinformatics, Volume 16, Issue 8, August 2000, Pages 747–748, https://doi.org/10.1093/bioinformatics/16.8.747
- 9. http://www.pharmaexpert.ru/PASSOnline/info.php
- Shirin, Haim., Pinto, J. T. Kawabata, Y. Soh, Delohery, Jae-Won T. Moss, S.F. Vundavalli Murty, Richard S. Rivlin, Peter R. Holt and I. Bernard Weinstein "Antiproliferative Effects of S-Allylmercaptocysteine on Colon Cancer Cells When Tested Alone or in Combination with Sulindac Sulfide". CANCER RESEARCH 61 pp.725–731
- 11. Lokman Uzun, Numan Kokten, Osman Halit Cam, M.Tayyar Kalcioglu, M. Birol Ugur, Muhammet Tekin, Gul Ozbilen Acar. "The effect of Garlic Derivatives (S-Allylmercaptocysteine, Diallyl Disulfide, and S-Allylcysteine) on Gentamicin Induced Ototoxicity: An Experimental Study" (2016) Clinical and Experimental Otorhinolaryngology 9,(4) pp.309-313
- LV, Yi., SO, Kwok-Fai, WONG, Nai-Kei, and XIAO, Jia, "Anti-cancer activities of Sallylmercaptocysteine from aged garlic". (2019) Chinese Journal of Natural Medicines, 17 (1) pp.43-49

- Shirin, Haim., Pinto, J. T. Kawabata, Y. Soh, Delohery, Jae-Won T. Moss, S.F. Vundavalli Murty, Richard S. Rivlin, Peter R. Holt and I. Bernard Weinstein "Antiproliferative Effects of S-Allylmercaptocysteine on Colon Cancer Cells When Tested Alone or in Combination with Sulindac Sulfide". (2001) CANCER RESEARCH 61 pp.725–731
- 14. Dandan Tong, Hui Qu Xiangning Meng Yang Jiang Duanyang Liu Shengqian Ye He Chen Yan Jin Songbin Fu Jingshu Geng. S-allylmercaptocysteine promotes MAPK inhibitorinduced apoptosis by activating the TGF-β signaling pathway in cancer cells. (2014) Oncology reports,32 (3)pp. 1124-1132
- J.-Y. Yan, F.-M. Tian, W.-N. Hu, J.-H. Zhang, H.-F. Cai, N. Li "Apoptosis of human gastric cancer cells line SGC 7901 induced by garlic-derived compound S-allylmercaptocysteine (SAMC)" (2013) Eur Rev Med Pharmacol Sci ,17 (6) pp.745-751
- 16. Xiaosong Zhua, Xiaoyan Jiang, Chonggang Duan, Ang Li, Yueyue Suna, Qiuchen Qi, Yan Liu, Siying Li, and Zhongxi Zhao." S-Allylmercaptocysteine induces G2/M phase arrest and apoptosis via ROS-mediated p38 and JNK signaling pathway in human colon cancer cells in vitro and in vivo".(2017) SC Adv., 7, pp.49151-49158
- Qingjun, Chu." S-Allylcysteine (Sac) and S-Allylmercaptocysteine (Samc), Water Soluble Garlic Derivatives, Suppress Growth and Invasion of Androgen-Independent Prostate Cancer, Under in Vitro and in Vivo Conditions". (2017) 褚慶軍 Liu, Y., Yan, J., Han, X. and Hu, W." Garlic-derived compound S-allylmercaptocysteine (SAMC) is active against anaplastic thyroid cancer cell line 8305C (HPACC)".(2015) Technol Health Care. 23, (1) pp. S89-S93
- Pinto, J. T. and Rivlin," R., S. Antiproliferative Effects of Allium Derivatives from Garlic". (2001) The Journal of Nutrition, 131 (3) pp. 1058S–1060S
- Pinto, J. T., Qiao, C. H., Xing, J., Brian, P., Suffoletto, B. P., Schubert, K. B., Rivlin, R. S., Huryk, R. F., Bacich, D. J. & Heston, W. D. W. (2000)" Alterations of prostate biomarker expression and testosterone utilization in human LNCaP prostatic carcinoma cells by garlicderived S-allylmercaptocysteine". The Prostate, 45 pp.304–314.
- 20. Xiao D, Pinto JT, Soh JW, Deguchi A, Gundersen GG, Palazzo AF, Yoon JT, Shirin H, Weinstein IB". Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation". (2003) Cancer Res. 63(20) pp.6825-37.
- 21. Biovia, Dassault Systèmes. "Discovery studio modeling environment." (2017).
- 22. Filimonov, Dmitry, and Vladimir Poroikov. Probabilistic approaches in activity prediction. Royal Society of Chemistry, Cambridge, UK, 2008.
- 23. Lagunin, Alexey, et al. "PASS: prediction of activity spectra for biologically active substances." Bioinformatics 16.8 (2000): 747-748.
- 24. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017 Mar;7:42717. DOI: 10.1038/srep42717.
- 25. S.K.Lee, G.S.Chang, I.H.Lee, J.E.Chung, K.Y.Sung, K.T.No, "The PreADME: PC-BASED PROGRAM FOR BATCH PREDICTION OF ADME PROPERTIES", EuroQSAR 2004, 2004, 9.5-10, Istanbul, Turkey.
- 26. S.K.Lee, I.H.Lee, H.J.Kim, G.S.Chang, J.E.Chung, K.T.No, "The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like

properties", EuroQSAR 2002 Designing Drugs and Crop Protectants: processes, problems and solutions, 2003, pp. 418-420. Blackwell Publishing, Massachusetts, USA.

- 27. Pires, Douglas EV, Tom L. Blundell, and David B. Ascher. "pkCSM: predicting smallmolecule pharmacokinetic and toxicity properties using graph-based signatures." Journal of medicinal chemistry 58.9 (2015): 4066-4072.
- Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica. 2020 Jan;50(1):19-33. doi: 10.1080/00498254.2019.1643515. Epub 2019 Aug 1. PMID: 31317802.
- 29. Valentino, Hannah, et al. "Structure and function of a flavin-dependent S-monooxygenase from garlic (Allium sativum)." Journal of Biological Chemistry 295.32 (2020): 11042-11055.
- 30. Ferreira F, Esteves S, Almeida LS, Gaspar A, da Costa CD, Janeiro P, Bandeira A, Martins E, Teles EL, Garcia P, Azevedo L, Vilarinho L. Trimethylaminuria (fish odor syndrome): genotype characterization among Portuguese patients. Gene. 2013 Sep 15;527(1):366-70. doi: 10.1016/j.gene.2013.05.025. Epub 2013 Jun 17. PMID: 23791655.

Supporting Information

		olecular Weight (g/mol		Pi	Acitivity
(E)-Ajoene and Z)-Ajoene	C ₉ H ₁₄ OS ₃	234.4	0,972	0,004	Antineoplastic
			0,949	0,002	CYP2E1 inhibitor
			0,94	0,004	Apoptosis agonist CYP2E1 substrate
			0,881	0,004	CYP2E1 substrate
			0,869	0,001	Chemoprotective
			-,	-,	
Vinylthiiran	C ₄ H ₆ S	86.16	Pa	Pi	Acitivity
			0,932	0,001	Growth hormone agonist
			0,926	0,003	Gluconate 2-dehydrogenase (acceptor) inhibito
			0,865	0,003	Chloride peroxidase inhibitor
			0,875	0,014	Aspulvinone dimethylallyltransferase inhibitor
			0,822	0,013	Mucomembranous protector
			0,81	0,004	Fatty-acyl-CoA synthase inhibitor
			0,806	0,004	Thioredoxin inhibitor Cltransporting ATPase inhibitor
			0,802	0,000	CItransporting Arrase inhibitor
Allicin	C ₆ H ₁₀ OS ₂	162.3	Pa	Pi	Acitivity
			0,959	0,003	Apoptosis agonist
			0,884	0,001	Chemoprotective
			0,852	0,02	Aspulvinone dimethylallyltransferase inhibitor
		250.27	Pa	Pi	0 oltivity
gamma-Glutamylcysteine	C ₈ H ₁₄ N ₂ O ₅ S	230.27		0,001	Acitivity
			0,984	0,001	Mucositis treatment Protein-disulfide reductase (glutathione) inhibit
			0,983	0,001	Hydrogen dehydrogenase inhibitor
			0,979	0	Yeast ribonuclease inhibitor
			0,976	0,001	Fucosterol-epoxide lyase inhibitor
			0,974	0,001	Levanase inhibitor
			0,97	0,002	/onodehydroascorbate reductase (NADH) inhib
S-Allyl-L-cysteine	C ₆ H ₁₁ NO ₂ S	161.22	Pa	Pi	Acitivity
			0,965	0,002	Flavin-containing monooxygenase substrate
			0,963	0,003	CYP2E1 substrate
			0,962	0,003	CYP2E substrate
			0,942	0,001	S-alkylcysteine lyase inhibitor
			0,939	0,002	NADPH peroxidase inhibitor
			0,933	0,002	FMO3 substrate
			0,928	0,002	Lysine 2,3-aminomutase inhibitor
			0,905	0,003	Acylcarnitine hydrolase inhibitor Arylacetonitrilase inhibitor
			0,505	0,004	
5-allylmercapto-L-cysteine	C ₆ H ₁₁ NO ₂ S ₂	193.3	Pa	Pi	Acitivity
			0,974	0,002	Flavin-containing monooxygenase substrate
			0,967	0,001	FMO3 substrate
			0,939	0,002	NADPH peroxidase inhibitor
			0,939	0,002	Protein-disulfide reductase (glutathione) inhibit
			0,934	0,003	CYP2E1 substrate
			0,933	0,003	CYP2E substrate
			0,932	0,003	Antiseborrheic
			0,928	0,003	Lipid metabolism regulator
			0,925	0,004	Apoptosis agonist
			0,924 0,919	0,003	Acylcarnitine hydrolase inhibitor Cysteamine dioxygenase inhibitor
			0,916	0,003	Arylacetonitrilase inhibitor
			0,909	0,002	S-alkylcysteine lyase inhibitor
			0,903	0,002	TP53 expression enhancer
Allyl methyl sulfide	C ₄ H ₈ S	88.17	Pa	Pi	Acitivity
			0,965	0,002	Flavin-containing monooxygenase substrate
			0,941	0,004	Apoptosis agonist
			0,935	0,002	FMO3 substrate
			0,914	0,004	Mucomembranous protector
			0,9	0,003	CYP2E1 inhibitor
			0,876	0,002	S-alkylcysteine lyase inhibitor
Diallyl sylfide	CH S	114 21	Ro.	Di	0 oltivity
Diallyl sulfide	C ₆ H ₁₀ S	114.21	Pa	Pi	Acitivity
			0,926	0,002	Flavin-containing monooxygenase substrate Aspulvinone dimethylallyltransferase inhibito
			0,889	0,01	Aspulvinone dimethylallyltransferase inhibito Mucomembranous protector
			0,875	0,008	FMO3 substrate
			0,872	0,002	Fatty-acyl-CoA synthase inhibitor
Diallyl disulfide	C ₆ H ₁₀ S ₂	146.3	Pa	Pi	Acitivity
			0,987	0,002	Apoptosis agonist
			0,944	0,001	Cysteamine dioxygenase inhibitor
			0,935	0,003	CYP2E1 inhibitor
			0,931	0,003	Inflammatory Bowel disease treatment
			0,92	0,001	Bcl2 antagonist
			0,917	0,001	Chemoprotective
			0,904	0,003	Antioxidant
			0,896	0,003	Atherosclerosis treatment
Diallyl trisulfide	СН	178.3	Pa	Pi	Acitivity
Dianyi trisunide	C ₆ H ₁₀₅₃	1/0.5	0,981	0,001	Antineoplastic (cervical cancer)
			0,981	0,001	Antineoplastic (cervical cancer)
			0,975	0,002	Antineoplastic
			0,97	0,004	Antineoplastic (lymphocytic leukemia)
			0,964	0,002	Antineoplastic (sarcoma)
			0,955	0,003	Apoptosis agonist
			0,94	0,002	Antineoplastic (non-small cell lung cancer)
			0,934	0,003	Antineoplastic (breast cancer)

Tab 2 PASS Online Server (Prediction of Activity Spectra for Substances) of Principal Organosulfur Compounds in Garlic . The output file represents a list of activities with two probabilities Pa (probability to be active) and Pi (probability to be inactive). Pa (probability "to be active") estimates the chance that the studied compound is belonging to the sub-class of active compounds (resembles the structures of molecules, which are the most typical in a sub-set of "actives" in PASS training set). Pi (probability "to be inactive") estimates the chance that the studied compound is belonging to the structures of molecules, which are the most typical in a sub-set of "inactives" in PASS training set). [8]

	Aolecular Formula A	olecular Weight (g/mol	Pa	Pi	Possible adverse & toxic effects
(E)-Ajoene and Z)-Ajoene	C ₉ H ₁₄ OS ₃	234.4	0,449	0,036	Thrombocytopoiesis inhibitor
			0,371	0,093	Adrenal cortex hypoplasia
			0,36	0,103	Weight gain
			0,311	0,123	Hypomagnesemia
Vipulthiiran	C H S	86.16	Pa	Pi	Passible advarce & toxis offests
Vinylthiiran	C ₄ H ₆ S	86.16	0,907	0,005	Possible adverse & toxic effects
					Weight loss Weakness
			0,801	0,019	
			0,771	0,017	Nephrotoxic
			0,765	0,017	Muscle weakness
Allicin	C ₆ H ₁₀ OS ₂	162.3	Pa	Pi	Possible adverse & toxic effects
Allen	C6H10052	102.5	0,682	0,011	Thrombocytopoiesis inhibitor
			0,616	0,046	Withdrawal
			0,639	0,048	ophilic dermatosis (Sweet's syndrome)
			0,000	0,075	oprine der nacions (sweet s syndrome)
gamma-Glutamylcysteine	C ₈ H ₁₄ N ₂ O ₅ S	250.27	Pa	Pi	Possible adverse & toxic effects
			0,924	0,001	Bullous pemphigoid
			0,891	0,008	Pure red cell aplasia
			0,858	0,007	Ulcer, aphthous
			0,852	0,003	Anemia, sideroblastic
					Neurotoxic
			0,856	0,011	
			0,857 0,809	0,016	Diarrhea Nephrotoxic
			0,609	0,012	Nephrotoxic
S-Allyl-L-cysteine	C ₆ H ₁₁ NO ₂ S	161.22	Pa	Pi	Possible adverse & toxic effects
			0,835	0,017	Pure red cell aplasia
			0,832	0,02	Diarrhea
			0,801	0,017	Neurotoxic
			0,786	0,004	Anemia, sideroblastic
			0,784	0,022	Ulcer, aphthous
S-allylmercapto-L-cysteine	C ₆ H ₁₁ NO ₂ S ₂	193.3	Pa	Pi	Possible adverse & toxic effects
			0,786	0,004	Anemia, sideroblastic
			0,804	0,023	Pure red cell aplasia
			0,783	0,015	Nephrotoxic
			0,777	0,02	Neurotoxic
			0,764	0,014	Ataxia
			0,758	0,028	Ulcer, aphthous
			0,716	0,021	Weight gain
			0,728	0,039	Toxic
Allul mothyl cylfid -	CHS	00 17	Ра	Pi	Describle adverse & toxis offerte
Allyl methyl sulfide	C ₄ H ₈ S	88.17	0,819	0,006	Possible adverse & toxic effects Thrombocytopoiesis inhibitor
			0,725	0,006	Hypothermic
			0,708 0,711	0,005 0,027	Lacrimal secretion stimulant Hyperglycemic
Diallyl sulfide	C ₆ H ₁₀ S	114.21	Pa	Pi	Possible adverse & toxic effects
			0,801	0,006	Thrombocytopoiesis inhibitor
			0,769	0,008	Withdrawal
			0,77	0,011	Weight gain
			0.781	0.028	ophilic dermatosis (Sweet's syndrome
			0,795	0,044	Twitching
Diallyl disulfide	C ₆ H ₁₀ S ₂	146.3	Pa	Pi	Possible adverse & toxic effects
			0,888	0,004	Thrombocytopoiesis inhibitor
			0,787	0,043	Shivering
			0,741	0,011	Withdrawal
			0,734	0,017	Weight gain
			0,719	0,02	Ataxia
			0,738	0,04	ophilic dermatosis (Sweet's syndrome
			0,705	0,016	Hypomagnesemia Twitching
			0,755	0,067	iwitching
	e	178.3	Pa	Pi	Possible adverse & toxic effects
Diallyl trisulfide	C ₆ H _{10S3}	178.5			
Diallyl trisulfide	C ₆ H ₁₀₅₃	176.5	0,734 0,711	0,009 0,073	Thrombocytopoiesis inhibitor Shivering

 Tab 3
 PASS Online Server (Prediction of Activity Spectra for Substances) calculated possible adverse and toxic effects of Principal Organosulfur

 Compounds in Garlic [8]