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Abstract 

Reduced cortical inhibition by somatostatin-expressing (SST) interneurons has been strongly 

associated with treatment-resistant depression. However, whether the effects of reduced SST 

inhibition on microcircuit activity have signatures detectible in electroencephalography (EEG) 

signals remains unknown. We simulated resting-state activity and EEG using detailed models of 

human cortical layer 2/3 microcircuits with normal (healthy) or reduced SST inhibition 

(depression). Healthy microcircuit models showed emergent key features of resting-state EEG, 

and depression microcircuits exhibited increased theta, alpha and low beta power (4 - 15 Hz). The 

changes in depression involved a combination of an aperiodic broadband, and periodic theta and 

low beta components. In both conditions, neuronal spiking showed a spike preference for the phase 

preceding the EEG trough. Our study thus links SST inhibition level to features in EEG simulated 

from detailed human microcircuits, which can serve to better identify mechanistic subtypes of 

depression using EEG, and non-invasively monitor modulation of cortical inhibition. 
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Introduction 

 

Major depressive disorder (depression) is a leading cause of disability worldwide[1] and 

involves varying mechanisms and symptoms[2,3]. Consequently, a significant proportion of 

patients remain resistant to antidepressants[4] and second-line treatments[5]. Electro-

encephalography (EEG) offers a non-invasive and cost-effective method for brain signal-based 

biomarkers to improve diagnosis, monitoring and treatment of depression subtypes[6,7]. However, 

the multi-scale mechanisms of depression and their link to clinically-relevant brain signals remain 

poorly understood.  

 There is growing evidence that reduced cortical inhibition plays a critical role in treatment-

resistant depression, especially inhibition mediated by somatostatin-expressing (SST) 

interneurons[8–13]. Recent studies showed a marked reduction in SST expression by SST 

interneurons in post-mortem tissue of depression patients, across all layers of the prefrontal cortex 

(PFC), indicating a decrease in SST inhibition[13–16]. In rodent models, silencing SST-mediated 

inhibition led to depression symptoms[12], and novel therapeutic compounds acting via positive 

allosteric modulation of alpha-5-gamma-aminobutyric-acid-A (𝛼5-GABAA) receptors targeted by 

SST interneurons resulted in pro-cognitive and anxiolytic effects[12,17]. Changes in SST-

mediated inhibition on circuit activity could have signatures detectible in EEG, due to this cell 

type’s principal role in modulating input to pyramidal (Pyr) neurons, which are the primary 

contributors to EEG signals[8,18]. SST interneurons provide synaptic and tonic inhibition onto the 

apical dendrites of Pyr neurons[19,20], and mediate lateral inhibition in the cortex[8,21,22], 

particularly during periods of quiet, resting wakefulness (resting state) [23]. Accordingly, previous 

studies indicate that reduced SST inhibition in depression increases baseline activity of Pyr 

neurons[9,24]. 

While the contribution of SST interneurons to resting-state cortical oscillations remains 

largely unknown, studies show a role for this cell type in modulating low-frequency oscillations. 

SST stimulation entrains network activity in the 5 - 30 Hz range, and SST suppression modulates 

theta band (4 – 8 Hz) power[25,26]. SST interneurons have also been suggested to govern network 

synchrony in slow-wave sleep, which is marked by slow oscillations[27]. Thus, reduced SST 

inhibition in depression may affect EEG low-frequency power[28]. We recently showed that a 

40% reduction in SST inhibition, estimated from post-mortem tissue studies of depression 
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patients[13], significantly increased baseline Pyr spike rate in simulated human microcircuits[24]. 

However, it is still unknown if this level of reduction in SST inhibition would significantly alter 

baseline oscillatory dynamics detectable in EEG.  

Previous studies have linked neuronal spiking to extracellular signals, although mostly 

using animal models and local field potential (LFP)[29–32]. Human studies have characterized 

LFP oscillations in cortical slices and showed phase-amplitude coupling between deep and 

superficial layers[33]. Others have studied the phase preference of Pyr neuron spikes relative to 

spindle events in intracranial EEG oscillations[34,35]. However, experimental methods are limited 

in their ability to characterize the effects of the cellular changes in depression on human brain 

signals in vivo, thus meriting the use of computational models. The increased availability of human 

neuronal electrical and synaptic connectivity data[22,36,37], provides important constraints on 

detailed models of human cortical microcircuitry[24] which can be used to simulate microcircuit 

activity in health and disease, including local circuit-generated EEG signals[38–40].  

In this study, we identified EEG biomarkers of microcircuit effects due to reduced SST 

inhibition, as estimated from gene expression changes in depression. Using biophysically detailed 

models of human cortical L2/3 microcircuits, we simulated resting-state activity in health and 

depression together with local EEG signals. We characterized changes in resting-state EEG 

spectral power, and in relation to spiking activity in different neuron types, to identify biomarkers 

of reduced SST-mediated inhibition in depression. 

 

Results 
 

Human L2/3 microcircuit models reproduce human EEG features 

We used our previous detailed models of human cortical L2/3 microcircuits[24] (Fig 1a) 

to simulate resting state spiking and EEG signals. The model microcircuits included the four key 

neuron types: Pyr neurons, SST interneurons, Parvalbumin-expressing interneurons (PV), and 

Vasoactive intestinal polypeptide-expressing interneurons (VIP). To simulate intrinsic healthy 

resting-state spiking activity, all neurons received random background excitatory input 

corresponding to baseline cortical and thalamic drive. The model microcircuits were implemented 

in a physical volume, enabling simulation of LFP and EEG together with microcircuit spiking (Fig 

1a-d). 
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Figure 1. Simulating neuronal spiking and EEG signals from human cortical microcircuits. (a) 

Detailed models of human cortical microcircuits, showing somatic placement of 1000 neurons in a 

500x500x950 μm3 volume along layer 2/3 (250 - 1200 μm below pia) and reconstructed morphologies used 

in the neuron models. (b – d) Temporally aligned multi-scale simulated signals: EEG (b) from scalp 

electrode directly above the microcircuit; LFP signal (c) recorded at the middle of L2/3 (depth of -725 μm); 

Raster plot of spiking in different neurons in the microcircuit (d), color-coded according to neuron type. 

Neurons received background excitatory inputs to generate intrinsic circuit activity. 

 

Baseline microcircuit activity was oscillatory, marked by synchronous spiking events (Fig 

1d) and corresponding fluctuations in LFP and EEG signals (Fig 1b, c). We quantified oscillatory 

activity in the healthy microcircuits by calculating EEG power spectral density (PSD). The 

microcircuits EEG exhibited a peak in theta (4 – 8 Hz) and alpha (8 – 12 Hz) bands (n = 60 

randomized microcircuits, Fig 2a) and a 1/f background trend (Fig 2a, inset). Peak frequency was 

9.9 ± 0.8 Hz. We then calculated spectrograms of circuit activity to analyze the evolution of signal 

strength in the time-frequency domain. The spectrograms showed 34 ± 5 transient theta-alpha 

events per 28 s simulation, with average duration of 300 ± 15 ms (Fig 2b). The circuit simulations 

thus reproduced several key temporal and spectral features of resting-state human EEG. Critically, 

these oscillatory properties were emergent, and were not explicitly optimized for, which therefore 

constitutes an important validation of the model and demonstration of its ability to capture key 

properties of human cortical L2/3 microcircuit dynamics. 
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Figure 2. Models of human cortical microcircuits reproduce key features of resting-state EEG. (a) 

Power spectral density plot of circuit simulations (n = 60 randomized microcircuits, bootstrapped mean and 

95% confidence intervals), exhibiting peak power in theta and alpha frequency bands. Inset – same power 

spectral density plot shown on log-log scale, illustrating the 1/f relationship between power and log 

frequency, inversely linear between 3-30 Hz with slope -0.98 ± 0.07. Frequency bands are delimited by 

dotted lines. (b) Example spectrogram of simulated microcircuit EEG, exhibiting theta and alpha events. 

 
EEG biomarkers of reduced SST in depression microcircuits 

 We compared simulated EEG in healthy versus depression microcircuits using our previous 

depression models, in which SST synaptic and tonic inhibition were reduced (n = 60 randomized 

microcircuits, Fig 3a). The simulated EEG from depression microcircuits exhibited a prominent 

peak in theta and alpha bands (4 – 12 Hz) similarly to the healthy microcircuits, but there was a 

significantly increased power in these bands and in low-beta frequencies (5 – 15 Hz, 25% increase 

on average, p < 0.05, Cohen’s d = 1.91, Fig 3b). We decomposed EEG PSDs into aperiodic (Fig 

3c) and periodic (Fig 3d) components, to compare the distinct functional components of the 

absolute PSDs. There was a 43% increase in aperiodic broadband power in depression compared 

to healthy microcircuits (5 – 30 Hz, p < 0.05, Cohen’s d = 5.6), and a 35% reduction in aperiodic 

exponent (healthy = 0.98  0.07, depression = 0.64  0.07, p < 0.05, Cohen’s d = 4.6). The periodic 

component of the PSDs from depression microcircuits showed a 29% increase in theta power (5.6 

– 8 Hz, p < 0.05, Cohen’s d = 1.5), and a 63% increase in low-beta power (12 – 15 Hz, p < 0.05, 

Cohen’s d = 2.4), but no significant change in alpha power compared to healthy microcircuits. 

Thus, the absolute power increase involved a combination of an aperiodic broadband component, 

and a periodic theta and low beta component. 
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Figure 3. EEG signatures of reduced SST inhibition in depression microcircuit models. (a) Schematic 

connectivity diagram highlighting the key connections between different neuron types in the microcircuit. 

In the depression condition, dotted lines from the SST interneurons illustrate reduced synaptic and tonic 

inhibition onto different neuron types. (b) Power spectral density plot of simulated EEG from the healthy 

(black) and depression (magenta) microcircuit models (n = 60 randomized microcircuits per condition, 

bootstrapped mean and 95% confidence interval). (c) Fitted aperiodic component of the PSD. (d) Fitted 

periodic component of the PSD.  

 
We identified relationships between neuronal spiking and EEG spectral changes in 

depression microcircuit models by determining the EEG phase preference of the neuronal 

populations. The EEG time series were bandpass filtered from 4 – 12 Hz since the periodic 

component of the PSDs showed equally prominent theta and alpha components (Fig 4d). Spike 

time was then converted to phase of EEG signal by temporally aligning the bandpass-filtered signal 

to the angle of its Hilbert transform (Fig 4a-c). In healthy microcircuits, spiking in all neuronal 

types exhibited preference to the phase preceding the trough of the EEG waveform (Rayleigh’s p 

< 0.05; Pyr = 268.2  2.5, SST = 266.5  4.3, PV = 282.0  3.2, VIP = 289.6  2.0 ). Depression 

microcircuits followed a similar phase preference (Rayleigh’s p < 0.05; Pyr = 281  2.2, SST = 

279.5  5.0, PV = 293.1  3.0, VIP = 295.3  2.2), but there was a decrease in preference 

selectivity, as quantified by population spike concentrations about the preferred phase (kurtosis, p 
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< 0.05 for all; % decrease: Pyr = 12.9%, d = 2.6; SST = 19.3%, d = 2.0; PV = 21.3%, d = 3.9, VIP 

= 26.3%, d = 5.5). 

 

 
Figure 4. EEG phase preference of neuronal spiking in health and depression microcircuit models. 

(a-d) Temporally aligned simulated microcircuit signals used in calculating population phase-preference. 

(a) Raster plot of spiking in an example healthy microcircuit model. (b) Pyr population spike counts, in 10 

ms bins. (c) Instantaneous phase of the theta-alpha bandpass filtered EEG signal, with trough corresponding 

to 0˚. (d) Theta-alpha bandpass filtered EEG signal (black) and unfiltered EEG signal (gray). (e) Population 

spike counts relative to theta-alpha (4 – 12 Hz) bandpass filtered EEG from healthy (non-magenta) and 

depression microcircuits (magenta). Plots show bootstrapped mean and standard deviation normalized by 

peak spike count. Neuron type colors for the healthy microcircuits are as in Fig 1. 

 

 Lastly, we examined the spatial distribution of scalp-measured EEG signals generated by 

the microcircuit simulations using a realistic head model, and determined the distance at which it 

was indistinguishable from noise. We placed the simulated microcircuit dipoles into L2/3 of the 

dorsolateral PFC, at a location directly underneath 10-20 system electrode AF3 (Fig 5a), and used 

a forward solution based on a boundary-element model with realistic head geometry and 

conductivity to compute simulated EEG signals. The resulting time series were obtained at 

different electrode locations on the scalp (Fig 5b). Difference in theta-alpha power in depression 

versus healthy microcircuits showed a nonuniform decay over the scalp, which was steeper 
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laterally compared to medially (c.f. contour lines in Fig 5c). A significant difference in power was 

only seen in electrodes corresponding to the ventral portion of the left dlPFC (AF3, the electrode 

above source) and the left orbitofrontal cortex (FP1 and FPz - 29mm and 46mm from source, 

respectively). The EEG biomarkers corresponding to microcircuit changes in depression were 

therefore mostly localized spatially.  

 

 
Figure 5: Topographic distribution of microcircuit EEG signal in a realistic head model. (a) 

Microcircuit dipole placement and orientation in the grey matter of the dlPFC in a head model, 

perpendicular to the cortical surface and in the middle of L2/3 (depth -725 μm). (b) Corresponding average 

potential spread of the microcircuit EEG signal to the EEG electrodes across the head. (c) Distribution of 

the difference in spectral power for depression versus healthy simulated microcircuit signals for theta-alpha 

band (4 – 12 Hz). 

 

 

Discussion 
 

In this study, we identified the signatures of reduced cortical inhibition in depression on 

clinically relevant brain signals of resting-state activity using detailed models of human cortical 

microcircuits. Depression microcircuits with reduced SST interneuron inhibition showed an 

increase in absolute theta, alpha and low beta power, which involved a broadband increase together 

with a periodic increase in theta and low-beta activity. These signatures may be used as biomarkers 

to stratify depression subtypes corresponding to altered inhibition, which are particularly 

associated with treatment-resistant depression[41]. By simulating both spiking and EEG in 

detailed microcircuits, we showed that neuronal spiking had a marked preference for the phase 

preceding the trough of theta-alpha EEG band in both conditions. Our results provide mechanistic 

links between reduced SST inhibition and candidate biomarkers in EEG signals. These findings 

have multiple clinical applications, such as improving patient stratification and monitoring the 

effects of therapeutic compounds targeting SST interneuron inhibition.  
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Increased theta, alpha, and low beta power in our simulated depression microcircuits are in 

agreement with several previous depression studies, and are correlated with diagnosis, severity, 

and treatment response [7,42–47]. Particularly, increased frontal theta power is seen in both the 

early and late stages of depression, indicating a consistent circuit mechanism underlying the 

pathology[43–46]. Further, increased frontal theta power is predictive of second line treatment 

response targeting cortical inhibition in treatment resistant depression [46]. Thus, our results 

provide support for reduced SST inhibition as a principal mechanism of treatment-resistant 

depression, and show that it could be detectible in its early stages by increased low frequency 

power[43,45,48–50]. Future studies relating our simulated EEG biomarkers to experimental EEG 

and depression features will further establish the link to disease stage, subtype and severity. The 

increased aperiodic broadband power and decreased aperiodic slope in our depression 

microcircuits are consistent with the respective effects of increased excitation-inhibition ratio and 

increased baseline activity[51–53], which in our simulations resulted from reduced SST inhibition. 

Increased rhythmic theta and low beta activity, but not alpha, may explain a lack of change in 

relative alpha power seen previously and lend more functional significance to theta and low beta 

frequencies[54–57]. As previous studies have shown that theta waves modulate network 

excitability[58], the increased theta activity in depression microcircuits may have further 

functional consequences via altering cortical dynamics and processing. In summary, our results 

show that altered inhibition in microscale brain circuits in depression is reflected in key features 

of the EEG spectral density, which can be used to better stratify depression subtype and severity. 

Our biophysical models of human cortical microcircuits reproduce the two most ubiquitous 

features of human resting state EEG: a prominent low-frequency (4 – 12 Hz) peak power and 1/f 

aperiodic trend [59,60]. In experimental EEG recordings, this low-frequency peak is accentuated 

when subjects are relaxed with their eyes closed and has the highest test-retest reliability of all 

spectral features[61]. While recurrent rhythmic activity generated within cortico-thalamic loops is 

believed to contribute strongly to scalp-measured EEG alpha, cortico-cortical interactions have 

also been shown to generate alpha activity in top-down processing[62]. Further, it has been shown 

that cortical Pyr neurons significantly contribute to and sustain theta and alpha-phasic firing due 

to intrinsic properties and recurrent activity[62–64]. The key features of human EEG reproduced 

by our microcircuit models were not explicitly constrained for, but rather emerged from the 

interaction of human neuronal electrical properties, synaptic connectivity, and baseline firing rates. 
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This provides a validation of the models and indicates that they contain circuit motifs responsible 

for generating realistic microcircuit activity. It will be of interest in future studies to use the models 

for further elucidating the cellular mechanisms of oscillatory generation, especially in brain states 

other than rest and during cortical processing, which involve other frequency bands. As our models 

capture the key spectral EEG features seen in vivo, the simulated EEG signal magnitude can also 

be related to that of the recorded EEG by scaling to account for the difference between the number 

of neurons in our models compared to the millions of neurons that generate the recorded EEG at a 

given electrode[40,65].  

 We simulated surface EEG using cortical L2/3 microcircuits, as these layers are the 

primary contributors to the EEG signal[66]. As new human cellular data becomes available, future 

models that also include deeper layers (4 – 6) could further refine the estimated EEG signal and 

the oscillatory dynamics mediated by interactions between deep and superficial layers[35].  

Through coupling the biophysical simulations with a forward solution using a realistic head model 

we showed that EEG signals would be fairly localized to the source and neighboring electrodes. 

These computational simulations can serve to further study source localization in interpreting EEG 

recordings, improve inverse solutions[67], give greater physiological interpretability to statistical 

decomposition techniques such as independent component analysis[68] and s/eLORETA[69]. This 

is especially relevant in depression, where distinct brain sub-regions both serve as targets for 

treatment interventions, such as the lateral/medial PFC and lateral orbitofrontal cortex[70–73], and 

exhibit different spectral power changes in relation to diagnosing depression stage and type[45]. 

While we modeled and studied a single cortical region at the microcircuit scale, future studies 

could simulate several microcircuits to examine how the altered circuit inhibition mechanisms 

affect multi-regional interactions in depression[8]. 

 Using detailed multi-scale models of human cortical microcircuits, we were able to 

characterize the EEG and spike correlates of reduced SST inhibition in depression. Previous 

modeling studies have shown that reduced SST inhibition in depression impairs stimulus 

processing due to increased baseline activity and noise[24]. Our spiking-EEG phase analysis 

indicates that during the peak of theta-alpha phase, stimulus detection would be further impaired 

than at the down-phase. Our models can serve to further identify candidate EEG biomarkers of the 

diverse mechanisms of depression, e.g. the possible altered PV vs. SST inhibition[8], pyramidal 

cell atrophy and synapses loss[74–78]. Furthermore, the computational models we have developed 
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provide a powerful tool to identify the EEG biomarkers of novel therapeutic compounds and 

treatments for depression[17,79] via in-silico simulations to improve treatment monitoring. 

Finally, our models and methodology may further serve to identify EEG biomarkers of altered 

cellular and circuit mechanism in other neurological diseases, such as epilepsy and 

schizophrenia[39,80–83].  

 

Methods 

 

Human cortical microcircuit models. We used our previous models of human cortical L2/3 

microcircuits[24], consisting of 1000 neurons distributed in a 500x500x950μm3 volume (250 to 

1200μm below pia[84]). The model microcircuits included the four key neuron types in cortical 

L2/3: Pyramidal (Pyr), Somatostatin-expressing (SST), Parvalbumin-expressing (PV), and 

Vasoactive Intestinal Peptide-expressing (VIP) neurons. The proportions of the neuron types were: 

80% Pyr, 5% SST, 7% PV, and 8% VIP in accordance with relative L2/3 neuron densities[85,86] 

and RNA-seq data[87,88]. The models were simulated using NEURON[89] and LFPy[38]. 

 

Resting-state activity simulations. We simulated eyes-closed resting-state by injecting the 

microcircuit models with background excitatory input representing cortical and thalamic drive, as 

used previously[24]. The background input was generated by random Orstein-Uhlenbeck (OU) 

point processes[90] placed on all neurons at the halfway point of each dendritic arbor, and 5 

additional OU processes placed along the apical trunk of Pyr neurons in equal intervals, from 10% 

to 90% apical dendritic length. This enabled the circuit to generate recurrent activity with neuronal 

firing rates as measured in vivo[23,24,91,92]. For both healthy and depression microcircuit models 

(see below) we simulated 60 randomized microcircuits, for 28 seconds each. 

 

Depression models. We used previous models of depression microcircuits[24], with 40% reduced 

synaptic and tonic inhibition from SST interneurons onto all other neurons, in accordance with 

gene expression studies in SST interneurons in post-mortem brains from depression patients[13]. 

For Pyr neurons, we decreased apical tonic inhibition by 40%. For each interneuron, we decreased 

the relative SST contribution to tonic inhibition by 40%.  
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Simulated microcircuit EEG. We simulated layer-averaged dipole moments together with 

neuronal activity using LFPy. Corresponding EEG time series was generated using a four-sphere 

volume conductor model that assumes homogeneous, isotropic, and linear (frequency 

independent) conductivity. The radii of the four spheres representing grey matter, cerebrospinal 

fluid, skull, and scalp were 79 𝑚𝑚, 80 𝑚𝑚, 85 𝑚𝑚, and 90 𝑚𝑚, respectively. The conductivity 

for each sphere was 0.047 S/m, 1.71 S/m, 0.02 S/m, and 0.41 S/m, respectively[93]. A fixed dipole 

origin was placed at the midpoint of L2/3 (-725 𝜇𝑚), and the EEG signal was obtained via forward 

solution for an EEG electrode placed on the scalp surface. EEG time series were lowpass filtered 

at 130 Hz. EEG power spectral density (PSD) and spectrograms were calculated using Welch’s 

method[94], with a 3s second Hanning window for PSD, and 0.5s Hanning window for 

spectrograms. Both analyses used 80% window overlap.  

 

EEG periodic and aperiodic components. We decomposed EEG PSDs into periodic and 

aperiodic (broadband) components using tools from the FOOOF library[51]. The aperiodic 

component of the PSD was a 1/f function, defined by a vertical offset and exponent parameter. 

Periodic components representing putative oscillations were derived using up to 4 Gaussians, 

defined by center frequency (mean), bandwidth (variance), and power (height). 

 

Population spiking phase preference. We calculated the instantaneous phase of EEG using tools 

from the SciPy[95] and NumPy[96] Python libraries. The EEG time series was bandpass filtered 

from 4 – 12 Hz, with 2 Hz padding on either end to avoid edge effects. A second order Butterworth 

filter was used to acquire filter coefficients, which were then passed to a linear digital filter applied 

forward and backwards to eliminate phase lag. The angle of the bandpass-filtered Hilbert transform 

was calculated and shifted by 180° to obtain the instantaneous phase of the signal with trough and 

peak corresponding to 0° and 180°, respectively. For each of the four neuron populations (Pyr, 

SST, PV, VIP), spike times were aggregated into a population spike vector and converted to 

corresponding phase of EEG. Spike phases were binned into 5° bins and the counts were summated 

over all circuits in each condition. To compare spike preference between conditions, bin counts 

were normalized by the maximal count. 
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Realistic head source modelling. The x-y-z components of microcircuit dipole moments 

generated from LFPy were imported into MNE[97] and downsampled to a 400 Hz sampling rate. 

The dipole was placed within L2/3 of the left dorsolateral PFC (MNI 30, -36, -42)[98], which has 

been implicated in depression[99]. We solved the forward solution using a three-layer boundary 

element model, as implemented in LFPy, corresponding to the inner skull, outer skull, and scalp 

with conductivities of 0.3 S/m, 0.006 S/m and 0.3 S/m, respectively. The resulting potential was 

calculated for a standard 60-channel simulated EEG electrode array.  

 

Statistical tests. We used two-sample t-test to determine statistical significance where appropriate. 

We calculated Cohen’s d to show effect size. We used Raileigh’s test of non-uniformity to 

determine if populations had a non-uniform phase preference, and kurtosis to quantify variance 

around the preferred mean angle.   

 

Data availability statement. All models and code will be available online upon publication.  

 

Acknowledgements  

FM, JG, and EH thank the Krembil Foundation and the Ontario Graduate Scholarship for funding 

support. FM and EH were also supported by a stipend award from the Department of Physiology 

at University of Toronto.  

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

 1.  Chiu M, Lebenbaum M, Cheng J, de Oliveira C, Kurdyak P. The direct healthcare costs 

associated with psychological distress and major depression: A population-based cohort 

study in Ontario, Canada. PLoS ONE. 2017;12. doi:10.1371/journal.pone.0184268 

2.  Verduijn J, Milaneschi Y, Schoevers RA, van Hemert AM, Beekman ATF, Penninx BWJH. 

Pathophysiology of major depressive disorder: mechanisms involved in etiology are not 

associated with clinical progression. Transl Psychiatry. 2015;5: e649–e649. 

doi:10.1038/tp.2015.137 

3.  Prins J, Olivier B, Korte SM. Triple reuptake inhibitors for treating subtypes of major depressive 

disorder: the monoamine hypothesis revisited. Expert Opin Investig Drugs. 2011;20: 1107–

1130. doi:10.1517/13543784.2011.594039 

4.  Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future 

directions. Patient Prefer Adherence. 2012;6: 369–388. doi:10.2147/PPA.S29716 

5.  Fitzgerald PB, Hoy KE, Anderson RJ, Daskalakis ZJ. a study of the pattern of response to rTMS 

treatment in depression. Depress Anxiety. 2016;33: 746–753. doi:10.1002/da.22503 

6.  Olbrich S, Arns M. EEG biomarkers in major depressive disorder: Discriminative power and 

prediction of treatment response. Int Rev Psychiatry. 2013;25: 604–618. 

doi:10.3109/09540261.2013.816269 

7.  Jaworska N, Blier P, Fusee W, Knott V. Alpha power, alpha asymmetry and anterior cingulate 

cortex activity in depressed males and females. J Psychiatr Res. 2012;46: 1483–1491. 

doi:10.1016/j.jpsychires.2012.08.003 

8.  Northoff G, Sibille E. Why are cortical GABA neurons relevant to internal focus in depression? 

A cross-level model linking cellular, biochemical and neural network findings. Mol 

Psychiatry. 2014;19: 966–977. doi:10.1038/mp.2014.68 

9.  Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive 

dysfunctions in depression and other brain disorders. Mol Psychiatry. 2021;26: 151–167. 

doi:10.1038/s41380-020-0727-3 

10.  Fuchs T, Jefferson SJ, Hooper A, Yee P-H, Maguire J, Luscher B. Disinhibition of 

somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-

like brain state. Mol Psychiatry. 2017;22: 920–930. doi:10.1038/mp.2016.188 

11.  Lin L-C, Sibille E. Reduced brain somatostatin in mood disorders: a common 

pathophysiological substrate and drug target? Front Pharmacol. 2013;4: 110. 

doi:10.3389/fphar.2013.00110 

12.  Fee C, Prevot TD, Misquitta K, Knutson DE, Li G, Mondal P, et al. Behavioral deficits 

induced by somatostatin-positive GABA neuron silencing are rescued by alpha 5 GABA-A 

receptor potentiation. Int J Neuropsychopharmacol. 2021. doi:10.1093/ijnp/pyab002 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


13.  Seney ML, Tripp A, McCune S, Lewis D, Sibille E. Laminar and Cellular Analyses of 

Reduced Somatostatin Gene Expression in the Subgenual Anterior Cingulate Cortex in Major 

Depression. Neurobiol Dis. 2015;73: 213–219. doi:10.1016/j.nbd.2014.10.005 

14.  Sibille E, Morris HM, Kota RS, Lewis DA. GABA-related transcripts in the dorsolateral 

prefrontal cortex in mood disorders. Int J Neuropsychopharmacol. 2011;14: 721–734. 

doi:10.1017/S1461145710001616 

15.  Tripp A, Kota RS, Lewis DA, Sibille E. Reduced somatostatin in subgenual anterior cingulate 

cortex in major depression. Neurobiol Dis. 2011;42: 116–124. 

doi:10.1016/j.nbd.2011.01.014 

16.  Guilloux J-P, Douillard-Guilloux G, Kota R, Wang X, Gardier A, Martinowich K, et al. 

Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female 

subjects with Major Depression. Mol Psychiatry. 2012;17: 1130–1142. 

doi:10.1038/mp.2011.113 

17.  Prevot TD, Li G, Vidojevic A, Misquitta KA, Fee C, Santrac A, et al. Novel Benzodiazepine-

Like Ligands with Various Anxiolytic, Antidepressant, or Pro-Cognitive Profiles. Complex 

Psychiatry. 2019;5: 84–97. doi:10.1159/000496086 

18.  Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol Off Publ Am 

Electroencephalogr Soc. 2006;23: 186–189. doi:10.1097/01.wnp.0000220079.61973.6c 

19.  Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: From cellular 

properties to circuits. Neuron. 2016;91: 260–292. doi:10.1016/j.neuron.2016.06.033 

20.  Ali AB, Thomson AM. Synaptic alpha 5 subunit-containing GABAA receptors mediate 

IPSPs elicited by dendrite-preferring cells in rat neocortex. Cereb Cortex N Y N 1991. 

2008;18: 1260–1271. doi:10.1093/cercor/bhm160 

21.  Silberberg G, Markram H. Disynaptic Inhibition between Neocortical Pyramidal Cells 

Mediated by Martinotti Cells. Neuron. 2007;53: 735–746. doi:10.1016/j.neuron.2007.02.012 

22.  Obermayer J, Heistek TS, Kerkhofs A, Goriounova NA, Kroon T, Baayen JC, et al. Lateral 

inhibition by Martinotti interneurons is facilitated by cholinergic inputs in human and mouse 

neocortex. Nat Commun. 2018;9: 4101. doi:10.1038/s41467-018-06628-w 

23.  Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CCH. Unique functional 

properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat 

Neurosci. 2012;15: 607–612. doi:10.1038/nn.3051 

24.  Yao HK, Guet-McCreight A, Mazza F, Chameh HM, Prevot TD, Griffiths J, et al. Reduced 

inhibition in depression impairs stimulus processing in human cortical microcircuits. 

bioRxiv. 2021; 2021.02.17.431698. doi:10.1101/2021.02.17.431698 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


25.  Chen G, Zhang Y, Li X, Zhao X, Ye Q, Lin Y, et al. Distinct Inhibitory Circuits Orchestrate 

Cortical beta and gamma Band Oscillations. Neuron. 2017;96: 1403-1418.e6. 

doi:10.1016/j.neuron.2017.11.033 

26.  Huang P, Xiang X, Chen X, Li H. Somatostatin Neurons Govern Theta Oscillations Induced 

by Salient Visual Signals. Cell Rep. 2020;33: 108415. doi:10.1016/j.celrep.2020.108415 

27.  Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G. Role of Somatostatin-

Positive Cortical Interneurons in the Generation of Sleep Slow Waves. J Neurosci. 2017;37: 

9132–9148. doi:10.1523/JNEUROSCI.1303-17.2017 

28.  Jiang H, Popov T, Jylänki P, Bi K, Yao Z, Lu Q, et al. Predictability of depression severity 

based on posterior alpha oscillations. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 

2016;127: 2108–2114. doi:10.1016/j.clinph.2015.12.018 

29.  Dehghani N, Peyrache A, Telenczuk B, Le Van Quyen M, Halgren E, Cash SS, et al. Dynamic 

Balance of Excitation and Inhibition in Human and Monkey Neocortex. Sci Rep. 2016;6: 

23176. doi:10.1038/srep23176 

30.  Quyen MLV, Muller LE, Telenczuk B, Halgren E, Cash S, Hatsopoulos NG, et al. High-

frequency oscillations in human and monkey neocortex during the wake–sleep cycle. Proc 

Natl Acad Sci. 2016;113: 9363–9368. doi:10.1073/pnas.1523583113 

31.  Gardner RJ, Hughes SW, Jones MW. Differential Spike Timing and Phase Dynamics of 

Reticular Thalamic and Prefrontal Cortical Neuronal Populations during Sleep Spindles. J 

Neurosci. 2013;33: 18469–18480. doi:10.1523/JNEUROSCI.2197-13.2013 

32.  Averkin RG, Szemenyei V, Bordé S, Tamás G. Identified Cellular Correlates of Neocortical 

Ripple and High-Gamma Oscillations during Spindles of Natural Sleep. Neuron. 2016;92: 

916–928. doi:10.1016/j.neuron.2016.09.032 

33.  McGinn RJ, Valiante TA. Phase–Amplitude Coupling and Interlaminar Synchrony Are 

Correlated in Human Neocortex. J Neurosci. 2014;34: 15923–15930. 

doi:10.1523/JNEUROSCI.2771-14.2014 

34.  Fedele T, Boran E, Chirkov V, Hilfiker P, Grunwald T, Stieglitz L, et al. Dataset of spiking 

and LFP activity invasively recorded in the human amygdala during aversive dynamic 

stimuli. Sci Data. 2021;8: 9. doi:10.1038/s41597-020-00790-x 

35.  Florez CM, McGinn RJ, Lukankin V, Marwa I, Sugumar S, Dian J, et al. In vitro recordings 

of human neocortical oscillations. Cereb Cortex N Y N 1991. 2015;25: 578–597. 

doi:10.1093/cercor/bht235 

36.  Seeman SC, Campagnola L, Davoudian PA, Hoggarth A, Hage TA, Bosma-Moody A, et al. 

Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human 

cortex. Slutsky I, Marder E, Sjöström PJ, editors. eLife. 2018;7: e37349. 

doi:10.7554/eLife.37349 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


37.  Chameh HM, Rich S, Wang L, Chen F-D, Zhang L, Carlen PL, et al. Sag currents are a major 

contributor to human pyramidal cell intrinsic differences across cortical layers. bioRxiv. 

2020; 748988. doi:10.1101/748988 

38.  Hagen E, Næss S, Ness TV, Einevoll GT. Multimodal modeling of neural network activity: 

computing LFP, ECoG, EEG and MEG signals with LFPy2.0. bioRxiv. 2018; 281717. 

doi:10.1101/281717 

39.  Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Næss S, Ness TV, et al. Alterations in 

Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cereb 

Cortex. 2019;29: 875–891. doi:10.1093/cercor/bhy291 

40.  Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI. Quantitative 

analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis 

and modulation of sensory-evoked responses. J Neurophysiol. 2009;102: 3554–3572. 

doi:10.1152/jn.00535.2009 

41.  Fee C, Banasr M, Sibille E. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron 

Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol Psychiatry. 

2017;82: 549–559. doi:10.1016/j.biopsych.2017.05.024 

42.  Fernández-Palleiro P, Rivera-Baltanás T, Rodrigues-Amorim D, Fernández-Gil S, del 

Carmen Vallejo-Curto M, Álvarez-Ariza M, et al. Brainwaves Oscillations as a Potential 

Biomarker for Major Depression Disorder Risk. Clin EEG Neurosci. 2020;51: 3–9. 

doi:10.1177/1550059419876807 

43.  Newson JJ, Thiagarajan TC. EEG Frequency Bands in Psychiatric Disorders: A Review of 

Resting State Studies. Front Hum Neurosci. 2018;12: 521. doi:10.3389/fnhum.2018.00521 

44.  Arns M, Etkin A, Hegerl U, Williams LM, DeBattista C, Palmer DM, et al. Frontal and rostral 

anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome? Eur 

Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2015;25: 1190–1200. 

doi:10.1016/j.euroneuro.2015.03.007 

45.  Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD. Independent component approach 

to the analysis of EEG recordings at early stages of depressive disorders. Clin Neurophysiol. 

2010;121: 281–289. doi:10.1016/j.clinph.2009.11.015 

46.  Bailey NW, Hoy KE, Rogasch NC, Thomson RH, McQueen S, Elliot D, et al. Responders to 

rTMS for depression show increased fronto-midline theta and theta connectivity compared 

to non-responders. Brain Stimulat. 2018;11: 190–203. doi:10.1016/j.brs.2017.10.015 

47.  Bruder GE, Sedoruk JP, Stewart JW, McGrath PJ, Quitkin FM, Tenke CE. 

Electroencephalographic Alpha Measures Predict Therapeutic Response to a Selective 

Serotonin Reuptake Inhibitor Antidepressant: Pre- and Post-Treatment Findings. Biol 

Psychiatry. 2008;63: 1171–1177. doi:10.1016/j.biopsych.2007.10.009 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


48.  de Aguiar Neto FS, Rosa JLG. Depression biomarkers using non-invasive EEG: A review. 

Neurosci Biobehav Rev. 2019;105: 83–93. doi:10.1016/j.neubiorev.2019.07.021 

49.  Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and 

prediction of treatment response. Int Rev Psychiatry Abingdon Engl. 2013;25: 604–618. 

doi:10.3109/09540261.2013.816269 

50.  Smith DF. Quest for Biomarkers of Treatment-Resistant Depression: Shifting the Paradigm 

Toward Risk. Front Psychiatry. 2013;4. doi:10.3389/fpsyt.2013.00057 

51.  Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing 

neural power spectra into periodic and aperiodic components. Nat Neurosci. 2020;23: 1655–

1665. doi:10.1038/s41593-020-00744-x 

52.  Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field 

potentials. NeuroImage. 2017;158: 70–78. doi:10.1016/j.neuroimage.2017.06.078 

53.  Podvalny E, Noy N, Harel M, Bickel S, Chechik G, Schroeder CE, et al. A unifying principle 

underlying the extracellular field potential spectral responses in the human cortex. J 

Neurophysiol. 2015;114: 505–519. doi:10.1152/jn.00943.2014 

54.  Knott V, Mahoney C, Kennedy S, Evans K. EEG power, frequency, asymmetry and 

coherence in male depression. Psychiatry Res Neuroimaging. 2001;106: 123–140. 

doi:10.1016/S0925-4927(00)00080-9 

55.  Morgan ML, Witte EA, Cook IA, Leuchter AF, Abrams M, Siegman B. Influence of age, 

gender, health status, and depression on quantitative EEG. Neuropsychobiology. 2005;52: 

71–76. doi:10.1159/000086608 

56.  Korb AS, Cook IA, Hunter AM, Leuchter AF. Brain electrical source differences between 

depressed subjects and healthy controls. Brain Topogr. 2008;21: 138–146. 

doi:10.1007/s10548-008-0070-5 

57.  Cook IA, Hunter AM, Korb AS, Leuchter AF. Do prefrontal midline electrodes provide 

unique neurophysiologic information in Major Depressive Disorder? J Psychiatr Res. 

2014;53: 69–75. doi:10.1016/j.jpsychires.2014.01.018 

58.  Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33: 325–340. 

doi:10.1016/s0896-6273(02)00586-x 

59.  Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. 

Oxford ; New York: Oxford University Press; 2006.  

60.  Ouyang G, Hildebrandt A, Schmitz F, Herrmann CS. Decomposing alpha and 1/f brain 

activities reveals their differential associations with cognitive processing speed. Neuroimage. 

2020;205. doi:10.1016/j.neuroimage.2019.116304 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


61.  Gasser T, Bächer P, Steinberg H. Test-retest reliability of spectral parameters of the EEG. 

Electroencephalogr Clin Neurophysiol. 1985;60: 312–319. doi:10.1016/0013-

4694(85)90005-7 

62.  Halgren M, Ulbert I, Bastuji H, Fabó D, Erőss L, Rey M, et al. The generation and 

propagation of the human alpha rhythm. Proc Natl Acad Sci. 2019;116: 23772–23782. 

doi:10.1073/pnas.1913092116 

63.  Silva LR, Amitai Y, Connors BW. Intrinsic oscillations of neocortex generated by layer 5 

pyramidal neurons. Science. 1991;251: 432–435. doi:10.1126/science.1824881 

64.  Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends 

Neurosci. 1990;13: 99–104. doi:10.1016/0166-2236(90)90185-D 

65.  Murakami S, Okada Y. Contributions of principal neocortical neurons to 

magnetoencephalography and electroencephalography signals. J Physiol. 2006;575: 925–

936. doi:10.1113/jphysiol.2006.105379 

66.  Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, 

ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13: 407–420. doi:10.1038/nrn3241 

67.  Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. Review on solving 

the inverse problem in EEG source analysis. J NeuroEngineering Rehabil. 2008;5: 25. 

doi:10.1186/1743-0003-5-25 

68.  Makeig S, Bell AJ, Jung T-P, Sejnowski TJ. Independent Component Analysis of 

Electroencephalographic Data. : 7.  

69.  Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, et al. Assessing 

interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans 

R Soc Math Phys Eng Sci. 2011;369: 3768–3784. doi:10.1098/rsta.2011.0081 

70.  Feffer K, Fettes P, Giacobbe P, Daskalakis ZJ, Blumberger DM, Downar J. 1Hz rTMS of the 

right orbitofrontal cortex for major depression: Safety, tolerability and clinical outcomes. Eur 

Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2018;28: 109–117. 

doi:10.1016/j.euroneuro.2017.11.011 

71.  Li Y, Wang L, Jia M, Guo J, Wang H, Wang M. The effects of high-frequency rTMS over 

the left DLPFC on cognitive control in young healthy participants. PLoS ONE. 2017;12. 

doi:10.1371/journal.pone.0179430 

72.  Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH, et al. rTMS 

of the Dorsomedial Prefrontal Cortex for Major Depression: Safety, Tolerability, 

Effectiveness, and Outcome Predictors for 10 Hz Versus Intermittent Theta-burst 

Stimulation. Brain Stimulat. 2015;8: 208–215. doi:10.1016/j.brs.2014.11.002 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


73.  Fettes P, Schulze L, Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal 

Cortex: Promising Therapeutic Targets in Psychiatric Illness. Front Syst Neurosci. 2017;11. 

doi:10.3389/fnsys.2017.00025 

74.  Radley JJ, Rocher AB, Miller M, Janssen WGM, Liston C, Hof PR, et al. Repeated stress 

induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex N Y N 1991. 

2006;16: 313–320. doi:10.1093/cercor/bhi104 

75.  Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, et al. Chronic behavioral stress 

induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. 

Neuroscience. 2004;125: 1–6. doi:10.1016/j.neuroscience.2004.01.006 

76.  Koleske AJ. Molecular mechanisms of dendrite stability. Nat Rev Neurosci. 2013;14: 536–

550. doi:10.1038/nrn3486 

77.  Oh H, Piantadosi SC, Rocco BR, Lewis DA, Watkins SC, Sibille E. The Role of Dendritic 

Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in 

Depression. Biol Psychiatry. 2019;85: 517–526. doi:10.1016/j.biopsych.2018.09.026 

78.  Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH. Stress-induced dendritic 

remodeling in the prefrontal cortex is circuit specific. Cereb Cortex N Y N 1991. 2009;19: 

2479–2484. doi:10.1093/cercor/bhp003 

79.  Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: A Paradigm Shift 

for Depression Research and Treatment. Neuron. 2019;101: 774–778. 

doi:10.1016/j.neuron.2019.02.005 

80.  Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch 

negativity to simple versus complex deviants in schizophrenia. Schizophr Res. 2018;191: 25–

34. doi:10.1016/j.schres.2017.07.009 

81.  Zhdanov A, Atluri S, Wong W, Vaghei Y, Daskalakis ZJ, Blumberger DM, et al. Use of 

Machine Learning for Predicting Escitalopram Treatment Outcome From 

Electroencephalography Recordings in Adult Patients With Depression. JAMA Netw Open. 

2020;3: e1918377. doi:10.1001/jamanetworkopen.2019.18377 

82.  Ibrahim GM, Wong SM, Anderson RA, Singh-Cadieux G, Akiyama T, Ochi A, et al. 

Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical 

rhythms. Exp Neurol. 2014;251: 30–38. doi:10.1016/j.expneurol.2013.10.019 

83.  Udupa K, Tai P, Saha U, Wennberg R, Valiante T, Andrade D, et al. Theta burst transcranial 

magnetic stimulation to induce seizures in an epilepsy monitoring unit. Brain Stimul Basic 

Transl Clin Res Neuromodulation. 2020;13: 1800–1802. doi:10.1016/j.brs.2020.10.009 

84.  Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN, et al. Dendritic and 

Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human 

Neocortex. Cereb Cortex. 2015;25: 4839–4853. doi:10.1093/cercor/bhv188 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


85.  Hashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The Number of 

Parvalbumin-Expressing Interneurons Is Decreased in the Prefrontal Cortex in Autism. Cereb 

Cortex N Y N 1991. 2017;27: 1931–1943. doi:10.1093/cercor/bhw021 

86.  Krienen FM, Goldman M, Zhang Q, C. H. del Rosario R, Florio M, Machold R, et al. 

Innovations present in the primate interneuron repertoire. Nature. 2020;586: 262–269. 

doi:10.1038/s41586-020-2781-z 

87.  2010 Allen Institute for Brain Science. Allen Human Brain Atlas. Available from: 

human.brain-map.org. [cited 19 Apr 2021]. Available: 

https://www.google.com/search?q=2010+Allen+Institute+for+Brain+Science.+Allen+Hum

an+Brain+Atlas.+Available+from%3A+human.brain-

map.org.&oq=2010+Allen+Institute+for+Brain+Science.+Allen+Human+Brain+Atlas.+Av

ailable+from%3A+human.brain-

map.org.&aqs=chrome..69i57.422j0j4&sourceid=chrome&ie=UTF-8 

88.  Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved 

cell types with divergent features in human versus mouse cortex. Nature. 2019;573: 61–68. 

doi:10.1038/s41586-019-1506-7 

89.  Carnevale T, Hines M, Hines M, Hines M. The NEURON Book. Cambridge University 

Press; 2006.  

90.  Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. Fluctuating synaptic conductances 

recreate in vivo-like activity in neocortical neurons. Neuroscience. 2001;107: 13–24. 

doi:10.1016/s0306-4522(01)00344-x 

91.  Teleńczuk B, Dehghani N, Le Van Quyen M, Cash SS, Halgren E, Hatsopoulos NG, et al. 

Local field potentials primarily reflect inhibitory neuron activity in human and monkey 

cortex. Sci Rep. 2017;7: 40211. doi:10.1038/srep40211 

92.  Yu J, Hu H, Agmon A, Svoboda K. Recruitment of GABAergic Interneurons in the Barrel 

Cortex during Active Tactile Behavior. Neuron. 2019;104: 412-427.e4. 

doi:10.1016/j.neuron.2019.07.027 

93.  McCann H, Pisano G, Beltrachini L. Variation in Reported Human Head Tissue Electrical 

Conductivity Values. Brain Topogr. 2019;32: 825–858. doi:10.1007/s10548-019-00710-2 

94.  Welch P. The use of fast Fourier transform for the estimation of power spectra: A method 

based on time averaging over short, modified periodograms. IEEE Trans Audio 

Electroacoustics. 1967;15: 70–73. doi:10.1109/TAU.1967.1161901 

95.  Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 

1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17: 261–

272. doi:10.1038/s41592-019-0686-2 

96.  Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array 

programming with NumPy. Nature. 2020;585: 357–362. doi:10.1038/s41586-020-2649-2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


97.  Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MEG and 

EEG data analysis with MNE-Python. Front Neurosci. 2013;7. doi:10.3389/fnins.2013.00267 

98.  McBride D, Barrett SP, Kelly JT, Aw A, Dagher A. Effects of expectancy and abstinence on 

the neural response to smoking cues in cigarette smokers: an fMRI study. 

Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2006;31: 2728–2738. 

doi:10.1038/sj.npp.1301075 

99.  Koenigs M, Grafman J. The functional neuroanatomy of depression: Distinct roles for 

ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201: 239–243. 

doi:10.1016/j.bbr.2009.03.004 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/

