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Bypassing nature’s evolutionary trajectory, de novo protein generation—defined as 

creating artificial protein sequences from scratch—could enable breakthrough solutions 

for biomedical and environmental challenges. Viewing amino acid sequences as a 

language, we demonstrate that a deep learning-based language model can generate 

functional artificial protein sequences across families, akin to generating grammatically 

and semantically correct natural language sentences on diverse topics. Our protein 

language model is trained by simply learning to predict the next amino acid for over 280 

million protein sequences from thousands of protein families, without biophysical or 

coevolutionary modeling. We experimentally evaluate model-generated artificial proteins 

on five distinct antibacterial lysozyme families. Artificial proteins show similar activities 

and catalytic efficiencies as representative natural lysozymes, including hen egg white 

lysozyme, while reaching as low as 44% identity to any known naturally-evolved protein. 

The X-ray crystal structure of an enzymatically active artificial protein recapitulates the 

conserved fold and positioning of active site residues found in natural proteins. We 

demonstrate our language model’s ability to be adapted to different protein families by 

accurately predicting the functionality of artificial chorismate mutase and malate 

dehydrogenase proteins. These results indicate that neural language models 

successfully perform de novo protein generation across protein families and may prove 

to be a tool to shortcut evolution. 

 

Protein engineering can have a transformative impact on biomedicine, environmental science, 

and nanotechnology, among other fields. Traditional evolutionary protein engineering methods 

perform iterative screening/selection to identify proteins with desired functional and structural 

properties. In contrast, rational or de novo protein design methods aim to create artificial 

proteins from scratch, with the goal of improved efficiency and precision. Structure-based de 

novo design methods1–5 employ biophysical principles to design proteins that will fold into a 
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desired structure using simulation-based methods and statistical analysis of experimental data. 

Coevolutionary methods6–9  build statistical models from evolutionary sequence data to specify 

novel sequences with desired function or stability. Both structural and coevolutionary 

approaches are not without limitations. Structural methods rely on scarce experimental structure 

data and difficult or intractable biophysical simulations3,10. Coevolutionary statistical models are 

tailored to specific applications, frequently rely on multiple sequence alignments, and struggle to 

operate in underexplored regions of protein landscape10. Recently, deep neural networks have 

shown promise as generative and discriminative models for protein science and engineering11–

15. Their ability to learn complex representations could be essential to effectively utilize an 

exponentially growing source of diverse and relatively unannotated protein data—public 

databases containing millions of raw unaligned protein sequences16–18, enabled by the dramatic 

reduction in sequencing costs.   

 

Inspired by the success of deep learning-based natural language models (LMs) trained on large 

text corpora that generate realistic text with varied topics and sentiments19–23, we develop 

ProGen, a protein language model trained on millions of raw protein sequences that generates 

de novo artificial proteins across multiple families and functions. While prior work has shown 

that natural language-inspired statistical representations of proteins are useful for protein 

informatics tasks such as stability prediction, remote homology detection, and secondary 

structure prediction10,24–26, we show that the latest advances in deep learning-based language 

modeling can be adopted to generate artificial protein sequences, from scratch, that function as 

well as natural proteins.  

 

ProGen is iteratively optimized by learning to predict the probability of the next amino acid given 

the past amino acids in a raw sequence, with no explicit structural information or coevolutionary 

assumptions. Trained in this unsupervised manner from a large, varied protein sequence 
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database, ProGen learns a universal, domain-independent representation of proteins that 

subsumes local and global structure motifs and higher-order residue interactions, analogous to 

natural language models learning semantic and grammatical rules. After training, ProGen can 

be prompted to generate full-length protein sequences for any protein family from scratch, with a 

varying degree of similarity to natural proteins.  

 

ProGen is a 1.2 billion-parameter neural network trained using a publicly available dataset of 

280 million protein sequences. A key component of ProGen is conditional generation23,27–29: 

sequence generation controlled by property tags provided as input to the language model. In the 

case of natural language, these control tags may be style, topics, dates, and other entities  (Fig. 

1a).  For proteins, the control tags are properties such as protein family, biological process, and 

molecular function, that are available for a large fraction of sequences in public protein 

databases (Fig. 1b, Fig. S1). By specifying one or more control tags (e.g., Protein Family: Pfam 

ID PF16754, Pesticin) and none or a few amino acids at the beginning of a sequence, we can 

significantly constrain the sequence space for generation and improve generation quality, as 

shown by our prior computational experiments30.  

 

Let  𝑎 =  (𝑎!, . . . , 𝑎!") be a sequence of amino acids that specifies a protein of length 𝑛! − 1 

appended with an “end of sequence” token. Let  𝑐 =  (𝑐!, . . . , 𝑐!")  be an associated set of 

descriptors such as protein family or source organism, i.e.,  ‘control tags’, through which we 

would like to control generation of amino acid sequences. Let 𝑥 =  [𝑐;  𝑎] be the sequence 

formed by prepending a control tag sequence to an amino acid sequence. The probability over 

such a combined sequence of length 𝑛 =  𝑛!  +  𝑛!  is then 𝑝(𝑥). Language modeling 

decomposes the problem of generating 𝑥 into a next-token prediction problem31, where a token 
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can either be an amino acid or a control tag. We train a neural network with parameters 𝜃 to 

minimize the negative log-likelihood over a dataset 𝐷 =  {𝑥!,…  , 𝑥|!|} 

𝐿(𝐷)  =  − !
|!|

 !
!!

𝑙𝑜𝑔 𝑝!(𝑥!!|𝑥!!! )!!
!!!

|!|
!!!    (Eq. 1) 

A new protein 𝑎 of length 𝑚! with desired properties encoded by a control tag sequence 𝑐 of 

length 𝑚! can then be generated by sequentially sampling its constituent 

tokens:𝑝! 𝑎! | 𝑐 , 𝑝! 𝑎! | 𝑎!, 𝑐 , . . . , 𝑝! 𝑎!  | 𝑎!! , 𝑐 30. Generation continues until the model 

generates an “end of sequence” token. 

 

We utilize a state-of-the-art transformer-based19 neural network architecture for constructing 

ProGen. The transformer learns long-range context within sequences using a series of stacked 

layers, each containing a self-attention mechanism (Fig. 1e). The self-attention mechanism in 

each layer infers pairwise interaction relationships between all positions in its input sequence32.  

Stacking multiple self-attention layers allows us to go beyond lower-order residue correlations to 

learn complex higher-order interactions. In contrast to transformer-based language models that 

encode amino acid sequences for discriminative protein prediction tasks25,33,34, ProGen is a 

decoder transformer tailored for autoregressive generation. 

 

ProGen’s transformer architecture has 36 layers, and 8 self-attention heads per layer and a total 

of 1.2 billion trainable neural network parameters (see Methods). To train ProGen, we collected 

a universal protein sequence dataset containing 280 million protein sequences (from >19,000 

Pfam18 families) and associated metadata (as control tags) from UniParc16, UniprotKB17, Pfam18, 

and NCBI taxonomic information35 (Fig. 1d, Table S1). We trained ProGen to minimize the 

negative log-likelihood defined in Eq. 1 using this dataset with a batch size of 2048 for one 

million iterations. Training was performed across 256 Google Cloud TPU v3 cores for two 
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weeks. Once trained, ProGen could be used to generate novel protein sequences from scratch 

by specifying a control tag (e.g. protein family identifier from Pfam), Fig. 1c.  

 

We experimentally evaluated ProGen’s ability to generate functional artificial amino acid 

sequences by testing its generations from the lysozyme clan18,36. Lysozymes are antibacterial 

enzymes that disrupt the integrity of the cell wall by catalyzing the hydrolysis of 1,4-beta-

linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues. Within the 

lysozyme clan, we chose to work with five families that lack disulfide bonds as to be amenable 

to high-throughput cell-free expression: Phage lysozyme, Pesticin, Glucosaminidase, Glycoside 

hydrolase, and Transglycosylase. These lysozyme families contain significant protein sequence 

diversity (Table S3) with average sequence length varying between 84-167 across families. The 

sequences also show large structural diversity and multiple structural folds (Fig. S2), which 

represents a challenging design space for a model trained without any explicit structural 

information. We collected a dataset of 55,948 sequences from these five families from Pfam and 

UniprotKB sources for obtaining positive controls and for fine-tuning37 ProGen. Fine-tuning 

involves making limited, computationally inexpensive, gradient updates to the parameters of the 

trained model (see Methods) to further improve its ability to generate protein sequences in the 

local lysozyme sequence neighborhood38.  

 

After fine-tuning ProGen using the curated lysozyme dataset, we generated one million artificial 

sequences using ProGen by providing the Pfam ID for each family as a control tag. Our artificial 

lysozymes span the sequence landscape of natural lysozymes, Fig. 2a, across five families 

which contain diverse protein folds, active site architectures, and enzymatic mechanisms39,40. As 

our model can generate full-length artificial sequences within milliseconds, a large database can 

be created to expand the plausible sequence diversity beyond natural libraries (Table S3). 

Although artificial sequences may diverge from natural sequences purely from a sequence 
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identity calculation, (Fig. 2b, Fig. S3), they demonstrate similar residue position entropies when 

forming separate multiple sequence alignments of natural and artificial proteins within each 

family, Fig. 2c. This indicates that the model has captured evolutionary conservation patterns 

without training on explicit alignment information such as with Potts models41, as implemented in 

direct coupling analysis6,42.  

 

To experimentally evaluate ProGen performance across a range of sequence divergences from 

natural proteins, we selected one hundred sequences filtered based on generation quality and 

diversity to natural sequences, measured as top-hit identities (“max ID”) to any protein in our 

training dataset containing 280 million proteins, which is primarily composed of UniParc16 (Fig. 

S4). We first ranked sequences for generation quality using a combination of an adversarial 

discriminator22,43 and model log-likelihood scoring44 (see Methods) and then sampled from top-

ranked sequences to span a range of max IDs between 40-90%. We also ensured that no two 

generated samples share over 80% identity with each other. Our final selection included 100 

artificial sequences (Table S2), with a minimum of 8 proteins from each protein family. The 

average sequence length for artificial proteins varies between 93-179 across families, 

comparable to natural lysozymes in our curated dataset from Pfam. We also selected a positive 

control group from the 55,948 curated lysozyme sequences. We clustered the natural 

sequences with mmseqs245 and chose roughly 20 cluster-representative sequences from each 

of the five families (see Methods).  

 

To evaluate function, full-length genes were synthesized and purified via cell-free protein 

synthesis and affinity chromatography (see Methods). In the positive control set of 100 natural 

proteins, 72% were well-expressed based on chromatography peaks and band visualization. 

The ProGen-generated proteins express equally well (72/100 total) across all bins of sequence 

identity to any known natural protein (maxID 40-90%), Fig 2e. In addition, we designed artificial 
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proteins using bmDCA6, a statistical model based on direct coupling analysis, which explicitly 

approximates first and second-order residue dependencies. Although trained using publicly 

available code on the same sequences as ProGen and additional alignment information (see 

Methods), bmDCA was unable to fit three out of the five lysozyme families, and exhibited 60% 

detectable expression (30/50 proteins) for the remaining two protein families. These results 

indicate that ProGen can generate artificial proteins that are structurally well-folded for proper 

expression as compared to a batch of natural proteins, even when sequence alignment size and 

quality limit the success of alternative approaches.  

 

Next we examined activity based on quench release of fluorescein labeled Micrococcus 

lysodeikticus cell wall (Molecular Probes EnzChek Lysozyme kit) using 90 randomly chosen 

proteins out of each expressed set of 100. Proteins were prepared in 96-well plate format to 

extract fluorescence curves over time, Fig 3a. Hen egg white lysozyme (HEWL), a naturally-

evolved exemplar protein, was measured as positive control, in addition to ubiquitin as negative 

control. Proteins that generated fluorescence one standard deviation above the maximum 

fluorescence of any negative control were considered functional. Among our artificial proteins, 

73% (66/90) were functional and exhibited high levels of functionality across families, Fig. 3c. 

The representative natural proteins exhibited similar levels of functionality with 59% (53/90) of 

total proteins considered functional. None of the bmDCA artificial proteins exhibited a detectable 

level of functionality. These results indicate that ProGen generates protein sequences that not 

only can express well but also maintain enzymatic function for diverse sequence landscapes 

across protein families. 

 

In addition to a binary value for functionality, we calculated a relative activity score with respect 

to HEWL for the in vitro assay (see Methods). Our artificial proteins match activity levels of 

natural proteins even at lower levels of sequence identity to any known natural protein, (Fig 3b, 
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Fig. S5). Notably a small number of proteins, both within the natural and artificial proteins, were 

within an order of magnitude of HEWL, which was substantially more active than all negative 

controls. These highly active outliers demonstrate the potential for our model to generate 

sequences that may rival natural proteins that have been highly optimized through evolutionary 

pressures. 

 

From the 100 artificial proteins, we selected five proteins that spanned a wide range of max IDs 

(48-89%) to recombinantly express in E. coli (see Methods). Of these, only one, L008, 

generated no detectable expression (Fig. S6). Two (L013 and L038) expressed robustly to 

inclusion bodies and were not pursued further. Two proteins, L056 (max ID 69.6%) and L070 

(max ID 89.2%) expressed well and incurred bactericidal activities towards the E. coli 

BL21(DE3) strain used during overnight induction at 16C. Spent media harbored enzymatic 

activity (see Methods), therefore, enzymes were purified from this material.  

 

While both enzymes purified as monomers at the expected size by size exclusion 

chromatography, we also observed a defined later eluting (apparent lower molecular weight) 

species for each enzyme that corresponded to full-length enzyme by SDS-PAGE (Fig. S6). The 

KM values of both monomers were too weak to be measured using  a heterogeneous, 

fluorescein-labeled Micrococcus lysodeikticus cell wall substrate (Molecular Probes EnzChek 

Lysozyme kit); however, both monomers were active using a pseudo-first order kinetic assay 

(Fig. S7). In contrast, we could readily measure the KM values for the purified apparent lower 

molecular weight species, where both L056 and L070 were highly active and had comparable 

Michaelis-Menten parameters to HEWL (Fig. 3e). Taken together, L056 and L070 harbor potent 

catalytic activity and bactericidal capabilities that are comparable to HEWL, while diverging from 

their nearest known natural sequence by 14 and 41 amino acids respectively, demonstrating 

that ProGen can generate artificial proteins with near native activity. 
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Next, we examined the structural divergence of the artificial proteins. We determined a 2.5 Å 

resolution crystal of L056 (see Methods, Figure 3f). The global fold was similar to predictions, 

with a Cα RMSD of 2.9 Å from the backbone structure predicted by trRosetta and 2.3 Å RMSD 

from a WT T4 Lysozyme structure46,47. The largest structural divergence occurs in the beta 

hairpin comprising residues 18-31. This region forms the bottom of the substrate binding cleft48 

and is part of a hinge binding motion that is important for substrate binding49. The structure of 

the M6I mutant of T4 lysozyme (PDB 150L) is used as a model of the “open” state of this hinge 

and more closely resembles the structure of L056 (1.0Å Cα RMSD).  Alignment with a structure 

featuring a covalently trapped substrate (PDB 148L) reveals that the active site cleft is well 

formed with the key catalytic residue Glu15 (Glu 11 in T4L) and key substrate binding residue 

Thr30 (Thr26 in T4L) correctly positioned. In addition, the hydrophobic core of L056 is well 

packed, with only two small packing voids of less than 5Å3 in volume, which is typical for 

structures of this size50.  To additionally compare across structural representations, we utilized 

trRosetta51 to predict the structure of other functional artificial sequences. As in the crystal 

structure of L056, the predicted artificial structures roughly match known structures found in 

nature, Fig 3g. Collectively, the experimental crystal structure and the trRosetta calculations 

demonstrate that even though ProGen is not trained using any structural information or 

biophysical priors, it has likely learned structural invariances, presented as latent coevolutionary 

signatures, within large-scale evolutionary sequence databases. Furthermore, ProGen seems to 

capture these structural invariances in a generalizable fashion to design artificial proteins that 

reside within known natural protein folds while having high sequence dissimilarity, Fig 3g. 

 

Trained on a universal protein sequence dataset spanning many families, ProGen designs 

proteins from any family when provided with the corresponding control tag as input. To explore 

this capability beyond the lysozyme clan, we evaluated ProGen’s performance in generating 
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and predicting functional full-length sequences from families where other methods have 

previously been applied: chorismate mutase (CM)6 and malate dehydrogenase (MDH). We fine-

tuned ProGen to unaligned protein sequences from these families and generated 64,000 unique 

sequences for each family (see Methods). Generated proteins exhibit similar conservation 

patterns to natural sequence libraries (Fig. 4ad). After aligning the generations to a sequence 

with known structure in Fig 4be, we observed that the conserved positions in generated 

sequences correlate with ligand-binding and buried residues.  Using previously published 

sequences and their experimentally-measured assay data for CM6 and MDH52 proteins, we also 

evaluated the concordance of ProGen’s model likelihood for these sequences to their relative 

activity and compared it with the generative methods utilized in the original studies—bmDCA6 

and proteinGAN52. Specifically, we measured per-token log-likelihoods for artificial sequences 

using ProGen (see Methods) and used them to predict if artificial sequences should function, 

which showed an area under the curve (AUC) of 0.85, significantly better (p<0.0001, two-tailed 

test, n = 1617) than bmDCA, which had an AUC of 0.78 (Fig. 4c). On MDH function data, 

ProGen log-likelihoods had an AUC of 0.94 (Fig. 4f), which was better than ProteinGAN 

discriminator scores, with an AUC of 0.87 (p<0.1, two-tailed test, n = 56). In sum, ProGen’s 

model likelihoods are better aligned with experimentally-measured assay data on two diverse 

protein datasets—chorismate mutase and malate dehydrogenase—than the sequence 

generation methods from original studies specifically tailored for these families.  

 

To understand the relative impact of the universal sequence dataset and of sequences from the 

protein family of interest on ProGen’s generation ability, we perform two ablation studies using 

the CM and MDH experimentally-measured assay data. First, we evaluated the performance of 

ProGen trained only with the universal sequence dataset. We measured per-token log-

likelihoods for artificial sequences using this version of ProGen using control tags for CM and 

MDH (see Methods). These likelihoods showed in a significant drop in AUC of 0.18 for CM 
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(p<0.0001, two-tailed test, n = 1617) and 0.08 for MDH (p<0.1, two-tailed test, n = 56), as 

compared to fine-tuned ProGen when predicting if an artificial sequence should function. 

Conversely, the ProGen architecture trained on CM and MDH protein sequences alone without 

the benefit of initial training on the universal sequence dataset also showed a significant drop in 

performance as compared to fine-tuned ProGen—the AUC reduced by 0.11 (p<0.0001, two-

tailed test, n = 1617) and 0.04 (p<0.05, two-tailed test, n = 56) on the CM and MDH data 

respectively. These results indicate that both components of our training strategy—initial training 

on the universal sequence dataset and fine-tuning on the protein family of interest—contribute 

significantly to final model performance. Training with the universal sequence dataset containing 

many protein families enables ProGen to learn a generic and transferable sequence 

representation that encodes intrinsic biological properties. Fine-tuning on the protein family of 

interest steers this representation to improve generation quality in the local sequence 

neighborhood. Similar to the adaptability shown by neural networks trained on large datasets 

using transfer learning and fine-tuning in natural language processing20,53,54 and computer 

vision37,55, protein language models have the potential to be a versatile tool for generating 

tailored proteins with desired properties. 

 

In conclusion, our study shows that a state-of-the-art transformer-based conditional language 

model trained only with evolutionary sequence data generates functional artificial proteins 

across protein families. Additional analyses suggest that our model has learned a flexible 

protein sequence representation which can be applied to diverse families such as lysozymes, 

chorismate mutase, and malate dehydrogenase. Applications of our model could include 

generating synthetic libraries of highly-likely functional proteins for novel discovery or iterative 

optimization. In combination with ever-increasing sources of sequence data and more 

expressive control tags, our work points to an exciting potential for the use of deep learning-
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based language models for precise design of novel proteins to solve important problems in 

biology, medicine, and the environment. 
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Figure 1: De novo protein generation with conditional language modeling. (a) Conditional 
language models are deep neural networks that can generate semantically and grammatically 
correct, yet novel and diverse natural language text, steerable using input control tags that 
govern style, topic, and other entities. Analogous to natural language models, we develop 
ProGen, a conditional protein language model (b) that generates diverse artificial protein 
sequences across protein families based on input control tags (c). ProGen is trained using a 
large, universal protein sequence dataset (d) of 280 million naturally-evolved proteins from 
thousands of families, of which five diverse lysozyme families are experimentally characterized 
in this study. ProGen is a 1.2 billion parameter neural network (e) based on the Transformer 
architecture which utilizes a self-attention mechanism for modeling comprehensive residue-
residue interactions. ProGen is trained to generate artificial sequences by minimizing the loss 
over the next amino acid prediction problem on the universal protein sequence dataset.  
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Figure 2: Generated artificial antibacterial proteins are diverse and express well in our 
experimental system. When analyzed using t-SNE, artificial sequences from our model are 
shown to span the landscape of natural proteins from five lysozyme families (a). Each point 
represents a natural or generated sequence embedded in a two-dimensional t-SNE space. With 
sufficient sampling, ProGen can generate sequences that are highly dissimilar from natural 
proteins (b). Max ID measures the maximum identity of an artificial protein with any publicly 
available natural protein. (c) Artificial proteins maintain similar evolutionary conservation 
patterns as natural proteins across families. Plots demonstrate the variability at each aligned 
position for a library of proteins. Conserved positions are represented as curve dips. From our 
generated proteins, we select one hundred proteins for synthesis and characterization in our 
experimental setup (d). Artificial proteins express well even with increasing dissimilarity from 
nature (40-50% max ID) and yield comparable expression quality to one hundred representative 
natural proteins (e). 
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Figure 3: Artificial protein sequences are functional while reaching as low as 44% identity 
to any known protein, exhibit comparable catalytic efficiencies to a highly-evolved 
natural protein, and demonstrate similar structures to known natural folds. (a) Artificial 
proteins bind well to substrates and exhibit high fluorescence responses over time. Error bars 
(minimum and maximum) are shown for hen egg white lysozyme, HEWL, and negative 
(ubiquitin) controls. (b) Artificial proteins remain active even while being dissimilar (40-50% max 
ID i.e., top hit-identity) from known natural proteins. Outliers indicate high activity samples 
where relative activity is computed with respect to HEWL. (c) Artificial proteins are functional 
across protein families. Functional is defined as a fluorescence one standard deviation above 
the maximum value of all negative controls. (d) Michaelis-Menten kinetics of HEWL natural 
lysozyme (red) and two generated lysozymes (blue; L056 and L070) against cell-wall substrate 
show comparable performance (n = 3 technical replicates).  (e) Michaelis-Menten constants of 
HEWL, L056, and L070 at different temperatures show that artificial proteins show comparable 
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temperature stability. (f) We determined a 2.5 Å resolution crystal of L056 artificial lysozyme. A 
global overlay of L056 crystal structure with two representative T4 lysozyme conformations is 
shown with L056 presented in sky blue, ‘open’ conformation of M6I T4 lysozyme (PDB:150L) in 
dark red, ‘closed’ conformation of wild-type T4 lysozyme (PDB:3FA0) in orange, and substrate 
(PDB:148L) colored by element. Catalytic threonine (T30 in L056 and T26 in T4 lysozyme) and 
first catalytic glutamate (E15 in L056 and E11 in T4 lysozyme) are represented as sticks. (g) 
Although generated functional proteins are dissimilar from nature in sequence space, the 
predicted structures of generated proteins are similar to natural structures. To note, structural 
information was not provided in model training. Shown are predicted natural and generated 
structures with trRosetta. 
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Figure 4: Applicability of conditional language modeling to other protein systems. Using 
the appropriate control tag, our language model, ProGen, can generate sequences for distinct 
protein families. Here we show that ProGen can generate chorismate mutase (CM) enzymes 
that exhibit a similar residue distribution to nature (a) and the conserved residues among 
generated sequences correlate to ligand-binding sites (b). ProGen’s model likelihoods can also 
accurately predict the functionality of CM variants from published data, slightly better than the 
coevolutionary bmDCA6 algorithm from the original study (c). ProGen can also generate malate 
dehydrogenase (MDH) proteins that exhibit a similar residue distribution to nature (d). The 
conserved residues among generated sequences correlate to buried residues (e). ProGen’s 
model likelihoods are also accurate in predicting functionality of published variants of MDH, 
similar to the generative proteinGAN52 model used in the original study (f). 
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Methods  

Training Data Curation 

The initial training data consisted of over 281 million non-redundant, annotated protein 

sequences with associated metadata, formulated as control tags. The amino acid vocabulary 

consisted of the standard 25 amino acids designations in IUPAC56. The control tags were 

divided into two categories: (1) keyword tags and (2) taxonomic tags. Following the definitions 

laid out in the UniprotKB controlled, hierarchical vocabulary of keywords (many of which are 

derived from Gene Ontology (GO) terms57), the control keyword tags included 1100 terms 

ranging from cellular component, biological process, and molecular function terms. The 

taxonomic tags include 100k terms from the NCBI taxonomy across the eight standard 

taxonomic ranks.  The aggregated dataset was split into a training set of size 280 million and 

two test sets, an out-of-distribution test set (OOD-test) of size 100k from 20 protein families and 

a randomly sampled in-domain test set (ID-test) of size 1 million, that were held-out for training 

and used for  evaluation. After model training on the training database, the model was further 

trained, i.e. fine-tuned, to the following datasets for generation and classification tasks. 

 

For fine-tuning on lysozyme proteins, five protein families from the Pfam database were 

selected, Phage lysozyme (PF00959), Pesticin (PF16754), Glucosaminidase (PF01832), 

Glycoside hydrolase family 108  (PF05838), and Transglycosylase (PF06737), yielding a total of 

55,948 sequences. Proteins were provided to the model during fine-tuning as unaligned protein 

sequences with one control tag prepended for the protein family designation. For fine-tuning on 

chorismate mutase proteins, a search with HHBlits and blastp was performed with residues 1-95 

of EcCM (the CM domain of the E. coli CM-prephenate dehydratase, the P-protein) yielding 

20214 sequences. For fine-tuning on malate dehydrogenase proteins, the L-lactate/malate 

dehydrogenase protein family from Interpro IPR001557 was selected with 17094 sequences. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.18.452833doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

 

Conditional Language Modeling 

Our conditional language model, named ProGen, is a decoder style Transformer19-variant with 

36 layers, 8 attention heads per layer, and dimensions 𝑑 = 1028 and 𝑓 = 512. To learn the 

conditional distributions over amino acids and control tags, a sequence containing n tokens is 

embedded as a sequence of 𝑛 corresponding vectors in ℝ!. This sequence of vectors is 

stacked into a matrix 𝑋! ∈ ℝ!⨉!, and is processed by a series of 𝑙 pre-activation layer-

normalized Transformer self-attention layers23.  Logits for each token in the vocabulary are 

computed via a learned linear transformation that is applied to each output of the last layer.  

During training, these logits input to a cross-entropy loss. During generation, the logits for the 

final token in the sequence are normalized with a softmax to get a distribution for sampling a 

new token. 

 

ProGen Training 

For training, we included each sequence and its reverse. We prepended each sequence with a 

corresponding subset of control tags. For a given sequence, there can be multiple versions 

across databases, each with their own associated control tags. We randomly sampled which set 

of control tags to utilize, but biased sampling toward SwissProt tags as they are manually 

verified. Additionally, we always included a sample with the sequence alone without control tags 

so that ProGen could be used to complete proteins using sequence data alone. We truncated all 

sequences to a maximum length of 512. Sequences of length less than 512 were padded, and 

padded tokens were excluded from the cost function used for training. Our model was 

implemented in TensorFlow  and trained with a global batch size of 2048 distributed across 256 

cores of a Cloud TPU v3 Pod for 1 million iterations. Training took approximately two weeks 

using Adagrad with linear warmup from 0 to 1e-2 over the initial 40k steps with a linear decay for 
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the remainder of training. The model was initialized with pretrained weights of CTRL23, which 

was trained on an English language corpus. 

 

Lysozyme Generation 

We fine-tuned ProGen to the 55,948-sequence fine-tuning dataset using the conditional 

language modeling loss function introduced in Eq. 1, using a separate control tag for each of the 

five lysozyme families. The model was fit for 4 epochs using the Adam optimizer58 with a 

learning rate of 0.0001, batch size of 2, gradient norm clipping59 threshold of 0.25, and a 

dropout60 rate of 0.1.  We then applied sampling using the final checkpoint of the fine-tuned 

model. We generated one million de novo sequences from the learned conditional probability 

distribution 𝑝!(𝑎!|𝑎!! , 𝑐) using each of the 5 lysozyme families as a control tag 𝑐, and applying 

top-p sampling61, which zeros out the probability of the tail of the distribution during sampling, 

and uses a hyperparameter 𝑝 to determine what fraction of the original distribution to keep. 

Lower 𝑝 values result in sequences with a higher likelihood under the model, but lower diversity. 

We generated a batch of one million synthetic sequences (Fig. S3) using 𝑝 values that varied in 

[0.25,0.50,0.75], and applied the sequence selection criteria in the next section to determine 

which sequences to synthesize. 

 

Lysozyme Sequence Selection  

We selected sequences for synthesis by ranking them using the combination of an adversarial 

discriminator22,43 and generative model log-likelihood scoring44. First, we trained an adversarial 

discriminator to distinguish between natural lysozymes and ProGen-generated lysozymes. A 

higher discriminator score indicates a protein sequence that is “semantically” and  

“grammatically” closer to natural sequences, but not necessarily one of high sequence identity 

to natural proteins. To train the discriminator, we generated a batch of samples from fine-tuned 

ProGen (with nucleus sampling turned off, or 𝑝 = 1) that was the same size and distribution of 
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families as our dataset of natural lysozymes. The discriminator architecture was a fine-tuned 

TAPE-BERT34. For robustness, we trained three discriminators using different random seeds. 

We assigned each sequence a discriminator score as the geometric mean of the probability of 

the sample being a natural sequence as predicted by the three discriminators.  We also 

assigned each sequence a log-likelihood score as the average per-token log-likelihood for each 

sample computed using the fine-tuned ProGen model and conditioned on the control tag used 

to generate the sequence, given by  

𝑆𝑐𝑜𝑟𝑒(𝑎)  =  !
!!

𝑙𝑜𝑔 𝑝!(𝑎! |𝑎!! , 𝑐)
!!
!!!    (Eq. 2) 

 A higher log-likelihood score indicates a sequence close to the probability distribution of 

sequences seen in training. We selected proteins for de novo sequences using separate 

rankings based on the discriminator and log-likelihood scores. We separately ranked candidate 

sequences in maximum sequence identity ranges of 40-50%, 50-60%, 60-70%, 70-80%, and 

80-90%. For each range, we added the top discriminator-ranked sequences, skipping any 

sequences that were >80% identical to any previously selected sequence, for a total of 90 

sequences. Ten more sequences were added based on ranking by generative model log-

likelihood scores in each range, again skipping any sequences with >80% identity to any 

previously selected sequence. 

 

Evaluating ProGen on Other Protein Systems 

We also evaluated ProGen on generation of Chorismate Mutase (CM) and Malate 

Dehydrogenase (MDH) proteins. We separately fine-tuned ProGen on datasets of CM and MDH 

proteins using the Adam optimizer, a learning rate of 1e-4, a gradient norm clipping threshold of 

0.25, and a dropout rate of 0.1. We also preappended the CM and MDH data with control tags 

that corresponded to CM and MDH families in ProGen’s original training. After fine-tuning, we 

generated a set of 64k sequences using top-p sampling (𝑝 = 0.75) from the CM and MDH fine-
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tuned models respectively. We measured concordance of our model’s log-likelihoods with 

protein function data on CM and MDH sequences, and compared with bmDCA6 and 

ProteinGAN52 baselines respectively. We computed the area under the curve (AUC) in receiver 

operating characteristic (ROC) curves for predicting binary function labels from model scores. 

We computed model scores for each sequence in both CM and MDH by using the per token 

model log-likelihood in Eq. 2. We used model scores for bmDCA given by negative energy of 

each CM sequence provided by the study’s authors6. We also applied thresholding at 0.42 norm 

relative enrichment (r.e.) to obtain binary labels for CM function, which roughly corresponds to 

the cut-off point between two modes that exist in CM function data, to be used for ROC curves, 

following the original study6.  

 

Since model likelihoods for GANs are intractable, we used discriminator scores corresponding 

to the probability at which the ProteinGAN discriminator predicted each sample was real as a 

ProteinGAN model score for each MDH sequence. The MDH functional labels are binary, so no 

thresholding was needed to compute AUCs. For an ablation study on ProGen, we also evaluate 

1. a randomly initialized LM that has the same architecture as ProGen and is finetuned to the 

same task-specific data as ProGen (CM or MDH), but is not pretrained on a larger dataset 2. 

ProGen without task specific fine-tuning, conditioning on control tags for CM or MDH from 

ProGen’s original pretraining data. After measuring the AUC of each model for each dataset, we 

used bootstrapping to compute the statistical significance of the difference in AUC of fine-tuned 

ProGen vs. the reference method (bmDCA and ProGen ablations for CM, ProteinGAN and 

ProGen ablations for MDH). At each bootstrapping iteration, we resampled a new dataset of 

fitness and model score pairs the same size as the original dataset by randomly selecting data 

points from the original dataset with replacement. For each sample dataset, we compute the 

difference in AUC score between fine-tuned ProGen and the reference method. We drew a total 

of 10,000 bootstrapping samples, and the p-value is given by the percentage of the samples 
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where the baseline achieves an AUC greater than or equal to fine-tuned ProGen, multiplied by 

two to give two-tailed. 

 

Materials 

All reagents were purchased from Thermo Fisher Scientific (Waltham, MA, USA) unless 

otherwise noted. DNAs utilized for in vitro translation were purchased from Twist Bioscience 

(San Francisco, CA, USA) and DNAs utilized for E. coli expression and purification were 

purchased from VectorBuilder (Chicago, IL, USA). 

 

High-throughput cell-free expression of lysozymes  

Lysozymes were expressed using the Tierra Bioscience (San Leandro, CA) cell-free expression 

platform. Cell-free extracts for protein expression were prepared according to the methods of 

Sun et al. (2013)62 with the following modifications: Terrific Broth was used in lieu of 2xYT, cells 

were lysed in a single pass by French® press at 10,000 PSI, dithiothreitol was omitted from 

wash buffers, and run-off and dialysis steps were removed to streamline extract processing. 

Expression reactions were composed of cell-free extract, an energy buffer, and a linear DNA 

template containing a promoter sequence, the protein sequence of interest, the sequence of a 

strep purification tag and a terminator sequence; reactions were carried out at 29 °C for 6 hours. 

Expression reactions for screening optimal affinity purification tag terminus were performed in 

10µL volumes; selected reactions with good expression were then scaled to 200µL. Lysozymes 

were purified from expression reactions by affinity chromatography with elution by enzymatic 

cleavage with 3C protease leaving a small sequence scar. 

 

High-throughput screening of lysozyme activity  

Purified cell-free synthesized lysozymes were assayed with the EnzChek® Lysozyme Assay Kit 

(Thermo Fisher Scientific, Waltham, MA). The assay was performed according to protocol with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.18.452833doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

minimal modifications. Hen egg white (HEW) lysozyme standards and purified proteins in buffer 

(100mM Tris pH 7.4, 150mM NaCl, 2mM TCEP, 20% glycerol) were brought to 50µL with 

reaction buffer (100mM sodium phosphate pH 7.5, 100mM NaCl, 2mM NaN3) in a 96 well plate. 

50µL of DQ lysozyme substrate, fluorescein conjugate (1 mg/mL) was added to each well and 

fluorescence (ex 485/20; em 528/20) was collected every 5 minutes with a Synergy 2 multi-

mode microplate reader (BioTek, Winooski, VT) for 6 hours at 37 °C. 

 

For each 96-well plate, three random wells were dedicated for egg white lysozyme controls and 

three wells were dedicated for a negative control of ubiquitin expressed and purified on the 

Tierra Biosciences cell-free expression platform. A purified protein was considered functional if it 

exhibited a higher fluorescence than one standard deviation above the maximum fluorescence 

value of all negative controls. The relative activity for each protein was calculated by the 

following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  !!"#$%&'!!!"#$%&'"
!!"#!!!"#$%&'"

× !!"#
!!"#$%&'

       (Eq. 3) 

Where r is the linear rate of fluorescence increase in the initial twenty minutes of the fluorogenic 

assay and m is the mass of protein as determined by Bradford assay concentration and 

measured volumes. 

 

E. coli Expression of Lysozyme Variants 

We chose five generated lysozyme variants ( L008, L013, L038, L056, L070)  for expression 

in E. coli based on strength of signal in the in vitro assay, expression level in the cell-free 

system, and max ID to natural proteins.  Generated lysozyme variants, were codon optimized 

for E. coli (Integrated DNA Technologies) with an HRV3C protease site N-terminal of the open 

reading frame. DNA was synthesized and cloned in-frame with a 5’ His6-tag in a pET vector 

and transformed into BL21(DE3) (Vectorbuilder). One liter of Terrific Broth (Fisher) was pre-
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warmed to 37°C before being inoculated with 10mL of an overnight starter culture. Cultures 

were grown to 0.6 < OD600 < 1.0 before temperature was dropped to 16°C for expression. 

Cultures were induced with 0.5 mM IPTG (source) and protein expression allowed to continue 

overnight. For induced cultures of L056 and L070, significant turbidity was observed in the 

spent media after cells were pelleted at 3,500 r.c.f. for 30 mins at 4°C. Spent media also 

harbored lysozyme activity as ascertained through fluorescence increase over time of the 

Fluorescein-labeled M. Lysodeikticus cell wall substrate (EnzChek kit; ThermoFisher). Spent 

media was saved for protein purification (outlined below) and cell pellet frozen and stored at -

20°C. Variant L008 did not express under multiple different conditions. L013 and L038 

expressed highly to inclusion bodies.  

 

Purification of L056 and L070 from spent media 

Media was split into two 0.5 L pools each. The first pools were loaded onto a 5 mL HisTrap FF 

NiNTA column (GE) using a peristaltic pump at room temperature. Columns were washed with 

200 mL of 30 mM HEPES pH 7.6, 150mM NaCl, 25 mM imidazole, 0.5 mM TCEP. Columns 

were eluted with 25 mL of 30 mM HEPES pH 7.6, 150mM NaCl, 250 mM imidazole, 0.5 mM 

TCEP. Eluates were concentrated to 8-10mL and dialyzed against 30 mM HEPES pH 7.6, 

150mM NaCl, 0.5 mM TCEP with HRV3C protease added overnight at 4°C. Dialyzed protein 

was put through an ortho 5 mL HisTrap FF NiNTA column (GE) to remove HRV3C protease and 

uncleaved lysozyme. Though highly pure by SDS-PAGE analysis, protein was further purified by 

size-exclusion chromatography and loaded on an S75 10/300 gl column pre-equilibrated with 30 

mM HEPES pH 7.6, 150mM NaCl, 0.5 mM TCEP. Two peaks were resolved for each variant 

and that harbored lysozyme activity against the fluorescein-labeled M. Lysodeikticus cell wall 

substrate (EnzChek kit; ThermoFisher). Individual peaks were pooled and protein concentration 

determined either by Bradford assay (Biorad) or by SDS-PAGE using colloidal coomassie 

(ThermoFisher) and HEWL in-gel standards.  
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The second spent media pools were batch-bound to 5 mL of HisPur NiNTA resin 

(ThermoFisher) at 4°C for 1 hour before protein-bound resin was pelleted through centrifugation 

at 3000 r.c.f. for 5 mins at 4°C. Protein bound resin was resuspended with 25 mL 30 mM 

HEPES pH 7.6, 150mM NaCl, 25 mM imidazole, 0.5 mM TCEP and applied to a gravity flow 

column (BioRad) at room temperature. Columns were washed with 200 mL of 30 mM HEPES 

pH 7.6, 150mM NaCl, 25 mM imidazole, 0.5 mM TCEP. Columns were eluted with 25 mL of 30 

mM HEPES pH 7.6, 150mM NaCl, 250 mM imidazole, 0.5 mM TCEP. Eluates were 

concentrated to 8-10mL and dialyzed against 30 mM HEPES pH 7.6, 150mM NaCl, 0.5 mM 

TCEP with HRV3C protease added overnight at 4°C. Lysozyme was separated from HRV3C 

protease by size-exclusion chromatography on an S75 10/300 gl column pre-equilibrated with 

30 mM HEPES pH 7.6, 150mM NaCl, 0.5 mM TCEP. Two peaks were resolved for each variant 

and that harbored lysozyme activity against the fluorescein-labeled M. Lysodeikticus cell wall 

substrate (EnzChek kit; ThermoFisher) that corresponded to peaks observed in the first pool 

purification. Individual peaks were pooled and protein concentration determined either by 

Bradford assay (Biorad) or by SDS-PAGE using colloidal coomassie (ThermoFisher) and HEWL 

in-gel standards.  

 

Michaelis-Menten kinetics of lysozyme variants using fluorescein-labeled M. 

lysodeikticus cell wall  

Fluorescein-labeled M. Lysodeikticus cell wall substrate (EnzChek kit; ThermoFisher) was 

reconstituted in 30mM HEPES pH 7.6, 150mM NaCl to 1 mg/mL, aliquoted and stored at -20°C 

until use. A serial two-fold dilution series of substrate was prepared in 30mM HEPES pH 7.6, 

150mM NaCl and treated as a 2X solution for enzymatic assays. Enzyme concentration was 

calculated either through Bradford assay (Bio-Rad) or by SDS-PAGE, in-gel using Novex 

Colloidal Coomassie stain against a hen egg white lysozyme (HEWL; Alfa Aesar) standard. 
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Enzymes were diluted to between 10 and 100nM in 30mM HEPES pH 7.6, 150mM NaCl 

(HEWL) or 30mM HEPES pH 7.6, 150mM NaCl, 0.5mM TCEP (L056 and L070) and these 

stocks treated as a 2X solution for enzymatic assays. Kinetic assays were performed in a Tecan 

Spark 10M plate reader using monochrometers with a fixed 20 nm bandpass filter in a 384-well 

black-bottom plate (Corning) at 10 µL final volume. Reactions were initiated by pipetting 5 µL of 

substrate into appropriate wells followed immediately by 5 µL of enzyme, mixed by pipetting 

before starting data acquisition. The dead-time from reaction initiation to acquisition of first read 

was measured to be 24 s. For reactions carried out above ambient temperature (25°C), the 

plate was preincubated at temperature for at least 5 mins prior to reaction initiation. Initial 

velocities were calculated through linearly fitting fluorescence intensity (au) versus time for the 

first 2 minutes of each reaction. Finally, velocities were converted from au to fluorescein 

liberated through application of a fluorescein (Sigma) standard curve (Figure S6) and 

normalized to enzyme concentration. Averaged data (n = 3 technical replicates) were 

nonlinearly fit to the Michaelis Menten model (Eq. 4) in IgorPro 7 to report kcat in units of 

fluorescein liberated enzyme-1 min-1 and KM in units of g L-1 (the average molecular weight of the 

fluorescein-labeled M. Lysodeikticus cell wall substrate was unknown and likely 

heterogeneous).  

𝑣! =
!!"# ∗ [!"#!$%&$']
!! ! [!"#!$%&$']

          (Eq. 4) 

 

Lysozyme kcat/KM extrapolation from pseudo first-order kinetic data 

For the higher molecular weight L056 and L070 species whose KM’s were beyond the 

concentration regime of the fluorescein-labeled M. Lysodeikticus cell wall substrate (EnzChek 

kit; ThermoFisher), the ration kcat/KM was measured through pseudo first-order kinetics where 

when [Enyzme] >> Substrate the Michaelis-Menten model simplifies to Eq. 5. Fluorescein-

labeled M. Lysodeikticus cell wall substrate was diluted to 0.01 g L-1 and this stock was treated 
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as 2X for kinetic assays. Kinetic assays were performed in a Tecan Spark 10M plate reader 

using monochrometers with a fixed 20 nm bandpass filter in a 384-well black-bottom plate 

(Corning) at 10 µL final volume. The dead-time from reaction initiation to acquisition of first read 

was measured at 24 s and the 0 s fluorescence intensity was measured through dilution of 

substrate with buffer. Reactions were initiated by pipetting 5 µL of 2X enzyme into 5 µL of 2X 

substrate in a prewarmed 384-well black assay plate (Corning). Five technical replicates were 

performed across four enzyme concentrations. The resultant data were not described by a 

single exponential model but were described by a double exponential model (Eq. 6), likely due 

to the heterogeneity of the substrate, and all data were fit in IgorPro7. The reciprocal of the 

weighted sum of each tau component was taken to estimate a single kobs value for subsequent 

analysis (Eq. 7). To estimate kcat/KM, kobs values were plotted against enzyme concentration 

where the slope of a linear fitting is equal to kcat/KM.  

 

𝑘!"#  =  !!"#
!!

×[𝐸𝑛𝑧𝑦𝑚𝑒]    (Eq. 5) 

 

𝑦 =  𝑦!  + 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒!×𝑒
(! !

!"#!
) + 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒!×𝑒

(! !
!"#!

)
  (Eq. 6) 

 

𝑘!"#!!  =  𝑡𝑎𝑢!×
!"#$%&'()!
!"#$%&'()!

+ 𝑡𝑎𝑢!×
!"#$%&'()!
!"#$%&'()!

   (Eq. 7) 

 

Crystallization and structure determination of L056 

Purified L056 was concentrated to 18.6 mg/mL in 30 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM 

TCEP. Crystals were identified from sitting drop vapor diffusion experiments set at 20ºC with a 

1:1 ratio of 200nL protein and 200nL well solution (0.1 M CHES 9.5 pH, 30 %w/v PEG 3K). 

Diffraction data were collected from a single crystal at Beamline 8.3.1. at the Advanced Light 
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Source. Data were processed using XDS63 and a molecular replacement solution was identified 

using phaser64 with a trRosetta model of L056 as a search model. Significant translational non-

crystallographic symmetry and differences with the search model resulted in maps that were 

initially hard to interpret. The initial model was improved using Refmac jelly body refinement65 

prior to rebuilding using phenix.autobuild66 and the CCP4 buccaneer_pipeline67. The model was 

finalized and iteratively improved with multiple rounds of manual modification in Coot68 and 

refinement using phenix.refine69. The model is deposited as PDB 7RGR. 
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