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 Abstract 16 

Low-coverage or shallow whole genome sequencing (sWGS) approaches can efficiently detect 17 

somatic copy number aberrations (SCNAs) at low cost. This is clinically important for many cancers, 18 

in particular cancers with severe chromosomal instability (CIN) that frequently lack actionable point 19 

mutations and are characterised by poor disease outcome. Absolute copy number (ACN), measured 20 

in DNA copies per cancer cell, is required for meaningful comparisons between copy number states, 21 

but is challenging to estimate and in practice often requires manual curation. Using a total of 60 22 

cancer cell lines, 148 patient-derived xenograft (PDX) and 142 clinical tissue samples, we evaluate 23 

the performance of available tools for obtaining ACN from sWGS. We provide a validated and refined 24 

tool called Rascal (relative to absolute copy number scaling) that provides improved fitting algorithms 25 

and enables interactive visualisation of copy number profiles. These approaches are highly applicable 26 

to both pre-clinical and translational research studies on SCNA-driven cancers and provide more 27 

robust ACN fits from sWGS data than currently available tools.   28 
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 Introduction 29 

Somatic copy number alterations (SCNAs) are structural variants caused by ongoing chromosomal 30 

instability (CIN), and present as gain or loss of genomic regions that can include genes, regulatory 31 

elements, chromosome arms or whole chromosomes1–4. SCNAs affect a larger proportion of the 32 

genome than any other somatic alteration5–8, and are important drivers in many cancers5,7,9,10, 33 

particularly high CIN cancers, that typically lack actionable point mutations, are frequently associated 34 

with impaired DNA damage repair, and have poor treatment outcomes. Examples include high grade 35 

serous ovarian cancer (HGSOC)11–13, esophageal cancer14,15, head and neck cancer16,17, small cell 36 

lung cancer18,19, lymphoma20, neuroblastoma21, and triple negative breast cancer22,23. Reliable 37 

characterisation of SCNAs in the clinic can improve early detection of cancer24–26, and will be critical 38 

for molecular stratification of patients with high CIN cancers for targeted cancer therapies27,28.  39 

Despite their importance, it remains challenging to reliably identify and quantify SCNAs in commonly 40 

used laboratory cancer models and clinical samples. Massively parallel whole genome sequencing 41 

(WGS) based approaches have replaced older array-based methods to detect and estimate DNA 42 

copy number genome-wide29–31. However, these approaches usually require high sequencing depth 43 

associated with significant costs, or are highly sensitive to DNA quality, making them unsuitable for 44 

formalin-fixed paraffin-embedded (FFPE) tissues32, which are the most commonly available diagnostic 45 

samples.  46 

In contrast, low coverage or shallow whole genome sequencing (sWGS) offers a cost-effective 47 

alternative to detect SCNAs in various sample types, including FFPE samples33–35. Several read 48 

depth-based bioinformatic tools, such as QDNAseq35, have been developed to facilitate the detection 49 

of copy number changes from sWGS36, and outperform array-based methods37. sWGS applications 50 

also have significantly lower computational and data storage requirements in comparison to high 51 

coverage sequencing. Consequently, sWGS is now widely accessible in both clinical and research 52 

settings.  53 

The commonest representation of SCNAs is on a relative scale, in units of normalised read counts for 54 

a given genomic region relative to the median normalised read counts across the whole genome of a 55 

sample. However, relative measures of SCNAs are difficult to interpret because they do not provide 56 

direct information on a sample’s ploidy, are highly dependent on the tumour purity (the proportion of 57 

normal contaminating cells within a tumour sample) and may be further confounded by intra-tumour 58 
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heterogeneity. This means that SCNA estimates from samples in the same cohort, or even the same 59 

patient, are not directly comparable. Instead, SCNAs measured on an absolute scale (in ‘copies per 60 

cancer cell’) are required for accurate interpretation of copy number changes30 and inter-sample 61 

comparisons. Interpreting relative SCNA as absolute SCNA is a common mistake and results deriving 62 

from this misinterpretation overrepresent differences arising from tumour purities and ploidies rather 63 

than biological differences in the copy number landscape across different samples. While several 64 

deep WGS-based tools are already available to determine ACN, the capability to reliably assay 65 

absolute SCNAs from sWGS data is much less developed, making this analysis difficult for non-66 

experts. This deficiency frequently leads to deep WGS-based tools being used in a “black box” 67 

manner, leading to questionable results38. 68 

Here, we provide an overview of the underlying principles for determining absolute copy number 69 

(ACN) from sWGS and demonstrate the performance of currently available copy number tools for 70 

typical laboratory and translational experiments. We explore current challenges of estimating ACN by 71 

focussing on the three main confounding factors: 1) the tumour purity39, 2) the ploidy40 or average 72 

DNA content of a tumour, and 3) the extent of heterogeneous tumour cell populations from clonal 73 

evolution41. Understanding these well-established concepts and their involvement in determining copy 74 

number signal is critical to enable comparative and robust SCNA interpretation from cost-effective 75 

assays, such as sWGS. To make ACN data analyses widely accessible to the research community, 76 

we provide detailed insights into workflows and propose the use of an improved and validated tool, 77 

called Rascal (relative to absolute copy number scaling), which enables more robust ACN fitting from 78 

sWGS. Rascal is available as an R package as well as an interactive web application to visualise 79 

ACN data, choose between competing ACN solutions, and manually curate difficult-to-fit samples. 80 
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 Results 81 

 Evaluation of absolute copy number fitting tools on high purity samples 82 

Absolute copy number fitting from whole genome sequencing requires modelling of genomic copy 83 

number data as a function of the cell ploidy and tumour purity from the sample of interest (see 84 

Methods). The relative copy number obtained for any region of the genome will always reflect 85 

combined contributions from the tumour and normal contaminating diploid cells, depending on the 86 

sample’s tumour purity. For example, in a triploid tumour, a cellularity of 0.7 (i.e. 70% of cells are 87 

cancerous and 30% are normal) will lead to an observed copy number of 0.7 × 3 + 0.3 × 2 = 2.7. 88 

Thus, the major impact of contaminating normal cells is to reduce the copy number signal from cancer 89 

cells, resulting in lower gains and losses (Supplementary Fig. 1 and Supplementary Video 1). Several 90 

bioinformatic tools estimate purity and ploidy to facilitate ACN fitting (Extended Data Table 1 provides 91 

an overview and description of tools). Most tools, including TITAN42, and ASCAT43,44, were developed 92 

for the analysis of deep WGS/SNP array data, estimating allele-specific ACN with a focus on 93 

determining tumour heterogeneity and loss of heterozygosity. In addition to requiring high coverage 94 

sequencing data, many of these tools also rely on sequencing reads from matched normal samples. 95 

Matched normal or germline DNA, however, is often difficult to obtain for laboratory and clinical 96 

samples, and is not available for the vast majority of cancer cell lines. ACE45 is, to our knowledge, the 97 

only tool that has been specifically designed for sWGS data and does not require input from matched 98 

normal sequencing reads. However, ichorCNA25 and ABSOLUTE46, have also been applied to various 99 

sWGS-based studies, although both recommend the use of matched normal samples. 100 

To objectively evaluate the performance of ABSOLUTE, ichorCNA and ACE in common pre-clinical 101 

research settings, we used sWGS data from a total of 60 ovarian cancer cell lines and 148 PDX 102 

samples derived from 14 individual patients (Fig 1a). These sample types have high tumour purity, as 103 

confirmed by inspection of TP53 mutant allele fractions (MAFs) from Tagged-Amplicon sequencing47 104 

(TAmSeq) data (Supplementary Fig. 2), and therefore provide a simple setting for ACN fitting as only 105 

two confounding factors (ploidy and subclonality, but not purity) have to be considered. sWGS data 106 

from these datasets were analysed using QDNAseq to generate read count and segmented relative 107 

copy number data. ABSOLUTE, ichorCNA and ACE were then applied to estimate sample purity and 108 

ploidy. The best or highest ranked solution for each sample from each tool was taken forward for 109 

further analysis. Only 28–53% of cell lines and 49–82% of PDX samples were correctly estimated to 110 
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have a tumour purity of ≥ 90%, indicating a common bias for all three tools to significantly 111 

underestimate tumour purity (Fig. 1b-d). ACE and ichorCNA both performed better than ABSOLUTE 112 

(P = 1.7 × 10−14 and P = 2.4 × 10−12, respectively, paired one-sided Wilcoxon test comparing squared 113 

errors), with ACE having the lowest root mean square error (RMSE) of 0.22, followed by RMSE = 0.24 114 

for ichorCNA and RMSE = 0.45 for ABSOLUTE (Fig. 1e). This shows that current unsupervised fitting 115 

algorithms do not consistently yield correct ACN solutions from sWGS data.  116 

 117 

 Rascal – an improved method for accurate ACN fitting from sWGS data  118 

We next investigated why current tools frequently result in suboptimal fits, focussing on ACE. Our 119 

observations show that ACE underestimates tumour purity, particularly for samples with noisy copy 120 

number profiles. This bias occurs because ACE’s “goodness-of-fit” function computes differences 121 

between segmented copy numbers on the relative scale, where decreasing cellularity leads to more 122 

closely spaced copy number steps and thus smaller distances (Supplementary Fig. 1 and 123 

Supplementary Video 1). ACE provides customizable penalty factors which could compensate for low 124 

cellularity solutions and ploidies that diverge from the diploid state, but the ploidy factor is unsuitable 125 

for cancer types where whole genome duplication is frequent. Additionally, ACE restricts its solution 126 

space for copy number states to values ≤ 12, limiting its applicability to high CIN cancers—for 127 

example MYC amplifications of > 20 copies are frequently observed across many cancer types3,5,7. 128 

Based on these observations, we propose an improved ACN fitting procedure, called Rascal (relative 129 

to absolute copy number scaling), that builds on ACE and leads to more plausible solutions, 130 

especially for poorer quality copy number profiles. The full mathematical framework of Rascal is 131 

provided in the Methods section. Fig. 2a summarises the main principles of Rascal. Like ACE, Rascal 132 

considers various combinations of a range of different ploidy and cellularity values using a grid search 133 

algorithm (Fig. 2a). However, Rascal estimates the “goodness-of-fit” function in the absolute, not 134 

relative, space. The distance function is calculated either as the root mean square deviation (RMSD) 135 

or mean absolute deviation (MAD) and provides a measure that can be compared across various 136 

model fits to determine the best fit from the lowest distance for each sample (the choice of distance 137 

function is discussed in the next section). Fig. 2b provides an example using the triploid ovarian 138 

cancer cell line, FUOV148,49.  Using the MAD fitness measures, Rascal finds that the best solution 139 

(lowest MAD) has a ploidy of 3.03 and cellularity of 0.96 (Fig. 2c, d).  140 
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To further validate ploidy and cellularity predictions from Rascal, we applied it to our high purity cell 141 

line and PDX datasets. Expected fits of ≥ 90% cellularity were achieved for 93% and 94% of cell line 142 

and PDX samples, respectively (Fig. 3a). ACN fits were not achieved for three cell lines and two PDX 143 

samples. To test the accuracy of these predictions, we compared fitted ploidy estimates to previously 144 

published ploidy data for 30 ovarian cancer cell lines from the Cancer Cell Line Encyclopaedia48, the 145 

Sanger Cell Model Passports49, or obtained from chromosome banding and metaphase spreads50–54 146 

(Extended Data Fig. 1a-d; Supplementary Table 1 and 2). Notably, external data showed discordant 147 

ploidy estimates for four out of 12 cell lines for which multiple sources/methods were available 148 

(CAOV3, CAOV4, OV56, and IGROV1).  149 

As shown in Extended Data Fig. 1, ploidy fits obtained using Rascal are consistent with previously 150 

published ploidy measures (< 0.5 copy number steps difference), with the exception of OVCAR-5 and 151 

OV4453. For the four cell lines with conflicting published ploidy measures, Rascal’s ploidy estimates 152 

were concordant with at least one of these measures. In comparison, ACE, ichorCNA and 153 

ABSOLUTE only achieved ploidy estimates matching those previously published in ≤ 50% of cell line 154 

samples. For ploidy estimates, Rascal performed significantly better than ACE and ABSOLUTE (P = 155 

2.7 × 10−5 and P = 0.012, respectively; paired one-sided Wilcoxon test) and had the lowest RMSE 156 

value of 0.59, followed by ichorCNA (RMSE = 1.13), ACE (RMSE = 1.17) and ABSOLUTE (RMSE = 157 

1.176) (Fig. 3b). 158 

Copy number profiling of 1,451 samples from 509 PDX models showed that SCNAs and 159 

sample ploidies are highly conserved between patients and different PDX generations, and from 160 

multiregional sampling. Consistent with this data, Rascal, but not ACE, ichorCNA or ABSOLUTE, 161 

resulted in highly consistent fits for different generations of PDX samples derived from the same 162 

patient, with the exception of one mis-fitted sample (as indicated by the low cellularity estimate) in 163 

patient line 626 (Fig. 3c).  PDX samples from patient line 828 and 914 showed ongoing CIN with 164 

changes in SCNA between different PDX animals and generations. For example, in PDX line 914 165 

there was shifting of segments from chromosome 6 and 7 by ≥ 1 copy number steps resulting in 166 

different sample ploidies, with the remainder of the genome remaining stable across different PDX 167 

animals (Supplementary Video 2). In comparison, ACN profiles for PDX line 716 obtained using ACE 168 

showed shifting of copy number segments across the whole genome by ≥ 1 copy number steps for 169 

samples with differing ploidy states indicating incorrect ACN fits (Supplementary Video 3). 170 
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 171 

 MAD is the preferred distance function for accurate ACN fitting  172 

Although accurate estimation of sample purity and ploidy are essential for ACN fitting, a sample’s 173 

heterogeneity or subclonality is the third critical factor that has to be considered. The main 174 

assumption made during ACN fitting is that all tumour cells within a sample have the same copy 175 

number states, i.e. the tumour is homogeneous. In reality, tumours may display considerable 176 

heterogeneity with complex clonal architectures. Unique gains and losses of genomic regions in 177 

tumour subclones will all contribute to the average copy number profile, resulting in copy number 178 

segments that cannot be accurately scaled without further information provided by deeper sequencing 179 

and therefore appear as segments falling between integer states. Since the “goodness-of-fit” for each 180 

ACN solution is estimated based on how close a scaled copy number segment aligns to its nearest 181 

full integer state, we compared the performance of the two error functions (RMSD and MAD) across 182 

our cell lines and PDX samples. 183 

RMSD and MAD distance functions resulted in concordant solutions for the majority of PDX and cell 184 

line samples (86% for cell line and 87% for PDX samples; Fig. 4a). Examining the discordant models 185 

(red; Fig 4a), the MAD distance function fitted 24 out of 27 (88.9%) to cellularities ≥ 90% (Fig. 4b). In 186 

contrast, using the RMSD distance function, only four (14.8%) of the discordant samples were fitted to 187 

cellularities ≥ 90%, suggesting that the RMSD distance function is more prone to underestimating 188 

cellularity in these cases. We also compared RMSD- and MAD-fitted ploidies to published ploidy data 189 

which was available for five out of the eight discordant cell line samples (Fig. 4c). Interestingly, these 190 

included three out of the four cell lines (CAOV3, CAOV4 and OV56) for which varying ploidy values 191 

had previously been reported (Supplementary Table 2). While the MAD distance function found 192 

matching ploidy solutions for all five cell line samples, the RMSD distance function was highly 193 

dissimilar to published data, with the exception of CAOV3 and CAOV4 (Fig. 4c). To determine the 194 

correct ploidy, we prepared metaphase spreads for CAOV3 and CAOV4 (Fig. 4d) which confirmed 195 

accurate ploidy fits from the MAD distance function.  196 

To understand whether the RMSD-MAD discrepancy is caused by the presence of subclonal states, 197 

we estimated the fraction of subclonal segments (genomic subclonality) as the total length of 198 

segments at subclonal/intermediate copy number states (≥ 0.25 copy number steps distance to the 199 

nearest integer) divided by the total length of the genome. Samples with RMSD-MAD discordant fits 200 
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had significantly higher proportions of genomic subclonality compared to samples for which RMSD 201 

and MAD achieved concordant fits (P= 0.00017, Wilcoxon test; Fig. 4e). This is illustrated using 202 

CAOV4 as an example (Fig. 4f). The correct solution has a ploidy of 2.6 and cellularity close to 1 and 203 

has the lowest MAD. The absolute copy number profile shows the presence of subclonal/intermediate 204 

segments on chromosome 2, 6, 9 and 20. In contrast, the RMSD function favours a set of three 205 

solutions with similar distance measures containing ploidies of 5.16, 3.17 and 4.17 (Supplementary 206 

Fig. 3a).  Of these, only the ploidy 5.16 solution has a cellularity estimate close to 1 but appears to 207 

“overcompensate” for the segments on chromosomes 2, 6, 9 and 20 (Supplementary Fig. 3b), 208 

resulting in a higher ploidy fit. 209 

To further explore the effect of subclonal populations on ACN fits, we provide in silico models of 210 

subclonality in Extended Data Fig. 2 (see also Supplementary Fig. 4, Supplementary Video 2). These 211 

indicate that Rascal can obtain accurate fits providing the dominant clone comprises >55–75% of the 212 

sample tumour content. In addition, our genome subclonality estimate (Fig. 4e) strongly correlated 213 

with the in silico simulated subclonal fraction (R = 0.69 for A2780 mixtures, and R = 0.85 for PDX line 214 

914 mixtures; Pearson Correlation) (Extended Data Fig. 2d). 215 

While both distance functions produce equivalent ACN fits for the majority of samples, we show that 216 

the MAD function produces more accurate fits in cases where subclonal states might influence parts 217 

of the copy number profile. The MAD function thus produces better purity and ploidy estimates and 218 

reveals intermediate copy number values as an indicator of tumour heterogeneity.  219 

 220 

 Clinical tissue samples require prior knowledge to guide accurate ACN fitting 221 

Cancer specimens from patients present the most complex challenges for ACN fitting because these 222 

samples have highly variable purities with unknown ploidies. These limitations make it hard to choose 223 

between multiple predictions for best fits when differing ploidies and cellularities result in the same 224 

optimum distance measure (see Methods). This phenomenon of competing best fits was observed in 225 

52% of cell line, 35% of PDX samples, and 36% of clinical tissue samples (Supplementary Fig. 5a). In 226 

pure samples, competing best fits can be easily distinguished using the assumption of high purity 227 

(Supplementary Fig. 5b, c). For clinical tissues, other prior knowledge regarding ploidy or cellularity is 228 

therefore ideally required to guide accurate ACN fitting. This additional knowledge could be obtained 229 

for example through flow cytometry, fluorescent in situ hybridisation or computational histopathology 230 
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approaches. Another important surrogate for tumour cellularity is the mutant allele fractions (MAFs) 231 

for clonal driver mutations, such as APC or KRAS in colorectal cancer6,55 and PIK3CA in ~50% of 232 

breast cancers6,56.   233 

We recommend a workflow using Rascal for clinical tissue samples (Fig. 5b) which facilitates the 234 

incorporation of prior tumour purity or cellularity knowledge as well as visual inspection of “difficult-to-235 

fit” samples using the Rascal’s interactive web application interface (see Methods).  236 

To illustrate this, we used a total of 142 clinical tissue samples, encompassing 23 normal fallopian 237 

tube (FT) and 119 HGSOC samples, which ranged from 15–98% cellularity estimated by a clinical 238 

pathologist (Fig. 5a). Since TP53 mutation is a ubiquitous early driver event in HGSOC, we used 239 

TP53 MAFs as a surrogate for cellularity.  Rascal was able to generate possible ACN solutions for 240 

132 out of the 142 (93%) samples. Out of these, 30 samples failed ACN fitting and were excluded 241 

owing to low TP53 MAFs (median 0.12; IQR 0.09) suggesting low purity. Out of the remaining 102 242 

samples, six were identified as “difficult-to-fit" and reviewed in detail using the visual Rascal 243 

interactive web application and manually re-fitted. Fig. 5c shows the comparison of fit-based 244 

estimated TP53 MAFs and TP53 MAFs from sequencing data. 245 

To test the performance of Rascal in lower cellularity samples, we generated in silico mixtures of 246 

tumour:normal DNA using sequencing reads from a high purity tumour sample and a matched normal 247 

fallopian tube sample (Supplementary Fig. 1 and Supplementary Video 1). The resulting fitted 248 

cellularities were highly consistent with the in silico mixing fractions (Fig. 6a). Simulated cellularities of 249 

< 20% could not be fitted to ACN, as already observed in the clinical tissue samples.  250 

Secondly, we compared fits achieved for multi-region sampling or fixed and unfixed tissues from the 251 

same patient (Fig. 6b). This also showed highly consistent ploidy values across varying samples from 252 

the same patient, indicating correct ACN fitting. 253 

Finally, using TP53 MAF-guided ACN fitting gave significantly more accurate solutions (RMSE = 254 

0.069) compared to unguided fitting using ACE (RMSE = 0.16, P = 2.6 × 10−6; Fig. 6c).  255 

This shows that although ACN fitting for high purity samples is easily achievable using Rascal, 256 

additional information is required for impure clinical tissue samples. In addition, manual inspection of 257 

copy number profiles using Rascal’s interactive web interface allows ACN fitting of otherwise 258 

problematic samples.  259 
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 Discussion 260 

Studying SCNAs and patterns of genomic instability in cancers is an essential component of pre-261 

clinical and translational science. ACN is required for the accurate identification of actionable driver 262 

amplifications in high CIN cancers, which have the poorest outcome in the clinic. Another important 263 

benefit of deriving ACN is that it enables inference of copy number signatures27, which can identify 264 

clinically relevant mutational processes and guide therapy selection. The majority of ACN tools have 265 

been developed for deep WGS data. However, for many applications, low-coverage sWGS offers a 266 

much more time- and cost-effective alternative to estimate copy number profiles, and is widely 267 

accessible in both clinical and research settings.  268 

Here we show that typical and unsupervised use of current tools to analyse low-coverage sWGS data 269 

does not yield reliable ACN profiles. This is partly because ACN fitting from sWGS data is very 270 

different to ACN fitting from deep WGS; for example, in sWGS we fit total, not allele specific copy 271 

number. As a result, many available tools often require more complex input data that cannot be 272 

obtained from sWGS and a detailed understanding of how to optimise parameters, making these 273 

approaches unsuitable for sWGS-based analyses. This complexity also obscures the understanding 274 

of the underlying principles of the algorithms, and prevents basic exploratory data analyses for the 275 

reliable interpretation of experimental results. 276 

The Rascal package (relative to absolute copy number scaling) addresses these limitations by 277 

providing a significantly improved and validated method and an interactive web application for 278 

exploring fits. Using Rascal, robust and accurate ACN estimates can be achieved from sWGS data for 279 

sample types of different purities, ranging from cell lines, organoids, ascites and PDX samples to 280 

patient samples. For high purity cancer models, Rascal makes ACN fitting highly reliable and easily 281 

achievable even for users not trained in bioinformatics.  282 

For clinical tissue samples, ACN fitting is more challenging because both their purity and ploidy is 283 

usually unknown. Accurate fits generally require additional information, for example from flow 284 

cytometry, FISH57, advanced computations histopathology58, or MAF estimation of clonal driver 285 

genes. We used TP53 MAFs in HGSOC tumours to illustrate how ACN fits can be achieved from 286 

sWGS in clinical tissue samples. In addition, Rascal’s interactive visualisation functionality provides 287 

easy inspection of putative ACN fits and is particularly beneficial for the manual curation of low-quality 288 

samples, which would have otherwise been discarded by conservative computational tools. 289 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452658


12 
 

We also show that Rascal is robust to tumour heterogeneity, a general challenge of all bulk sWGS-290 

based approaches, and that resulting ACN fits can indicate the presence of subclonal tumour 291 

populations59. However, single cell DNA sequencing60,61, or deep WGS followed by copy number 292 

analyses using tools, such as TITAN42 or ASCAT43, would be required to study regions of subclonal 293 

SCNAs and to estimate the prevalence of clonal clusters10. 294 

An obvious limitation of our approach is the current lack of power to obtain ACNs for samples with < 295 

20% cellularity. This could be mitigated by increasing sequencing depth and/or the size of the bin 296 

window applied for read counting and copy number segmentation (e.g. from 30kb to 100kb; also see 297 

Supplementary Fig. 6). However, further modelling of these sWGS parameters will be required to 298 

understand the precise relationship between tumour purity and ploidy and minimum sequencing 299 

depths required for accurate ACN fitting30,35.  300 

In summary, we provide detailed guidelines and methodological insights for achieving robust and 301 

accurate ACN estimates from sWGS data across frequently studied sample types. Rascal and the 302 

extensive datasets from this study will provide an invaluable resource for developing and testing new 303 

computational approaches for estimating ACN from sWGS.   304 
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 Methods 305 

 Cell Lines 306 

Cell lines used in this study are listed in Supplementary Table 3, together with their associated growth 307 

conditions and culture media. In general, cell lines were grown according to ATCC/ECACC 308 

recommendations. OSE medium is composed of 50:50 medium 199 (Sigma-5017) and medium 105 309 

(Sigma-6395). Cells were tested for mycoplasma contaminations on a regular basis using the qPCR 310 

PhoenixDx Mycoplasma kit (Procomcure Biotech), and cell line identities were confirmed prior to DNA 311 

extractions using our in-house human short tandem repeat (STR) profiling cell authentication service. 312 

 313 

 Clinical samples and primary tissue processing 314 

Solid tumour samples were obtained from patients enrolled in the OV04 study at Addenbrooke’s 315 

Hospital, Cambridge, UK. Tumour samples were processed following standardised operating 316 

protocols as outlined in the OV04 study design. Tumour samples were cut into small pieces of 317 

approximately 0.25 cm3 and were subsequently either i) snap-frozen and stored at −80℃ to generate 318 

fresh frozen (FF) samples for later DNA extraction, or ii) suspended in freezing media (DMEM:F12 319 

supplemented with 10% DMSO) and stored at −80℃ for surgical implantation into mice for PDX model 320 

generation. Additionally, a middle section of the tumour tissue was cut out, suspended in 10% neutral 321 

buffered formalin (NBF) for 24 hours and subsequently transferred into 70% ethanol for paraffin 322 

embedding and sectioning (FFPE tissue generation).  323 

 324 

 Xenograft processing 325 

Tumour tissues from patient-derived xenograft (PDX) bearing mice were processed in a similar way 326 

as primary tissue samples outlined above. Tumour bearing mice that reached their endpoint (tumours 327 

volumes of no more than 1500 mm3) were culled via cervical dislocation or CO2 overexposure. 328 

Tumours were dissected out and stored in ice-cold PBS until further processing. 329 

As for primary tissues, PDX samples were cut into small pieces and stored for later DNA extraction or 330 

PDX implantation work at −80℃. Remaining sample was homogenised using a McIlwain tissue 331 

chopper (Brinkmann Vibratome MTC/2E) and subsequently further dissociated in an enzymatic 332 

dissociation buffer containing 7 ml DMEM:F12 media, 2.5 ml of 7.5% bovine serum albumin fraction V 333 

(Invitrogen, USA), 1 mg ml−1 collagenase A (Roche, UK) and 100 U ml−1 hyaluronidase (Sigma-334 
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Aldrich, UK) at 80 rpm for 2 hours at 37℃. Samples were centrifuged at 1500 rpm for 5 min at 4℃ and 335 

washed with 12 ml DMEM:F12 followed by another centrifugation step. To further break down clusters 336 

of cells, the resulting pellet was suspended in 1 ml of 0.25% trypsin in citrate buffer (STEMCELL 337 

Technologies, UK), incubated for 4 min at room temperature, quenched with DMEM:F12, and 338 

centrifuged at 1500 rpm for 5 min at 4℃. Subsequently, pellets were resuspended in 1 ml of 5 U/ml 339 

dispase (STEMCELL Technologies, UK) and DNase (Sigma-Aldrich, UK) at a final concentration of 340 

0.1 mg/ml for another 4 min at room temperature. Again, cells were washed with DMEM:F12 and 341 

spun down. Resulting cell pellets were resuspended in 1 to 2 ml of PBS, depending on cell pellet size, 342 

and passed through a 40 µm filter to remove any remaining undigested material. Following filtration, 343 

samples were resuspended in PBS making up a final volume of 25 ml. PDX tumour cells were cleared 344 

up and isolated from debris, dead cells and blood cells using OptiPrepTM (D1556, Sigma-Aldrich, UK) 345 

density gradient centrifugation. Cell samples were assessed for viability and counted using a 346 

haemocytometer, and subsequently resuspended in freezing media (10% DMSO in DMEM:F12 + 347 

10% FBS) at 1–10 million cells/vial. Cell aliquots were frozen down at −80◦C using “Mr Frosty” 348 

containers. Alternatively, for immediate (fresh) injection into mice, single cells were resuspended in 349 

injection mix (50 % growth factor reduced Matrigel (BD Bioscience) in PBS). 350 

 351 

 PDX passaging 352 

All mouse work conducted was approved and performed within the guidelines of the Home Office UK 353 

and the CRUK CI Animal Welfare and Ethics Review Board. Female NOD.Cg-Prkdcscid Il2rgtm1WjI/ SzJ 354 

(NSG) mice were obtained from Charles River Laboratories. Tumour xenografting was performed 355 

either by subcutaneous surgical implantation or subcutaneous injection. For subcutaneous surgical 356 

implantation, NSG mice were anaesthetised with isoflurane, treated with analgesics (Carprofen 357 

[Rimadyl] at 5 mg/kg), shaved, clipped and disinfected with iodine disinfectant. A small vertical 358 

incision of approximately 0.5 cm was then made through the skin over the right flank. A small tumour 359 

piece of approximately 2 × 2 × 2 mm from either patient samples or previously established PDXs was 360 

suspended in growth factor reduced matrigel and inserted underneath the skin. The incision was 361 

closed using surgical glue.  For subcutaneous injections, tumour tissue from patients or established 362 

PDXs was dissociated as described above and resuspended in injection mix. Following shaving and 363 

clipping of NSG mice, approximately 1×105 tumour cells were injected subcutaneously over the right 364 
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flank in a volume of 50 µl of injection mix. Once PDX tumours reached their endpoint of approximately 365 

1500 mm3, tumour tissues were dissected, processed as described above and reimplanted for 366 

expansion in serial generations for PDX biobank maintenance. 367 

 368 

 DNA extraction 369 

1. Cell Lines 370 

Cell pellets of approximately 1x106 cells were generated from cultured cells for each cell line outlined 371 

above and stored at -80℃ until further use. DNA was extracted from cell pellets using the Maxwell® 372 

RSC Cultured Cells DNA Kit (Promega, AS1620) with the Maxwell® RSC 48 Instrument (Promega, 373 

AS8500). 374 

2. Fresh Frozen tissue samples 375 

Fresh frozen tissue pieces were homogenised using Soft tissue homogenizing CK14 tubes containing 376 

1.4 mm ceramic beads (Bertin) on the Precellys tissue homogenizer instrument (Bertin). Resulting 377 

lysates were transferred and subjected to DNA extraction using the AllPrep DNA/RNA Mini Kit 378 

(Qiagen) following manufacturer’s recommendations. DNA was eluted in 40 µl Elution buffer. 379 

3. FFPE tissue samples 380 

For each FFPE sample, multiple sections at 10 µm thickness were cut depending on tissue size and 381 

tumour cellularity assessed by a pathologist, who marked tumour areas on separate Haematoxylin 382 

and Eosin (H&E) stained sections to guide microdissection for DNA extraction. Marked tumour areas 383 

from unstained FFPE sections were scraped off manually using a scalpel, dewaxed in xylene and 384 

subsequently washed with 100% ethanol. Following complete removal and evaporation of residual 385 

ethanol (10 mins at 30℃) DNA was extracted using the AllPrep DNA/RNA FFPE Kit (Qiagen). DNA 386 

was eluted in 40 µl Elution buffer. 387 

 388 

 H&E purity estimation 389 

H&E sections from FFPE tissues were sent to our pathologist for tumour marking and purity 390 

estimation. In addition, H&E sections were scanned and subjected to HALO, an image analysis 391 

platform for quantitative tissue analysis in digital pathology. HALO’s random forest classifier was used 392 

to separate the H&E image into tumour, stroma and microscope glass slide, allowing tumour purity 393 

estimation.  394 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452658


16 
 

 Shallow Whole Genome Sequencing (sWGS) 395 

DNA extractions were performed as described above, and quantified using Qubit quantification 396 

(ThermoFisher, Q328851). DNA samples were diluted to 75 ng in 15 µl of PCR certified water, and 397 

sheared by sonication with a target of 200-250bp using the LE220-plus Focused-Ultrasonicator 398 

(Covaris) with the following settings: 120 sec at room temperature; 30% duty factor; 180W peak 399 

incident power; 50 cycles per burst. 400 

Sequencing libraries were prepared using the SMARTer Thruplex DNA-Seq kit (Takara), with each 401 

FFPE sample undergoing 7 PCR cycles, and all other samples undergoing 5 PCR cycles for unique 402 

sample indexing and library amplification. AMPure XP beads were used following manufacturer’s 403 

recommendations to clean prepared libraries, which were subsequently eluted in 20 µl TE buffer. 404 

sWGS libraries were quantified and quality-checked using D5000 genomic DNA ScreenTapes 405 

(Agilent 5067-5588) on the Agilent 4200 TapeStation System (G2991AA) before pooling the uniquely 406 

indexed samples in equimolar ratios. Pooled libraries were sequenced at low coverage (~ 0.4 × 407 

coverage) on either NovaSeq 6000 S1 flowcells with paired-end 50 bp reads for clinical tissue 408 

samples, or the HiSeq 4000 with single 50 bp reads, at the CRUK CI Genomic Core Facility. 409 

Resulting sequencing reads were aligned to the 1000 Genomes Project GRCh37-derived reference 410 

genome (i.e. hs37d5) using the ‘BWA’ aligner (v.0.07.17) with default parameters.  411 

 412 

 Copy number analyses 413 

Relative copy number data was obtained using the QDNAseq31 R package (v1.24.0) to count reads 414 

within 30, 50 and 100 kb bins, followed by read count correction for sequence mappability and GC 415 

content, and copy number segmentation. QDNAseq data were then subjected to downstream 416 

analyses using ACE, ichorCNA, ABSOLUTE or our Rascal methodology for ploidy and cellularity 417 

estimation and absolute copy number fitting. 418 

1. ACE 419 

ACE absolute copy number fitting was applied to both the cell line and PDX sample sets, as well as 420 

our clinical tissue samples, using segmented relative copy number data generated at 30kb bin size 421 

with QDNAseq.  Absolute copy number data was calculated using the squaremodel function of the 422 

ACE BioConductor package with the following parameters based on the author’s recommendations: 423 

penalty = 0.5 and penploidy = 0.5. Remaining parameters were set to default values. 424 
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2. ichorCNA 425 

The ichorCNA algorithm was applied to both the cell line and PDX sample sets. Prior to ichorCNA, 426 

QDNAseq read count data at 50kb bin size was converted into .wig files. Segmentation and prediction 427 

of ploidy and cellularity (tumour fraction) were performed using ichorCNA v.0.1.0 428 

(https://github.com/broadinstitute/ichorCNA). Parameters were initialized based on prior knowledge: –429 

normal�=�c(0, 0.05, 0.1, 0.2), –ploidy�=�c(2, 3, 4, 5), with all remaining parameters set to default 430 

values.  431 

3. ABSOLUTE 432 

ABSOLUTE was applied to both the cell line and PDX sample sets, using segmented relative copy 433 

number data at 30kb bin size obtained from QDNAseq. The RunAbsolute function was used with the 434 

following parameters: max.ploidy = 5, max.non.clonal = 0.95, max.neg.clonal = 0.05, primary.disease 435 

= “Ovarian Cancer”, platform = “Illumina_WES”, copy_num_type = “total”, min.mut.af = 0.2. All 436 

remaining parameters were set to default values. The platform choice (no option available for sWGS) 437 

does not impact the analysis as segmented copy number data are provided. 438 

 439 

 Rascal - Mathematical framework and underlying principles 440 

Rascal models the copy number output from sWGS data as a function of the ploidy and cellularity of 441 

the sample of interest using the same formulation as ACE.  442 

Given a cellularity �, a diploid normal genome, and absolute number of tumour copies � at a given 443 

locus � , the average number of copies can be written as 444 

�I� copy number� � ��� � 2�1 � �� 

 445 

The average copy number across the whole genome in the tumour cells is the ploidy �, i.e. the 446 

average copy number for a sample made up of tumour and normal diploid cells is 447 

�II� average copy number � �� � 2�1 � �� 

 448 

Copy numbers produced by QDNAseq and similar tools are given as ratios �� between the local copy 449 

number (equation I) and the average copy number across the genome (equation II) (in some cases, 450 

these are log2-transformed and referred to as log2 ratios): 451 

�III� �� �
��� �  2�1 � ��

�� � 2�1 � ��
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 452 

The relative copy number for the zero copy number state, �� (�� � 0), is usually not zero because of 453 

the contribution of the normal diploid cells within the sample. 454 

�IV� �� �
 2�1 � ��

�� � 2�1 � ��
 

 455 

The relative copy number equation can also be rewritten as follows: 456 

�V� �� � 1 � ��� � �� � � 

where � is the spacing between relative copy numbers for copy number states that differ by one copy, 457 

e.g. between the relative copy number observed for a locus with 3 copies and another locus with 2 458 

copies. � can be derived from equation �III� given that �� and �� are relative copy number values at 459 

locus �� and ��, respectively, in which �� � 1 � �� 460 

�VI� � � �� � �� � 
��� � 2�1 � �� � ��� � 2�1 � ��

�� � 2�1 � ��
�

���� � ���

�� � 2�1 � ��
� 

�

�� � 2�1 � ��
   

 461 

 462 

 Rascal – Fitting procedure 463 

 The mathematical formulation given in equation �III� can be rearranged to give the absolute 464 

copy number (��� for each relative copy number value (��) for a given ploidy (�) and cellularity (�): 465 

 �VII� �� � � � ��� � 1��� �
�

�
� 2� 466 

This formulation can be used to perform a grid search on the relative copy number data across 467 

various ploidies and cellularities. Rascal assesses the “goodness-of-fit” for each ploidy-cellularity 468 

solution by a distance function considering the differences between the scaled values of segmented 469 

copy numbers and the nearest whole number for each bin. The distance function is calculated as root 470 

mean square deviation (RMSD) or mean absolute deviation (MAD). This provides measures that can 471 

be compared across various model fits with differing ploidy and cellularity parameters, with the aim of 472 

determining the fit with the lowest RMSD or MAD for each given sample.  473 

Since the RMSD/MAD distance function is solely based on how close scaled copy numbers are to 474 

their closest whole integers, this can result in competing best fits. In general, for a given model with 475 

ploidy, ��, and cellularity, ��, there are an infinite number of solutions that have the same spacing, � 476 

(see equation �VI�), between successive copy number steps on the relative scale. 477 
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�VIII� � �
 �

�� � 2�1 � ��
�

 ��

���� � 2�1 � ���
 

Rearranging this for � 478 

�IX� � �
 2��

���� � ��� � 2
 

allows us to calculate the cellularity for a higher or lower ploidy solution differing by a whole number 479 

(� � �� ! 1, 2, 3, … ) that will have an equally good fit. This is because shifting the copy number states 480 

up or down in whole number increments doesn’t change the proximity of a segment to its closest copy 481 

number state. Competing solutions fit the data equally well, thus requiring additional information to 482 

identify the most likely ploidy and cellularity.  483 

 484 

For pure cancer models, such as cell lines, organoids and PDX samples, best fit solutions were 485 

primarily identified based on the lowest MAD distance. Only in cases where multiple solutions 486 

(competing fits) with the lowest MAD distance were available, the solution with the highest cellularity 487 

was selected. 488 

In clinical tissue samples, where the assumption of high tumour purity cannot be used to guide ACN 489 

fitting and distinguish between competing best fits, additional information on either the tumour ploidy 490 

or purity, such as SNV allele fractions or an accurate estimate of the tumour cellularity from a 491 

histopathologist, is required to obtain reliable ACN fits. We illustrate how this can be achieved using 492 

TP53 mutant allele fractions (MAFs) from Tagged-Amplicon sequencing (TAmSeq), a low-cost ultra-493 

high depth targeted sequencing approach which allows accurate estimation of MAFs, in HGSOC 494 

samples:  495 

Rascal ACN solutions are determined as described above. Expected TP53 MAFs for each putative fit 496 

is then calculated using the following formulation in Rascal: 497 

�X� expected ()53 MAF �
���	
 �  �

���	
 �  � �  2�1 � ��
 

The expected TP53 MAF for each solution is then compared to the empirical TP53 MAF (measured 498 

by TAmSeq) and the absolute difference is calculated. ACN fits were subsequently ranked based on 499 

their MAD and absolute TP53 MAF difference (MAFdiff), before entering an annotation and solution 500 

refinement stage. Samples for which no solution with a matching TP53 MAF were found (i.e. MAFdiff 501 

> 0.3) failed Rascal and were marked for exclusion. Samples for which no empirical TP53 MAF was 502 

available, or which had very low MAFs suggesting low purity (i.e. TP53 MAF < 0.3) were flagged for 503 
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manual inspection since low purity samples are more challenging to fit. Manual inspection was then 504 

carried out on these samples using the interactive Rascal web application to either confirm or correct 505 

for more appropriate ACN fits. Manually curated solutions for flagged samples, and top ranked 506 

solutions for all remaining samples were taken forward for downstream analyses. 507 

 508 

 Rascal – code availability and accessibility 509 

Rascal is implemented as an R package and can be downloaded from https://github.com/crukci-510 

bioinformatics/rascal. The Rascal interactive web application can be accessed at 511 

https://bioinformatics.cruk.cam.ac.uk/rascal. 512 

 513 

 Tagged-Amplicon Sequencing (TAmSeq) 514 

Extracted DNA samples were diluted to a final concentration of 10 ng/ml using PCR certified water. 515 

Tagged-Amplicon deep sequencing was performed as previously described47. In short, libraries were 516 

prepared in 48.48 Juno Access Array Integrated Fluidic Circuits chips (Fluidigm, PN 101-1926) on the 517 

IFC Controller AX instrument (Fluidigm) using primers designed to assess small indels and single 518 

nucleotide variants across the coding region of the TP53 gene. Following target-specific amplification 519 

and unique sample indexing, libraries were pooled and subsequently purified using AMPure XP 520 

beads. Quality and quantity of the pooled library were assessed using a D1000 genomic DNA 521 

ScreenTape (Agilent 5067-5582) on the Agilent 4200 TapeStation System (G2991AA), before 522 

submitting the library for sequencing to the CRUK CI Genomics Core Facility using 150bp paired-end 523 

mode on either the NovaSeq 6000 (SP flowcell) or HiSeq 4000 system. Sequencing reads were 524 

aligned to the 1000 Genomes Project GRCh37-derived reference genome (i.e. hs37d5) using the 525 

‘BWA-MEM’ aligner. Data analysis and variant calling was performed as previously described32. 526 

 527 

 Metaphase spreads and chromosome counting 528 

Cells were arrested in metaphase by adding colcemid at a final concentration of 0.075 µg/ml followed 529 

by an incubation period of 3 hours. Subsequently, supernatant was removed, cells were collected 530 

using trypsin and pelleted. 20 ml of hypotonic solution (50mL UP water,10mL serum and 531 

6mL KCl 0.075M) was added drop-wise to the cell pellet and incubated for 20 minutes. Cells were 532 

washed twice with fixative 3:1 (methanol:acetic acid) and once with fixative 3:2. Metaphase 533 
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preparations were stored in fixative 3:2 at -80℃ until further use. One drop of the metaphase 534 

preparation solution was dispensed onto each slide and left to air-dry. Mounting media containing 535 

4′,6-diamidino-2-phenylindole (DAPI) was applied. Metaphase spread slides were imaged on the 536 

Operetta CLS imaging system (Perkin Elmer, UK) with the Harmony 4.9 PhenoLOGIC software. 537 

Whole slides were scanned first using the 10x objective to identify metaphase spreads, followed by an 538 

automated rescan of each spread using the 63x water immersion objective across several z-stacks for 539 

chromosome visualisation. Subsequent analysis was performed using the Harmony 540 

4.9 PhenoLOGIC software by segmenting chromosomes within each metaphase spread and the total 541 

number of chromosomes per metaphase were counted.   542 
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 Main Figures 694 

 Figure 1 – Performance evaluation of current ACN fitting tools. 695 

 696 

(a) Study design for absolute copy number (ACN) tool performance testing. High purity samples 697 

comprising a total of 60 cell lines and 148 PDX samples generated from 14 patients were subjected to 698 

sWGS. Relative copy number data was generated using QDNAseq, and subsequently analysed with 699 

ABSOLUTE, ichorCNA and ACE to test ACN fitting performance. Scatter plots of ploidy and purity 700 

estimates are shown for ABSOLUTE (b), ichorCNA (c) and ACE (d). The expected purity estimates of 701 

90-100% are indicated by the green-shaded areas. Summary distributions of purity and ploidy 702 

estimates are shown on the margins of each plot. (e) Comparison of ABSOLUTE, ichorCNA and ACE 703 

using the squared errors. Assuming purities of 100%, P-values were calculated on the squared errors 704 

using the paired one-sided Wilcoxon test. RMSE (root mean squared error) values are indicated by 705 

coloured triangles.   706 
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 Figure 2 – Underlying principles and ACN fitting procedure using Rascal. 707 

 708 

(a) Underlying principles of Rascal. Segmented relative copy number (RCN) data (from QDNASeq) is 709 

input into Rascal and a grid search is subsequently performed to fit the RCN data to various ploidies 710 

and cellularities. Rascal assesses the goodness-of-fit for each ploidy-cellularity solution using a mean 711 

absolute deviation (MAD) or root mean square deviation (RMSD) distance function by estimating the 712 

absolute difference between the scaled (fitted) copy number values (red segments) and the nearest 713 

whole copy number integer (blue horizontal lines) for each segment. The MAD or RMSD distance 714 

measures are compared across various model fits to rank all ACN solutions for each sample and to 715 

determine the best fit (lowest distance function). An example using the FUOV1 cell line is shown in (b-716 

d): (b) Heatmap representing the grid search applied by Rascal, with cold areas (poor fits) shown in 717 

blue, and hot areas (good fits) shown in red. The best solutions (local minima) are indicated as black 718 

dots. Out of these, the solution with the lowest MAD distance has a ploidy of 3.03 and cellularity of 719 

0.96. The solution with the highest MAD distance has a ploidy of 5.02 and a cellularity of 0.33. (c) 720 
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Relative copy number plot and (d) fitted absolute copy number plot (best solution – ploidy 3.03 and 721 

cellularity 0.96) for FUOV1 with density distributions of copy number segments shown to the right of 722 

each plot.   723 
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 Figure 3 – Rascal method validation and benchmarking on high purity samples. 724 

 725 

(a) Rascal fits (ploidy and purity estimates) for cell line (left) and PDX (right) samples. Expected target 726 

area (90-100%) for purity estimates is indicated by a green-shaded ribbon, and distributions for both 727 

purity and ploidy estimates are shown on the margins of each plot. (b) Comparison of ABSOLUTE, 728 

ichorCNA, ACE and Rascal using previously published ploidy cell lines data (also see Extended Data 729 

Fig.1 and Supplementary Table 1 and 2). Data is shown as squared errors comparing fitted ploidy 730 

estimates to previously reported ploidies. P-values were calculated on the squared errors using the 731 

paired one-sided Wilcoxon test. RMSE (root mean squared error) values are indicated by coloured 732 

triangles. (c) Ploidy comparison across PDX samples from the same patient line for the four different 733 

ACN tools (ABSOLUTE, ichorCNA, ACE and Rascal). Associated cellularities are indicated by the 734 

opacity of the data points. Chromosomal unstable PDX lines (828 and 914) are shaded in grey (also 735 

see Supplementary Video 2 for PDX line 914 and Supplementary Video 3 for ACE fits for PDX line 736 

716).   737 
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 Figure 4 – RMSD vs MAD goodness-of-fit function and tumour subclonality. 738 

 739 

(a) Comparison of fitted ploidy estimates using the RMSD or MAD distance function for cell lines 740 

(circles) and PDX samples (triangles). Samples with concordant ploidy fits for both RMSD and MAD 741 

are shown in blue, discordant fits are shown in red. Discordantly fitted cell lines for which published 742 

ploidy data was available (see Extended Data Fig.1 and Supplementary Table 2) are highlighted by 743 

labels. (b) Comparison of MAD and RMSD fitted cellularities for all discordant (red) samples from (a). 744 

Cell line samples are shown as circles, PDX samples as triangles. Cellularity fits obtained from the 745 

RMSD function are shown as hollow objects, whereas MAD-fitted cellularities are indicated as filled 746 

object. Expected cellularity estimates of 90-100% are indicated by the shaded area. (c) Bland-Altman 747 

plot comparing MAD (filled) and RMSD (hollow) fitted ploidies to published ploidies available for five 748 

cell lines. The y axis shows the difference between published and fitted ploidies. Ploidy difference of 749 
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+/- 0.5 copy number steps is indicated by dashed lines. Shapes indicate methods for determining 750 

published ploidies. For two cell lines (CAOV3, and CAOV4) both distance functions produced 751 

plausible but different fits. To confirm which solution is correct, metaphase spreads were performed 752 

on CAOV3 and CAOV4 to count the number of chromosomes present in both cell lines (d). Mean 753 

chromosome counts are indicated by dashed pink lines. Expected chromosome counts for MAD and 754 

RMSD ploidy estimates are indicated by a solid or dotted grey line, respectively. (e) Percentage of 755 

genome subclonality calculated as the total length of segments at intermediate copy number states 756 

divided by the total length of all segments (i.e. length of the genome) for MAD-RMSD concordant, and 757 

discordant samples. The genome subclonality density plot for each of the two groups is shown to the 758 

right. P-values were calculated using the unpaired one-sided Wilcoxon test. (f) Fitted absolute copy 759 

number profile for CAOV4 using the top ranked MAD solution (ploidy 2.6; cellularity 1). 760 

Intermediate/subclonal copy number segments are indicated by pink arrows.   761 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452658


34 
 

 Figure 5 – Competing best fit solutions and fitting of clinical tissue samples. 762 

 763 

(a) Purity estimates for 97 HGSOC FFPE tissue samples. Samples are shown grouped according to 764 

(underestimated) histological purity estimation performed by a pathologist, compared to histological 765 

purity estimates via computational image analysis (HALO software). The distribution of HALO-766 

estimated purities is shown on the right, with a median purity of 67.7% (indicated by grey dashed 767 

line). (b) Adapted workflow to allow accurate ACN fitting of clinical (impure) samples in comparison to 768 

the basic workflow for pure samples (e.g. cell lines, organoids/spheroids and PDX samples). In short, 769 

samples are subjected to sWGS, and segmented relative copy number (RCN) data is generated using 770 

QDNASeq. Rascal subsequently performs a grid search on the RCN data across various ploidies and 771 

cellularites to find putative ACN solutions. For impure samples expected mutant allele fractions 772 

(MAFs) are estimated for early driver genes, e.g. TP53, for each ACN solution and compared to 773 

empirical MAFs obtained from deeper sequencing or SNP array data. Solutions are ranked based on 774 
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the MAD distance function and comparison of estimated to empirical MAF values. Samples for which 775 

no suitable ACN solution is found (based on MAF comparison) are excluded from downstream 776 

analyses. Samples for which no empirical MAF values are available or are of very pure purity (< 0.3 777 

MAF) are flagged for manual inspection to either confirm or correct ACN fits using the interactive web 778 

application of Rascal allowing manual inspection of sample fits. (c) Bland-Altman plot showing the 779 

difference between empirical and estimated TP53 MAFs for selected ACN solutions across our 780 

clinical HGSOC cohort (n=132). Samples are sorted by their fitted cellularities, and colour-coded by 781 

their empirical TP53 MAF values. Samples that were manually fitted using the interactive web 782 

application are indicated by hollow circles (n=6), whereas samples for which no ACN fit could be 783 

obtained and which were consequently excluded are shown as crosses (n=30). Note that all of these 784 

samples were fitted to ploidy 2/cellularity 1 solutions, owing to the high fraction of normal 785 

contaminating cells as indicated by low TP53 MAFs (median 0.118; IQR 0.093).  786 
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 Figure 6 – Rascal validation of clinical tissue samples. 787 

 788 

(a) Dilution experiment results for in-silico mixtures of DNA from a high purity tumour tissue and a 789 

matched normal fallopian tube tissue at varying proportions. Diagonal line indicates x=y. (see 790 

Supplementary Fig. 1 and Supplementary Video 1 for RCN and Supplementary Fig. 6 for ACN 791 

profiles). (b) Comparison of ploidy estimates obtained from Rascal for HGSOC patients with multi-site 792 

or different material tissue samples showing good concordance. Individual patients are shown in 793 

different colours, with fresh frozen (FF) vs formalin fixed paraffin embedded (FFPE) samples 794 

differentiated by size. Tissue sites are represented as triangles for metastatic samples, squares for 795 

samples from the omentum, and circles for ovarian tissue samples. (c) TP53 MAF estimates for 796 

HGSOC samples. ACN fits were obtained using Rascal (green) and ACE (orange). Expected TP53 797 

MAFs were calculated for each ACN fit (y axis) are plotted against empirical TP53 MAF obtained from 798 

TAmSeq. Diagonal line indicates x=y, with dashed lined indicating plus/minus 10% from the diagonal 799 
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line. RMSE = root median square error. P-value were calculated on the squared errors using the 800 

paired one-sided Wilcoxon test. 801 

802 
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 Extended Data Tables 803 

 Extended Data Table 1 – Overview of currently available bioinformatic ACN fitting tools 804 

 805 

*Citations are indicated as average citations per year. Tools used in this study are shown in bold. 806 
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Extended Data Figures 807 

 Extended Data Figure 1 – Fitted vs published cell line ploidy across different ACN 808 

fitting tools 809 

 810 

Fitted ploidies obtained from (a) Rascal, (b) ACE, (c) ichorCNA and (d) ABSOLUTE were compared 811 

to published ploidy data (See Supplementary Table 1 and 2), where available. (Note that for three of 812 

these cell lines assessed via chromosome counting (PEA1, PEA2 and PEO23), no modal 813 
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chromosome counts (ploidies) could be assigned52 for comparison with fitted ploidies and were 814 

excluded from downstream analyses.) Data are presented as Bland-Altman plots with the difference 815 

between fitted and published ploidies on the y-axis. Ploidy difference of +/- 0.25 copy number steps is 816 

indicated by shaded ribbons, and ploidy difference of +/- 0.5 is indicated by dashed lines. The four cell 817 

lines for which discordant published ploidy data was available are shown in the panel to the right. 818 

Shapes indicate methods by which published ploidies were determined.   819 
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 Extended Data Figure 2 – In silico subclonality mixture analysis 820 

 821 

(a) Schematic of the in silico subclonality experiment. QDNAseq read counts from matching sample 822 

pairs (e.g. A2780-CIS and A2780-ADR, or PDX line 914 mice 170 and 175) were used to simulate 823 

different clonality states with the dominant clone ranging from 50-100% frequency (in 5% increments). 824 

Segmented relative copy number data was generated using QDNAseq and applied to Rascal for 825 

absolute copy number fitting using both, the MAD and RMSD distance function. Absolute copy 826 

number profiles for both sample pairs are shown in Supplementary Fig. 4. (b) and (c) showing 827 

subclonality mixtures derived from the A2780 and PDX line 914 sample pairs, respective, for which 828 

correct ACN fits could be obtained using either the MAD (solid circle) or RMSD (hollow circle) 829 

distance function. The fraction of the dominant clone for each admixture is shown along the x-axis. 830 

The dashed, vertical, grey lines indicate the minimum dominant clone fraction at which correct ACN 831 

fits could be obtained. (d) Percentage of genome subclonality calculated as before (Fig. 4e) 832 

compared to the in silico simulated subclone fraction. Only samples which were fitted to their correct 833 

ACN fits using the MAD distance function were included. A2780 derived samples are shown as solid 834 

circles; PDX line 914 derived samples as triangles. 835 
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