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Abstract 20 
 21 
Single nucleotide polymorphisms (SNPs) from omics data carry a high risk of reidentification for 22 
individuals and their relatives. While the ability of thousands of SNPs (especially rare ones) to 23 
identify individuals has been repeatedly demonstrated, the ready availability of small sets of 24 
noisy genotypes – such as from environmental DNA samples or functional genomics data – 25 
motivated us to quantify their informativeness. Here, we present a computational tool suite, 26 
PLIGHT (“Privacy Leakage by Inference across Genotypic HMM Trajectories”), that employs 27 
population-genetics-based Hidden Markov Models of recombination and mutation to find 28 
piecewise alignment of small, noisy query SNP sets to a reference haplotype database. We 29 
explore cases where query individuals are either known to be in a database, or not, and consider 30 
a variety of queries, including simulated genotype “mosaics” (composites from 2 source 31 
individuals) and genotypes from swabs of coffee cups from a known individual. Using PLIGHT on 32 
a database with ~5,000 haplotypes, we find for common, noise-free SNPs that only ten are 33 
sufficient to identify individuals, ~20 can identify both components in two-individual simulated 34 
mosaics, and 20-30 can identify first-order relatives (parents, children, and siblings). Using noisy 35 
coffee-cup-derived SNPs, PLIGHT identifies an individual (within the database) using ~30 SNPs. 36 
Moreover, even when the individual is not in the database, local genotype matches allow for 37 
some phenotypic information leakage based on coarse-grained GWAS SNP imputation and 38 
polygenic risk scores. Overall, PLIGHT maximizes the identifying information content of sparse 39 
SNP sets through exact or partial matches to databases. Finally, by quantifying such privacy 40 
attacks, PLIGHT helps determine the value of selectively sanitizing released SNPs without explicit 41 
assumptions about underlying population membership or allele frequencies. To make this 42 
practical, we provide a sanitization tool to remove the most identifying SNPs from a query set. 43 
 44 
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 46 

Introduction 47 
Privacy concerns in the digital age are ubiquitous, with individual data collection, access, and the 48 
sophistication of tools of attack constantly increasing to render individuals vulnerable to a 49 
significant risk of compromising data exposure. Incursions upon individual privacy include the 50 
removal of personal control over the uses of such data, and the possibility of being subjected to 51 
discrimination on the basis of revealed information. Perhaps the most invasive forms of such 52 
attacks involve gaining access to information on the physical and mental constitution of an 53 
individual without their knowledge or consent. Such breaches are becoming increasingly likely in 54 
an era marked by massive health-based data collection and digitization efforts, whose ultimate 55 
goals include the provision of personalized medical interventions. Genetic data lie at the heart of 56 
these tailored medical approaches, as many phenotypes are believed to have an ultimate basis 57 
in our genetic makeup, and as such, are being collected as a part of large-scale projects such as 58 
the UK Biobank (www.ukbiobank.ac.uk) and the NIH’s AllofUs (allofus.nih.gov) program.  59 

Based on essential work by Homer et al (Homer et al. 2008), genetic data in general, and 60 
single nucleotide polymorphisms (SNPs) in particular, were shown to enable the identification of 61 
individuals in DNA mixtures. Additional work reaffirmed the ability of SNPs to reveal whether an 62 
individual belonged to a study cohort or DNA mixture (Visscher and Hill 2009). Gymrek et al 63 
(Gymrek et al. 2013) exploited the possibility of linking the genomes of individuals to surname 64 
data from genealogy websites, thereby clearly demonstrating the risk of exposure from the public 65 
release of genotype data. Nowadays, law enforcement agencies frequently employ SNP data in 66 
the identification of individuals, and their genetic relatives. While it has been suggested 20-30 67 
independent SNPs are enough to re-identify individuals (Lin et al. 2004), this quantification needs 68 
to be updated based on available databases of human genomes and auxiliary biological data.  69 

The increasing availability of cheap sources of SNP extraction are a cause for concern. 70 
SNPs can be extracted from genotyping and omics assays, say, as a part of genetic studies of 71 
disease vulnerability; forensics analyses of found objects; and can be inferred from established 72 
genotype-phenotype relationships. Functional genomics assays in particular allow both direct 73 
sequence-based extraction of variants (Gürsoy et al. 2020), as well as indirect inference based on 74 
gene expression values and associated loci (Harmanci and Gerstein 2016), and the ubiquity of 75 
large-scale omics projects make this source of variants especially concerning (Gürsoy et al. 2020). 76 
Several studies have demonstrated the risk of identification even in the case of partial privacy 77 
preservation measures such as SNP beacons (Shringarpure and Bustamante 2015; Raisaro et al. 78 
2017; Von Thenen et al. 2019), and the publication of only GWAS summary statistics (Im et al. 79 
2012). For some time, there has been a strong case for the restriction of access to genotypic data 80 
and comprehensive privacy preservation, say, through encryption-based analysis (Erlich and 81 
Narayanan 2014); however, in the case of genotypes that can be inferred from functional 82 
genomics data or environmental samples, the field is now directing attention towards the notions 83 
of data sanitization (Gürsoy et al. 2020). 84 
 All arguments in favor of protectionism are frequently confronted by the scientific 85 
community’s desire for unrestricted access to datasets: undoubtedly, increased public access to 86 
data would democratize information, and enable biological analyses of greater statistical power 87 
in proportion to the size and quality of the available data. Striking a balance between the two 88 
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requires a clear quantification of the risks of re-identification and inference, relative to the 89 
proposed benefit of releasing the data. In response to this challenge, we provide a computational 90 
tool that assesses the degree to which a set of released SNPs could lead to genotypic and 91 
phenotypic inferences, using a Hidden Markov Model (HMM) approach (Figure 1). The tool is 92 
termed “Privacy Leakage by Inference across Genotypic HMM Trajectories” or PLIGHT. 93 

The premise of the tool is that even limited, noisy and sparsely distributed genotypic 94 
information carries with it a certain risk of identification and downstream inference. Concerns 95 
about noisy and sparse SNPs, in particular, are legitimate due to the ease with which they can be 96 
obtained. If a set of noisy SNPs could be assessed indirectly through inference, or through direct 97 
access to genetic material acquired from objects in contact with an individual (Gürsoy et al. 2020), 98 
we show that it is often possible to expand upon this partial information using existing genetic 99 
databases. For example, consider the case where a single DNA fragment can be separated from 100 
contaminated genetic material, thus reliably ensuring a single source individual. With the advent 101 
of long-read technologies such as nanopore (Jain et al. 2016)  and SMRT (Eid et al. 2009) 102 
sequencing, we can now read that fragment to a length of hundreds or thousands of base pairs. 103 
The data is somewhat error-prone due to the dearth of material, but still could yield a few noisy 104 
SNPs along the length of the fragment. Additionally, certain physical characteristics, and 105 
knowledge of Mendelian disorders in individuals, potentially leak information on mutations at 106 
particular loci (Posey et al. 2019). The assessment of identification risk for limited SNP data is 107 
especially important in light of the availability of large-scale public genotypic databases of 108 
individuals stratified based on geographical and putative ethnic groupings, as well as SNP sets 109 
associated with (potentially socially compromising) disease risk.  110 
 Inspired by imputation methods such as IMPUTE2 (Howie et al. 2009) and Eagle (Loh et 111 
al. 2016), the inference procedure in PLIGHT is based on the Li-Stephens model (Li and Stephens 112 
2003), where an HMM is used to explore the space of underlying pairs of haplotypes in a diploid 113 
genome with the possibility of de novo mutations and recombination between haplotypes. In 114 
contrast to imputation, however, PLIGHT does not identify the most likely SNPs at each genomic 115 
locus (which would be an underconstrained problem for very sparse SNP sets). Rather, a solution 116 
to the inference problem consists of finding which segments of existing haplotypes in a database 117 
best match the query SNP set. These segments are pieced together to form a continuous path, 118 
or genotypic trajectory, through the reference haplotype space matching the full query SNP set. 119 
Thus, while phasing and imputation already have highly efficient solutions to find the single most 120 
likely genotype at an unobserved locus based on sufficiently dense nearby SNPs, our method is 121 
optimized to find all equally likely trajectories pieced together from reference haplotypes.  122 

Several studies in the field of genetic privacy have considered kth-order correlations 123 
between SNPs (k=2 corresponds to pairwise linkage disequilibrium (LD)) to maximize the 124 
probability of reidentifying individuals (Von Thenen et al. 2019). PLIGHT seeks to capture all these 125 
higher order correlations, using the pre-existing correlation structure (of any order) of the 126 
reference genetic database with a biologically plausible model of recombination (the default 127 
value being based on HapMap Consortium data (Li and Stephens 2003; Marchini and Howie 2010; 128 
International HapMap Consortium 2003), though users can add their own custom, position-129 
specific recombination rates. PLIGHT is agnostic to any assumptions of membership of the query 130 
individual to a specific subpopulation, population homogeneity or to estimates of allele 131 
frequencies; rather, it is dependent on the composition of the whole reference database. 132 
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Additionally, we leverage this inference procedure to make a more informed choice of which 133 
SNPs to sanitize, in the case of inferred genotypes from data whose primary purpose is not the 134 
identification of variants (e.g. RNA-seq or ChIP-seq data). We include the sanitization tool in the 135 
PLIGHT suite. 136 
 The employment of HMMs in the modelling of LD in genomes has substantial precedent, 137 
such as in the inference of local ancestry (Pasaniuc et al. 2009; Price et al. 2009; Baran et al. 2012) 138 
and the determination of regions that are Identical by Descent (IBD) (Bercovici et al. 2010). For 139 
example, Baran et al (Baran et al. 2012) use a latent-state-space reduction by running a two-level 140 
HMM: an inner model for each ancestral population within a genomic window of a certain length 141 
and a higher-level model for exchanges between the windows. We choose a more 142 
straightforward implementation of HMMs, to avoid any consequent assumptions either of the 143 
density of query SNPs (defining a genomic windows precludes recombination between SNPs in 144 
that window) or of ancestral membership. There is, however, a consequent price paid in terms 145 
of an increase in running time and memory usage. We partially ameliorate these costs using 146 
sampling and pooling approaches described below. We also note that the Positional Burrows-147 
Wheeler Transform (PBWT) (Durbin 2014) has been used in tandem with the Li-Stephens model 148 
to improve the efficiency of haplotype matches across large databases (fastLS (Lunter 2019)). The 149 
scaling of this method with database size is far superior to the straightforward HMM 150 
implementation. However, for now, fastLS does not allow position-specific variations in the 151 
recombination rate. For sparsely distributed SNPs, there will be large variability in the 152 
recombination rates between any pair of adjacent observation sites. PLIGHT allows for variation 153 
of the recombination model, and even include position-dependent recombination effects. 154 
Further, in contrast to the PBWT formalism, PLIGHT also enables the user to include trajectories 155 
that are less-than-optimal, for robustness checks or exploration of noisy data.  156 
 In summary, the primary aims of this study are: (1) To demonstrate that even a few SNPs 157 
leak considerable information about source individuals, not just by increasing the capacity to find 158 
them or genetic relatives in databases, but also by allowing matches of subsegments of their 159 
genotypes to reference databases; (2) To provide tools to quantify these varying degrees of 160 
information leakage and to subsequently sanitize query SNPs in a manner that balances utility of 161 
datasets and privacy of the source individuals. 162 
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 163 
Figure 1. Methodology of the HMM-based and inference analyses in PLIGHT. (A) Schematic of the 164 
Li-Stephens HMM model for haplotypic recombination and mutation. (B) Inference of best-fit 165 
haplotype pairs in different genomic regions based on a chosen database of reference 166 
haplotypes, and the subsequent construction of the diploid mosaic genome. (C) An example of 167 
how the haplotype inference procedure described here could be used for novel attacks. By 168 
calculating polygenic risk scores (PRSs) for particular traits across all identified mosaic genome 169 
segments, we can assess whether there is a statistically significant clustering of the PRSs relative 170 
to background values. If this is found to be the case, the individual is more likely to be linked to 171 
such a trait. (D) Exploration of the types of phenotypic inference attacks possible, conditional on 172 
whether the individual is known to be in the database of reference haplotypes or not. 173 
 174 

Results 175 
Repurposing population-genetics models for privacy 176 

The primary purpose of PLIGHT is to serve as a tool to quantify SNP information content, 177 
and leverage that information to make judicious choices on SNP masking (sanitization) from 178 
datasets. The expectation is that an attacker would acquire a set of unphased alternate allele 179 
dosages {0,1,2} at particular SNP loci. Inference by means of a reference genetic database 180 
requires that the SNP position overlap, at least partially, those that have been genotyped in the 181 
database. Each identified SNP may have a unique probability associated with the alternate 182 
allele dosage (reflecting certainty) or an overall error rate may be assigned. The Li-Stephens 183 
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HMM Model (Figure 1A) then maps the recombination and mutation processes onto the 184 
transition and emission probabilities, respectively. In this way, the process of aligning a set of 185 
query genotypes can be seen as simultaneously phasing the genotype into the paternal and 186 
maternal haplotypes at a single query locus, and allowing for transitions to other haplotypes 187 
between adjacent query loci. In doing so, segments of the query SNPs are found to match to 188 
pairs of haplotypes which may transition to other pairs for the next segment (Figure 1B). 189 

Formally, we find the trajectories as sequences of reference haplotype pairs (for a 190 
diploid genome) at each locus that best fit the observations: that is, for observed query SNPs at 191 
genomic loci 𝑙 = 	 {1,2,⋯ , 𝐿}, the trajectory 𝒯 =	 {𝑗(𝑙), 𝑘(𝑙)}!"#$ , where 𝑗 and 𝑘 are the labels of 192 
best-fit reference haplotypes as a function of the observed genomic position (Supplemental Fig 193 
S1). We label a single best-fit trajectory as a diploid mosaic genome if the pairs of matching 194 
reference haplotypes change across the observed loci. The collection of all equally likely 195 
trajectories for a given query SNP set is the primary output of the algorithms. 196 

Having access to all equally likely trajectories may enable novel forms of attack (Figure 197 
1C), which we explore in subsequent sections. PLIGHT also provides a visualization of all 198 
trajectories across the observed loci, and the logarithms of the joint probabilities of observing 199 
the query SNPs for: (a) the HMM model, (b) the case where all SNPs are independent and 200 
satisfy Hardy-Weinberg equilibrium (described by their MAFs) and (c) the case where all SNPs 201 
are independent, but are described by their genotype frequencies (and not their MAFs). The log 202 
probability of the most likely trajectories are also presented. Data publishers then have the 203 
option of removing (“sanitizing”) the most informative SNP from the observed sample, based 204 
on identifying segments with the smallest diversity of inferred trajectories (i.e. segments with 205 
the fewest trajectories passing through them) and the SNP allele frequencies.  206 
 A major consideration behind the design of our methods was contending with the scale 207 
of reference genotype databases: with the search space for matches to query genotypes 208 
ranging from thousands to (eventually) tens or hundreds of thousands of genotypes, HMMs 209 
quickly become computationally intractable in terms of the required memory and speed. Our 210 
approach to the problem was to construct three algorithms that negotiate the tradeoff 211 
between exactness of the calculation and the burden on memory resources:  212 

1. PLIGHT_Exact performs the exact HMM inference process using the Viterbi algorithm 213 
(Viterbi 1967). 214 

2. PLIGHT_Truncated was inspired by the state-space reduction methods in the Eagle2 215 
imputation program (Loh et al. 2016), and phases in a process of truncating the set of all 216 
calculated trajectories to only those within a certain probability distance from the 217 
maximally optimal ones, resulting in a smaller memory footprint. 218 

3. PLIGHT_Iterative iteratively partitions the reference search space into more manageable 219 
blocks of haplotypes and runs PLIGHT_Exact on each block, followed by pooling and 220 
repetition of the scheme on the resulting, smaller cohort of haplotypes. This algorithm 221 
has significantly better scaling properties than the others, with respect to the size of the 222 
reference database. 223 

Thus, PLIGHT_Truncated and PLIGHT_Iterative are approximations to the full state space 224 
exploration designed to reduce hard disk memory usage, and both hard disk and RAM usage, 225 
respectively. However, for most purposes PLIGHT_Truncated is superseded by PLIGHT_Iterative 226 
in performance. PLIGHT_Truncated mainly serves to determine the “compressibility” of the 227 
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trajectories, i.e. the size of the trajectory subspace that is sufficient to match the results of the 228 
exact algorithm.  229 

Subsequently, the results of all algorithms are visualized using a visualization module called 230 
PLIGHT_Vis, and processed using downstream inference modules. If the user then decides to 231 
remove a SNP on the basis of these results, they can employ PLIGHT_SanitizeGenotypes to do 232 
so: a SNP is eliminated from the query set, which is then rerun through one of the three HMM 233 
algorithms to produce the sanitized results. The overall computational framework is depicted in 234 
Figure 2. 235 
 236 

 237 
Figure 2. Computational framework of PLIGHT. The inputs of a reference database and of the 238 
query SNPs are shown at the top. Next, the population-genetics model by Li and Stephens 239 
forms the core of the HMM-based framework. This includes the definition of a diploid state 240 
space, a Poisson-process based recombination model with rate of growth proportional to the 241 
genomic distance between two loci, and a mutation/error rate at each locus. This model is 242 
implemented within PLIGHT, which identifies the best-fit reference haplotype labels in the 243 
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diploid state space. Special features include the identification of all equally likely trajectories, 244 
flexibility in the recombination models used, and an allowance for sub-optimal trajectories to 245 
be identified. Furthermore, PLIGHT includes visualization and SNP sanitization modules. We 246 
show how the framework also allows for the construction of mosaic genomes and analyses 247 
involving the pooling of information across all identified mosaic trajectories.  248 
 249 
Attack Scenarios 250 
In this section, we lay out a few examples of the real-world scenarios in which we reasonably 251 
expect to observe a small number of noisy SNPs, the types of attacks that may be carried out 252 
using those SNPs (Figure 1D), and the applicability of PLIGHT to those attack scenarios. 253 
 254 
Sources of small numbers of SNPs 255 
1. Low quality and /or contaminated samples: DNA samples acquired from contacted objects 256 

(such as coffee cups) can in general yield thousands of SNPs (see for example, (Gürsoy et al. 257 
2020)). However, if DNA samples become damaged or contaminated by the presence of 258 
other DNA sources, the yield of high-confidence SNP calls may be significantly reduced 259 
(Tillmar et al. 2018; Turchi et al. 2019; de Vries et al. 2022). It is important to explore the 260 
lower bounds of SNP numbers that would suffice for certain types of privacy attacks, given 261 
the ease and legality of surreptitiously extracting variants from environmental DNA 262 
samples.  263 

2. Nanopore reads: In cases of samples containing DNA from multiple individuals, nanopore 264 
sequencing technologies could be employed to read individual DNA strands. A single read 265 
from nanopore sequencing would reliably belong to a single individual (thus removing the 266 
effects of contamination), and may yield a handful of noisy SNPs. 267 

3. Inferred SNPs: Although more speculative, we consider the possibility of sourcing SNPs from 268 
knowledge of individual characteristics. If even a small number of SNPs can be guessed, say 269 
on the basis of known Mendelian disorders in an individual or their genetic relatives, it 270 
might be possible to piece together sufficient genetic information to find such individuals 271 
(or relatives) in sensitive phenotypic study databases. Inference of SNPs has also been 272 
demonstrated for derived genomic data, such as expression quantitative trait loci (eQTLs) 273 
(Harmanci and Gerstein 2016)  and allele-specific expression (Gürsoy et al. 2021). Again, the 274 
number of inferred SNPs may be considerable, but with varying degrees of confidence. The 275 
highest quality matches would form a smaller subset. Finally, a small number of germline 276 
SNPs may be leaked in somatic variant call-sets (Sendorek et al. 2018; Meyerson et al. 277 
2020), though evidence is ambiguous as to the number of true germline variants. 278 

Types of privacy attacks considered 279 
1. Membership inference attack: The identification of an individual as a member of a database 280 

or cohort could allow the linking of that individual to potentially stigmatizing phenotypes. 281 
Moreover, we specifically consider two forms of membership inference: 282 

a. Full membership: This is the case when an individual is found to be part of a 283 
database. 284 

b. Partial membership: This is the case when partial segments of the query individual’s 285 
genome are found in a database. This could occur due to Identity-by-Descent (IBD) 286 
or Identity-by-State (IBS). Partial membership allows certain regions of the genome 287 
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to be related to a phenotypic cohort; e.g. the query individual may overlap in certain 288 
genomic regions exclusively with individuals in the phenotype-positive group (i.e. 289 
with cases and not controls).  290 

2. Relational (or Kinship) inference attack: This type of attack technically overlaps with the 291 
partial membership attack mentioned above, but warrants its own discussion. Partial 292 
matches in certain genomic regions could allow the genetic relatives of a query individual to 293 
be found in phenotypic databases, thus exposing them to an attack on their privacy. 294 

3. Trait association inference attack: This type of attack involves using the partial information 295 
from regional matches to the genome to make inferences about the individual. Consider the 296 
following hypothetical example. An individual is in contact with an object. The attacker 297 
collects DNA from the object, identifies the subset of high-quality SNPs, and proceeds to 298 
infer aspects of the individual — such as which genetic subpopulation the individual belongs 299 
to, or whether the individual has GWAS SNPs or a polygenic risk score (PRS) that is high for a 300 
particular phenotype.  301 

 302 
Deploying PLIGHT to address attacks 303 
We use unphased SNPs with a user-defined level of confidence/error rate as inputs to PLIGHT 304 
tools. We demonstrate full membership attacks (a) in the presence of genotyping error and (b) 305 
when SNPs from other individuals contaminate a primary source. The full membership attack is 306 
the simplest form of HMM inference, because we restrict the recombination rate to be 0 (and 307 
so the transition probabilities are 0). This simple HMM model is still different from the 308 
assumption of independent SNPs because potential correlations exist between query SNPs 309 
across the genetic database.  310 
 We also search for relatives of query individuals, by combining partial matches to the 311 
genomes across chromosomes. Finally, we explore a version of the trait association attack 312 
where we use the matched segments (for individuals not in the database) to partially impute 313 
SNP dosages at GWAS SNP sites and calculate coarse-grained polygenic risk scores (PRSs; Figure 314 
1C). In this way, we chart out a comprehensive exploration of how to quantify risks, and end 315 
with a mechanism to carefully sanitize datasets. 316 
  317 
Datasets and shared parameters 318 

In some of the following sections, we test our tools using a series of simulations. The 319 
primary reference database employed is the 1000 Genomes Phase 3 database(Auton et al. 2015) 320 
(based on the human genome reference build GRCh37, fasta file human_g1k_v37.fasta 321 
(ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference), with 2,504 phased genotypes in total 322 
from 26 different sampled populations. The methods rely on the availability of phased reference 323 
genotypes, and currently work by reading through the chromosome-separated vcf files. We 324 
emphasize that, while we used the Phase 3 database based on the GRCh37 genome, the same 325 
method would carry over to GRCh38 or any other genome build. The only requirement is that the 326 
SNP positions in the query match up with those in the reference database, and the matching 327 
process proceeds in exactly the same manner. For all analyses, we filter out the low allele 328 
frequency SNPs, with minor allele frequency (MAF) restricted as: 0.05 ≤ 𝑀𝐴𝐹 ≤ 0.5. The lower 329 
cutoff is a user-defined parameter in our program with a default value of 0.05. We choose such 330 
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a cutoff with the intention of quantifying the leakage associated with even relatively common 331 
SNPs, as the identifying information contained in low MAF SNPs will be significant.  332 
 333 
Identification of individuals known to be within a database 334 

We start with the simplest scenario, where an individual is known to be within a database. 335 
We tested out examples with different numbers of SNPs and varying values of the mutation 336 
rate/genotyping error (here we report the value of 𝜆 in the results, to simulate the effect of a 337 
particular genotyping error rate; see the Methods section for details on different mutation rate 338 
quantifications). For each of 5 mutation/error rates, we ran 10 iterations of the following 339 
simulation process. A single individual is selected at random from the full 1000 Genomes Phase 340 
3 cohort of 2,504 individuals, and the genotype is simulated as described in the Methods. Given 341 
the set of 2,504 individuals, the chosen individual is likely to be different for each of the 10 342 
iterations (even though sampling was done with replacement). 343 

The variant selection procedure is repeated until we have 𝑁%&' ∈ [1,⋯ ,40] for a 344 
particular simulation. To assess the HMM model, we consider for now only one chromosome 345 
(chromosome 17 was chosen at random for this analysis). 346 

Therefore, for each error rate and iteration, we choose a single individual and simulate all 347 
40 possibilities of 𝑁%&' ∈ [1,⋯ ,40] for that individual. The SNP selection is repeated from 348 
scratch for each of the 40 cases, so the SNP cohorts are not necessarily the same for the different 349 
values of 𝑁%&'. Also, note that it is possible to run the simulations with SNPs that are homozygous 350 
for the reference allele. This would yield the same trajectory prioritization in the HMM model. 351 
However, we attempt here to simulate cases where the focus is on identified alternate alleles, 352 
reported from either SNP beacons or noisy functional genomics data.  353 

Finally, we find the mean and standard deviation across the 10 iterations of the minimum 354 
value of 𝑁%&' for which a unique identification of the individual was made. However, in the 355 
presence of a mutation rate, it is possible for these unique identifications to be different from 356 
the ground truth samples. Therefore, we also provide the mean and standard deviation of the 357 
minimum value of 𝑁%&' for which a correct and unique identification is made. For reference, we 358 
also provide the mean and standard deviation of the pooled list of MAFs across all 10 iterations 359 
for each mutation rate value. We present these results in Table 1. 360 
 361 
Table 1. Results of the “individual known to be in the database” analysis, as a function of the 362 
scaled mutation rate 𝜆, using 𝑁%&' ∈ [1,⋯ ,40] and 10 iterations (10 individuals chosen 363 
randomly with replacement) at each mutation rate. The columns shown are: the minimum 364 
number of SNPs required to obtain a unique identification of an individual, the minimum number 365 
of SNPs required for that identification to match the true identity of the sample, and the pooled 366 
minor allele frequency of all sampled SNPs across the 10 iterations at each mutation rate.  367 

Mutation/Error 
Rate 𝝀 = 	 𝜽

𝟐(𝑵,	𝜽)
  

Minimum number of 
SNPs for unique ID, 
𝑁%&'
/01234: Mean ± S.D. 

(10 iterations) 

Minimum number of 
SNPs for correct ID, 
𝑁%&'5677489: Mean ± 
S.D. (10 iterations) 

Pooled MAF 
distribution across all 
10 iterations: Mean ± 
S.D. 

0.0 6.7 ± 0.9 6.7 ± 0.9 0.25 ± 0.13 
0.05 6.1 ± 2.0 9.9 ± 2.5 0.27 ± 0.13 
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0.1 7.5 ± 2.0 9.9 ± 2.3 0.25 ± 0.13 
0.2 6.1 ± 2.2 21.6 ± 7.9 0.22 ± 0.12 
0.3 6.2 ± 1.9 12.1 ± 15.5 0.22 ± 0.13 

 368 
 The results of the simulations indicate that, while an identification can be unique for 369 
nearly the same average 𝑁%&'

/01234  across all mutation rates, the ability to find the correct 370 
individual worsens with an increasing mutation rate. The mean value of 𝑁%&'5677489 does not 371 
increase monotonically, but the standard deviation does. It is still noteworthy that unique 372 
identification can be made with a very small number of common SNPs (~6-8), with MAF values 373 
that are distributed fairly evenly across the range  0.05 ≤ 𝑀𝐴𝐹 ≤ 0.5. Even in the presence of 374 
modest mutation rates (≲ 0.1), correct identification requires only about 10 common SNPs on 375 
average.   376 
 At the same time, this result may not be entirely surprising if one considers both the 377 
number of markers used in forensics studies, as well as the information content of a set of SNPs 378 
under Hardy-Weinberg equilibrium. With respect to the former, we note that the CODIS database 379 
expanded the number of core loci used from an original 13 to 20 in 2017(Federal Bureau of 380 
Investigation). Concerning the latter, it can be easily shown that with a set of independent SNPs 381 
under Hardy-Weinberg equilibrium and with MAFs in the same range as our analysis, a similar 382 
number of SNPs as shown here are sufficient to identify an individual in a database of the scale 383 
of 1000Genomes. Our purpose here is to confirm the power of a small set of SNPs, and to show 384 
that PLIGHT can evaluate the identifiability of an individual irrespective of the LD structure and 385 
MAFs of the query SNPs, and even in the presence of moderate amounts of noise. 386 
 387 
Identification of individuals from contaminated samples 388 
To quantify the degree of leakage from samples that may have been in contact with multiple 389 
individuals, we chose to run a simulated experiment as follows. We (a) select five individuals; (b) 390 
draw 40 SNPs from a single chromosome for each of them (reference set of SNPs); (c) designate 391 
one individual as the primary “target” of the attack; (d) with a varying probability (ranging from 392 
0 to 0.7), we randomly replace each SNP of the target individual with a SNP from one of the other 393 
four individuals (chosen with equal probability = 0.25); (e) using this “contaminated” SNP set, 394 
iteratively remove one SNP and run the inference procedure to determine if we can uniquely and 395 
correctly the target individual; (f) record the minimum number of SNPs allowing unique and 396 
correct identification. We run 3 iterations over the choice of individuals and associated reference 397 
SNP set, and 10 iterations where the contaminated set is randomly generated anew from each 398 
such reference set. The inference procedure used here (PLIGHT_InRef) operates under the 399 
assumption that the target individual is in the reference database (thus only the emission 400 
probabilities at each SNP matter, and not the transition probabilities). This experiment serves as 401 
a simulation of the case where a contacted object may have a primary user, but that 402 
contamination from other individuals may have occurred to an unknown degree. The 403 
replacement rate was also used as the error rate (𝜆) in the inference process (this is prior 404 
knowledge, but if unknown, the user would just iterate through several possible error rates in 405 
the inference procedure). 406 
 407 
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The results are shown in Table 2. We identify the number of cases of unique and correct 408 
identification of the target. For the pool of individuals, we considered two possibilities – the full 409 
1000Genomes (1kG) set, and the CDX subpopulation – to explore the impact of the SNP diversity 410 
of the pool. 411 
 412 
Table 2. Results of the contamination analysis, as a function of the replacement rate 𝜆, using 413 
𝑁%&' ∈ [1,⋯ ,40] and 30 iterations (3 iterations over reference SNPs, and 10 random 414 
contamination sets from the same set of reference SNPs). The columns shown are: the number 415 
of unique and correct identifications of the target individual (out of a total of 30 iterations), and 416 
the minimum number of SNPs  for each successful run. These two columns are shown for both 417 
pools of individuals, the full 1kG set and the CDX set. 418 

Replaceme
nt Rate 𝝀 

1kG: 
Numbe
r of 
unique 
and 
correct 
IDs / 
total 
numbe
r of 
runs 

1kG: 
Average 
Minimu
m 
number 
of SNPs 
for 
correct 
ID across 
the 
successf
ul 
iteration
s 

1kG: 
Average 
𝒍𝒐𝒈(𝑷𝑯𝑴𝑴)>𝒍𝒐𝒈(𝑷𝑮𝑭)

𝑵𝑺𝑵𝑷𝒔
 

CDX: 
Numbe
r of 
unique 
and 
correct 
IDs / 
total 
numbe
r of 
runs 

CDX: 
Average 
Minimu
m 
number 
of SNPs 
for 
correct 
ID across 
the 
successf
ul 
iteration
s 

CDX: 
Average 
𝒍𝒐𝒈(𝑷𝑯𝑴𝑴)>𝒍𝒐𝒈(𝑷𝑮𝑭)

𝑵𝑺𝑵𝑷𝒔
 

0.0 30 / 30 7.0 ± 1.3 0.36 ± 0.27 30 / 30 7.3 ± 1.4 0.22 ± 0.20 
0.1 30 / 30 8.2 ± 2.4 0.33 ± 0.20 30 / 30 7.5 ± 2.0 0.29 ± 0.13 
0.2 30 / 30 13.9 ± 

5.8 
0.44 ± 0.14 

30 / 30 
10.8 ± 
5.6 

0.32 ± 0.15 

0.3 20 / 30 16.8 ± 
8.8 

0.46 ± 0.20 
26 / 30 

14.8 ± 
7.4 

0.39 ± 0.13 

0.4 4 / 30 13.8 ± 
6.5 

0.63 ± 0.23 
7 / 30 

11.6 ± 
3.9 

0.41 ± 0.09 

0.5 0 / 30 N/A N/A 0 / 30 N/A N/A 
0.6 6 / 30 26.8 ± 

7.0 
-0.20 ± 0.09 

0 / 30 
N/A N/A 

0.7 22 / 30 23.5 ± 
8.2 

-0.35 ± 0.23 
1 / 30 

36.0 ± 
N/A 

-0.07 ± N/A 

 419 
We first note the expected behavior that, with increasing replacement rates, the average 420 
minimum number of SNPs required for correct identification of the target individual increase. 421 
However, we also find an interesting trend for the 1kG pool, where the number of successful 422 
identifications drops to 0, before increasing again at higher error rates. We do not see a similar 423 
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trend with the CDX population. Given that we explicitly chose the target individual’s SNPs to be 424 
heterozygous or homozygous in the low MAF alternate allele, we surmise the following. Against 425 
a background of the full 1kG set, replacing more SNPs in the target SNP set results in more 426 
homozygous reference alleles being introduced. This may increase the similarity to other 427 
individuals in the 1000Genomes reference database, and thereby result in more failures to detect 428 
the target individual. However, upon further increasing the number of replacements from four 429 
other individuals, as well as the error rate in the inference procedure (see above), we suspect 430 
that the similarity to any other individual in the database drops again, leaving the target 431 
individual as the most likely result. In the case of the CDX individuals, trading SNPs between 432 
relatively similar individuals effectively masks the target individual above a certain replacement 433 
rate. Thus, the result supports the logical notion that it is easier to protect a single individual from 434 
reidentification in the midst of genetically similar individuals. 435 
 We also utilized PLIGHT’s output of different genotype probabilities to demonstrate the 436 
degree to which the SNPs were independent. In this example, we used the per-SNP difference 437 
between the logarithm of the joint probability of the SNPs under the HMM model (𝑙𝑜𝑔(𝑃?@@)), 438 
and the probability under the assumption of independent SNPs. For the latter, we considered the 439 
genotype frequencies (𝑙𝑜𝑔(𝑃AB)) rather than the MAFs under Hardy-Weinberg equilibrium 440 
(though both are output by PLIGHT) as PLIGHT_InRef focuses on matching genotypes and not 441 
haplotypes. We see that the 𝑙𝑜𝑔(𝑃?@@) > 𝑙𝑜𝑔(𝑃AB) on average for low mutation rates, but this 442 
trend reverses at higher mutation rates. At low mutation rates, the non-independence of SNPs 443 
would lead to a higher 𝑙𝑜𝑔(𝑃?@@), while at high mutation rates the emission probabilities 444 
deviate from 1 sufficiently to lower 𝑙𝑜𝑔(𝑃?@@) relative to 𝑙𝑜𝑔(𝑃AB) (see definitions in Methods 445 
section). Interestingly, for a small number of runs, a small negative !6C(')**)>!6C('+,)

&-./0
 was 446 

observed even with 0 replacement rate (Supplemental File S1). This is likely due to round-off 447 
errors. 448 
 449 
Mosaic overlap between query individuals and database individuals 450 
We next evaluated the performance of the program on mosaic individuals, i.e. individuals whose 451 
genome is constructed by sampling the diploid genomes of two or more source individuals, using 452 
simulated analyses (the mutational process is the same as in the previous section). A pair of 453 
individuals is chosen at random from the 1000 Genomes set of individuals. The diploid mosaic 454 
genome is constructed for 𝑁5D7  sampled chromosomes using the simulation scheme described 455 
in the Methods section. 456 
 457 
Exact search within a reference database of 400 haplotypes. For the first example, we use the 458 
PLIGHT_Exact module employing the full Li-Stephens model. Two individuals were selected, and 459 
the first half of the SNP genotypes were taken from one individual and the other half from the 460 
other. The mutation rate was set to 0, while the fixed per base recombination rate 𝑐!  was set at 461 
0.5 cM/Mb and the default linear recombination model was used. The choice of 0.5 cM/Mb was 462 
chosen close to the value of 0.4 cM/Mb, a biologically plausible average rate of recombination 463 
used in previous HMM studies (Li and Stephens 2003; Howie et al. 2009). This value led to 464 
reasonable exploration of the haplotype space, without devolving into a uniform consideration 465 
of all haplotypes as equally probable. To understand this, consider the two extremes: a very low 466 
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value of 𝑐!  will prefer to elongate the same haplotypes for the entire length of the observed SNP 467 
positions without crossing over, i.e. the emission probabilities will dominate in the overall 468 
likelihood; a very high value will lower the barrier to cross-overs, causing the probabilities to be 469 
equal across all choices of haplotypes, i.e. the transition probabilities will dominate in the overall 470 
likelihood.  471 

To limit the dimensionality of the matrices used in the exact case, we only search for 472 
matches among 200 individuals (= 400 haplotypes) from the reference database. We sampled 473 
𝑁%&' = 30 SNPs from each of 𝑁5D7 = 3 chromosomes (chromosomes 1, 2 and 21). The two 474 
sampled individuals were HG00360 (first half) and HG00342 (second half). Note that, given the 475 
choice of random parameters in the SNP selection process for the simulated query genomes, the 476 
total length of the query genomes for each of the chromosomes was much smaller than the 477 
length of the chromosomes: in the following example, the SNP positions ranged from 1.03 Mb to 478 
37.3 Mb for chromosome 1, from 0.4 Mb to 22.1 Mb for chromosome 2, and from 14.7 Mb to 479 
38.4 Mb for chromosome 21. The results are provided in Figure 3 and Supplemental Fig S2. 480 
 481 
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 482 
Figure 3. Best-fit genotypic trajectories from PLIGHT_Exact for the diploid mosaic genome of 483 
HG00360+HG00342 constructed across 30 SNPs each for chromosomes 1 and 2 (results for 484 
chromosome 21 shown in Supplemental Fig S2). The composition of the best-fit pair of 485 
haplotypes at each locus is depicted by two yellow tags, one below and one above the red dots. 486 
(A) Trajectory for chromosome 1. (B) Trajectory for chromosome 2. 487 
 488 

A

B
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Figure 3A shows the genotypic trajectories for chromosome 1, and Figure 3B shows the same for 489 
chromosome 2 (the results for chromosome 21 are provided as Supplemental Fig S2). The 490 
labeling scheme we use involves the splitting of the phased genotypes in the reference database 491 
into the two component parental haplotypes, with the (arbitrary) haplotype labels “A” and “B” 492 
appended to the name of the reference individual. The labels for the pair of haplotypes in the 493 
best-fit trajectories are depicted by one yellow tag below and another above the red dot marking 494 
each locus of each trajectory. The results for chromosome 1 indicate that the correct mosaic was 495 
identified as one of the two genotypic trajectories. The second trajectory consists of a mixture of 496 
one haplotype from the true individual (HG00342) and the other from a different individual 497 
(HG00367). The two trajectories branch out from HG00360 at the same SNP, indicating that for 498 
the last set of SNPs, HG00367_A and HG00342_B are likely identical (there are no noise mutations 499 
introduced in this particular simulation). Indeed, the vcf files confirm this to be the case, at least 500 
for the last 13 SNPs in the simulation. The optimal haplotypes for certain stretches of the 501 
chromosome are identified at the top of the figures, with the boundaries between the stretches 502 
marked by green ticks. These optima are calculated by simply maximizing the frequency of 503 
occurrence of the haplotypes in these regions. An important point to note here is that even 504 
though the simulation drew the last 14 SNPs from HG00342,  the transition from HG00360 to 505 
HG00342 in the solution occurs only for the last 12 SNPs. This is because the trajectories require 506 
a certain number of additional genotypic steps to build enough probability to warrant a 507 
transition. If the inference process is seen as a combined approach to identify the stretches of 508 
best-fit genotypes, as well as the best-fit boundaries between these stretches, then this method 509 
does lead to a certain fuzziness in the identification of the boundaries. However, an uncertainty 510 
is likely to exist in any dataset, regardless of the method, if there is even a little error in the 511 
genotyping or any mutations.  512 
 513 
The trajectories for chromosome 2 (Fig. 3B), on the other hand, include HG00342, but not 514 
HG00360. Several other trajectories and branch points occur in the region of the true HG00360 515 
segment. The reason for the ground truth sample not arising as a part of the solution is likely 516 
that, at the current rate of recombination, it is more likely for one of the haplotypes (HG00342_B) 517 
to be maintained across a longer stretch of the chromosome, which then results in alternative 518 
haplotypes being selected over shorter segments than the true HG00360 segment. To test 519 
whether this may be the case, we ran the same sample through a calculation with double the 520 
previous recombination rate (= 1 cM/Mb). The results (Figs. S3A, B and C) indicate that increasing 521 
the recombination rate does indeed cause the true HG00360 segment to be included in the 522 
solution. The increase in the recombination rate is more favorable to the transition from one 523 
haplotype to another and thus allows for a greater exploration of the haplotype space. This is 524 
also evident from the increase in the average number of best-fit haplotypes per SNP evident from 525 
Fig. S3. The results for chromosome 21 (Fig. S2) do include the true individual HG00360, in 526 
addition to several alternative trajectories. 527 
   528 
Truncated algorithm. We subsequently ran the same SNP set through the truncated algorithm 529 
to assess the degree of compressibility of the trajectories and the potential for memory 530 
reduction. The results, which indicate a considerable degree of compressibility of the best-fit 531 
trajectories, are presented in the Supplemental Results and Supplemental Fig S4. 532 
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 533 
Iterative and approximate search within a reference database of 5,008 haplotypes. The 534 
PLIGHT_Iterative algorithm contends with the memory requirements of a large reference 535 
database by subdividing the database into subgroups and running the HMM on the smaller 536 
haplotype cohorts. Each round of subdivision is run several times, with different haplotypes 537 
assigned to different subgroups each time. We test the same synthetic input dataset as for 538 
PLIGHT_Exact, but now search through the entire 1000 Genomes phase 3 database with 5,008 539 
haplotypes. We ran two replicates for each of two sets of parameters: number of iterations (a) 540 
𝑛1947 = 20; and (b) 𝑛1947 = 30; the subgroup size, 𝑆EC, is chosen to be 𝑆EC = 300, and the 541 
recombination rate set to 𝑐!  = 0.5 cM/Mb. The randomness of the algorithm is apparent from the 542 
fact that there is no unequivocal improvement in the identification of component individuals in 543 
going from 𝑛1947 = 20 to 𝑛1947 = 30. While it is possible that a significantly larger increase will 544 
consistently improve the mixing of the haplotypes in general, these runs are mostly able to 545 
identify the true component individuals in the mosaic sample, especially when information across 546 
the chromosomes was combined.  Accordingly, the default value in the algorithm is set to 𝑛1947 =547 
20. The consensus trajectories, which are trajectories containing haplotypes frequently observed 548 
across chromosomes (see Methods), include both HG00342 and HG00360 in three out of four of 549 
the runs (though not necessarily within the same trajectory). Additionally, the chosen SNPs on 550 
each chromosome have different capacities for discerning the ground truth. The consensus 551 
results for chromosomes 1 (one set of replicates in Figure 4 and the other in Supplemental Fig 552 
S5) and 21 (Supplemental Fig S6) include the true HG00360+HG00342 combination within the 553 
same trajectory for one and two out of the four runs, respectively.  554 
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 555 
Figure 4. Consensus genotypic trajectories from PLIGHT_Iterative for the diploid mosaic genome 556 
of HG00360+HG00342 constructed across 30 SNPs in chromosome 1, where the consensus score 557 
is evaluated by weighting the haplotypes in each trajectory in proportion to their occurrence 558 
across all three chromosomes. The composition of the best-fit pair of haplotypes at each locus is 559 
depicted by two yellow tags, one below and one above the red dots. (A) nFGHI = 20, replicate 1; 560 
(B) nFGHI = 30, replicate 1. Shown at the top of each panel are the most frequent haplotypes 561 
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within each segment indicated. The second replicates of nFGHI = 20 and nFGHI = 30 are shown in 562 
the Supplemental Materials. Thus, the iterative, mixing algorithm is able to pick out the ground-563 
truth component individuals in the best-fit trajectories, albeit with a certain degree of 564 
randomness.  565 

Overall, the results in this section demonstrate that it is possible to identify, with high 566 
confidence, the individuals contributing to local segments of the genome. This is important to 567 
demonstrate as one of the main strengths of PLIGHT lies in not just identifying a one-to-one 568 
match between a query set and a specific individual in the database, but potential overlaps in 569 
local regions of the genome which may contribute to privacy leakages. In the following sections, 570 
we explore ways in which this local information may lead to privacy breaches. 571 
 572 
Kinship analysis 573 
Having analyzed synthetic mosaics in the previous results, we seek to benchmark the methods 574 
on known, natural mosaics in the form of a kinship analysis. We use a set of 13 individuals taken 575 
from the related samples cohort of the 1000 Genomes Phase 3 576 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/related_samples_vcf/577 
related_samples_panel.20140910.ALL.panel) to link them to those individuals among the Phase 578 
3 main release cohort of 2,504 phased genotypes that are stated to be first- (parents, children or 579 
siblings), second- or third-order relatives (as provided in an associated pedigree file 580 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/2013060581 
6_g1k.ped). For this study, we choose a single chromosome for each individual with the 582 
parameters: (I) 𝑁%&' = 20,  𝑛1947 = 20; and (II) 𝑁%&' = 30, 𝑛1947 = 30; the subgroup size was 583 
chosen to be 𝑆EC = 300, and the recombination rate set to 𝑐!  = 0.5 cM/Mb. The chromosomes 584 
were chosen at random, and are different in general between cases (I) and (II). A successful 585 
identification is indicated as the inclusion of the related individual anywhere within the best-fit 586 
trajectories. The results are presented in Table 3.  587 
 588 
Table 3. Results of the kinship analysis for the two sets of parameters. Case I: 𝑁%&' = 20,  𝑛1947 =589 
20; and Case 2: 𝑁%&' = 30,  𝑛1947 = 30. The degree of relatedness is indicated as “1st-, 2nd- and 590 
3rd-order” and when a successful identification is made, the relationships of the identified 591 
individuals to the query individuals are explicitly specified, if available from the pedigree file 592 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/2013060593 
6_g1k.ped). 594 

Individual 
Sampled Chromosomes in 

case I and in case II  

Case I: Identified relatives 
(1st-, 2nd- and 3rd-order) 
𝑁%&' = 20,  𝑛1947 = 20 
If available, relation is 
specified. 

Case II: Identified relatives 
(1st-, 2nd- and 3rd-order) 
𝑁%&' = 30,  𝑛1947 = 30 
If available, relation is 
specified. 

HG00124 
Chr 19, Chr 21 

2nd-order: 0/1 2nd-order: 1/1 

HG00501 
Chr 14, Chr 8 

1st-order: 0/1 1st-order: 1/1 (sibling) 

HG00635 1st-order: 0/1 1st-order: 1/1 (sibling) 
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Chr 7, Chr 16 
HG00702 

Chr 9, Chr 21 
1st-order: 2/2 (mother and 

father) 
1st-order: 2/2 (mother and 

father) 
HG00733 

Chr 10, Chr 11 
1st-order: 1/2 (father) 1st-order: 2/2 (mother and 

father) 
HG01983 

Chr 16, Chr 10 
2nd-order: 0/1 2nd-order: 0/1 

HG02024 
Chr 2, Chr 16 

1st-order: 2/2 (mother and 
father) 

1st-order: 2/2 (mother and 
father) 

HG02046 
Chr 10, Chr 10 

1st-order: 0/1  1st-order: 1/1 (sibling)  

HG02363 
Chr 16, Chr 2 

2nd-order: 0/1  2nd-order: 0/1 

HG02372 
Chr 19, Chr 18 

1st-order: 1/1 (parent or 
child, unclear directionality) 

1st-order: 1/1 (parent or 
child, unclear directionality) 

HG02377 
Chr 20, Chr 22 

2nd-order: 0/1  2nd-order: 0/1 

HG02381 
Chr 14, Chr 18 

1st-order: 0/1 1st-order: 0/1 

HG02387 
Chr 16, Chr 14 

2nd-order: 0/1  2nd-order: 0/1 

  595 
 The analyses were designed to simultaneously explore the impact of several parametric 596 
factors in the identification of relatives: (a) 𝑛1947, (b) 𝑁%&' and (c) chromosome identity. From 597 
the results in preceding section, it is likely that changing 𝑛1947  had minimal impact. At the same 598 
time, previous results also indicated that the choice of SNPs and which chromosome they occur 599 
on will impact the best-fit trajectories. To parse these two effects, we note that irrespective of 600 
the query individual and the chromosomal choice, increasing the SNPs clearly improves the 601 
efficiency of the kinship discovery (comparing the 2nd and 3rd columns of Table 3). While for 602 
several queries no identification was made for either set of parameters, there is a clear and 603 
understandable increase in risk for 1st-order relatives compared to 2nd-order relatives. There was 604 
only a single instance in which a 2nd-order relative was discovered for a query individual, and in 605 
that instance there were no 1st-order kin in the 1000 Genomes main cohort to confound the 606 
identification process. 607 
 However, even in the case of 1st-order relatives, the identification process is not perfect. 608 
For example, the individual HG02381 has a sibling in the 1000Genomes main release cohort. This 609 
sibling was not discovered even after increasing the number of SNPs to 30. The randomness of 610 
PLIGHT_Iterative might contribute to this, beyond the inherent informativeness of the SNP set. 611 
To test this out, we separated out the 93 individuals belonging to the same population group and 612 
ran the query SNPs through PLIGHT_Exact. In this more restricted case, one of the haplotypes of 613 
the sibling was found as a match, but only for a part of the trajectory. This example is therefore 614 
a case where the genetic relative remained concealed due to a combination of the inherent SNP 615 
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informativeness (as evidenced by a lack of kin identification even on a smaller, exact run), size of 616 
the database considered, and the approximation of the algorithm.  617 
 In general, we show that even a modest number of common SNPs have the capacity to 618 
reveal genetic relatives, especially 1st-order relatives, of query individuals in a cohort of size 619 
~5,000 haplotypes. We did not carry out a comprehensive search for the minimum number of 620 
SNPs to identify relatives because (a) PLIGHT_Iterative is more computationally intensive and 621 
iterating over multiple query sets for many individuals can become unfeasible, and (b) without 622 
prior knowledge on which genomic regions overlap between relatives, a change in the number 623 
of randomly selected SNPs may not yield clear improvements. Our primary goal, however, is to 624 
show that even small SNP sets can reveal close relatedness. 625 
 626 
Inference based on SNPs obtained from coffee cups 627 
Moving away from simulated examples based on the reference database itself, we use a set of 628 
SNPs that were obtained from DNA samples acquired from swabs of used coffee cups in ref. 629 
(Gürsoy et al. 2020) (more details in Methods). As described in ref. (Gürsoy et al. 2020), 630 
surreptitiously acquired samples such as these pose significant identification risks to individuals. 631 
For our purposes, they additionally represent a source of noisy (i.e. error-prone) SNPs that can 632 
be used to test the methods herein. 633 

We filter the SNPs obtained from the coffee cups by genotyping quality and read depth 634 
(‘GQ > 99 & DP > 10’ chosen as the vcf parameter filters, applied using bcftools version 1.10.2), 635 
to increase the confidence in the choice of genotypes. We subsequently select 30 SNPs each 636 
from chromosomes 3 (~position 4 Mb to 173 Mb)  and 6 (~position 11 Mb to 166 Mb). We 637 
compare these against the blood-tissue-derived genotypes as the gold-standard, as well as to 638 
the 1000 Genomes phase 3 vcf files. All 30 chromosome 3 SNPs and 29 chromosome 6 SNPs (1 639 
missing) were found in the blood-tissue and 1000 Genomes vcf files.  640 

We checked the 60 SNPs obtained from the coffee cups against the true genotypes of 641 
the query individual: 8 genotypes out of 30 for chromosome 3 were incorrect, while 4 642 
genotypes out of 29 were incorrect for chromosome 6; all incorrect cases involved calling 643 
homozygous alternate as opposed to the correct heterozygous genotypes. The incorrect calls 644 
are likely to arise due to possible contamination of the coffee cups by DNA from other 645 
individuals, as well as due to the inherent noisiness of genotypes obtained from the coffee 646 
cups. Accordingly, we include non-zero mutation rates in our inference to account for errors or 647 
contamination. Also, we note that both the coffee cup genotypes and the blood tissue gold-648 
standard genotypes are unphased: we distribute the SNP dosages in the blood tissue sample 649 
based on positional occurrence in the called genotype; thus, for a genotype call of “0/1”, “0” is 650 
assigned to the first haplotype and “1” to the second.  651 

We carry out two analyses. The first involves merging the gold-standard SNP set with 652 
the 1000 Genomes Phase 3 vcf file, while making sure that only overlapping SNPs were 653 
retained. We subsequently determine whether ~30 SNPs each on chromosomes 3 and 6 would 654 
be sufficient to identify the true query individual, using both PLIGHT_InRef (where a simpler 655 
algorithm is run with the recombination rate set to 0) and several runs of PLIGHT_Iterative. 656 
 657 
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With 30 SNPs: Query individual in the reference database. The PLIGHT_InRef algorithm, with a 658 
mutation rate 𝜆 = 0.2, correctly and uniquely identifies the query individual out of the full set 659 
of 2,504 genotypes for both query chromosomes separately. We ran then four inference runs 660 
using PLIGHT_Iterative, where the full set of 5,008 haplotypes was used as the reference 661 
database: (a) 𝑆EC = 200,mutation	rate	𝜆 = 0.1; (b) 𝑆EC = 200,mutation	rate	𝜆 = 0.2; (c) 662 
𝑆EC = 300,mutation	rate	𝜆 = 0.1; (d) 𝑆EC = 300,mutation	rate	𝜆 = 0.2. The variation of the 663 
subgroup size parameter was done to determine how stable the results were to different 664 
bootstrap sample sizes. In every single case, we detect one of the two haplotypes of the correct 665 
query individual, while the other inferred haplotype is drawn from the 1000 Genomes set. The 666 
lack of both query haplotypes showing up in this instance is likely due to a combination of the 667 
high error rate in the coffee cup SNP set and the approximation inherent in the iterative 668 
algorithm. We explored the reasons for the consistent appearance of the same gold-standard 669 
query haplotype in all the searches, and found that since all the errors involved incorrectly 670 
calling a genotype of “1” as a “2” , and since all unphased heterozygous genotypes in the blood 671 
tissue sample were called as “0/1”, the errors in the coffee cup SNPs would be associated with 672 
the first haplotype in our arbitrary phasing scheme (see above). Thus, the algorithm finds the 673 
second gold-standard query haplotype consistently, as it correctly aligns with the coffee cup 674 
SNPs. 675 
 676 
With 30 SNPs: Query individual not in the reference database, and coarse-grained imputation. 677 
The second analysis on the coffee-cup-based SNPs involves running PLIGHT_Iterative on the 678 
query SNPs to search through the 1000 Genomes Phase 3 reference database without including 679 
the true query individual’s genome. We ran the same four combinations of parameters as in the 680 
preceding analysis. For both chromosomes, there are haplotypes and haplotype combinations 681 
that are found robustly in multiple runs, indicating the algorithm is able to find close matches to 682 
the query SNPs. In subsequent analyses, we used some of these best-fit trajectories to explore 683 
other instances of inference. 684 

We take trajectories from one of the runs (the results with 𝑆EC =685 
200,mutation	rate	𝜆 = 0.2) and reconstruct the mosaic genomes (see Methods). We use the 686 
overlapping SNPs between the gold-standard query vcf and the 1000 Genomes phase 3 687 
reference vcf to determine the total fraction of matching genotypes, and the correspondence 688 
score 𝐶, a weighted fraction that accounts for the rarity of each SNP in the reference database, 689 
which would influence the likelihood of observing a match by random chance (see Methods). 690 

We also calculate background values for 99 randomly chosen individual genomes from 691 
the 1000 Genomes dataset, ensuring that there was no overlap with the mosaic genome 692 
haplotypes. There are three matching trajectories for chromosome 3 and one trajectory for 693 
chromosome 6. The exact-matching-genotype fractions for the trajectories in chromosome 3 694 
are 0.43, 0.43 and 0.43, compared to the background matching fractions ranging between 0.36-695 
0.44 [Welch’s two-sample t-test (for a null hypothesis of both distributions being the same) p-696 
value = 2e-10]. For chromosome 6, the matching fraction is 0.40, with a background between 697 
0.34-0.44. The correspondence scores are: chromosome 3, 𝐶 = 0.32, 0.32, 0.32 [background 698 
0.28-0.33, p-value = 0.0002]; chromosome 6, 𝐶 = 0.31 [background 0.29-0.33]. Overall, while 699 
there is some evidence for correct imputation of the intervening genomic regions between 700 
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observed SNPs, we sought to confirm the results, since the few samples drawn still fall within 701 
the background ranges.  702 

 703 
With 90 SNPs: Query individual not in the reference database, and coarse-grained imputation. 704 
Given the results above, we explore whether the imputation process improves with a larger 705 
number of SNPs. We select an additional 60 coffee cup SNPs from chromosomes 3 and 6 for 706 
further analysis: for chromosome 3, all 90 are found in the gold-standard blood-tissue 707 
genotypes, 89 in 1000 Genomes Phase 3; for chromosome 6, 88 are in the gold-standard blood-708 
tissue genotypes and in 1000 Genomes. We conduct all the above tests for this extended set of 709 
~90 query SNPs. Running PLIGHT_Iterative on the in-reference case allows correct identification 710 
of both haplotypes of the query individual for chromosome 6, while only one correct haplotype 711 
is found for chromosome 3 (we did not run the exact inference, as 30 SNPs was clearly 712 
sufficient to find the correct query individual). While some haplotypes occur in both the 30-SNP 713 
and 90-SNP runs, the resulting trajectories are different in general (i.e. different number and 714 
haplotype composition). We subsequently use one of the trajectories from the runs where the 715 
true query individual’s genome is not in the reference database (the results with 𝑆EC =716 
300,mutation	rate	𝜆 = 0.1). There are 8 best-fit trajectories for chromosome 3 and 1 for 717 
chromosome 6. Comparisons to a background of 98 individuals are as follows: The exact-718 
matching-genotype fractions for the trajectories in chromosome 3 are 0.45, 0.44, 0.44, 0.44, 719 
0.43, 0.43, 0.43 and 0.44, compared to the background matching fractions ranging between 720 
0.36-0.46 [Welch’s two-sample t-test p-value = 2e-8]. For chromosome 6, the matching fraction 721 
is 0.43, with a background between 0.34-0.43. The correspondence scores are: chromosome 3, 722 
𝐶 = 0.33, 0.33, 0.33, 0.33, 0.31, 0.31, 0.32 and 0.33 [background 0.28-0.33, p-value = 0.0001]; 723 
chromosome 6, 𝐶 = 0.33 [background 0.29-0.33]. Overall, while the degree of matching 724 
improves a little in going from the 30-SNP case to the 90-SNP case, the change is small. We note 725 
that the comparisons here reflect the results of matching of genotypes across entire 726 
chromosomes. However, we imagine that within any LD blocks associated with the query SNPs 727 
we would observe better matching on average than the global results demonstrated here.  728 
We reiterated the analysis with a 300-SNP query set as well, and found similar results: the 729 
significance of the genotype matching increases for the mosaic trajectories relative to the 730 
background. 731 

In summary, it was extremely easy to identify an individual from amongst 5,008 haplotypes, 732 
using just 30 SNPs on a single chromosome, even in the presence of significant errors. Searching 733 
against individuals in a reference database that does not include the query individual also yields 734 
best-fit trajectories that are robustly found by PLIGHT_Iterative across different parameter 735 
settings. Expanding to a larger set of query SNPs indicates that the haplotype composition of 736 
the trajectories does change to reflect the new query SNPs, but with some haplotypes stably 737 
appearing in both sets of runs. The coarse-grained imputation at the level of 30 and 90 SNPs 738 
hints at only subtle differences relative to the background. We imagine that these differences 739 
would be amplified in the case of a much larger set of SNPs, and when focusing on local regions 740 
of the genome in the vicinity of the query SNPs.  741 
  742 
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Predicting genotypes at GWAS loci and polygenic risk score (PRS) analysis 743 
The coarse-grained imputation we carried out in the previous section hints at the possibility 744 

that the trajectories inferred may leak more information about intermediate regions of the 745 
genome. This would undoubtedly be the case for SNPs in LD with the query SNPs, but if longer 746 
distance correlations in SNP occurrences exist, there would be added risk from such correlated 747 
SNPs. If this were the case, even partial matches (i.e. matches in specific regions of the genome, 748 
without overall identification of the query individual) to the query SNPs may allow an attacker to 749 
infer local information, say, the risk of certain genetic diseases.  750 

To evaluate this risk, we probe scenarios where either excessive mutations or the absence of 751 
the individual in the reference set may prevent the identification of the true individual, but the 752 
set of best-fit diploid mosaic genomes may collectively provide hints about the true individual. 753 
We approximately calculate linear polygenic risk scores (PRSs) of these individuals for all the 754 
phenotypes in the GWAS catalog version 1.0.2 (Buniello et al. 2019) to see if we could infer 755 
certain phenotypes that are outliers for the set of alternate individuals. We analyze one of the 756 
runs in the previous section, where the query individual was a mosaic of HG00360 (first half) and 757 
HG00342 (second half), and the best-fit trajectories were identified using PLIGHT_Iterative with 758 
𝑛1947 = 20 and 𝑆EC = 300. There were 8 parallel trajectories for chromosome 1, 15 for 759 
chromosome 2, and 2 for chromosome 21. The PRS calculation was carried out on all these 760 
trajectories independently and the PRSs across all trajectories (for each chromosome separately) 761 
for each trait were compared with the PRSs for a 50% HG00360 / 50% HG00342 mosaic as the 762 
true sample. Four different statistical measures were evaluated as described in the Methods 763 
section. We note that the scenario described for the simulated example is slightly artificial, as 764 
some of the best-fit trajectories included the ground-truth individuals as well. Removal of these 765 
trajectories was not an option in this case, given the pervasiveness of the true individuals in the 766 
best-fit results. However, we discuss the calculations here as an illustrative example of the sort 767 
of aggregative attack that may be carried out. The results of the calculation are presented in 768 
Table S2. 769 

We performed the same analysis for the coffee cup SNPs as well, evaluating the 30- and 90-770 
SNP cases (Table S3), as well as the 300-SNP case (Table S4). For the simulated and coffee cup 771 
PRS score comparisons, we mostly see a high cosine similarity between the true and mosaic 772 
reconstruction PRSs. However, the corresponding cosine similarities for the background 773 
individuals are similarly high. There is also noise in these metrics for all comparison cases, 774 
resulting in some negative or low cosine similarities. Therefore, while there are hints that some 775 
degree of aggregative leakage of information may be happening, the evidence in these particular 776 
examples is not very strong. 777 

Instead, we sought to demonstrate the potential risks by constructing an artificial example. 778 
We construct a query set of 90 SNPs where the selected SNPs were within ±2 kb of known GWAS 779 
SNPs for the phenotype “Height”, and which should have a higher chance of being in LD with 780 
GWAS variants. We choose “Height” as a phenotype due to the abundance of GWAS variants, as 781 
well as it being a more innocuous phenotype to consider in this demonstration. In the windows 782 
considered for these SNPs, 26 GWAS variants are found for each chromosome. We ran 783 
PLIGHT_Iterative with 𝑛1947 = 20 and 𝑆EC = 300 on the query set, and study the resulting set of 784 
7 trajectories for chromosome 3 and 1 trajectory for chromosome 6. First, we did a direct 785 
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comparison of how well the inferred trajectories impute unseen GWAS SNPs. That is, we looked 786 
at the 22 SNPs in each chromosome that are not directly in the query set and checked how well 787 
the inferred trajectories have matched the query genotypes. For chromosome 3, the 7 788 
trajectories produced {14, 14, 14, 14, 14,11, 11} matches out of 22 SNPs. We also checked the 789 
same SNP sites for 100 randomly sampled individuals, and ran a Welch’s two-sided, two-sample 790 
t-test between the two distributions, obtaining a p-value of 2.2e-5. However, a couple of the 791 
background samples matched the GWAS SNPs to a higher degree (15 and 16 SNPs out of 22). We 792 
therefore looked at the consensus across the trajectories and found that the 7 trajectories 793 
matched the query genotypes perfectly at 10 GWAS SNP sites, were off by a dosage of 1 at 7 794 
sites, and had mixed results for the remaining 5. The background individuals had mixed results 795 
across all SNP sites. The one trajectory for chromosome 6 yielded a match rate of 16 out of 22 796 
and a two-sided, one-sample t-test with respect to the background distribution for the same 100 797 
individuals yielded a p-value of 2.2e-16. None of the background individuals did better than 16 798 
out of 22 matches. Thus, while the imputation of GWAS SNPs was not perfect, there are certain 799 
loci where the inferred trajectories do better at imputing the GWAS SNPs. We can foresee cases 800 
where an attacker might apply such an approach to phenotypes such as eye color, which are 801 
associated with a relatively small number of SNPs(Meyer et al. 2020).  802 

 We also assessed whether the inferred PRSs are a better match than a background set of 803 
PRSs from 100 randomly sampled individuals. We consider the statistical significance of the 804 
deviation from the true sample’s PRS (a Welch’s two-sided, two-sample t-test for chromosome 805 
3, and a two-sided one-sample t-test for chromosome 6). The PRS deviations are  resulting p-806 
values are: chromosome 3 = 2.5e-6, and chromosome 6 = 0.008. In both cases, the trajectory-807 
based PRSs were closer to the true sample’s PRS than the mean of the background PRSs 808 
(distributions show in Supplemental Fig S7). Here, the number of trajectories is small, and the 809 
example was purposely constructed to bring out LD effects, but we believe that the results are 810 
indicative of some information leakage. 811 

Our intention in presenting this result is to demonstrate the types of privacy incursions that 812 
may be conducted in the future by utilizing partial inference. While the cross-phenotype analysis 813 
was inconclusive, the targeted analysis indicates that there exists the potential for inferred 814 
trajectories to leak information about certain SNP dosages and phenotypes. This information 815 
leakage is likely to be stronger when query SNPs are in the vicinity of GWAS variants for the 816 
phenotype of concern. An attacker may query genomic regions proximal to disease loci, and even 817 
specifically amplify proximal genetic material. 818 

 819 
Sanitization of SNPs based on Inferred Trajectories 820 
The preceding sections demonstrated the various ways in which PLIGHT can be employed to 821 
determine the types of privacy risks associated with a SNP set. We also designed an algorithm 822 
to use the inferred trajectories to inform the removal of individual SNPs from a dataset, called 823 
PLIGHT_SanitizeGenotypes. Sanitization would be applied for those datasets whose primary 824 
purpose is different from the direct reporting of variants, but from which variants can be 825 
inferred. Functional genomics assays are prime examples of such datasets, as well as 826 
environmental samples where the identity of any of the contributing individuals needs to be 827 
protected. The algorithm is a modification of the simple strategy of removing SNPs based on 828 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

rarity, i.e. based on the MAF. The subset of SNPs with the fewest parallel best-fit trajectories 829 
are identified. These are “bottleneck” positions in the query set where the number of parallel 830 
trajectories passing through them is the smallest, and so represent the maximum information 831 
about the underlying identity of the query individual. Specifically, the number of trajectories 832 
passing through a locus is quantified by the number of unique haplotype pairs (𝑁/?') at that 833 
locus (Supplemental Fig S8 and defined in the Methods section).  Often, multiple SNPs have the 834 
same number of trajectories passing through them, and so the SNP with the lowest MAF in this 835 
subset is removed. We emphasize that this is just one strategy among many possibilities, and 836 
depending on the use case, a user may choose to make other sanitization decisions based on 837 
the output of PLIGHT. 838 
 To demonstrate the use of PLIGHT_SanitizeGenotypes, we construct 10 mosaic SNP sets 839 
consisting of two source individuals, with half of the 30 SNPs drawn from one and the 840 
remaining from the other. We proceed to remove one SNP at a time, either based on the 841 
PLIGHT strategy or on the simpler MAF approach, and infer the best-fit trajectories on the new, 842 
sanitized SNP set. The results are compared to identify the relative merits of the two 843 
sanitization strategies.  844 

The simplest way of assessing whether a sanitization strategy works is by calculating the 845 
degree to which the true source individual is hidden among several others (the source 846 
individual will never completely disappear in a noise-free situation). Also, we have the 847 
opportunity of searching for the source individual globally over the whole query set, or locally 848 
at particular sites. Accordingly, we settled on three metrics (formal definitions in the Methods 849 
section): (1) the total informational entropy of the identified individuals, 𝑆J0K; (2) the maximum 850 
probability of observing any of the two source individuals in the trajectory, 𝑃@LM%63784; and (3) the 851 
per-SNP entropy of identified individuals, if either of the source individuals is found at that SNP, 852 
𝑆'47>%&' (Supplemental Fig S8). All three metrics are calculated as a function of the number of 853 
SNPs removed. We note that for each of the ten examples, the number of SNPs removed is 854 
different as we stopped the removal process for each example once the number of inferred 855 
trajectories grew very large. 856 
 We find from the plots of 𝑆J0K  (Supplemental Fig S9) and 𝑃@LM%63784 (Supplemental Fig 857 
S10) that there is no pattern indicating that PLIGHT does a better job at increasing overall 858 
entropy, or reduces the probability of detecting the source individuals across all SNPs. Both 859 
these sets of plots evince considerable variability across runs. On the contrary, the plots of 860 
𝑆'47>%&'(𝑖)  (Figures S11 and S12) show a more consistent increase in the entropy per SNP for 861 
PLIGHT versus the MAF approach for those SNPs where the source individuals are found: in 862 
Supplemental Fig S11, the overall distribution shows greater entropy per SNP for PLIGHT, while 863 
in Supplemental Fig S12, the entropy is generally higher for PLIGHT early on in the SNP removal 864 
process than for the MAF approach. This is an indicator that PLIGHT seems to be improving the 865 
degree to which a source individual can be hidden in the midst of others at an individual SNP 866 
level. 867 
 The main purpose of PLIGHT is not to determine the single, ideal method of data 868 
sanitization, but rather provide tools for users to make informed choices about the sanitization 869 
procedures that best reflect their downstream publication goals. We herein demonstrate just 870 
one interesting example of how PLIGHT may be employed. The total number of SNPs to be 871 
sanitized also depends on the data publisher’s intent for the downstream usage of the data. For 872 
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example, consider a forensics study where the data publisher intends to release a sample from 873 
a known individual, but hopes to protect the individual’s relatives. The target would be to hide 874 
the source individual’s relatives (if already known or published in other databases) among 875 
background haplotypes by removing those SNPs that most strongly identify the relatives. The 876 
utility to be preserved would be the identifiability of the source individual. In the case of a 877 
functional genomics dataset, the utility to be preserved would be the genomic signal of 878 
interest, while hiding the source individual among background haplotypes (Gürsoy et al. 2020). 879 
A careful utility versus privacy analysis would have to account for the intended data usage.  880 

We also posit a possible interactive strategy for querying datasets, where a data 881 
producer would allow an external user to query SNP genotypes from individuals in the “to-be-882 
protected” dataset. Often the data producer would like to enable a “locus-level” query on a 883 
genome (say, by visualizing in a browser) without compromising privacy. Here, “locus-level” 884 
refers to a genomic region, potentially containing several SNPs. The question then arises as to 885 
how many SNPs can be safely released. A more basic approach is to cap the number of SNPs at 886 
a fixed amount, but this does not take into account issues such as LD or higher-order 887 
correlations between groups of SNPs, and might be too restrictive. Our approach, on the other 888 
hand, is to do the following. Based on the number and genomic positions of the SNPs, the data 889 
producer would run PLIGHT as a backend risk assessment tool to calculate the degree to which 890 
the source individual is hidden among background individuals. If the source individual is 891 
sufficiently obscured (say, is equally likely to be found as several other background individuals), 892 
the data producer can release the queried SNPs – i.e., the loci in a browser. Alternatively, the 893 
producer may prune any highly identifying SNPs and release a reduced version of the SNP 894 
genotypes to the user. 895 

Discussion 896 
The analyses described have reaffirmed the prevailing notion that very few SNPs, even 897 

common ones, have the ability to leak identifying information about a query individual. 898 
Furthermore, we have shown that this leakage extends beyond the direct discovery of an 899 
individual known to be a part of a database, but can also provide piecewise genetic matches 900 
within databases, either exactly or approximately, conditional on any chosen recombination rate 901 
model. This idea of mosaic genotypic matching naturally includes the ability to identify genetic 902 
relatives within databases, and we show that our algorithm has the ability to discover 1st-order 903 
relatives such as parents, children and siblings (and to a lesser degree, 2nd-order relatives) in 904 
cohorts of size ~5,000 haplotypes with as few as 30 common SNPs on a single chromosome. The 905 
upshot of these results is that investigators seeking to release genetic or omics datasets can 906 
employ our tool to assess the degree to which their to-be-publicized data could be used to 907 
compromise the identity of a study cohort or any related individuals. 908 

It is our contention that this risk even extends beyond the direct identification of genetic 909 
identity or relatedness. To see how, we elucidate the capacity to extract further information from 910 
inferred trajectories. The process of identifying all genotypic trajectories that match a sparse set 911 
of data can be seen as a form of coarse-grained imputation: given a few SNPs, the genomic 912 
segments containing those SNPs are extended based on available reference haplotypes. 913 
However, instead of simply identifying one best-fit genotypic extension, we provide a larger list 914 
of all genotypic extensions that are consistent with the query SNP set. In other words, we provide 915 
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a sense of the “entropy” of the query genotypes conditional on a chosen reference set, where 916 
the entropy is a measure of the size of the best-fit genotypic state space in different genomic 917 
regions. An attacker could use the auxiliary information of individuals pooled across these 918 
genomic regions to explore group phenotypic risk at particular loci, for example. We presented 919 
the results for one simplified case of such an attack, but a more sophisticated usage of the pooling 920 
attack could pick out risks for both Mendelian and complex genetic disorders. 921 

We note that previous studies have used the Li-Stephens model to carry out genetic privacy 922 
attacks, albeit by imputing SNPs at unobserved sites. For example, Samani et al (Samani et al. 923 
2015) and Raisaro et al (Raisaro et al. 2020) both use genetic imputation based on nearby 924 
genotyped variants to find the most likely SNPs at unobserved loci. While these are powerful 925 
means of extracting further genetic information, in the case of extremely sparse sets of SNPs, the 926 
use of the conditional distributions of a set of nearby SNPs will likely not be feasible. We therefore 927 
see PLIGHT as complementary to these approaches. We have endeavored to show that, even in 928 
the absence of the ability to impute genotypes, leakage of information is possible. In fact, we 929 
foresee ways in which PLIGHT could fit into comprehensive privacy risk assessment platforms 930 
such as GenoShare (Raisaro et al. 2020) by adding complementary quantifications for sparse SNP 931 
datasets. 932 

The expansion of genetic reference databases has also highlighted the limitations of the 933 
current reliance on single, linear reference genomes. Capturing the full range of genetic variation 934 
across a species (including SNPs, indels, structural variants (SVs), tandem repeats, etc.) in a 935 
manner that avoids biases associated with the choice of reference, requires reference data 936 
structures that are able to represent all possible sequence paths through available database 937 
genomes. Graph genomes (Novak et al. 2017; Paten et al. 2017) have been recently proposed as 938 
such frameworks for the generation of more inclusive reference databases, accounting for all 939 
known variants within a single traversable data structure. In one example (Rakocevic et al. 2019), 940 
sequences are represented as edges and breakpoints between variants as nodes. The number of 941 
branches extending out or into any node depends on the number of variants associated with that 942 
genetic locus. A single haplotype is constructed by starting at one end and traversing (in an acyclic 943 
manner) all branches that agree with the variants in the observed haplotype. If we now pose our 944 
query-matching problem in the context of graph genomes, we see that: (a) locating the individual 945 
query genotypes within the matching graph edges is easy, although we would have to include 946 
alternate branches weighted by the probability of de novo mutation or genotyping error; (b) 947 
identifying the consistent genotypic trajectories would amount to finding all possible paths that 948 
run through the branches determined in (a); and (c) it would be possible to account for linkage 949 
disequilibrium and the relative likelihood of each trajectory if the nodes of the graph genome 950 
were annotated with recombination rates calculated based on the reference database. In this 951 
way, we would be able to carry over the HMM approach into a graph genome context. If 952 
information on the number and identity of the reference haplotypes that map to each branch 953 
were also available, the pooling inference described above would also be possible. 954 
 Finally, we are also exploring the possibilities for using the underlying model for other 955 
problems. For example, the mapping of somatic mutations in cells to cancer lineages or viral 956 
mutations to clades. One interesting analysis would involve the iterative use of PLIGHT to parse 957 
through contributing genomes in a contaminated sample, by finding the most likely sets of SNPs 958 
arising from a single source genome. Ultimately, the generality and simplicity of the models make 959 
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them attractive for multiple applications, as is clear from the ubiquity of HMM-based genomic 960 
analyses in the literature. 961 
 Our intention is to provide a tool to assess the degree of leakage of a given set of SNPs, 962 
and to thereby determine the privacy leakage risk associated with a dataset. This intention is, of 963 
course, complementary to subsequent sanitization procedures, such as those outlined in our 964 
previous publication (Gürsoy et al. 2020). In constructing PLIGHT_SanitizeGenotypes, we have 965 
envisioned one way of coupling the information from PLIGHT with data sanitization methods such 966 
as pBAM (Gürsoy et al. 2020) generation. By applying such an approach, we believe that a balance 967 
can be struck between the utility of the released dataset and the associated privacy risk. 968 
 969 

Methods 970 
PLIGHT Framework: Li-Stephens model and associated biological parameters 971 
Let 𝐺2 = T𝐺2,!U!"#

$
 be the genotypes of a query individual 𝑞, observed at SNP loci 𝑙 = {1,2,⋯ , 𝐿}. 972 

The probability of observing such an individual given a space of reference haplotypes 𝐻 =973 
	T𝑍O,!U!"#;O"#

!"$123;O"& (𝐿Q4R = number of genotyped sites in the reference genomes, 𝑁 = number of 974 
haplotypes in the reference database) is: 975 
 976 
𝑃Y𝐺2Z𝐻[ = 	∑ 𝑃]𝐺2^𝑍O

(#), 𝑍S
(T)_. 𝑃]𝑍O

(#), 𝑍S
(T)^𝐻_U4

(6),U8
(9)      (1) 977 

 978 
where the set of all possible haplotypes at the observed loci on the two chromosomes is given 979 

by 𝑍O
(V) = `𝑍O(!),!

(V) a
!"#

$
, with 𝑍O(!),!

(V"#,T) being the haplotype at position 𝑙, and 𝑗 being the index of the 980 

sampled haplotype. The locus position is defined with respect to a linear reference genome, with 981 
the particular genome build assumed to be the same between the query and reference database 982 
genomes. We treat the haplotype index 𝑗(𝑙) as a  function of 𝑙, as it is possible for the choice of 983 
reference haplotype to be different at each locus; that is, in the haplotype matching process, 984 
recombination between reference haplotypes may occur from one observed locus to the next 985 
(see Fig. S1). The second subscript explicitly indicates that, from reference haplotype 𝑗(𝑙), we 986 
select the genotype at locus 𝑙.  987 

As previously described, we define a trajectory for a diploid genome query as 𝒯 =988 
	{𝑗(𝑙), 𝑘(𝑙)}!"#$ , which is the sequence of reference haplotype pairs that best match the query 989 
SNPs. In the case of a haploid query, the trajectory would be a sequence of single labels at each 990 
locus. 991 
 The assumption in the current iteration of the algorithm is that the observed genotypes 992 
and the reference haplotypes are registered with respect to the same, linear reference genome. 993 
This enables a simpler matching of reference haplotypes to observed genotypes. For data 994 
structures such as personal genomes and graph genomes additional genotype matching 995 
strategies would need to be incorporated, but the conceptual framework of searching through 996 
recombining haplotypes would be the same. In general, the set of genotyped sites does not have 997 
to perfectly overlap with the set of reference haplotype sites because of rare SNPs in an 998 
individual’s genotype or differences in genotyping arrays. However, for the purposes of this study 999 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

we only consider genotyped sites that overlap with those of the reference haplotypes, especially 1000 
given our interest in determining the identification power of common SNPs. In case of the 1001 
presence of structural variants overlapping SNP loci, we allow for missing genotypes in any of the 1002 
reference haplotypes (except for PLIGHT_Truncated due to methodological conflicts by including 1003 
missing genotypes). We thus consider the reference haplotypes as providing the complete search 1004 
space, especially in light of the constantly growing genetic databases available for comparison. 1005 
We avoid making explicit assumptions of population membership and statistics for the query 1006 
individual with the belief that, beyond the implicit assumptions of the chosen reference set, this 1007 
will enable more unbiased estimates of kinship and genotypic similarity.  1008 
  1009 
The two terms on the right-hand side of Equation (1) are modeled as follows: 1010 
1. 𝑃]𝑍O

(#), 𝑍S
(T)^𝐻_ is the probability of obtaining a given set of haplotype observations at all the 1011 

query loci (Li and Stephens 2003; Marchini et al. 2007):  1012 
𝑃]𝑍O

(#), 𝑍S
(T)^𝐻_ =1013 

𝑃 ]𝑍O(#),#
(#) , 𝑍S(#),#

(T) ^𝐻_∏ 𝑃 ]`𝑍O(!),!
(#) , 𝑍S(!),!

(T) a → `𝑍O(!,#),!,#
(#) , 𝑍S(!,#),!,#

(T) a ^𝐻_$>#
!"#    (2) 1014 

All terms are written with the conditional dependence on the set of reference haplotypes, 𝐻, 1015 
made explicit. 𝑃 ]𝑍O(#),#

(#) , 𝑍S(#),#
(T) ^𝐻_ is the probability of observing a given set of haplotypes 1016 

at the first query locus. This is often drawn from a uniform distribution across all haplotype 1017 
pairs, but could be modified if prior knowledge on the membership of the query individual in 1018 
a particular subpopulation is available. Recombination is incorporated into the analysis in the 1019 
expressions for the transition probabilities from one query site to the next, 1020 
𝑃 ]`𝑍O(!),!

(#) , 𝑍S(!),!
(T) a → `𝑍O(!,#),!,#

(#) , 𝑍S(!,#),!,#
(T) a ^𝐻_. The specific expressions for the transition 1021 

probabilities are provided in the Supplemental Materials. In our methods, a linear model of 1022 
recombination (as in the Li-Stephens model) is included as the default. However, we allow for 1023 
the inclusion of a user-defined model of recombination in its place. For example, if there is a 1024 
known recombination hotspot between two adjacent query sites, it would alter the 1025 
probability of transitioning between reference haplotypes in the search space, and thus 1026 
impact the best-fit haplotypes calculated by the method. The user can explicitly include a 1027 
vector of recombination values to be used for the 𝐿 − 1 intervals between query sites. 1028 
Additionally, we make an implicit assumption of uniform transition probabilities, where 1029 
transitions between any pair of haplotypes is the equally likely. If, on the other hand, a model 1030 
is to be constructed where different subgroups have distinct recombination rates at particular 1031 
locations and/or are assumed to be impacted by assortative mating then transition 1032 
probabilities would be conditional based on membership in these subgroups. In this iteration 1033 
of our model, we do not provide a framework of this nature, but such an update would simply 1034 
require the inclusion of appropriate bias terms conditional on the memberships of the initial 1035 
and final haplotypes. However, we wish to emphasize that maintaining uniform transition 1036 
probabilities helps prevent biased interpretations of ethnic group membership and isolation, 1037 
and allows for the broad intermixing of haplotypes known to have occurred throughout 1038 
human history (Narasimhan et al. 2019). 1039 
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2. 𝑃]𝐺2^𝑍O
(#), 𝑍S

(T)_ quantifies the probability of observing the query genotypes given a 1040 
particular set of underlying haplotypes: 1041 
𝑃]𝐺2^𝑍O

(#), 𝑍S
(T)_ = ∏ 𝑃 ]𝐺2,!^𝑍O(!),!

(#) , 𝑍S(!),!
(T) _$

!"# = ∏ 𝑃 ]𝑍O(!),!
(#) + 𝑍S(!),!

(T) → 𝐺2,!_$
!"#  (3) 1042 

with 𝑃 ]𝑍O(!),!
(#) + 𝑍S(!),!

(T) → 𝐺2,!_ determined by the number of sites that require mutation to 1043 
match the observed genotypes shown in Table 4. This probability helps constrain the 1044 
haplotypes that are possible given the observed genotypes, allowing for the case where 1045 
mutations or genotyping errors occur (as considered in IMPUTE (Howie et al. 2009)). We 1046 
follow the suggestion of the authors of IMPUTE to consider a background rate of base pair 1047 
mutation 𝜃 (the thetamutationrate parameter in our code), in addition to a mutation rate 1048 
per haplotype of 𝜆 = 	 W

T(&,	W)
 (the lambdamutationrate parameter in our code) under the 1049 

assumption of a neutral coalescent tree for 𝑁 haplotypes (Li and Stephens 2003; Marchini et 1050 
al. 2007). However, it is possible for the user to explicitly augment the background rate 𝜃 with 1051 
contributions from genotyping error, or to ignore the mutation rate altogether and set 𝜃 =1052 
	 T&X
#>TX

 such that 𝜆 is equal to the known genotyping error. 1053 
 1054 
Table 4. Table of conditional probabilities for the observed genotypes based on the sum of two 1055 
reference haplotypes. 1056 
  𝐺2,!   

0 1 2 
 0 (1 − 𝜆)T 2𝜆(1 − 𝜆) 𝜆T 
𝑍O(!),!
(#) + 𝑍S(!),!

(T)  1 𝜆(1 − 𝜆) 𝜆T + (1 − 𝜆)T 𝜆(1 − 𝜆) 

  2 𝜆T 2𝜆(1 − 𝜆) (1 − 𝜆)T 
    1057 
 1058 

In summary, the aim is to figure out the contribution to the total probability of each of 1059 
the haplotype combinations, by estimating 𝑃]𝐺2^𝑍O

(#), 𝑍S
(T)_. 𝑃]𝑍O

(#), 𝑍S
(T)^𝐻_ for all genotypic 1060 

trajectories, and to maximize this probability. 1061 
 1062 
PLIGHT framework: Hidden Markov Model optimization 1063 
 The problem of identifying the best-fit combination of haplotypes is well-suited to the 1064 
framework of Hidden Markov models (HMMs) given the traditional treatment of the genome as 1065 
a linear sequence of base pairs. In this understanding, meiotic recombination between loci does 1066 
not occur between distant locations of a chromosome (as may occur, hypothetically, due to 1067 
consistent 3D folding of the chromosomes within the nucleus), but has a certain probability of 1068 
occurring at every intermediate site between any pair of loci. Usually, the greater the distance 1069 
between the loci, the higher is the probability that recombination will have occurred in an 1070 
ancestor of the query genome, though the probability is not necessarily uniform across every 1071 
site. As seen in the previous section, it then becomes easy to associate HMM emission 1072 
probabilities at genomic sites with mutation rates and HMM transition probabilities between 1073 
latent haplotypes with recombination rates. Furthermore, in the above expressions first-order 1074 
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Markovian behavior is assumed, and the observed output genotype is seen to depend only on 1075 
the underlying haplotypes at that site alone (so-called output independence). This constrains the 1076 
type of HMMs considered here, but leaves open interesting future applications where such 1077 
assumptions are relaxed. 1078 
 The problem of identifying the best trajectory through haplotype space can be carried out 1079 
using the Viterbi algorithm(Viterbi 1967). This method solves the problem of maximizing the 1080 
probability of the trajectories through the latent space in time 𝑂((𝑁 × 𝑁)T𝐿), where 𝑁 is the 1081 
number of possible haploid states, i.e. the number of reference haplotypes, 𝑁 × 𝑁 is the 1082 
corresponding number of diploid states, and 𝐿 is the number of observed loci: 1083 

𝑀𝑜𝑠𝑡	𝑙𝑖𝑘𝑒𝑙𝑦	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = 	 argmax
U4
(6),U8

(9)∈ZU4(:),:
(6,9)[

:<6;4<6

:<>;4<.
𝑃]𝐺2^𝑍O

(#), 𝑍S
(T)_. 𝑃]𝑍O

(#), 𝑍S
(T)^𝐻_ 1084 

= argmax
U4
(6),U8

(9)∈ZU4(:),:
(6,9)[

:<6;4<6

:<>;4<.
𝑃]𝐺2 , 𝑍O

(#), 𝑍S
(T)^𝐻_	       (4) 1085 

where expressions for the two probabilities are given in Equations 2 and 3. In the Supplemental 1086 
Materials we provide further details on the equivalence between the optimization in Equation 1087 
(4) and the Viterbi algorithm. 1088 

A calculation of the argument of maximum probability occurs separately at each pair of 1089 
reference haplotypes and each locus, resulting in a set of best reference haplotypes at the 1090 
previous locus. These sets of best reference haplotypes must be stored in a backtrace vector that 1091 
is accessed at the last query site, when the best reference haplotypes at that site are traced back 1092 
to the corresponding haplotypes from the previous site, and so on, resulting in a complete set of 1093 
best-fit reference haplotypes at all observed query sites. However, the fact that the time 1094 
complexity scales with the square of the number of states places strain on computational 1095 
resources due to the need to account for 𝑁 × 𝑁 reference haplotype combinations for diploid 1096 
genomes. Additionally, the memory required to store the probabilities and the backtrace states 1097 
scales as 𝑂Y(𝑁 × 𝑁)𝐿[.  1098 
 We accordingly made modifications to the Viterbi algorithm to ameliorate these 1099 
pressures on computing resources: 1100 
1) We utilize the commonly employed logarithmic form of the Viterbi algorithm to prevent the 1101 

accumulation and subsequent round off of vanishingly small probability products. 1102 
2) Matrix methods. The probability vectors were encoded as Python numpy arrays. Under the 1103 

assumption of an unbiased transition matrix (as given in Equation S3, with no assumption of 1104 
subpopulation membership nor biased recombination), each argmax calculation in Equation 1105 
4 was calculated over an array whose elements were updated using the following simple 1106 
rules: 1107 
a. Let log 𝑣!(𝑗, 𝑘) be the log-probability vector (Equation S6). 1108 
b. log 𝑣!(𝑗, 𝑘) is a matrix indexed by every pair of reference haplotypes. For memory 1109 

purposes this matrix was flattened in 1D, keeping only the lower triangle of the matrix. 1110 
c. At each observed genotype locus, initialize log 𝑣!(𝑗, 𝑘) = log 𝐸!

A:(𝑗, 𝑘), the vector of 1111 
precalculated log-emission-probabilities for each pair of reference haplotypes and the 1112 
observed genotype.  1113 
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d. For 𝑙 = 1, set log 𝑣#(𝑗, 𝑘) = log \6
+6(O,S)
&9

, with the assumption of equal likelihood of all 1114 
reference haplotypes at the first observed locus. 1115 

e. Define 𝑇60 = log u𝑒>
?:
. + #>4@

?:
.

&
v and 𝑇6RR = log u#>4

@
?:
.

&
v. 1116 

f. Define the matrix ∆(𝑗, 𝑘) 	= log 𝑣!>#(𝑗, 𝑘) + 2𝑇6RR 1117 
g. For every pair of reference haplotypes (𝑗, 𝑘), update all elements in the same row and 1118 

column: ∆(𝑗, . )	+= 	𝑇60 − 𝑇6RR and ∆(. , 𝑘)	+= 	𝑇60 − 𝑇6RR. 1119 
h. Find the maximum log-probability 𝑀(𝑗, 𝑘) = max

1.O
∆(𝑖, 𝑗) and the corresponding 1120 

arguments 𝐵𝑇(𝑗, 𝑘) = argmax
V,^

∆(𝛼, 𝛽), where the last term is the backtrace vector.  1121 

i. Repeat steps (f)-(h) for all haplotype pairs. Note the matrix ∆(𝑗, 𝑘) is reinitialized every 1122 
time in step (f). 1123 

j. Importantly, we modified the previous step to include all pairs of haplotypes that were 1124 
within a certain range of the absolute maximum (by default, the cutoff was set as 1125 
|𝑀(𝑗, 𝑘)| − 0.01 ∗ |𝑀(𝑗, 𝑘)|. We did this as, given the assumed sparsity of the data, it was 1126 
likely that multiple haplotypes would match exactly or nearly so. Additionally, this looser 1127 
definition of maximization also compensates any rounding-off errors that may have 1128 
caused two similar paths to deviate in log-probability. Changing this parameter could also 1129 
allow the user to discover sub-optimal paths as well, if desired. 1130 

k. Update log 𝑣!(𝑗, 𝑘)+= 𝑀(𝑗, 𝑘). 1131 
l. Repeat steps (c)-(k) for every observed genotyped site. 1132 
m. When 𝑙 = 𝐿, the process is terminated by finding 𝑀 = max

V,^
log 𝑣$(𝛼, 𝛽) and 𝐵𝑇 =1133 

𝐴𝑙𝑙	(𝑗, 𝑘)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	|log 𝑣$(𝑗, 𝑘)| 	≥ 	 |𝑀| − 0.01 ∗ |𝑀|. 1134 
n. Using this terminal set of 𝐵𝑇, the corresponding backtrace values for each selected pair 1135 

of reference haplotypes are chosen and traced all the way back to the first observed site. 1136 
This results in a set of trajectories that may fork and merge, and which form the basis of 1137 
the subsequent phenotypic inference. 1138 

3) Memory constraints. The scaling of the matrices with the number of pairs of reference 1139 
haplotypes puts significant constraints on the reference database that can be considered at 1140 
any point in the analysis. We discuss two of the modules constructed to address memory 1141 
issues in later subsections, and focus here on the treatment of the backtrace vector used in 1142 
all the modules. Instead of explicitly storing the backtrace vector in RAM, we use the Python 1143 
package gzip to write the backtrace vector determined for each observed site directly to a 1144 
gzipped file. We used the same strategy to read through the gzipped file during the final stage 1145 
of recovering the best-fit trajectories. 1146 

 1147 
PLIGHT Framework: Parallelization, Truncation and Iterative Schemes 1148 
 We created 3 separate modules in our package: first, the module PLIGHT_Exact encodes 1149 
the full Li-Stephens HMM as described above; second, we created a module PLIGHT_Truncated 1150 
that truncates the possible trajectory extensions at each observed site to a fraction of the total 1151 
possible state space to reduce the memory requirements; third, we created a module 1152 
PLIGHT_Iterative that slices up the total reference space into randomly chosen, more tractable 1153 
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subsets, runs PLIGHT_Exact on the subsets and pools the best states for a rerun. 1154 
PLIGHT_Truncated was created to consider means of reducing the memory footprint on hard 1155 
drives, as the backtrace vectors in the HMM model can occupy a significant amount of space. 1156 
However, the amount of RAM consumed by PLIGHT_Truncated remains essentially the same as 1157 
PLIGHT_Exact. The PLIGHT_Iterative algorithm was designed to ameliorate both the hard disk 1158 
and RAM costs of the model, and is thus the preferred method for reference databases beyond 1159 
~500 reference haplotypes. In the following, we describe both the parallelization procedure for 1160 
speed-up, and the additional steps taken in the last two modules, which are, in general, 1161 
approximations of the full model. However, we show that the approximations often approach 1162 
the full model when judicious choices of the parameters are made. Additionally, for the first 1163 
module, we explicitly design a function for the case where the genotyped individual is known to 1164 
lie within the reference database, as this problem involves a significantly more restricted search 1165 
(being one-dimensional in the search for genotypes versus the two-dimensional case of pairs of 1166 
haplotypes), with the recombination rate set to 0. This version of the PLIGHT_Exact algorithm is 1167 
referred to as the PLIGHT_InRef algorithm. 1168 
 1169 
Parallelization scheme. In all three modules, we enable the usage of Python’s multiprocessing 1170 
scheme to run the calculations over every set of haplotype pairs in parallel. This greatly improves 1171 
the speed of the analysis, as the matrix manipulations are some of the more time-consuming 1172 
steps. 1173 
 1174 
Truncation scheme. In the PLIGHT_Truncated module, at every observed site we truncate the 1175 
possible haplotype states by choosing the top 𝑇 sets of (𝛼, 𝛽) pairs. This scheme was inspired by 1176 
similar techniques employed in the Eagle2 imputation program (Loh et al. 2016). The main 1177 
premise of this approximation is after a certain number of observed loci, only a fraction of a the 1178 
total number of trajectories will meaningfully contribute to the best-fit states, and allow the 1179 
retention of only a fraction of the total number of states in memory. We discuss the details of 1180 
this method and its associated results in the Supplemental Materials, as it mainly serves to 1181 
demonstrate the compressibility of many trajectories. 1182 
 1183 
Iterative scheme. In the PLIGHT_Iterative module, the following sequence of steps are run: 1184 
a. Set a tractable subgroup size 𝑆EC for a single run of the full HMM model 1185 
b. Randomly shuffle the identities of the reference haplotypes, and chunk the full reference 1186 

haplotype into subgroups of size 𝑆EC. 1187 
c. Run the full HMM model as described in the section Hidden Markov Model optimization for 1188 

each subgroup. 1189 
d. Repeat steps (b) and (c) a user-defined 𝑛1947  times. 1190 
e. Pool together all the best-fit haplotypes from each of the subgroups and each of the 1191 

iterations; best-fit pairs are separated into their constituent haplotypes at this stage. 1192 
f. This pooled set is fed back into step (b) and the process is repeated until: 1193 

i. The length of the pooled list is smaller than 𝑆EC; or 1194 
ii. The current pooled list is identical to the list derived during the previous pooling 1195 

step; or 1196 
iii. The current pooled list is larger in size than the previous pooled list. 1197 
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g. Once the outermost loop over pooling steps is exited, the full module is run on the final best-1198 
fit list of haplotypes, with the output being a file with the best-fit pairs of haplotypes chosen 1199 
from the final pooled list. 1200 

h. The parallelization is run over the calculations in step (c) as before. 1201 
 1202 

The trade-off here is, of course, between speed and memory usage. Searching through large 1203 
databases could take significantly longer even when distributed in this manner, but the memory 1204 
burden is substantially alleviated. 1205 

An issue related to the subdivision process is that the globally optimal combinations of 1206 
haplotypes, as obtainable in an exact Li-Stephens HMM algorithm, may not co-occur in the 1207 
subgroups defined in this approximate algorithm. This “mixing problem” is dealt with in two 1208 
ways: for the inner loop, we run the (subdivision + Exact HMM) process 𝑛1947  times, with each 1209 
iteration involving a random subdivision of the input haplotypes and a subsequent running of the 1210 
HMM for each subdivision in each iteration (total HMMs run: 𝑛1947 × 𝑛E3_C763`E, with 𝑛C763`E = 1211 
number of subgroups required to include all input haplotypes at this stage); for the outer loop, 1212 
we obtain the union of the best-fit haplotypes across all 𝑛1947 × 𝑛E3_C763`E runs and use this set 1213 
of haplotypes as the input set for the next round of random subdivisions. Note that for the union 1214 
set in the outer loop, we only include the identities of the haplotypes and none of the haplotype 1215 
combinations from the inner loop HMM runs. The idea is that if certain haplotypes have 1216 
significant contributions to any segments of the genotype match, they will be retained through 1217 
the different stages and allowed to combine with many other haplotypes. The loops are exited if 1218 
there is no change in the set of best-fit haplotypes, or if the best-fit list from one iteration of the 1219 
outer loop is larger than that from the previous iteration (to prevent infinite loops of iteration), 1220 
or if the set of best-fit haplotypes can be determined by a single run of PLIGHT_Exact. If the loop 1221 
exits with a large number of best-fit haplotypes, we recommend rerunning the code (to allow the 1222 
randomness to explore different trajectories) or modifying the parameters (such as the 1223 
recombination rates or 𝑛1947). 1224 
 1225 
PLIGHT Framework: Visualization and analysis module 1226 
To help visualize the full set of trajectories through the reference haplotype space, we 1227 
constructed a processing and visualization module, termed PLIGHT_Vis. For the trajectory 1228 
representation step, the most efficient way of representing the multiple possible trajectories 1229 
with potential overlap was to create a series of multiply-linked lists. This involved reading through 1230 
the output list of best-fit nodes from the HMM modules, with each set of nodes being laid down 1231 
in the graph in reverse order from the final observed genotype site to the first. At every observed 1232 
site, the union set of nodes (i.e. with no repeated nodes, even if the same node appears in several 1233 
parallel trajectories) are laid out and their connectivity with the soon-to-be-added layer at the 1234 
previous site is established. This continues until the whole graph is constructed. The Python 1235 
package matplotlib is then used to generate a visual representation of the graph with the help of 1236 
the linked lists. Arrows connect nodes (represented as dots) at one observed site to their 1237 
corresponding antecedents at the next observed site. The reference sample identities of the two 1238 
inferred haplotypes at each node are printed above and below the dots.  1239 
Additionally, we provide two simple analysis tools as well:  1240 
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1. For each chromosome, we identify the maximally represented inferred haplotype at each 1241 
observed site and provide this information at the top of the visualization.  1242 

2. For cross-chromosome quantification of the most representative trajectories, we score each 1243 
trajectory in each chromosome by a weighted sum,  1244 
𝑆𝑐𝑜𝑟𝑒(𝑡𝑟) = 	∑ ∑ 𝑃(ℎ|𝑐ℎ𝑟)𝑃(𝑐ℎ𝑟)&ABC

8D7"#
?(97)
D"#   1245 

where	𝐻(𝑡𝑟) = Number of unique haplotypes within trajectory 𝑡𝑟, 𝑃(ℎ|𝑐ℎ𝑟) = Probability of 1246 
instances of haplotype 𝑖 occurring in the predicted trajectory set for chromosome 𝑐ℎ𝑟, 1247 
𝑃(𝑐ℎ𝑟) = Probability of each chromosome, taken to be a uniform distribution ⇒ 𝑃(𝑐ℎ𝑟) =1248 
	 #
&ABC

. 𝑃(ℎ|𝑐ℎ𝑟) is calculated as the fraction of trajectories for a given chromosome within 1249 
which the haplotype ℎ occurs. The score of each trajectory is therefore the sum of the cross-1250 
chromosome probability of a haplotype being found in the prediction, taken over all unique 1251 
haplotypes in that trajectory. The cross-chromosome consensus trajectories with the 1252 
maximum score in each chromosome are stored in a file. This weighting heuristic was chosen 1253 
with the intention of identifying trajectories in each chromosome that share significant 1254 
information with trajectories in all other chromosomes.  1255 

 1256 
PLIGHT Framework: Quantitative Metrics  1257 
We output four quantitative metrics for each of the algorithms . The first is the log-probability 1258 
associated with the most likely trajectories, log 𝑃]𝐺2 , 𝑍O

∗(#), 𝑍S
∗(T)^𝐻_, where `𝑍O

∗(#), 𝑍S
∗(T)a 1259 

represent the most likely trajectories. This metric is dependent on the number and MAF of the 1260 
SNPs, as well as the degree of matching to the reference database haplotypes. Accordingly, this 1261 
metric is not comparable across query SNP sets, but can be used to diagnose whether the same 1262 
query set matches differently to a different reference database or with a different run of 1263 
PLIGHT_Iterative (which has a certain degree of stochasticity).  1264 
 The second metric is the logarithm of the joint likelihood of the SNPs conditional on the 1265 
HMM model under consideration: 1266 

log(𝑃?@@) ≡ log 𝑃 ]𝐺2 = T𝐺2,!U!"#
$ ^𝐻_ 1267 

This value is calculated as the total probability of the last step of the HMM, 1268 
𝑃 ]𝐺2 = T𝐺2,!U!"#

$ ^𝐻_ = ∑ 𝑃]𝐺2 , 𝑍O
(#), 𝑍S

(T)^𝐻_U4
(6),U8

(9) .  1269 

 1270 
The third metric is the logarithm of the likelihood of observing the SNPs assuming they are all 1271 
under Hardy-Weinberg equilibrium (HWE): 1272 

log(𝑃?b\) ≡ log�𝑃?b\Y𝐺2,!Z𝐻[
!

 1273 

where 𝑃?b\Y𝐺2,!Z𝐻[ = �
2
𝐺2,!

� (𝑀𝐴𝐹!)AD,: . (1 − 𝑀𝐴𝐹!)T>AD,:  1274 

 1275 
The final metric is the logarithm of the likelihood of observing the genotypes assuming 1276 
independence, i.e. instead of the alleles being under HWE, this just assumes that reference 1277 
database captures the true independent probabilities of the diploid genotypes: 1278 
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log(𝑃AB) ≡ log�𝑃ABY𝐺2,!Z𝐻[
!

 1279 

where 𝑃ABY𝐺2,!Z𝐻[ = 	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	𝑜𝑓	𝐺2,! 	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1280 
The log(𝑃AB) is especially relevant for PLIGHT_InRef, where the genotypes are matched and not 1281 
pairs of haplotypes. 1282 
 1283 
 1284 
PLIGHT Framework: Sanitization Module 1285 
 To help guide the decisions behind which SNPs to publish, we provide a simple tool for 1286 
pruning a single SNP from the query set, based on the results of running PLIGHT. This tool, termed 1287 
PLIGHT_SanitizeGenotypes, operates as follows: 1288 
1. The best-fit trajectories from a previous PLIGHT run are passed as input. 1289 
2. The SNPs for which the number of unique haplotype pairs (𝑁/?') is the least are identified 1290 

(see Supplemental Fig S8). That is, for each SNP, the total number of unique haplotype pairs 1291 
in the trajectories at that locus are counted, and those SNPs which have the smallest number 1292 
are flagged. These subsets of query SNPs have the lowest “entropy” in terms of reference 1293 
database matches, and are likely to contribute to easy reidentification. Formally, 𝑁/?'(𝑙) =1294 
𝑁𝑜. 𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑝𝑎𝑖𝑟𝑠	𝑜𝑓	{𝑗(𝑙), 𝑘(𝑙)}	𝑖𝑛	𝑡ℎ𝑒	𝑏𝑒𝑠𝑡 − 𝑓𝑖𝑡	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠	𝑎𝑡	𝑙𝑜𝑐𝑢𝑠	𝑙. 1295 

3. We then rank these SNPs by MAF, and remove the one with the lowest MAF from the query 1296 
list. A new, pruned query list is then generated and run through PLIGHT again.  1297 

This process can be repeated for every SNP a user chooses to remove. 1298 
 We describe the particular strategies employed for the demonstration in the Results 1299 
section. The metrics considered are defined as follows. 1300 
1. Total informational entropy of the identified individuals: 𝑆J0K = −∑ 𝑃S . log 𝑃S

&EFG
S"# , where 1301 

𝑁J0K = 𝑁𝑜. 𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑎𝑐𝑟𝑜𝑠𝑠	𝑎𝑙𝑙	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠	𝑖𝑛	𝑎	𝑠𝑖𝑛𝑔𝑙𝑒	𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑟𝑢𝑛,  and 𝑃S =1302 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑘	𝑎𝑐𝑟𝑜𝑠𝑠	𝑎𝑙𝑙	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠	𝑖𝑛	𝑎	𝑠𝑖𝑛𝑔𝑙𝑒	𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑟𝑢𝑛1303 
. This is a measure of the diversity of individuals identified in an inference run. 1304 

2. Maximum probability of observing any of the two source individuals in the trajectory: 1305 
𝑃@LM%63784 = max

S∈%63784
𝑃S, where 𝑃S is defined in the preceding. This is a measure of how 1306 

identifiable (either of) the source individuals are.  1307 
3. Per-SNP entropy of identified individuals, if either of the source individuals is found at that 1308 

SNP:𝑆'47>%&'(𝑙) =1309 
−∑ 𝑃S(𝑙). log 𝑃S(𝑙)

&EFG(!)
S"# 	𝑖𝑓	𝑡ℎ𝑒	𝑠𝑜𝑢𝑟𝑐𝑒	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑖𝑠	𝑓𝑜𝑢𝑛𝑑	𝑎𝑡	𝑆𝑁𝑃	𝑖, where 𝑁J0K(𝑖) =1310 

𝑁𝑜. 𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑎𝑡	𝑆𝑁𝑃	𝑖, and 𝑃S(𝑖) =1311 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑘	𝑎𝑐𝑟𝑜𝑠𝑠	𝑎𝑙𝑙	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠	𝑎𝑡	𝑆𝑁𝑃	𝑖. This is a 1312 
measure of the observed diversity in inferred individuals at each SNP position.  1313 

  1314 
Simulation of samples 1315 
Our evaluation of the performance of the code was often conducted on simulated data. For the 1316 
analysis of individuals known to be within the reference database, we selected a single individual 1317 
at random from the reference database. For the analysis of mosaic genotypes, we selected two 1318 
or more individuals at random. For all the individuals in a given simulation we created a genotype 1319 
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sample using the following methods. To spread out the selected SNPs across the genome, we 1320 
only choose SNPs ordered along the chromosome with a probability 𝑝~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1,0.003). 1321 
Each SNP thus chosen is randomly mutated at the rate 𝜆 = 	 W

T(&,	W)
 at each site (i.e. each SNP has 1322 

a probability of being mutated to a new value given by Table 4). If the final genotype at the SNP 1323 
is heterozygous or homozygous in the alternate allele, we select that SNP in our final list. Note 1324 
that this selection process is meant to mimic the case where only alternative alleles are obtained, 1325 
and the reference alleles are left out. However, this can also lead to an apparent inflation of the 1326 
mutation rate, as unmutated, homozygous reference alleles are left out. In the results shown 1327 
below, this inflation of the apparent mutation rate is implicitly assumed.  1328 

For the individual-in-the-reference case, this sampling method directly provides the input 1329 
dataset. For the mosaic case, we divide each chromosome into a set of segments (for example, 1330 
two segments for a mosaic of two reference individuals) and assign the genotypes of different 1331 
individuals, mutated in the above fashion, to each of the segments. 1332 
 1333 
Mosaic genome reconstruction 1334 
To validate the inferred trajectories against the query genomes, we need to reconstruct the 1335 
mosaic genomes based on the labels inferred. To do so, we essentially grab segments from the 1336 
reference vcf file corresponding to the reference haplotypes inferred in each trajectory: for 𝒯 =1337 
	{𝑗(𝑙), 𝑘(𝑙)}!"#$ , we have 𝐿 − 1 segments to reconstruct; for each segment (defined in the 1338 
following), we extract all the SNP haplotypes for reference haplotypes 𝑗 and 𝑘, combining their 1339 
values at each position to get the inferred genotype. The genomic segments of identified 1340 
individuals at each SNP were constructed according to: 𝑆𝑡𝑎𝑟𝑡	𝑜𝑓	𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑖 =1341 
%&'H@6,%&'H

T
; 𝐸𝑛𝑑	𝑜𝑓	𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑖 = 	 %&'H,%&'HI6

T
; where 𝑆𝑁𝑃1 = 𝐺𝑒𝑛𝑜𝑚𝑖𝑐	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	𝑆𝑁𝑃	𝑖, 1342 

and the first segment started at 𝑆𝑁𝑃# and the last segment ended at 𝑆𝑁𝑃$. We store the results 1343 
of this reconstruction in a vcf file. 1344 
 1345 
Analysis of SNPs derived from coffee cups 1346 
The query SNPs derived from a single genotyped individual were obtained from samples collected 1347 
as part of our previously published analysis (Gürsoy et al. 2020). These include Illumina Whole 1348 
Genome Sequencing (WGS) results from swabs of coffee cups, as well as gold-standard blood 1349 
tissue samples from the same individuals. In brief, a QIAmp DNA Investigator Kit was used to 1350 
purify DNA from the coffee cup swabs; the DNA was PCR-amplified using a REPLI-g Single Cell Kit; 1351 
for the tissue samples, purified PCR-free DNA was directly used; all samples subsequently 1352 
underwent Illumina WGS. The resulting fastq files were mapped to the hg19 reference genome 1353 
(b37 assembly) using bwa (Li and Durbin 2009), with the BAM outputs being de-duplicated using 1354 
Picard tools. Finally, the de-duplicated BAM files were processed utilizing GATK (DePristo et al. 1355 
2011; Van der Auwera et al. 2013) to produce variant call sets in vcf format from both genotyping 1356 
assays. For further details on sample and data processing, see ref. (Gürsoy et al. 2020). All 1357 
genotypes were unphased, and so when the blood tissue sample is used as a reference, we 1358 
arbitrarily phase the data; e.g., a genotype call of “0/1” gets distributed with “0” to the first 1359 
haplotype and “1” to the second. 1360 
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The coffee-cup-based genotypes serve as the noisy, sparse dataset, while the blood-1361 
tissue-based results form the higher quality baseline for comparison. The vcf coordinates are 1362 
defined according human genome reference assembly GRCh37, using the reference fasta file 1363 
human_g1k_v37.fasta.gz (ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference), the same 1364 
as for the 1000 Genomes Phase 3 database. This registers the vcf files from the coffee cups and 1365 
from the reference database of the 1000 Genomes project in the same coordinate system, an 1366 
essential requirement for PLIGHT to identify matches between the query and reference datasets.   1367 

Using mosaic genome reconstructions, we assessed the accuracy to which we could 1368 
impute all SNPs across the full range of observed SNP loci. The accuracy metrics included a 1369 
straightforward calculation of the fraction of SNPs correctly identified (only exact matches of the 1370 
genotypes), as well as measure of the degree to which the inferred trajectory matched the query 1371 
genome, with the contribution from each SNP weighted by a function of the genotype frequency: 1372 

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒	𝐶 = 	 #
&-./

∑ ]1 − 𝑝E(𝐺E𝒯)_.
dT>eA0𝒯>A0

Kef

T
&-./
E"#    1373 

 (6) 1374 
The score 𝐶 finds the total degree of correspondence between the set of query individual 1375 
genotypes, T𝐺E

gU
E"#

&-./, and the set of genotypes for trajectory 𝒯, {𝐺E𝒯}E"#
&-./, where 𝑁%&' is the 1376 

total number of overlapping SNPs defined in the vcf files of the reference database and the query 1377 
individual between the first observed SNP and the last observed SNP. Next, Z𝐺E𝒯 − 𝐺E

gZ quantifies 1378 
the deviation of the genotype dosage of 𝒯 from that of the query 𝑄 at SNP position 𝑠, and is 1379 
subtracted from 2 and divided by 2 to set a score scale where 0 corresponds to maximal deviation 1380 
of 𝒯 from 𝑄 and 1 corresponds to a perfect match between the two. Finally, 𝑝E(𝐺E𝒯) is the 1381 
genotype frequency (as opposed to the allele frequency) of the SNP dosage 𝐺E𝒯, which is the 1382 
probability that trajectory 𝒯 could have a given dosage at random based on population 1383 
occurrence frequencies. The heuristic ]1 − 𝑝E(𝐺E𝒯)_ is therefore a measure of the non-1384 
randomness of the trajectory SNP dosage. In summation, 𝐶 = 0 would occur if no SNPs matched 1385 
between 𝒯 and 𝑄 and/or the SNPs occurred in the reference population at 100% frequency, while 1386 
𝐶 = 1 would occur if 𝒯 and 𝑄 agreed at every SNP position and the SNPs were extremely rare 1387 
(and so the matching of the two is very likely to be a non-random occurrence). 1388 
 We compared the fraction of correct SNPs and the correspondence scores for our 1389 
trajectories to the equivalent scores calculated on a set of 99 randomly selected genomes from 1390 
the 1000 Genomes database to assess if these scores were significant. 1391 
 1392 
Polygenic risk score calculation 1393 
To quantify some of the risks associated with the pooling of information across multiple 1394 
genotypic trajectories, we performed approximate calculations of the linear polygenic risk scores 1395 
(PRSs) based on all the SNP associations in the GWAS catalog version 1.0.2 (Buniello et al. 2019). 1396 
We first identified all the individuals in each of the trajectories of a single HMM run. We then 1397 
constructed the diploid mosaic genome of the query individual based on each HMM trajectory 1398 
as described in the previous subsection on mosaic genome reconstruction. The resulting 1399 
genotypes are then used to calculate the PRSs for each phenotype 𝑦 and each individual 𝑛 as:  1400 
𝑃𝑅𝑆(𝑦, 𝑛) = ∑ 𝛽1𝑥10

Q(h)
1"# ,          (5) 1401 
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where 𝛽1 = 𝑆𝑖𝑔𝑛𝑒𝑑	𝑒𝑓𝑓𝑒𝑐𝑡	𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑟𝑖𝑠𝑘	𝑎𝑙𝑙𝑒𝑙𝑒	𝑎𝑡	𝑆𝑁𝑃	𝑖,  1402 
𝑥10 ∈ {0,1,2} = 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑛	𝑎𝑡	𝑆𝑁𝑃	𝑖,  1403 
and 𝑅(𝑦) = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑖𝑠𝑘	𝑎𝑙𝑙𝑒𝑙𝑒𝑠	𝑓𝑜𝑟	𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑦.  1404 

The PRS is very approximate in the sense that no SNP filtering was conducted beyond 1405 
those presented in the GWAS catalog, either by p-value or by LD with other associated SNPs. 1406 
However, the aim here is merely to determine whether there are aggregate properties across the 1407 
genome that can be inferred using our approach. We calculated the Pearson’s correlation 1408 
between the PRSs of the true samples and the best-fit mosaic genomes within the regions and 1409 
chromosomes sampled. All traits for which the PRS of the true sample was non-zero (‘non-zero 1410 
traits’) were included. To assess whether the PRS correlations between the true individual and 1411 
inferred mosaic genomes were statistically significant, we sampled a background set of ~100 1412 
individuals from the 1000 Genomes dataset that did not occur in any of the test sets we ran, and 1413 
calculated the PRSs for the non-zero traits.  1414 

We ran several statistical tests to assess the correspondence in PRSs between the true 1415 
samples and the best-fit mosaic genomes, relative to the background scores: (1) evaluated the 1416 
cosine similarity between the true and mean values of the best-fit scores, and compared to the 1417 
mean value of the background scores; (2) carried out the same analysis as in (1) but only for those 1418 
traits that had more than one GWAS SNP in the regions sampled (so as to remove traits that 1419 
trivially had a single SNP); (3) carried out the same analysis as in (1) but only for those traits for 1420 
which the true sample had an absolute Z-score > 2 (i.e. traits for which the true sample itself is 1421 
an outlier relative to the background); and (4) evaluated the cosine similarity between the true 1422 
sample and each of the best-fit mosaic genomes, and then found the mean of the cosine similarity 1423 
values (same for the background). 1424 

For the “Height” phenotype PRS analysis, we engineered query sets for chromosomes 3 1425 
and 6 by identifying the “Height” GWAS SNPs on the respective chromosomes as represented in 1426 
the GWAS catalog. We found all SNPs within ±2 kb of the GWAS loci, and then randomly selected 1427 
90 SNPs per chromosome as our query sets. We ran PLIGHT_Iterative with 𝑛1947 = 20 and 𝑆EC =1428 
300 using the full 1000Genomes cohort, constructed the mosaic genomes from the best-fit 1429 
trajectories, and calculated the PRSs for those GWAS SNPs that were within the same ±2 kb 1430 
windows of our query SNPs. The result was a PRS calculation over 26 GWAS SNPs for both 1431 
chromosomes (it was coincidental that the GWAS SNP numbers were the same for both 1432 
chromosomes). We ran the two-sided one- or two-sample t-tests using the base R function t.test.  1433 
  1434 
Data Access 1435 
 We have made our software available for download at 1436 
https://github.com/gersteinlab/PLIGHT. We provide information on the software requirements, 1437 
parameter options and examples on how to run the code. We also provide timing benchmarks 1438 
for each of the algorithms. In addition, the source code is provided as a compressed folder 1439 
containing the Python scripts, uploaded as Supplemental Materials. 1440 
 1441 
Competing Interests Statement 1442 
The authors declare no competing interests. 1443 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

Acknowledgments 1444 
The authors would like to thank Hussein Mohsen for his helpful comments on the manuscript. 1445 

References 1446 
Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, Clark AG, Donnelly 1447 

P, Eichler EE, Flicek P, et al. 2015. A global reference for human genetic variation. Nature 1448 
526: 68–74. 1449 

Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, Rodriguez-Cintron W, 1450 
Chapela R, Ford JG, Avila PC, et al. 2012. Fast and accurate inference of local ancestry in 1451 
Latino populations. Bioinformatics 28: 1359–1367. 1452 

Bercovici S, Meek C, Wexler Y, Geiger D. 2010. Estimating genome-wide IBD sharing from SNP 1453 
data via an efficient hidden Markov model of LD with application to gene mapping. 1454 
Bioinformatics 26: 175–182. 1455 

Buniello A, Macarthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, 1456 
Morales J, Mountjoy E, Sollis E, et al. 2019. The NHGRI-EBI GWAS Catalog of published 1457 
genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic 1458 
Acids Res 47: D1005–D1012. 1459 

de Vries JH, Kling D, Vidaki A, Arp P, Kalamara V, Verbiest MMPJ, Piniewska-Róg D, Parsons TJ, 1460 
Uitterlinden AG, Kayser M. 2022. Impact of SNP microarray analysis of compromised DNA 1461 
on kinship classification success in the context of investigative genetic genealogy. Forensic 1462 
Sci Int Genet 56: 102625. 1463 
https://www.sciencedirect.com/science/article/pii/S1872497321001617. 1464 

DePristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, Philippakis AA, del Angel G, 1465 
Rivas MA, Hanna M, et al. 2011. A framework for variation discovery and genotyping using 1466 
next-generation DNA sequencing data. Nat Genet 43: 491–498. 1467 
https://doi.org/10.1038/ng.806. 1468 

Durbin R. 2014. Efficient haplotype matching and storage using the positional Burrows-Wheeler 1469 
transform (PBWT). Bioinformatics 30: 1266–1272. 1470 

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. 1471 
2009. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323: 133–1472 
138. https://doi.org/10.1126/science.1162986. 1473 

Erlich Y, Narayanan A. 2014. Routes for breaching and protecting genetic privacy. Nat Rev Genet 1474 
15: 409–421. 1475 

Federal Bureau of Investigation. Combined DNA Index System (CODIS). 1476 
https://www.fbi.gov/services/laboratory/biometric-analysis/codis (Accessed October 22, 1477 
2021). 1478 

Gürsoy G, Emani P, Brannon CM, Jolanki OA, Harmanci A, Strattan JS, Cherry JM, Miranker AD, 1479 
Gerstein M. 2020. Data Sanitization to Reduce Private Information Leakage from 1480 
Functional Genomics. Cell 183: 905-917.e16. https://doi.org/10.1016/j.cell.2020.09.036. 1481 

Gürsoy G, Lu N, Wagner S, Gerstein M. 2021. Recovering genotypes and phenotypes using 1482 
allele-specific genes. Genome Biol 22: 263. https://pubmed.ncbi.nlm.nih.gov/34493313. 1483 

Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. 2013. Identifying Personal Genomes by 1484 
Surname Inference. Science 339: 321 LP – 324. 1485 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

http://science.sciencemag.org/content/339/6117/321.abstract. 1486 
Harmanci A, Gerstein M. 2016. Quantification of private information leakage from phenotype-1487 

genotype data: Linking attacks. Nat Methods 13: 251–256. 1488 
Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, Pearson J V., Stephan DA, 1489 

Nelson SF, Craig DW. 2008. Resolving individuals contributing trace amounts of DNA to 1490 
highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet 4. 1491 

Howie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method 1492 
for the next generation of genome-wide association studies. PLoS Genet 5. 1493 

Im HK, Gamazon ER, Nicolae DL, Cox NJ. 2012. On sharing quantitative trait GWAS results in an 1494 
era of multiple-omics data and the limits of genomic privacy. Am J Hum Genet 90: 591–1495 
598. http://dx.doi.org/10.1016/j.ajhg.2012.02.008. 1496 

International HapMap Consortium. 2003. International HapMap Consortium. The International 1497 
HapMap Project. Nature 426: 789–796. 1498 

Jain M, Olsen HE, Paten B, Akeson M. 2016. The Oxford Nanopore MinION: delivery of 1499 
nanopore sequencing to the genomics community. Genome Biol 17: 239. 1500 
https://doi.org/10.1186/s13059-016-1103-0. 1501 

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. 1502 
Bioinformatics 25: 1754–1760. https://doi.org/10.1093/bioinformatics/btp324. 1503 

Li N, Stephens M. 2003. Modeling Linkage Disequilibrium and Identifying Recombination 1504 
Hotspots Using Single-Nucleotide Polymorphism Data. Genetics 165: 2213–2233. 1505 

Lin Z, Owen AB, Altman RB. 2004. Genomic Research and Human Subject Privacy. Science 305: 1506 
183. 1507 

Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, Schoenherr S, Forer L, 1508 
McCarthy S, Abecasis GR, et al. 2016. Reference-based phasing using the Haplotype 1509 
Reference Consortium panel. Nat Genet 48: 1443–1448. 1510 

Lunter G. 2019. Haplotype matching in large cohorts using the Li and Stephens model. 1511 
Bioinformatics 35: 798–806. 1512 

Marchini J, Howie B. 2010. Genotype imputation for genome-wide association studies. Nat Rev 1513 
Genet 11: 499–511. http://dx.doi.org/10.1038/nrg2796. 1514 

Marchini J, Howie B, Myers S, McVean G, Donnelly P. 2007. A new multipoint method for 1515 
genome-wide association studies by imputation of genotypes. Nat Genet 39: 906–913. 1516 

Meyer OS, Lunn MMB, Garcia SL, Kjærbye AB, Morling N, Børsting C, Andersen JD. 2020. 1517 
Association between brown eye colour in rs12913832:GG individuals and SNPs in TYR, 1518 
TYRP1, and SLC24A4. PLoS One 15: e0239131. 1519 
https://doi.org/10.1371/journal.pone.0239131. 1520 

Meyerson W, Leisman J, Navarro FCP, Gerstein M. 2020. Origins and characterization of 1521 
variants shared between databases of somatic and  germline human mutations. BMC 1522 
Bioinformatics 21: 227. 1523 

Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, Mallick S, Lazaridis I, 1524 
Nakatsuka N, Olalde I, Lipson M, et al. 2019. The formation of human populations in South 1525 
and Central Asia. Science 365. 1526 

Novak AM, Hickey G, Garrison E, Blum S, Connelly A, Dilthey A, Eizenga J, Elmohamed MAS, 1527 
Guthrie S, Kahles A, et al. 2017. Genome Graphs. bioRxiv. 1528 
https://www.biorxiv.org/content/early/2017/01/18/101378. 1529 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

Pasaniuc B, Kennedy J, Mandoiu I. 2009. Imputation-Based Local Ancestry Inference in Admixed 1530 
Populations. In Proceedings of the 5th International Symposium on Bioinformatics 1531 
Research and Applications, ISBRA ’09, pp. 221–233, Springer-Verlag, Berlin, Heidelberg 1532 
https://doi.org/10.1007/978-3-642-01551-9_22. 1533 

Paten B, Novak AM, Eizenga JM, Garrison E. 2017. Genome graphs and the evolution of genome 1534 
inference. Genome Res 27: 665–676. https://pubmed.ncbi.nlm.nih.gov/28360232. 1535 

Posey JE, O’Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, Buyske S, 1536 
Pehlivan D, Carvalho CMB, Baxter S, et al. 2019. Insights into genetics, human biology and 1537 
disease gleaned from family based genomic studies. Genet Med 21: 798–812. 1538 
https://doi.org/10.1038/s41436-018-0408-7. 1539 

Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, Beaty TH, Mathias R, Reich D, 1540 
Myers S. 2009. Sensitive detection of chromosomal segments of distinct ancestry in 1541 
admixed populations. PLoS Genet 5. 1542 

Raisaro JL, Tramér F, Ji Z, Bu D, Zhao Y, Carey K, Lloyd D, Sofia H, Baker D, Flicek P, et al. 2017. 1543 
Addressing Beacon re-identification attacks: Quantification and mitigation of privacy risks. 1544 
J Am Med Informatics Assoc 24: 799–805. 1545 

Raisaro JL, Troncoso-Pastoriza JR, El-Zein Y, Humbert M, Troncoso C, Fellay J, Hubaux JP. 2020. 1546 
Genoshare: Supporting privacy-informed decisions for sharing individual-level genetic 1547 
data. Stud Health Technol Inform 270: 238–241. 1548 

Rakocevic G, Semenyuk V, Lee W-P, Spencer J, Browning J, Johnson IJ, Arsenijevic V, Nadj J, 1549 
Ghose K, Suciu MC, et al. 2019. Fast and accurate genomic analyses using genome graphs. 1550 
Nat Genet 51: 354–362. https://doi.org/10.1038/s41588-018-0316-4. 1551 

Samani SS, Huang Z, Ayday E, Elliot M, Fellay J, Hubaux J-P, Kutalik Z. 2015. Quantifying 1552 
Genomic Privacy via Inference Attack with High-Order SNV Correlations. In 2015 IEEE 1553 
Security and Privacy Workshops, pp. 32–40, IEEE 1554 
https://ieeexplore.ieee.org/document/7163206/. 1555 

Sendorek DH, Caloian C, Ellrott K, Bare JC, Yamaguchi TN, Ewing AD, Houlahan KE, Norman TC, 1556 
Margolin AA, Stuart JM, et al. 2018. Germline contamination and leakage in whole genome 1557 
somatic single nucleotide variant detection. BMC Bioinformatics 19: 28. 1558 
https://doi.org/10.1186/s12859-018-2046-0. 1559 

Shringarpure SS, Bustamante CD. 2015. Privacy risks from genomic data-sharing beacons. Am J 1560 
Hum Genet 97: 631–646. http://dx.doi.org/10.1016/j.ajhg.2015.09.010. 1561 

Tillmar A, Grandell I, Montelius K. 2018. DNA identification of compromised samples with 1562 
massive parallel sequencing. Forensic Sci Res 4: 331–336. 1563 
https://pubmed.ncbi.nlm.nih.gov/32002491. 1564 

Turchi C, Onofri V, Melchionda F, Bini C, Previderè C, Carnevali E, Robino C, Sorçaburu-Ciglieri S, 1565 
Marrubini G, Pelotti S, et al. 2019. Dealing with low amounts of degraded DNA: Evaluation 1566 
of SNP typing of challenging forensic samples by using massive parallel sequencing. 1567 
Forensic Sci Int Genet Suppl Ser 7: 83–84. 1568 
https://www.sciencedirect.com/science/article/pii/S1875176819301404. 1569 

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, 1570 
Shakir K, Roazen D, Thibault J, et al. 2013. From FastQ data to high confidence variant calls: 1571 
the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma 43: 11.10.1-1572 
11.10.33. https://pubmed.ncbi.nlm.nih.gov/25431634. 1573 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Visscher PM, Hill WG. 2009. The limits of individual identification from sample allele 1574 
frequencies: Theory and statistical analysis. PLoS Genet 5: 1–6. 1575 

Viterbi A. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding 1576 
algorithm. IEEE Trans Inf Theory 13: 260–269. 1577 

Von Thenen N, Ayday E, Cicek AE. 2019. Re-identification of individuals in genomic data-sharing 1578 
beacons via allele inference. Bioinformatics 35: 365–371. 1579 

 1580 
 1581 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.07.18.452853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452853
http://creativecommons.org/licenses/by-nc-nd/4.0/

