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Abstract 

Reduced cortical inhibition by somatostatin-expressing (SST) interneurons has been strongly 

associated with treatment-resistant depression. However, whether the effects of reduced SST 

interneuron inhibition on microcircuit activity have signatures detectible in 

electroencephalography (EEG) signals remains unknown. We simulated resting-state activity and 

EEG using detailed models of human cortical microcircuits with normal (healthy) or reduced 

SST interneuron inhibition (depression). Healthy microcircuit models showed emergent key 

features of resting-state EEG, and depression microcircuits exhibited increased theta, alpha and 

low beta power (4 – 15 Hz). The changes in depression involved a combination of an aperiodic 

broadband, and periodic theta components. We then demonstrated the specificity of the EEG 

signatures of reduced SST interneuron inhibition by showing they were distinct from those 

corresponding to reduced parvalbumin-expressing (PV) interneuron inhibition. Our study thus 

links SST interneuron inhibition level to distinct features in EEG simulated from detailed human 

microcircuits, which can serve to better identify mechanistic subtypes of depression using EEG, 

and non-invasively monitor modulation of cortical inhibition. 
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Introduction 

 

Major depressive disorder (depression) is a leading cause of disability worldwide[1] and 

involves varying mechanisms and symptoms[2,3]. Consequently, a significant proportion of 

patients remain resistant to antidepressants[4] and second-line treatments[5]. Electro-

encephalography (EEG) offers a non-invasive and cost-effective method for brain signal-based 

biomarkers to improve diagnosis, monitoring and treatment of depression subtypes[6,7]. 

However, the multi-scale mechanisms of depression and their link to clinically-relevant brain 

signals remain poorly understood.  

 There is growing evidence that reduced cortical inhibition plays a mechanistic role in 

depression[8] and treatment-resistant depression[9–11], especially inhibition mediated by 

somatostatin-expressing (SST) interneurons[11–15]. Recent studies showed a marked reduction 

in SST expression by SST interneurons in post-mortem tissue of depression patients, across all 

layers of the prefrontal cortex (PFC) and anterior cingulate cortex, indicating a decrease in SST 

interneuron inhibition[16–18]. In rodent models, silencing SST interneuron inhibition led to 

depression symptoms[15], and novel therapeutic compounds acting via positive allosteric 

modulation of alpha-5-gamma-aminobutyric-acid-A (𝛼5-GABAA) receptors targeted by SST 

interneurons resulted in pro-cognitive and anxiolytic effects[15,19]. In contrast, indications of 

changes in parvalbumin-expressing (PV) interneuron inhibition were inconsistent and less 

pronounced, signifying a more selective vulnerability for SST interneurons in depression[20,21]. 

Furthermore, other disorders such as Alzheimer’s and aging that show changes in SST 

interneuron inhibition involve other key changes such as cell and synapse loss, therefore the 

altered inhibition may play a less central or less consistent role in these conditions than in 

depression[22–24]. Changes in SST interneuron inhibition on circuit activity could have 

signatures detectible in EEG, due to this cell type’s principal role in modulating input to 

pyramidal (Pyr) neurons, which are major contributors to EEG signals along with L5/6[8,21]. 

SST interneurons provide synaptic and tonic inhibition onto the apical dendrites of Pyr 

neurons[27,28], and mediate lateral inhibition in the cortex[25,29,30], particularly during periods 

of quiet, resting wakefulness (resting state)[31]. Accordingly, previous studies indicate that 

reduced SST interneuron inhibition in depression increases baseline activity of Pyr 

neurons[12,25,32]. 
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While the contribution of SST interneurons to resting-state cortical oscillations remains 

largely unknown, studies show a role for this cell type in modulating low-frequency oscillations. 

SST stimulation entrains network activity in the 5 - 30 Hz range, and SST suppression modulates 

theta band (4 – 8 Hz) power[33,34]. SST interneurons have also been suggested to govern 

network synchrony in slow-wave sleep, which is marked by slow oscillations[35]. Thus, reduced 

SST interneuron inhibition in depression may affect EEG low-frequency power. Conversely, PV 

interneurons have been shown to modulate high beta (20 – 30 Hz) and gamma (30 – 50 Hz) 

frequencies in human hippocampal LFP recordings, indicating that these two interneuron types 

likely modulate distinct frequency domains in recorded EEG[36,37]. We recently showed that a 

40% reduction in SST interneuron inhibition, estimated from post-mortem tissue studies of 

depression patients[16], significantly increased baseline Pyr spike rate in simulated human 

microcircuits[32]. However, it is still unknown if this level of reduction in SST interneuron 

inhibition would significantly alter baseline oscillatory dynamics detectable in EEG.  

Previous studies have linked neuronal spiking to extracellular signals, although mostly 

using animal models and local field potential (LFP)[38–40]. Human studies have characterized 

LFP oscillations in cortical slices and showed phase-amplitude coupling between deep and 

superficial layers[41]. Others have studied the phase preference of Pyr neuron spikes relative to 

spindle events in rodent intracranial EEG oscillations[42]. However, experimental methods are 

limited in their ability to characterize the effects of the cellular changes in depression on human 

brain signals in vivo, thus meriting the use of computational models. Previous computational 

studies have identified inter-laminar mechanisms underlying evoked related potentials during 

stimulus response using simplified neuron morphologies and connectivity[43,44]. The increased 

availability of human neuronal electrical and synaptic connectivity data [30,45,46] provides 

important constraints for detailed models of human cortical microcircuits[32], which can be used 

to link mechanisms of microcircuit activity in human health and disease to signatures in local 

circuit-generated EEG signals[47,48].  

In this study, we identified EEG biomarkers of microcircuit effects due to reduced SST 

interneuron inhibition, as estimated from gene expression changes in depression. Using 

biophysically detailed models of human cortical microcircuits, we simulated resting-state activity 

in health and depression together with local EEG signals. We characterized changes in resting-
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state EEG spectral power, and in relation to spiking activity in different neuron types, to identify 

biomarkers of reduced SST interneuron inhibition in depression. 

 

Results 
 

Human cortical microcircuit models reproduce resting-state EEG features 

We used our previous detailed models of human cortical L2/3 microcircuits[32] (Fig 1a) 

as canonical cortical microcircuit models for simulating resting state spiking and EEG signals. 

The model microcircuits included the four key neuron types: Pyr neurons, SST interneurons, 

Parvalbumin-expressing interneurons (PV), and Vasoactive intestinal polypeptide-expressing 

interneurons (VIP). To simulate intrinsic healthy resting-state spiking activity, all neurons 

received random background excitatory input corresponding to baseline cortical and thalamic 

drive. The model microcircuits were implemented in a physical volume, enabling simulation of 

LFP and EEG together with microcircuit spiking (Fig 1a-d). 

 

 
Figure 1. Simulating neuronal spiking and EEG signals from human cortical microcircuits. (a) 

Detailed models of human cortical microcircuits, showing somatic placement of 1000 neurons in a 

500x500x950 μm3 volume along layer 2/3 (250 - 1200 μm below pia) and reconstructed morphologies 

used in the neuron models. (b – d) Temporally aligned multi-scale simulated signals: EEG (b) from scalp 

electrode directly above the microcircuit; LFP signal (c) recorded at the middle of L2/3 (depth of -725 
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μm); Raster plot of spiking in different neurons in the microcircuit (d), color-coded according to neuron 

type. Neurons received background excitatory inputs to generate intrinsic circuit activity. 

 

Baseline microcircuit activity was oscillatory, marked by synchronous spiking events 

(Fig 1d) and corresponding fluctuations in LFP and EEG signals (Fig 1b, c). We quantified 

oscillatory activity in the healthy microcircuits by calculating EEG power spectral density 

(PSD). The microcircuit EEG exhibited a peak in theta (4 – 8 Hz) and alpha (8 – 12 Hz) bands (n 

= 60 randomized microcircuits, Fig 2a) and a 1/f background trend (Fig 2a, inset). We then 

calculated spectrograms of circuit activity to analyze the evolution of signal strength in the time-

frequency domain. The spectrograms showed 41 ± 3 transient theta-alpha events per 28 s 

simulation, with average duration of 181 ± 12 ms (Fig 2b). The circuit simulations thus 

reproduced several key temporal and spectral features of resting-state human EEG, including an 

oscillatory peak power in theta and alpha bands and a background 1/f trend[49–51]. Critically, 

these oscillatory properties were emergent, and were not explicitly optimized for, which 

therefore constitutes an important validation of the model and demonstration of its ability to 

capture key properties of human cortical microcircuit dynamics. 

 

 
Figure 2. Models of human cortical microcircuits reproduce key features of resting-state EEG. (a) 

Power spectral density plot of circuit simulations (n = 60 randomized microcircuits, bootstrapped mean 

and 95% confidence intervals), exhibiting peak power in theta and alpha frequency bands. Inset – same 

power spectral density plot shown on log-log scale, illustrating the 1/f relationship between power and log 

frequency, inversely linear between 2-30 Hz with slope -0.99 ± 0.07. Frequency bands are delimited by 

dotted lines. (b) Example spectrogram of simulated microcircuit EEG, exhibiting theta and alpha events. 

 
EEG biomarkers of reduced SST in depression microcircuits 

 We compared simulated EEG in healthy versus depression microcircuits using our 

previous depression models, in which SST synaptic and tonic inhibition were reduced (n = 60 
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randomized microcircuits, Fig 3a). The simulated EEG from depression microcircuits exhibited a 

prominent peak in theta and alpha bands (4 – 12 Hz) similarly to the healthy microcircuits, but 

there was a significantly increased power in these bands and in low-beta frequencies (5 – 15 Hz, 

56% increase on average, p < 0.05, Cohen’s d = 1.67, Fig 3b). We decomposed EEG PSDs into 

aperiodic (Fig 3c) and periodic (Fig 3d) components, to compare the distinct functional 

components of the absolute PSDs. There was a 44% increase in aperiodic broadband power in 

depression compared to healthy microcircuits (5 – 30 Hz, p < 0.05, Cohen’s d = 4.9), and a 30% 

reduction in aperiodic exponent (healthy = 0.99  0.07, depression = 0.69  0.07, p < 0.05, 

Cohen’s d = 2.6). The periodic component of the PSDs from depression microcircuits showed a 

35% increase in theta power (4 – 8 Hz, p < 0.05, Cohen’s d = 1.0), and 62% increase in low-beta 

power (12 – 15 Hz, p < 0.05, Cohen’s d = 1.9), but no significant change in alpha power 

compared to healthy microcircuits. Thus, the absolute power increase involved a combination of 

an aperiodic broadband component, and a periodic theta and low beta component. 

 
 

 
Figure 3. EEG signatures of reduced SST interneuron inhibition in depression microcircuit models. 

(a) Schematic connectivity diagram highlighting the key connections between different neuron types in 

the microcircuit. In the depression condition, dotted lines from the SST interneurons illustrate reduced 

synaptic and tonic inhibition onto different neuron types. (b) Power spectral density plot of simulated 
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EEG from the healthy (black) and depression (red) microcircuit models (n = 60 randomized microcircuits 

per condition, bootstrapped mean and 95% confidence interval). (c) Fitted aperiodic component of the 

PSD. (d) Fitted periodic component of the PSD.  

 

EEG biomarkers of reduced SST inhibition are specific 

 

To better establish the specificity of EEG biomarkers due to reduced SST interneuron 

inhibition, we simulated different levels of SST and PV interneuron inhibition reduction (20-

60%) and compared their effects. Spectral profiles of reduced SST interneuron inhibition were 

distinct from reduced PV interneuron inhibition (Fig 4a). PSDs from microcircuits with reduced 

PV interneuron inhibition were not significantly different from the healthy microcircuit PSD (20 

- 60% reduction, 5 – 15 Hz, 8% change, p = 0.3), whereas PSDs from microcircuits with 20 – 

60% reduced SST interneuron inhibition had significantly increased power (20% reduction, 5 – 

15 Hz, 22% increase, p < 0.05, d = 0.9: 60% reduction, 92% increase, p < 0.05, d = 2.3). 

Following spectral decomposition, we found that the aperiodic component also largely separated 

the two conditions (Fig 4b). Reduced PV interneuron inhibition microcircuits showed a decrease 

in broadband power (20% reduction: 8% decrease, p < 0.05, d = 1.2, 60% reduction: 38% 

decrease, p < 0.05, d = 6.2). and no change in aperiodic exponent, whereas reduced SST 

interneuron inhibition microcircuits showed an increase in broadband power (20% reduction: 

21% increase, p < 0.05, d = 2.9, 50% reduction: 70% increase, p < 0.05, d = 6.5). In contrast, the 

periodic increases in power were largely similar between reduced PV and reduced SST 

interneuron inhibition conditions (Fig 4c, p > 0.05 for all reductions).  

Microcircuits with reduced PV interneuron inhibition significantly increased baseline Pyr 

firing rate at each step (healthy = 0.84 ± 0.03 Hz, 20% reduction: 0.86 ± 0.04 Hz, p < 0.05, d = 

0.6; 40% reduction: 0.93 ± 0.04 Hz, p < 0.05, d = 1.7; 60% reduction: 1.12 ± 0.06 Hz, p < 0.05, d 

= 4), but to a lesser extent than reduced SST interneuron inhibition (20% SST: 1.03 ± 0.04 Hz, p 

< 0.05, d = 5.32; 40% SST: 1.28 ± 0.06 Hz, p < 0.05, d = 4.8; 60% SST: 1.57 ± 0.08 Hz, p < 

0.05, d = 4.33). Thus, reduced SST interneuron inhibition affected baseline microcircuit activity 

to a greater extent than reduced PV interneuron inhibition.  
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Figure 4. Distinct EEG signatures from reduced SST vs PV interneuron inhibition. (a) Power 

spectral density plot of simulated EEG from the healthy (black) and reduced SST interneuron inhibition 

(depression, red) microcircuit models, with high-low opacity indicating a 20%, 40% and 60% reduction in 

inhibition (n = 30 randomized microcircuits per condition, bootstrapped mean). (b) Fitted aperiodic 

component of the PSD. (c) Fitted periodic component of the PSD. (d-f) Same as (a-c) but for 

microcircuits with reduced PV interneuron inhibition. 

 
We identified relationships between neuronal spiking and EEG spectral changes in 

depression microcircuit models by determining the EEG phase preference of the neuronal 

populations. The EEG time series were bandpass filtered from 4 – 12 Hz since the absolute PSDs 

and the periodic component of the PSDs showed highest power in these frequencies (Fig 5d). 

Spike time was then converted to phase of EEG signal by temporally aligning the bandpass-

filtered signal to the angle of its Hilbert transform (Fig 5a-c). In healthy microcircuits, spiking in 

all neuronal types exhibited preference to the phase preceding the trough of the EEG waveform 

(Rayleigh’s p < 0.05; Pyr = 269  3, SST = 267  5, PV = 283  3, VIP = 290  2 ). 

Depression microcircuits followed a similar phase preference (Rayleigh’s p < 0.05; Pyr = 281  

2, SST = 278   5, PV = 294  3, VIP = 296  3), but there was a decrease in preference 

selectivity, as quantified by population spike concentrations about the preferred phase (kurtosis, 
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p < 0.05 for all; % decrease: Pyr = 10%, d = 1.9; SST = 17%, d = 1.7; PV = 19%, d = 3.2, VIP = 

24%, d = 4.8). 

 

 
Figure 5. EEG phase preference of neuronal spiking in health and depression microcircuit models. 

(a-d) Temporally aligned simulated microcircuit signals used in calculating population phase-preference. 

(a) Raster plot of spiking in an example healthy microcircuit model. (b) Pyr population spike counts, in 

10 ms bins. (c) Instantaneous phase of the theta-alpha bandpass filtered EEG signal, with trough 

corresponding to 0˚. (d) Theta-alpha bandpass filtered EEG signal (black) and unfiltered EEG signal 

(gray). (e) Population spike counts relative to theta-alpha (4 – 12 Hz) bandpass filtered EEG from healthy 

(solid-line) and depression microcircuits (dotted-line). Plots show bootstrapped mean and standard 

deviation normalized by peak spike count. Neuron type colors for the healthy microcircuits are as in Fig 

1. 

 

 Lastly, we examined the spatial distribution of scalp-measured EEG signals generated by 

the microcircuit simulations using a realistic head model, and determined the distance at which it 

was indistinguishable from noise. Picking an example region that is also relevant to depression, 

we placed the simulated microcircuit dipoles into L2/3 of the dorsolateral PFC, at a location 

directly underneath 10-20 system electrode AF3 (Fig 6a), and used a forward solution based on a 

boundary-element model with realistic head geometry and conductivity to compute simulated 

EEG signals. The resulting time series were obtained at different electrode locations on the scalp 
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(Fig 6b). Difference in theta-alpha power in depression versus healthy microcircuits showed a 

nonuniform decay over the scalp, which was steeper laterally compared to medially (Fig 6c). A 

significant difference in power was only seen in electrodes corresponding to the ventral portion 

of the left dlPFC (AF3, the electrode above source) and the left orbitofrontal cortex (FP1 and 

FPz - 29mm and 46mm from source, respectively). The signal spread in both conditions was 

similarly local and non-uniform, primarily influenced by the location in the head model. Thus, 

the EEG biomarkers corresponding to microcircuit changes in depression were mostly localized 

spatially (Fig 6c).  

 
Figure 6: Topographic distribution of microcircuit EEG signal in a realistic head model. (a) 

Microcircuit dipole placement and orientation in the grey matter of the dlPFC in a head model, 

perpendicular to the cortical surface and in the middle of L2/3 (depth -725 μm). (b) Corresponding 

average potential spread of the microcircuit EEG signal to the EEG electrodes across the head. (c) 

Distribution of the difference in spectral power for depression versus healthy simulated microcircuit 

signals for theta-alpha band (4 – 12 Hz). 

 

 

Discussion 
 

In this study, we identified the signatures of reduced cortical inhibition in depression on 

EEG signals of resting-state activity using detailed models of human cortical microcircuits. 

Depression microcircuits with reduced SST interneuron inhibition showed an increase in 

absolute theta, alpha and low beta power, which involved a broadband increase together with a 

periodic increase in theta and low-beta activity. These EEG signatures of reduced SST 

interneuron inhibition were distinct from those corresponding to reducing PV interneuron 

inhibition, and thus provide a measure of estimating the level of cell-specific inhibition from 

EEG. These signatures may thus be used as biomarkers to stratify depression subtypes 

corresponding to altered inhibition, which are particularly associated with treatment-resistant 

depression[52]. By simulating both spiking and EEG in detailed microcircuits, we showed that 
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neuronal spiking had a marked preference for the phase preceding the trough of theta-alpha EEG 

band in both conditions. Our results provide mechanistic links between reduced SST interneuron 

inhibition and candidate biomarkers in EEG signals. These findings have multiple clinical 

applications, such as improving patient stratification and monitoring the effects of therapeutic 

compounds targeting SST interneuron inhibition.  

Increased power of theta, alpha, and low beta bands in our simulated depression 

microcircuits is in agreement with several previous depression studies, and was shown to be 

correlated with diagnosis, severity, and treatment response[7,52–57]. Importantly, systematic 

reviews across psychiatric disorders showed that these band changes are most consistent in 

depression and thus particular to this disorder[54]. Further, increased frontal theta power is 

predictive of second line treatment response targeting cortical inhibition in treatment-resistant 

depression[52,58–61]. In addition, depression patients who are treatment resistant show 

especially high theta power compared to treatment responders[52,53,55]. Together with the 

several points mentioned above, our results provide support for reduced SST interneuron 

inhibition as a principal mechanism of treatment-resistant depression, and show that it may be 

detectible by a profile of increased power across the low frequency bands[54,56,62–64]. Future 

studies relating our simulated EEG biomarkers to experimental EEG and depression features will 

further establish the link to disease stage, subtype and severity[8,25,65,66]. By incrementally 

comparing reduced SST inhibition conditions and resulting EEG, we showed that these EEG 

biomarkers can be used to estimate the level of neuron-specific inhibition noninvasively from 

patient EEG and thus improve patient stratification. Also, studies may further refine biomarkers 

by including other mechanisms of reduced inhibition, such SST synapse loss[67]. The increased 

aperiodic broadband power and decreased aperiodic slope in our depression microcircuits are 

consistent with the respective effects of increased excitation-inhibition ratio and increased 

baseline activity[68–70], which in our simulations resulted from reduced SST interneuron 

inhibition. Increased rhythmic theta and low beta activity, but not alpha, may explain the smaller 

change in relative alpha power seen previously and lend more functional significance to theta 

and low beta frequencies[71–74].  

Reduced SST and PV circuits both increased baseline activity but to a different degree, 

and had distinct EEG signatures due to their specific spatial innervation on Pyr 

neurons[69,75,76] and thus effects on dipole moment generation. The large effect of reduced 
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SST interneuron inhibition on the baseline firing and EEG is supported by the principal role of 

SST interneurons in modulating baseline cortical activity via facilitating apical dendritic 

synapses and lateral disynaptic inhibition[25,33,37,77,78]. Changes in SST interneuron 

inhibition onto apical dendrites of Pyr neuron would therefore have a strong effect on the EEG, 

since dipole moments increase with distance travelled by axial currents and summate both 

spatially and temporally[76,79]. In contrast, reduced PV interneuron inhibition had a smaller 

effect on baseline activity and EEG likely due to the dense PV→PV inhibitory connectivity and 

non-facilitating synaptic input from Pyr neurons[80], which would dampen the effect of reduced 

inhibition, and also due to the synaptic innervation of the basal dendrites that would have a 

smaller effect on dipoles recorded by EEG[76]. EEG decomposition further revealed that altered 

PV interneuron inhibition had opposite broadband effects on the PSD from SST interneuron 

inhibition, since decreased inhibitory currents at basal dendrites would negate apical sources and 

decrease the amplitude of EEG activity[76]. Thus, by decomposing the PSD into its constituents, 

we further differentiated the absolute EEG signatures of reduced SST from reduced PV 

interneuron inhibition, highlighting this method’s utility in providing EEG correlates of altered 

cell-type microcircuitry. These results provide an important validation for our model 

microcircuits ability to capture a wide range of modulatory effects of distinct inhibitory 

populations on microcircuit oscillations.  

Within physiologically-relevant decreases in inhibition, depression microcircuits 

increased periodic theta power and decreased theta-phase selectivity. Thus, healthy and 

depression microcircuits had overall similar oscillatory dynamics, but spiking in the depression 

microcircuit was somewhat less specific, which is in agreement with leading hypothesis of 

increased baseline noise in spiking due to reduced inhibition[25]. As previous studies have 

shown that theta waves modulate network excitability[81], the increased theta activity in 

depression microcircuits may have further functional consequences via altering cortical 

dynamics and processing. In summary, our results show that altered cell-specific inhibition in 

microscale brain circuits in depression is reflected in key features of the EEG spectral density, 

which can be used to better stratify depression subtype and severity. 

Our biophysical models of human cortical microcircuits reproduce the two most 

ubiquitous features of human resting state EEG: a prominent low-frequency (4 – 12 Hz) peak 

power and 1/f aperiodic trend[82,83]. In experimental EEG recordings, this low-frequency peak 
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is accentuated when subjects are relaxed with their eyes closed and has the highest test-retest 

reliability of all spectral features[84]. While recurrent rhythmic activity generated within cortico-

thalamic loops is believed to contribute strongly to scalp-measured EEG alpha, cortico-cortical 

interactions have also been shown to generate alpha activity in top-down processing[85]. Further, 

it has been shown that cortical Pyr neurons significantly contribute to and sustain theta and 

alpha-phasic firing due to intrinsic properties and recurrent activity[85–87]. The key features of 

human EEG reproduced by our microcircuit models were not explicitly constrained for, but 

rather emerged from the interaction of human neuronal electrical properties, synaptic 

connectivity, and baseline firing rates. This provides a validation of the models and indicates that 

they contain circuit motifs responsible for generating realistic microcircuit activity, and it can 

therefore be viewed as a useful canonical cortical microcircuit model irrespective of layer 

considerations, in line with previous studies[48]. It will be of interest in future studies to use the 

models for further elucidating the cellular mechanisms of oscillatory generation, especially in 

brain states other than rest and during cortical processing, which involve other frequency bands. 

As our models capture the key spectral EEG features seen in vivo, the simulated EEG signal 

magnitude can also be related to that of the recorded EEG by scaling to account for the 

difference between the number of neurons in our models compared to the millions of neurons 

that generate the recorded EEG at a given electrode[36,44].  

 Linking altered mechanisms at the microcircuit scale to EEG biomarkers is currently 

impossible to establish experimentally in humans, thereby meriting the use of data-driven 

detailed computational studies. We simulated human EEG using available detailed models of 

human cortical L2/3 microcircuits to serve as canonical cortical microcircuit models. These 

layers are closest to the electrode and thus are important contributors to the EEG signal, along 

with L5/6[26]. Previous computational studies have shown that interactions between superficial 

and deep layers are important contributors to electrophysiological signals in other contexts such 

as event-related potentials[43]. As new human cellular data becomes available, future models 

that also include deeper layers (4 – 6) could further refine the signatures of reduced SST 

interneuron inhibition in simulated resting-state EEG signals, by including the dendrites of deep 

pyramidal neurons and the oscillatory dynamics mediated by interactions between deep and 

superficial layers[44,88]. Through coupling the biophysical simulations with a forward solution 

using a realistic head model we showed that EEG signals would be fairly localized to the source 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


and neighboring electrodes. This computational approach can serve to further study source 

localization in interpreting EEG recordings, improve inverse solutions[89], give greater 

physiological interpretability to statistical decomposition techniques such as independent 

component analysis[90] and s/eLORETA[91]. While we modeled and studied a single cortical 

region at the microcircuit scale, future studies could simulate several distinct microcircuits to 

examine how altered circuit mechanisms affect multi-regional interactions in depression[25]. 

 Using detailed multi-scale models of human cortical microcircuits, we were able to 

characterize the EEG and spike correlates of reduced SST interneuron inhibition in depression. 

Previous modeling studies have shown that reduced SST interneuron inhibition in depression 

impairs stimulus processing due to increased baseline activity and noise[32]. Our models can 

serve to identify corresponding biomarkers in task EEG. The computational models we have 

developed also provide a powerful tool to identify the EEG biomarkers of novel therapeutic 

compounds and treatments for depression[19,92] via in silico simulations to improve treatment 

monitoring. Finally, our models and methodology may further serve to identify EEG biomarkers 

of altered cellular and circuit mechanisms in other neurological diseases, such as epilepsy and 

schizophrenia.  

 

 

Methods 

 

Human cortical microcircuit models. We used our previous models of human cortical L2/3 

microcircuits[32], consisting of 1000 neurons distributed in a 500x500x950μm3 volume (250 to 

1200μm below pia[93]). The model microcircuits included the four key neuron types in cortical 

L2/3: Pyramidal (Pyr), Somatostatin-expressing (SST), Parvalbumin-expressing (PV), and 

Vasoactive Intestinal Peptide-expressing (VIP) neurons. The proportions of the neuron types 

were: 80% Pyr, 5% SST, 7% PV, and 8% VIP in accordance with relative L2/3 neuron 

densities[94,95] and RNA-seq data[96,97]. The models were simulated using NEURON[98] and 

LFPy[47]. 

 

Resting-state activity simulations. We simulated eyes-closed resting-state by injecting the 

microcircuit models with background excitatory input representing cortical and thalamic drive, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2021.07.18.452836doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452836
http://creativecommons.org/licenses/by-nc-nd/4.0/


as used previously[32]. The background input was generated by random Orstein-Uhlenbeck 

(OU) point processes[99] placed on all neurons at the halfway point of each dendritic arbor, and 

5 additional OU processes placed along the apical trunk of Pyr neurons in equal intervals, from 

10% to 90% apical dendritic length. This enabled the circuit to generate recurrent activity with 

neuronal firing rates as measured in vivo[31,32,100,101]. For both healthy and depression 

microcircuit models (see below) we simulated 60 randomized microcircuits, for 28 seconds each. 

 

Microcircuit models with reduced SST interneuron inhibition (depression microcircuits). 

We used previous models of depression microcircuits[32], with 40% reduced synaptic and tonic 

inhibition from SST interneurons onto all other neurons, in accordance with gene expression 

studies in SST interneurons in post-mortem brains from depression patients[16]. For Pyr 

neurons, we decreased apical tonic inhibition by 40%. For each interneuron, we decreased the 

relative SST contribution to tonic inhibition by 40%. To compare reduced SST from reduced PV 

interneuron inhibition, we then decreased synaptic and tonic inhibition from SST interneurons by 

20%, 30%, 40%, 50%, 60%.  

 

Microcircuits with reduced PV interneuron inhibition. Reduced PV interneuron inhibition 

was modeled by iteratively reducing synaptic and tonic inhibition from PV interneurons onto all 

neurons by 20%, 30%, 40%, 50% and 60%.   

 

Simulated microcircuit EEG. We simulated layer-averaged dipole moments together with 

neuronal activity using LFPy. Corresponding EEG time series was generated using a four-sphere 

volume conductor model that assumes homogeneous, isotropic, and linear (frequency 

independent) conductivity. The radii of the four spheres representing grey matter, cerebrospinal 

fluid, skull, and scalp were 79 𝑚𝑚, 80 𝑚𝑚, 85 𝑚𝑚, and 90 𝑚𝑚, respectively. The conductivity 

for each sphere was 0.047 S/m, 1.71 S/m, 0.02 S/m, and 0.41 S/m, respectively[102]. A fixed 

dipole origin was placed at the midpoint of L2/3 (-725 𝜇𝑚), and the EEG signal was obtained via 

forward solution for an EEG electrode placed on the scalp surface. EEG time series were 

lowpass filtered at 130 Hz. EEG power spectral density (PSD) and spectrograms were calculated 

using Welch’s method[103], with a 3s second Hanning window for PSD, and 0.5s Hanning 

window for spectrograms. Both analyses used 80% window overlap.  
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EEG periodic and aperiodic components. We decomposed EEG PSDs into periodic and 

aperiodic (broadband) components using tools from the FOOOF library[68]. The aperiodic 

component of the PSD was a 1/f function, defined by a vertical offset and exponent parameter. 

Periodic components representing putative oscillations were derived using up to 4 Gaussians, 

defined by center frequency (mean), bandwidth (variance), and power (height). 

 

Population spiking phase preference. We calculated the instantaneous phase of EEG using 

tools from the SciPy[104] and NumPy[105] Python libraries. The EEG time series was bandpass 

filtered from 4 – 12 Hz, with 2 Hz padding on either end to avoid edge effects. A second order 

Butterworth filter was used to acquire filter coefficients, which were then passed to a linear 

digital filter applied forward and backwards to eliminate phase lag. The angle of the bandpass-

filtered Hilbert transform was calculated and shifted by 180° to obtain the instantaneous phase of 

the signal with trough and peak corresponding to 0° and 180°, respectively. For each of the four 

neuron populations (Pyr, SST, PV, VIP), spike times were aggregated into a population spike 

vector and converted to corresponding phase of EEG. Spike phases were binned into 5° bins and 

the counts were summated over all circuits in each condition. To compare spike preference 

between conditions, bin counts were normalized by the maximal count. 

 

Realistic head source modelling. The x-y-z components of microcircuit dipole moments 

generated from LFPy were imported into MNE[106] and downsampled to a 400 Hz sampling 

rate. The dipole was placed within L2/3 of the left dorsolateral PFC (MNI 30, -36, -42)[107], 

which has been implicated in depression[108]. We solved the forward solution using a three-

layer boundary element model, as implemented in LFPy, corresponding to the inner skull, outer 

skull, and scalp with conductivities of 0.3 S/m, 0.006 S/m and 0.3 S/m, respectively. The 

resulting potential was calculated for a standard 60-channel simulated EEG electrode array.  

 

Statistical tests. We used two-sample t-test to determine statistical significance where 

appropriate. We calculated Cohen’s d to show effect size. We used Raileigh’s test of non-

uniformity to determine if populations had a non-uniform phase preference, and kurtosis to 

quantify variance around the preferred mean angle.   
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Data availability statement. All models and code will be available online upon publication.  
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