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Graphic	abstract	

	

Summary	
The identification of prognostic biomarkers fuels personalized medicine.  Here we tested two 

underlying, but often overlooked assumptions: 1) measurements at the steady state are sufficient for 

predicting the response to drug action, and 2) specifically, measurements of molecule abundances are 

sufficient. It is not clear that these are justified, as 1) the response results from non-linear molecular 

relationships, and 2) the steady state is defined by both abundance and orthogonal flux information.  An 

experimentally validated mathematical model of the cellular response to the anti-cancer agent TRAIL 
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was our test case. We developed a mathematical representation in which abundances and fluxes (static 

and kinetic network features) are largely independent, and simulated heterogeneous drug responses. 

Machine learning revealed predictive power, but that kinetic, not static network features were most 

informative. Analytical treatment of the underlying network motif identified kinetic buffering as the 

relevant circuit design principle. Our work suggests that network topology considerations ought to guide 

biomarker discovery efforts. 

 

Highlights	
- Biomarkers are usually molecule abundances but underlying networks are dynamic  

- Our method allows separate consideration of heterogeneous abundances and fluxes 

- For the TRAIL cell death network machine learning reveals fluxes as more predictive 

- Network motif analyses could render biomarker discovery efforts more productive 

 

eTOC	blurb	
Precision medicine relies on discovering which measurements of the steady state predict therapeutic 

outcome. Loriaux et al show – using a new analytical approach – that depending on the underlying 

molecular network, synthesis and degradation fluxes of regulatory molecules may be more predictive 

than their abundances. This finding reveals a flaw in an implicit but hitherto untested assumption of 

biomarker discovery efforts and suggests that dynamical systems modeling is useful for directing future 

clinical studies in precision medicine. 
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Introduction	
The development of prognostic molecular biomarkers to predict the response to treatments is 

dramatically improving the diagnosis and treatment of cancer (Auffray et al., 2009; Hood and Friend, 

2011), and many other diseases. Distinct from efforts to identify genetic variants that are predictive of 

disease, biomarker discovery efforts are focused on relating the measured abundances of biomolecules 

to the efficacy of a specific treatment (Rifai et al., 2006). For example, expression of the receptors for 

estrogen, progesterone, or epidermal growth factor predict which breast cancers are effectively treated 

by the adjuvants Trastuzumiab or Tamoxifen (Piccart-Gebhart et al., 2005; Romond et al., 2005), and 

molecular signatures predictive of treatment efficacy have been identified for histologically 

indistinguishable B-cell lymphomas (Alizadeh and Staudt, 2000; Rosenwald and Staudt, 2003). 

In spite of these successes, the predictive power of such molecular signatures often remains limited 

(Chechlinska et al., 2010). The common interpretation is that the clinical variability needs to be further 

stratified into a larger number of distinct classes, prompting further biomarker discovery pipelines 

(Diamandis, 2010). We wondered whether the focus on abundance measurements in ongoing biomarker 

discovery efforts was justified or might instead limit their success. After all, even if the steady state of a 

dynamical system (such as the regulatory network controlling cell proliferation or death) is predictive of 

its response to a perturbation (such as an anti-cancer drug), fundamental theory states that the steady 

state is only incompletely determined by the abundances of all of its components; the fluxes and 

turnover rates provide non-redundant, potentially critical information. Indeed, a recent study 

demonstrated that turnover rates may vary between cells and samples (Alber et al., 2018). As such, 

using molecular abundances as biomarkers for therapeutic decision-making could potentially inherently 

limit predictive power.  

To address this question and test the implicit assumption that molecular abundances are sufficiently 

predictive - we sought a cancer therapeutic whose mode of action was sufficiently well-defined that it 

was recapitulated in a kinetic mathematical model of the molecular network, so that we could 

interrogate the afore-mentioned questions in a more systematic and detailed manner than is possible 

with any experimental model system. The anti-cancer therapeutic, rhTRAIL/APO2L (hereafter, "TRAIL") is 

a TNF family member that preferentially induces apoptosis in transformed cells (Wiley et al., 1995).  

Several TRAIL analogues have been tested clinically (Ashkenazi and Herbst, 2008), but the response to 

TRAIL is heterogeneous and cell-type specific (Mahalingam et al., 2011; Wagner et al., 2007).  An 
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experimentally validated mathematical model of TRAIL-induced cell death based on ordinary differential 

equations (ODEs) was developed (Albeck et al., 2008a), and extended to include protein synthesis and 

degradation for all molecular species that produces a non-trivial steady state of live cells that may 

withstand or die in response to TRAIL treatment (Loriaux et al., 2013).   

Here, we developed a computational framework that combines bottom-up network analysis with top-

down machine learning to identify a parsimonious set of biochemical features that accurately predict 

the response to chemical perturbation in a heterogeneous population of cells.  To address the specific 

question about the predictive power of abundance information, we reformulated the kinetic model in 

terms of abundances and turnover parameters, using a newly developed method called py-substitution 

(see Box). In contrast to conventional formulations using kinetic parameters which control both the 

abundance and flux of a molecular species, in our formulation fluxes are controlled by balancing 

synthesis and degradation rates to insulate them from abundances.  Hence, the model formulation 

distinguishes between static (abundance) and kinetic (flux) features.  

By letting protein abundance and flux parameters be sampled from empirically-derived distributions, we 

were able to rapidly evaluate the response to TRAIL for a diversity of different cellular steady states that 

reflect the potential diversity of tumors.  Using quadratic programming feature selection, we first 

confirmed that steady state information can indeed serve as an accurate predictor of the response to 

TRAIL, independent of the stimulus-induced dynamics of biochemical reactions.  Remarkably, however, 

we found that the features with the most predictive power are kinetic rather than static.  Indeed, four 

kinetic features provided 78% prediction accuracy. That is, we show that the rates of synthesis and 

degradation of just two key regulatory molecules are considerably more informative than the absolute 

abundances of those or in fact all molecules combined.  Further, analytical treatment of a minimal 

model identified the network motif that renders kinetic features particularly important in the TRAIL 

death network. Our results have strong implications for clinical prognosis of drug sensitivity; they argue 

that at least for some clinical presentations – depending on the underlying regulatory network – 

significant predictive information is lost when live clinical specimens are fixed after biopsy instead of 

being directly used measurements. 

Results	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452900
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 6 - 

 

Testing	assumptions	of	biomarker	discovery	efforts	using	drug-responses	to	TRAIL	as	an	

example	

Biomarker discovery efforts are based on the assumption that measurements of specific features of the 

relevant biological network at steady state may be linearly combined to predict the response to 

therapeutic intervention, and further, that information of the abundances of network components 

(necessitated by commonly available measurement tools) is sufficient, although the steady state is of 

course a function of both abundances and fluxes (Figure 1A).  To address these assumptions implicit in 

biomarker discovery efforts, we developed an analytical workflow that combined (i) high throughput 

mechanistic mathematical modeling heterogenous patient cancers, (ii) machine learning feature 

selection by data-driven modeling, and (iii) model reduction to identify design principles using analytical 

tools (Figure 1B). Key to being able to address the assumption that molecule abundances provide 

sufficient predictive power is our recently developed method, termed py-substitution (Box), to 

mathematically transform dynamical systems model written in a mass action formalism in a manner that 

separates the parameters that control molecule abundances and fluxes (Loriaux and Hoffmann, 2013; 

Loriaux et al., 2013). We first demonstrated the workflow with a small model of an enzymatic switch 

that shows bistability (Supplementary Figures 1-2, Methods) before applying it to a larger, published 

mathematical model that describes the anti-cancer treatment by the biological therapeutic TRAIL 

(Almasan and Ashkenazi, 2003; Wang and El-Deiry, 2003). 

------------------------------------------------------line break for Box: begin--------------------------------------------------- 

Py-substitution – a method to separate static and kinetic network features. 

Mathematical models of molecular networks typically describe a set of chemical reactions, as rate 
equations by the Law of Mass Action (Sreenath et al., 2008): �́� = 𝑆𝑣, where �́� denotes the change in 
abundance of species over time, 𝑆 is the stoichiometric matrix and 𝑣 is the reaction flux, which is given 
by the product of kinetic rate constants 𝑘 and the abundance at that time. Thus, in the mass action 
formulation kinetic rate constants determine the abundances of each molecular species both at steady 
state as well as in response to therapeutic perturbation. In other words, rate constants are independent 
parameters and abundances depend on them. 

However, measurements of the steady state are typically molecular abundances, especially when biopsy 
tissue is fixed or frozen for preservation purposes. That means we require a formulation of the 
mathematical model in which abundances are independent parameters. If abundances are independent, 
then kinetic information is specified by the flux, as flux may change without altering abundances. 
Therefore, we seek a formulation of the mathematical model that allows simulating the response to 
perturbation as a function of abundances and fluxes, rather than kinetic rate constants.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452900
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 7 - 

 

Py-substitution is a method to substitute kinetic rate constants with abundances and fluxes, by deriving 
an analytical expression for the steady state. The previous method of deriving analytical expressions for 
the steady state was restricted to the case with flux as a degree-1 function of the abundances (King and 
Altman, 1956; Lam and Priest, 1972; Volkenstein and Goldstein, 1966). In signaling systems, the flux 𝑣 is 
often a function of higher degree abundances, as regulation may involve complexes with multiple 
components and stoichiometries. The py-substitution can derive steady state expressions for models 
where the flux 𝑣 is degree 1 in reaction rates and degree 2 in abundances. That enables the derivation of 
analytical expression for the steady state of more mathematical models, particularly those describing 
regulatory or signaling networks. 

As illustrated in the box figure, py-substitution involves the following operations (Loriaux et al., 2013): 
1) Choose 𝑑! (𝑑! > 𝑟𝑎𝑛𝑘	𝑆) parameters 𝑦 as a set 𝑌. The parameters should be linear in flux 𝑣, and 

can be specified by the mapping: 𝜓"(𝑣) = 𝑇𝑦, where 𝑇 is the 𝑑# × 𝑑! Jacobian matrix with 𝑇$% =
𝜕 𝑣$ 𝜕⁄ 𝑦%. Then, the steady state condition becomes 𝐶𝑦 = 0, with 𝐶 ≐ 𝑆𝑇. The remaining 
parameters are kept identical in a set 𝑃 under the mapping. 

2) The second step is to further partition the set 𝑌 for identifying dependent parameters therein. It is 
achieved by Gaussian elimination on matrix 𝐶. For the reduced row echelon form 𝐶, the columns 
with a pivot identify the position of dependent parameters in 𝑌, and those without a pivot 
correspond to independent ones.  Let matrix 𝑁 have the basis for the null space of 𝐶, and thus 𝑦 =
𝑁𝑞 satisfies 𝐶𝑦 = 0. Then, the mapping through 𝑦 = 𝑁𝑞 separately maps the set 𝑌 to 𝑄 with the 
independent parameters and another complementary set spanned by the sets 𝑃, 𝑄: 𝑠𝑝𝑎𝑛(𝑃, 𝑄). 
The set 𝑃 is kept identical, and they together define the mapping 𝜓!.  

3) After specifying the dependent parameters, we conduct the inverse mapping of the above two: 
@𝜓" ⋅ 𝜓!B

&'
. Since they are reversible (Loriaux et al., 2013), we finish the separation on the 

independent parameters of the subset 𝑃, 𝑄  and the dependent parameters of 𝑌. 
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An illustrative example is the open system of Michaelis-Menten enzyme kinetics (Loriaux et al., 2013). 
The reactions are provided in Supplementary Figure 3, with the rate constants {𝑘$}$(',…,+. We can 
choose the four abundances as the independent parameters in the set 𝑃 = {𝑝$}$(',…,,, and the rate 
constants as the set 𝑌 = {𝑦$}$(',…,+ under the mapping 𝜓". The second mapping 𝜓! further identifies 
the dependent parameters in the set 𝑌, and here the complementary set in 𝑌 contains {𝑦-, 𝑦+}, which 
are mapped to the set 𝑄 = {𝑞', 𝑞-}. The set 𝑃 is identical under 𝜓", and then the parameters in the sets 
𝑃, 𝑄 can represent the dependent parameters in the set 𝑌. Finally, by conducting the inverse map 

@𝜓" ⋅ 𝜓!B
&'

, we obtain the analytical relation between parameters. With the relation, the perturbations 
on the independent parameters transmit to the dependent parameters, such that the steady state 
maintains, but not to other independent parameters.  

Whereas in conventional parameter sensitivity analysis, changes in kinetic rate constants affect both 
steady state abundances and fluxes, following py-substitution changes in the independent kinetic 
parameters generally lead to changes in flux but independent abundances remain unchanged; 
conversely, changes in abundances will not lead to changes in flux (Loriaux and Hoffmann, 2013). Thus, 
we are able to study separately the roles of “kinetic features” and “static features” in determining the 
response to perturbation. 

------------------------------------------------------line break for Box: end----------------------------------------------------- 
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The apoptosis mathematical model consists of ordinary differential equations that describe the time-

dependent behavior of 58 molecular species in response to stimulation by TRAIL (Albeck et al., 2008a), 

extended to include synthesis and decay of every molecular species to produce non-trivial steady states 

(Loriaux et al., 2013) (Supplementary Figure 3A). Briefly, the model describes TRAIL-mediated assembly 

of the death-inducing signaling complex (DISC) and subsequent activation of caspase 8.  Active caspase 8 

cleaves and activates caspase 3, but also Bid, which in turn activates cytoplasmic Bax.  Activated Bax 

then enters the mitochondria to form tetrameric pores through which cytochrome C is released into the 

cytoplasm.  This event is commonly called mitochondrial outer membrane permeabilization, or MOMP.  

Once in the cytoplasm, cytochrome C catalyzes the formation of the Apoptosome, which results in 

degradation of XIAP and feed-forward activation of caspase 3.  Activation of caspase 3 is required for 

chromatin condensation and DNA fragmentation (not modeled), and ultimately results in cell death 

(Porter and Jänicke, 1999; Woo et al., 1998).  Because MOMP is irreversible (Sheridan and Martin, 

2008), we used the abundances of tetrameric Bax (Bax4) and caspase 3-cleaved poly (ADP-ribose) 

polymerase (cPARP) as indicators of cell fate (Albeck et al., 2008b; Kaufmann et al., 1993).  See 

Supplementary Tables 1-3 for all species, reactions, and differential equations used in our model.   

In order to treat the steady state flux as an independent variable, we used py-substitution (Box) to 

derive an analytical expression connecting the kinetic rates and abundances at steady state (Loriaux and 

Hoffmann, 2013; Loriaux et al., 2013). The resulting expression has 119 independent parameters, 18 of 

which are species abundances, 100 of which are kinetic rate constants, and 1 of which describes the 

mitochondrial volume.  The remaining 40 abundances and 15 rate constants are rational polynomials in 

the independent parameters by py-substitution.  (See Supplementary Tables 4-7 for all parameter values 

used to numerically integrate the differential equations.)  To verify that our model was capable of 

distinguishing between high and low doses of TRAIL, we generated dose-response curves over a 100-fold 

increase in ligand abundance.  At each dose we simulated the model to 48 hours and recorded the 

abundance of eight species both receptor proximal and distal (Supplementary Figure 3B-I).  The results 

clearly show two distinct dose-response regimes.  At low doses there is a linear response in the DISC, but 

no caspase activation, cytochrome C release, nor cleavage of PARP. At high doses there is complete 

cytochrome C release, activation of caspases 3 and 8, and accumulation of cPARP.  The model can 

therefore distinguish between perturbations that do and do not result in cell death. 
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Next, we modeled the response for distinct steady states, as they might occur in different tumors from 

different patients.  Recent single-cell experiments suggest that protein abundances are gamma 

distributed (Taniguchi et al., 2010).  This distribution arises naturally from Poisson production of 

messenger RNA, followed by exponentially-distributed bursts of protein translation (Friedman et al., 

2006).  A remarkable conclusion from this work is that for highly expressed proteins, the variance is 

proportional to the square of the mean.  Using the abundances given in (Albeck et al., 2008a), we 

calculated the variance, shape, and scale parameters of 14 independent species in our model (Figure 2A-

B).  By virtue of being constrained to the steady state, 40 dependent species also assumed a probability 

distribution, albeit with higher variance (Figure 2C).  In addition, protein half-lives in murine 3T3 cells are 

known to be log-normally distributed (Schwanhäusser et al., 2011) (Supplementary Figure 4).  We 

therefore let 11 degradation rate constants follow a log-normal distribution with a coefficient of 

variation (CV) equal to 0.368, equivalent to a variance of 1 hour in the log-normal distribution of protein 

half-lives (Figure 2D-E), given that signaling proteins tend to be short-lived (Loriaux and Hoffmann, 

2013).  Again, by virtue of the steady state constraint, 15 synthesis rate constants assumed a probability 

distribution as well (Figure 2F). 

Next, we sampled the model 20,000 times and simulated its response to an ambiguous dose of TRAIL 

(1,000 ligands per cell).  Examining the abundance of four species -- active caspase 3 (Figure 2G), cPARP 

(Figure 2H), tetrameric Bax (Bax4) (Figure 2I), and cytoplasmic cytochrome C (Figure 2J)-- at 48 hours 

after stimulation revealed two distinct subpopulations.  Cells that experienced MOMP achieved the 

hyperactive steady state indicative of cell death.  Cells that did not experience MOMP returned to their 

pre-stimulated steady states.  Due to the symmetry and distance of the two subpopulations of Bax4 at 

48 hours, we chose this as our primary response variable.  We note that the abundance of Bax4 in the 

responding population is between 1 and 10 tetramers, in good agreement with the observation that 

only a few mitochondrial pores are required for MOMP (Düssmann et al., 2010).  After fitting with a two-

component Gaussian mixture model, those that returned to their pre-stimulated steady states were 

scored as “alive” and assigned a response value of zero.  Those that did not were scored “dead” and 

assigned a response value of one. 

 

Steady	state	can	be	an	accurate	predictor	of	the	response	to	TRAIL	
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After binarizing the response, we returned to the prior empirical parameter distributions and calculated 

their correlation with the response.  We found that we can build an informative classifier for a 

heterogeneous population of cells using only ~103 simulations (Supplementary Figure 5). Note that 

random-valued parameters in the forward numerical integration problem are considered "features" in 

the backward model selection problem.  We thus distinguish between “static” and “kinetic features”, 

where static features are the steady state abundances of the molecular species and kinetic features are 

the synthesis (and degradation) fluxes that when balanced do not affect their steady state abundances.  

As shown in Figure 3A, no single feature correlates well with the response to TRAIL.  This is in agreement 

with the conclusion drawn by (Spencer et al., 2009), where no single protein exhibits strong correlation 

with the time elapsed between administration of TRAIL and MOMP, unless artificially overexpressed. 

A confounding issue of biological systems is that the feature set or measurements are highly cross-

correlated.  To account for redundancy, we calculated the cross-correlation matrix (Figure 3B).  As 

expected, every feature perfectly cross-correlates with itself, as illustrated along the diagonal.  Because 

steady state abundances and fluxes were separated, paired synthesis and degradation rates are highly 

correlated as well (clusters K1 and K2).  Interestingly, cluster K2 contains fluxes that are well-correlated 

with a number of species abundances.  Among the static features, we observed four clusters.  Cluster S4 

contains the independent species abundances, all of which exhibit low correlation with every other 

feature.  Clusters S1, S2, and S3 are the receptor-proximal, post-mitochondrial, and mitochondrial 

clusters, respectively.  The high degree of cross-correlation observed in cluster S3 argues that if the state 

of the mitochondria is a good predictor of TRAIL sensitivity, then only one mitochondrial feature will 

need to be measured.  Similar arguments can be made for clusters S1 and S2.  However, molecular 

species that are well separated in the biochemical network, e.g. activated caspase 6 and cytoplasmic Bcl-

2, are nevertheless strongly correlated due to the constraints imposed by steady state. 

Using the correlation between each feature with the response, and the cross-correlation between every 

pair of features, we sought to identify a subset of maximally predictive, minimally redundant features 

for predicting the response to TRAIL.  To do this we used quadratic programming feature selection 

(Rodriguez-Lujan et al., 2010), or QPFS.  QPFS expresses this objective as a quadratic program and finds 

a vector of weights on the features that minimizes redundancy while maximizing relevance (see 

Methods).  If we examine the QPFS-weighted correlations between each feature and the response 

(Figure 3C), we see a dramatic reduction in complexity.  In particular, above the weighted correlation 

thresholds of 0.3 and 0.12, we observe only four and twelve features, respectively.  These are the rates 
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of synthesis and degradation of BAR and XIAP, and above 0.12 the rates of synthesis and degradation of 

cytoplasmic Bcl-2, mitochondrial Bcl-2, Bid, and the steady state abundances of procaspase 8 and the 

TRAIL receptor. 

We therefore asked whether we could accurately predict the response to TRAIL using only the small 

subsets of features.  We used logistic regression to model the log-odds ratio of the probability of 

responding to TRAIL as a linear combination of the four or twelve features.  To do this we divided the 

20,000 simulated responses into equal sized training and test datasets.  Regression coefficients were 

derived by maximum likelihood estimation on the training data.  We then compared predictions from 

the logistic regression models with the test data and found that they achieved 78 and 84 percent 

accuracy, respectively (Figure 4A-B).  This indicates that, when predicting the response to TRAIL, a 

substantial reduction in model complexity (linear combination of a small set of features rather than 54 

non-linearly related species) can be achieved with only a modest loss in accuracy. In sum, the first 

assumption of biomarker discovery efforts (Figure 1A) appears to hold true for this example of TRAIL-

induced death. 

Kinetic	features	outperform	static	features	as	response	predictors	

Interestingly, our results also suggest that kinetic features are more powerful predictors of TRAIL-

responsiveness than static features.  All seven of the best-performing features are kinetic.  Since only 

33% (27 out of 82) of all features are kinetic, this enrichment is remarkable.  This result is largely robust 

to when turnover rates are substantially slowed (Supplementary Figure 6). To further examine the 

predictive power of kinetic versus static features, we built all 26 and all 54 logistic regression models 

using only kinetic or static features, respectively, in decreasing order of their QPFS ranking.  We then 

calculated the accuracies of these models as before (Figure 4C).  The results confirm that kinetic 

regression models outperform static regression models.  The regression model built using only the rates 

of synthesis and degradation of XIAP is superior in accuracy to the model built using all 54 steady state 

molecule abundances. 

An implicit parameter in the calculation of model accuracy is the threshold at which an unknown system 

is classified as responsive.  By convention this threshold is zero, that being when the predicted 

probability of responding equals the probability of not responding.  By altering this threshold, the 

fraction of true to false positives can be adjusted, yielding the well-known receiver operating 

characteristic (ROC) curve.  To test whether kinetic regression models simply outperform static models 
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at a particular classification threshold, we generated ROC curves for all 80 logistic regression models.  

Again, the results confirm that kinetic regression models are far more discriminatory than static 

regression models.  As with the previous result, a kinetic regression model containing only the rates of 

synthesis and degradation of XIAP outperforms the static regression model incorporating all 54 steady 

state species abundances (Figure 4D). In sum, the second assumption implicit in biomarker discovery 

efforts (Figure 1A) appears not to be justified in this example of TRAIL-induced death. 

A	minimal	model	identifies	a	network	motif	controlled	by	kinetic	features		

To examine why the outcomes of the TRAIL death decision network were more predictably determined 

by kinetic than static features, we developed a simplified model of the key regulatory step. Besides the 

apoptosis model considered here (Loriaux et al., 2013), there are other formulations adapted to match 

protein measurements in different cell types (Albeck et al., 2008a; Lopez et al., 2013; Spencer et al., 

2009). A common core module in determining the apoptosis decision is the C3* protein and the 

regulation between XIAP and C3*. Thus, we considered the interaction between XIAP and C3*, as the 

C3* response determines the decision on live and death, through catalyzing the reaction from PARP to 

cPARP (Figure 5A). Activated caspase 3 is modeled within a positive feedback loop which also abstracts 

positive mitochondrial feedforward loop emanating from caspase 8 in the extended cell death model 

(Albeck et al., 2008a), and is inhibited by XIAP that can be synthesized and degraded (Loriaux et al., 

2013; Spencer et al., 2009). The model is simulated by applying an activation function to C3* which is 

the result of TRAIL interacting with its receptor, activating caspase 8 and then caspase 3.  As such 

different doses of TRAIL lead to different C3* activation amplitude (Figure 5B, top) that result in 

reductions of XIAP (Figure 5B, middle).  In our example, the highest activation function results in an 

irreversible depletion of XIAP and activation of C3* (Figure 5B, bottom), signifying death. 

We probed the minimal model to understand why kinetic features outperformed the static abundances 

in determining the binary decision for cell response. When XIAP synthesis and degradation rates are 

increased at this previously lethal dose of TRAIL activation, XIAP is effectively replenished when an 

increase of C3* consumes it (Figure 5C). Specifically, increasing XIAP turnover is able to slow the 

response to the increased C3* activity and when XIAP turnover is increased further, XIAP never reaches 

the point of complete diminishment, thereby keeping the C3* positive feedback loop in check. As the 

TRAIL-induce activation function decays after some time, XIAP recovers to the original high abundance 
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and C3* never rises to lethal levels (Figure 5C).  Thus, increased turnover of XIAP, without changing its 

steady state abundance, results in increased resistance to TRAIL triggered pro-apoptotic signaling. 

We plotted the flux lines of C3* due to its TRAIL-induced synthesis and inhibition by XIAP (Figure 5D and 

Supplementary Video). The positive feedback leads to a sigmoidal flux curve and thus an ultra-sensitive 

relationship of C3* flux vs C3* abundance. Together with the degradation flux caused by XIAP, they 

define the two regimes of the binary fate decision.  With a lethal amount of TRAIL activation, C3* levels 

drop below the threshold unless its degradation by XIAP is decreased. While a 1.5 x increase does not 

quite replenish C3* levels entirely, a two-fold increase does, confirming the sensitivity of this kinetic 

feature of the network. Indeed, the converse can be shown similarly. At TRAIL activation doses that 

were not lethal (Figure 5B), reducing the turnover of XIAP can render cells substantially more prone to 

apoptosis.  At the sublethal activation dose, a halving of the the flux resulted in irreversibly diminished 

XIAP and elevated C3* levels (Supplementary Figure 7A); when the activation dose was further reduced, 

halving the turnover rate was insufficient, but diminishing it by 10-fold resulted in death (Supplementary 

Figure 7B). Together, we observe that the flux of XIAP is a strong determinant of cell death decisions, as 

it controls engagement of the C3* positive feedback loop. In contrast, the abundance of XIAP does not 

alter the cell fate decisions for either lethal or non-lethal activation doses (Supplementary Figure 7C-D). 

However, when the XIAP inhibitor functions enzymatically rather than stoichiometrically, its steady state 

abundance is a more potent determinant of cell death than its flux (Supplementary Figure 7E-F). 

	

Discussion	

Here we have examined two common assumptions implicit in biomarker discovery efforts: that a 

regression model of measurements, in essence a linear representation of the dynamical systems 

network, retains predictive power about the response to treatment to guide clinical decision making; 

and further, that measurements of molecular abundances are sufficient to achieve this predictive 

power, even in the absence of kinetic information. We addressed these assumptions for a potential anti-

cancer treatment that is based on the cell-death-inducing ligand TRAIL, and found the answers to be a 

qualified “Yes” to the first, and a clear “No” to the second. In other words, while linear regression 

modeling could retain predictive power, the absence of kinetic information about the network 

substantially limited its performance. In fact, a single turnover or flux measurement could provide 
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greater accuracy and precision than abundance information of all molecules represented in the 

network. 

A quantitative evaluation of the performance of a biomarker requires that the “ground-truth” is known.  

This can only be provided by a mathematical model of a biological network, not the actual biological 

specimens, which can provide error-free “measurements” of the biochemical state of the network and 

the outcome of the drug perturbation. We developed a computational workflow for identifying a 

parsimonious set of specific biochemical features (i.e. abundances and fluxes) that optimally predicts the 

response to the drug perturbation within a heterogeneous population.  This workflow was made possible 

by the following recent advances: 1) an experimentally validated reaction network model of the biological 

process in question (Albeck et al., 2008a), 2) computational methods for deriving an analytical expression 

for the steady state of the network that allows us to separate static vs kinetic features of the network (i.e. 

molecular abundances and flux/turnover rates, respectively) (Loriaux et al., 2013), 3) incorporating kinetic 

variability into modeling (Loriaux and Hoffmann, 2013), and 4) a method to identify subsets of features 

that are simultaneously predictive and non-redundant (Rodriguez-Lujan et al., 2010). 

After applying our workflow to the anti-cancer drug TRAIL, our first conclusion is that information about 

the steady-state of a dynamical system can indeed serve as a good predictor of its response to 

perturbation (Figure 3A and B).  That is, a logistic regression model that considers only four steady state 

features will accurately predict, four times out of five, the response to TRAIL compared to the full ODE 

model.  A priori, there is no reason to think that this should be possible. It will be of interest to examine 

whether other biological networks are less well represented by linear regression models.  Given that to 

date, over 500 curated, quantitative models of cell decision and signaling processes have been 

developed (Le Novère et al., 2006), the potential impact of interrogating them with the described 

workflow could be substantial.   

For TRAIL, we find that the rates of protein synthesis and degradation, or flux, of XIAP and Bar are the 

strongest predictors of the response.  These are followed by the fluxes of Bid and Bcl-2 and the steady 

state abundances of the TRAIL receptor and procaspase 8.  The locality of these features in the reaction 

network lends credibility to this finding.  Bar and XIAP are at the points of bifurcation and convergence 

of the mitochondrial feed forward loop, respectively.  The original ODE model was trained on data 

derived from HeLa cells, for which MOMP is normally required for cell death (Mandal et al., 1996). The 

turnover of proteins that control this bifurcation are therefore good predictors of the response. 
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We conclude that kinetic features of the regulatory network are stronger predictors of TRAIL-induced 

cell death than static features.  This conclusion does not appear to be sensitive to the mean of the 

kinetic feature distribution (Supplementary Figure 6). Whether the global protein-half life is modeled at 

1 or 66 hours, QPFS identifies the fluxes of Bar and XIAP, or Bax and Bcl-2 respectively, as the most 

powerful predictors of TRAIL responsiveness.  In contrast, when the CV of the kinetic feature distribution 

is reduced from 0.386 to 0.25, as reported in (Gaudet et al., 2012), we see a slight reduction in the 

dominance of kinetic features.  This observation is not surprising, however.  In the limit where the 

variance of a feature is so small as to be effectively constant, knowing that feature will have less impact 

on classification.  Since genome-wide measurements of protein half-life suggest a CV between 0.48 and 

2.28 (Boisvert et al., 2012; Cambridge et al., 2011; Schwanhäusser et al., 2011), we conclude that, in 

general, kinetic features dominate static features when predicting the response to TRAIL.  Indeed, static 

features that were treated as independent random variables in the present study have been shown to 

be cross-correlated (Gaudet et al., 2012).  Incorporating these empirical cross-correlations into the QPFS 

rankings would further dilute their predictive power and contribute to the overall dominance of kinetic 

features. 

In support of this conclusion, work from our laboratory shows that steady state flux can exert significant 

control over the dynamic response to perturbation (Loriaux and Hoffmann, 2013).  In other words, 

isostatic signaling networks can exhibit very different of dynamics to the same perturbation, and only 

when certain protein flux parameters are constrained can a specified stimulus-response behavior be 

observed.   

To understand why kinetic features of the regulatory network are so important in determining the 

cellular response to TRAIL, we constructed a minimal mechanistic model focused on the interactions of 

XIAP and caspase. Stability analysis of the model revealed that the de-facto positive feedback loop of 

caspase 3 (including the mitochondrial feedforward loop in the detailed model) functions as a strong 

attractor that traps transient dips of XIAP levels; a strong synthesis rate that replenishes XIAP rather 

than its steady state abundance ensures that XIAP levels never fall below a threshold level. As such, 

TRAIL responsiveness of cancer cells is governed by a kinetic buffering network motif.  

In the present minimum model, the bi-stable steady state originates from a combination of the positive 

feedback loop and the degradation by the inhibitor. The kinetic feature controls the sensitivity of 

inhibitor’s abundance change to the perturbation of the time-dependent activation function and thus 
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the degradation flux of the effector (Figure 5 and Supplementary Figure 6). We thus expect that the 

kinetic buffering effect revealed by the minimum model could play a role in a wide range of reaction 

networks that contain a similar motif.  It is also related to the a buffering effect of the futile enzymatic 

cycle (“GK loop”) which exhibits non-linear dose responses (Xu and Gunawardena, 2012).  

The present work differs from previous parameter sensitivity analyses or biomarker studies (Aldridge et 

al., 2006, 2011; Kallenberger et al., 2014), where initial abundances were varied. Here, model species, 

which are subject to synthesis and decay, were perturbed in such a way that their abundances and 

fluxes could be varied independently, enabling a comparison of which are more predictive. In other 

studies, key Hill coefficients, which are characteristic of non-linear dose responses and typically reflect 

more complex mechanistic control, were reported as predictive of outcome (Fey et al., 2015; Kim and 

Schoeberl, 2015). Here, we considered a model of mass action which does not have Hill coefficients, but 

then revealed that the reaction flux provides a buffering effect that can produce a non-linear dose 

response.  

This work may help inform the development of next generation diagnostics.  In cases where kinetic 

features are more powerful predictors of the therapeutic response than static features, then this may 

prompt either (i) development of novel assays or (ii) focusing on proxy or surrogate assays. Regarding 

the former, (i), sensitive assays for measuring kinetic features in clinical biopsies, perhaps via pulse-

labeling (Doherty et al., 2009; Friedel et al., 2009; Schwanhäusser et al., 2011) may be possible.  

However, such diagnoses require fresh, unfixed primary human tissue samples.  Regarding the latter, (ii), 

it may be possible to infer the values of kinetic features from other, more easily undertaken abundance 

measurements.  For example, the rate of protein synthesis is largely determined by mRNA abundance 

(Ingolia et al., 2009), and the rate of degradation of a particular protein may be inferable from the 

abundance of the E3 ubiquitin ligase that targets it for degradation.  Indeed, combination 

measurements such as abundances of mRNA and protein could in principle provide valuable information 

about protein flux. Whether such surrogate measurements are sufficient and thus more predictive than 

the abundance of the primary signal transducers, remains to be addressed in future studies. The present 

work thus may spur development of novel biomarker discovery efforts based on the recognition that it 

may not be the abundances but the fluxes of key regulators that control biological phenotype.  

 

Methods	
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Workflow	demonstration	with	a	bistable	model	

To demonstrate the workflow of using py-substitution (Loriaux et al., 2013) to obtain the steady state 

solution for mass action model and study the dependence of a binary outcome on kinetic or static 

features, we considered a small mass-action model with bistability (Bishop and Qian, 2010). The model 

contains chemical reactions of an autocatalytic kinase, given by the following reactions: 

                                                  (1) 

where 𝐸 is an enzyme, 𝐸∗ is an autocatalytic kinase, 𝑃 is a phosphatase. The model can exhibit 

bistability with deterministic dynamics. 

Then, the mass-action model of the chemical species vector 𝒙 is given by the rate equations:  

                                                                          (2) 

The stoichiometric matrix and the reaction fluxes are: 

                         (3) 

We implemented py-substitution to obtain the steady-state expression for the equation, such that the 

parameters can be distributed in a way to maintain the steady state. We then distributed all the 

independent rate constants and abundances (cf. Figure 2). The simulation of the model is able to 

generate bistable steady state values for the phosphatase 𝑃. We ran 20000 simulations, binarized the 

steady-state values of 𝑃, and implemented the regression analysis to get the correlation on the features 

as in the apoptosis model. The result (Supplementary Figure 1) shows that the static features have 

higher correlation with the phosphatase 𝑃 binary value than the kinetic features in this model. 
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To investigate the model further, we added synthesis and degradation reactions to the enzyme 𝐸 and 

phosphatase 𝑃, reflecting the reality of biochemical species (cf. Supplementary Figure 3). Then, the 

stoichiometric matrix and the reaction fluxes becomes: 

     (4) 

We again performed py-substitution to obtain the steady-state expression for the equation and 

repeated the above procedures. The result (Supplementary Figure 2) shows that the kinetic features 

now rank higher in the correlation with the phosphatase 𝑃 binary value than the static features for this 

model. The synthesis and degradation fluxes may represent important kinetic features that correlate 

with the models’ binary decision. 

The	mathematical	model	of	TRAIL-induced	apoptosis	

To construct a bi-responsive model of TRAIL-induced apoptosis, the Albeck model (Albeck et al., 2008a) 

was extended to include 15 synthesis reactions, 28 degradation reactions, and deactivation reactions for 

the species Mito and Apaf (Supplementary Table 3).  An analytical expression for the steady state was 

derived using Maple version 14 (Loriaux et al., 2013) and a py-substitution strategy that preserved all 

internal reaction kinetics and steady state species abundances as reported in the Albeck model.  The 45 

new reactions required 31 additional parameters, 28 of them being degradation rate constants.  For 

these we imposed a nominal half-life of one hour, justified by the observation that signaling proteins 

tend to be short lived (Loriaux and Hoffmann, 2013).  Several species half-lives were then manually 

adjusted to better fit published dynamic profiles for active caspase 8, caspase 3, and cleaved Parp.  They 

are: the Bar-caspase 8 complex, caspase 6, cleaved Parp, the TRAIL ligand, cytoplasmic Cytochrome C, 

and Bar.  Inactivation of Mito and Apaf were assumed to be 10 times faster than protein degradation.  

See Supplementary Tables 4-7 for a complete listing of parameters and their values. 
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Heterogeneity in the steady state was achieved by letting 14 independent steady state abundances be 

gamma distributed and 11 independent degradation rate constants be log normally distributed.  

Variance in the species abundances was set equal to one-tenth the square of the mean, i.e. the 

“extrinsic noise limit” observed in (Taniguchi et al., 2010).  Mean abundances were taken from (Albeck 

et al., 2008a).  For each gamma distribution, the scale parameter was calculated from the square of the 

mean over the variance, and the shape parameter from the variance over the mean.  Degradation rate 

constants were assumed to have a CV of 0.368, equivalent to a variance of 1 in the log-normal 

distribution of protein half-lives.  40 species and 15 kinetic parameters likewise assumed a probability 

distribution by virtue of being constrained to steady state (Figure 2A).  Only the internal reaction 

kinetics, as well as degradation rates of complexes and modified species, remained constant. 

In using py-substitution, kinetic parameters and abundances are constrained by the steady state 

condition, in which fluxes are non-zero, and the conditions of detailed balance do not apply. The 

predictive power of kinetic features can only occur in systems without detailed balance, which is 

generally true for a biological system. It is also worth noting that the flux obtained from py-substitution 

is different from that calculated through Jacobian matrix of the mass action equation. The former 

represents real flux of reactive chemical species, whereas the eigenvalues of the latter are mathematical 

terms indicating the behavior of the solution to the linearized equation around the fixed point.    

Feature	selection	and	regression	

To sample the heterogeneous population described by our TRAIL model, values were chosen for each of 

the 25 independent, random parameters according to their prescribed probability density functions.  

These values were then used to calculate the 57 dependent parameters whose values were constrained 

by steady state.  To simulate each sample's response to stimulation, we instantaneously added 1000 

molecules of TRAIL and numerically integrated the system to 48 hours post-stimulation using MATLAB 

version R2018b. 

To score the outcome of the simulation, the amount of tetrameric Bax or cleaved PARP at 48 hours was 

recorded and fit to a mixture of two univariate Gaussians using the method of derivatives.  Specifically, 

we first calculated a kernel density estimate of the response variable at 48 hours.  The first and second 

derivatives of the estimate were calculated by forward finite difference and smoothed using loess locally 

weighted linear regression.  The minima of the second derivative were taken to be the means of the two 

Gaussians and the distance between these and the minima of the first derivative taken to be the 
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standard deviation. Samples that were assigned to the Gaussian with the higher mean were assigned a 

response variable of 1, indicating a positive response to TRAIL.  Those that were assigned to the 

Gaussian with the lower mean were assigned a response variable of 0, indicating a negative response to 

TRAIL. 

Once binarized, the Pearson correlation statistic was calculated between each of the 82 features and the 

response.  Again, note that for classification, we refer to the 82 random valued parameters as features.  

Also, the same Pearson correlation statistic was calculated between every pair of features.  The absolute 

values of these correlation statistics yielded a feature relevance vector F and a redundancy, or cross-

correlation matrix Q, respectively.  From these, a weight vector w was calculated that minimizes the 

quadratic program 

                                                         (5) 

where the superscript 𝑇 denotes the vector transpose, and the weighting factor a was calculated 

empirically by dividing the mean of F by the sum of F’s and Q’s mean (Mikkaichi et al., 2019). 

Once the optimal vector of weights was identified, we used this as an ordering by which to incorporate 

features into a logistic regression model.  Specifically, we modeled the log-odds ratio of the probability 

of responding to TRAIL versus not responding as a linear combination of the steady state features. 

Model accuracy was calculated as the fraction of true positive and true negatives over all predictions.  

ROC curves were obtained by iterating the log-odds ratio threshold over its full range of possible values  

(Mikkaichi et al., 2019), and at each value calculating the true and false positive rates, i.e. the ratio of 

true to total positives, and the ratio of false to total negatives, respectively. 

The	minimal	mechanistic	model	for	analytical	treatment		

We constructed a model for the reactions represented in Figure 5A. The ordinary differential equations 

are listed here: 

                              (6) 

In the model, XIAP is synthesized and degraded, and consumed by the reaction catalyzed by C3*. For 

C3* dynamics, we adopted a Hill equation (MacArthur et al., 2009) to model the positive autoregulation 

of C3* by a positive feed-forward loop as indicated by (Albeck et al., 2008a). The Hill function of C3* was 
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parameterized, such that the final steady-state value of C3* matches the extended cell death model. 

Without loss of generality, we chose the Hill coefficient to be 3 to model the possible cooperative effect 

of positive feed-forward loop. The Km value was chosen as 1e12 to ensure an auto-regulation strength 

with the same order of magnitude as in the original larger model.  

The activation of C3* by upstream signaling was modeled by a time-dependent smooth pulse-like 

function. For the convenience of modeling a continuous smooth pulse function, we chose a log-normal 

distribution as the time-dependent activation A(t). The time scale for this pulse input is set by the 

reactions in the original cell death model, when the cell is stimulated by TRAIL. Thus, we parameterized 

the log-normal distribution such that the peak time is around 5 hours (Figure 5C). 

 We also used a degradation term in C3* dynamics to approximate the consumption by enzymes of 

other reactions, such as PARP. The degradation rate of C3* was chosen such that under the minimum 

overall consumption on C3*, i.e., when XIAP abundance is zero, the steady-state C3* abundance 

matches the simulation of the original cell death model. Other parameters had the same values as in the 

original model. 

Since we aimed to perturb the synthesis and degradation rate of XIAP, we used py-substitution to keep 

the steady state abundances fixed (Loriaux and Hoffmann, 2013; Loriaux et al., 2013). Through py-

substitution, we obtained an analytical solution to simultaneously vary synthesis and degradation rate of 

XIAP, without changing other initial conditions. This enabled studying the effects of kinetic features, 

without affecting abundances. 

We further explored a version of the model in which XIAP is modeled enzymatically rather than 

stoichiometrically, that is, C3* does not degrade XIAP. To this end, we removed the last term in the first 

equation of XIAP dynamics. In order to be consistent with the original minimal model of the cell fate 

decision under the same activation flux, we changed the inhibition strength of XIAP on C3* to have a 25-

fold lower numerical value. We observed that, when XIAP is treated as an enzyme, a change in its 

abundance, not its flux, affects the cell fate decision (Supplementary Figure 7E-F).  
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Figures	and	Figure	Legends	

 
Figure 1. Testing assumptions of biomarker discovery using knowledge-based and data-driven 
modeling  
(A) Two assumptions underlying but often overlooked in biomarker discovery efforts. Biomarker 
discovery efforts assume that (Left) measurements of the (quasi-)steady state prior to therapeutic 
intervention may predict the response to treatment although the response is governed by non-linear 
relationships between molecular species, and (Right) that measurements of molecule abundances is 
sufficient although the steady state also contains non-redundant, orthogonal information about 
molecule fluxes or turnover. (B)  Schematic of the computational workflow to test the assumptions. An 
experimentally validated mass action kinetic model based on mechanistic knowledge is reformulated to 
separate abundance and flux of the steady state as distinct parameters that are then assigned values 
from distributions for simulations of the heterogeneous responses of a population.  The resulting data is 
applied to data-driven machine learning classification to identify informative, non-redundant features of 
the steady state that are predictive of drug responses.  Based on the identified features a minimal 
mechanistic model is constructed for analytical treatment to understand why they are so informative. 
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Figure 2. Modeling cell-to-cell heterogeneity with the bistable model of TRAIL-induced cell death. 
(A) The a priori probability density function used for the abundance of the TRAIL receptor.  Like other 
independent species abundances, we let this function be defined by a gamma distribution.  The mean µ 
of the distribution is taken to be the value given in (Albeck et al., 2008a); its variance s 2 is taken to be 
one-tenth the square of the mean, i.e. the extrinsic noise limit described in (Taniguchi et al., 2010).  
From these, a shape a and scale b parameter were calculated according to the definition of the gamma 
distribution.  (B) A priori probability density functions for all 14 independent species abundances.  
Species are plotted front to back according to their index, as given in Supplementary Table 7.  (C) A 
posteriori probability density functions for all 40 dependent species abundances.  Each dependent 
species abundance is a rational polynomial in the independent parameters. (D) A priori probability 
density function for the half-life of the TRAIL receptor.  This and other protein half-lives were assigned a 
standard log-normal distribution with a nominal half-life of one hour, consistent with the observation 
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that signaling proteins are generally short-lived (Loriaux and Hoffmann, 2013).  (E) A priori probability 
density functions for all 11 primary protein half-lives, plotted according to their feature index.  (F) A 
posteriori probability density functions for the kinetic rate constants describing the efflux of 15 modified 
proteins and protein complexes.  See Supplementary Table 7 for a complete list of all random-valued 
parameters. Shown in (G-J) are the simulated abundances of four species at 48 hours following the 
addition of TRAIL, for each of the 20,000 samples.  The four species are (G) active caspase 3, (H) cleaved 
Parp, (I) tetrameric Bax, and (J) cytoplasmic Cytochrome C.  For each panel, the left plot shows the 
absolute abundance of each species as a function of sequential sample number.  Points are shaded by 
density and assigned a color post-analytically based on whether that abundance corresponds to a 
positive response (gray; cell dies), or a negative response (cyan; cell lives).  The right plot in each panel 
shows a 1-D histogram of the response as well as the pair of Gaussians fitted to its density estimate (see 
Methods).  The saddle point between the two Gaussians is indicated by the dashed line and 
distinguishes responsive from unresponsive samples. 
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Figure 3. Correlation between features and the binary response. 
(A) Pearson correlation coefficients were calculated between each feature and the binary response 
variable derived from the abundance of tetrameric Bax at 48 hours (see Methods).  The absolute values 
of the coefficients are shown here, sorted in decreasing order and color-coded to indicate whether the 
feature is an independent species (dark blue) or degradation rate constant (dark red), or a dependent 
species (light blue) or rate of synthesis (light red).  Light and dark gray rectangular regions in the plot 
illustrate regions of weak and strong correlation, respectively. (B) Extensive correlations between 
features indicate redundancies. For each of the number of simulations given, the correlations between 
all 82 features and the response variable were calculated and subtracted from the final correlation 
shown in (A).  These were then plotted as boxes.  Values close to zero indicate correlations equal or 
nearly equal to those shown in (A). (C) QPFS weighted correlation between features and the binary 
response to TRAIL. Features are plotted in the same order as in (A), but bar height now represents the 
QPFS-weighted correlation between each feature and the response to TRAIL rather than the raw, 
unweighted correlation.  For comparison, the unweighted correlations are indicated here by the yellow 
silhouetted region.  As before, features are color-coded to indicate whether they are independent 
species (dark blue), dependent species (light blue), degradation rate constants (dark red), or synthesis 
rates (light red). 
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Figure 4. Kinetic features outperform static features. 
(A) The four top-ranked features as identified by QPFS were used to build a logistic regression model.  In 
decreasing order, those features are the rates of synthesis of BAR and XIAP, and the rates of 
degradation of XIAP and BAR.  The model was trained on one half of the dataset of 20,000 simulations 
and tested on the other.  The abscissa gives the predicted log-odds ratio of the probability of responding 
to TRAIL versus not responding.  A value of zero corresponds to equal probability.  Values greater than 
zero are predicted to respond to TRAIL (cells die; gray), while values less than zero are predicted not to 
respond (cells live; cyan).  Samples in the first and second quadrant are those that actually responded to 
TRAIL according to the ODE model (positives).  Samples in the third and fourth quadrant are those did 
not respond to TRAIL (negatives).  (B) As above, but the twelve top-ranked features as identified by QPFS 
were used instead.  These include: the rates of synthesis and degradation of cytoplasmic Bcl-2, 
mitochondrial Bcl-2, Bid, and the steady state abundances of procaspase 8 and the TRAIL receptor. (C) 
Static-only (blue) or kinetic-only (red) features were iteratively added to a logistic regression model in 
order of their QPFS ranking and the models trained and tested as before.  The accuracy of each model as 
a function of its size is shown here, where "All" indicates either all 56 static features or all 26 kinetic 
features.  An accuracy of 0.5 is equivalent to random guessing.  (D) For each of the 56 static and 26 
kinetic regression models, a receiver operating characteristic curve was generated by varying the 
classification threshold for responders and non-responders over the entirety of its range.  
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Figure 5. Minimum model provides a mechanistical understanding on the role of kinetic features. 
(A)  The network structure of a minimal model extracted from the detailed cell death model 
(Supplementary Figure 3A). TRAIL’s effect on C3* is approximated by a pulse-like activation profile. A 
positive feed-forward loop is present in the whole network (Albeck et al., 2008a) and coarse grained 
here. (B) Time course of the input activation flux induced by TRAIL, and the corresponding time course 
of XIAP and C3* abundance. The colors denote fold-change of the activation flux. (C) Time course of 
XIAP and C3* abundances for a fixed input activation flux by TRAIL, under various of XIAP synthesis and 
degradation rates. The brightness of lines denotes fold-change of XIAP synthesis and degradation rates 
simultaneously. For each condition, we used py-substitution to ensure the initial abundances are always 
at steady state.  (D) The plot with synthesis and degradation flux lines of C3* showing its dynamical 
stability structure. C3* is activated by pulse-like input, which triggers the synthesis flux by positive feed-
forward loop. C3* is consumed by the reaction XIAP. If XIAP synthesis and degradation rates are high 
(low), XIAP concentration is reduced slower (faster), leading to more (less) degradation on C3*. Once the 
total consumption of C3* is sufficiently low, the positive feed-forward loop dominates, pushing the 
system reach the high C3* abundance steady state denoting cell death.  

A B

C D
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Supplementary Figure 1.  An implementation on the workflow of identifying correlated features in a 
bistable mass-action model 
(A) The steady state values for the phosphatase 𝑃 for a bistable mass action model (Bishop and Qian, 
2010). (B) Pearson correlation coefficients between each feature and the binary response, sorted in 
decreasing order, as in Figure 3. The colors denote the feature types: independent species (dark blue), 
independent rates (dark red), dependent species (light blue) or dependent rates (light red).  (C) 
Correlations between features. (D) QPFS weighted correlation between features and the binary 
response. Features are plotted in the same order (B). (E) The accuracy and the receiver operating 
characteristic curve of each type of the features in the logistic regression model, as in Figure 4.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452900
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 36 - 

 

 

Supplementary Figure 2.  An implementation on the workflow of identifying correlated features in a 
bistable mass-action model with synthesis and degradation flux 
(A-E) The same panels as Supplementary Figure 1 for the bistable mass-action model with synthesis and 
degradation flux. 
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Supplementary Figure 3. A bistable model of TRAIL-induced cell death. 
(A) A model of TRAIL-induced cell death that includes the original 58 species and 70 reactions introduced 
in (Albeck et al., 2008a), as well as 15 zero-order synthesis reactions, 28 first-order degradation 
reactions, and 2 first-order back-reactions resulting in deactivation of Mito and Apaf.  See 
Supplementary Tables 1-2 for a description of all species and reactions.  The 43 synthesis and 
degradation reactions are represented by dashed lines emanating from or terminating in a gray "null" 
compartment.  This compartment is intended to symbolize the boundaries of the system, not the 
extracellular environment.  Other symbols are as described in (Albeck et al., 2008a). The cytoplasm and 
mitochondria are shaded in yellow and rose, respectively.  Species selected for dose-response analysis 
are shaded in blue. (B-I) Dose-response curves for the eight species in (A) shaded in blue: (B) DISC, (C) 
active caspase 8, (D) truncated Bid, (E) active Bax monomers in the cytoplasm (F) tetrameric Bax in the 
mitochondria, (G) active caspase 3, (H) Cytochrome C in the cytoplasm, and (I) cleaved PARP.  Each panel 
depicts the absolute abundance of the species at 48 hours after stimulation with TRAIL.  The dose of 
TRAIL ranges from 1 to 100-fold its ambient abundance. 
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Supplementary Figure 4. Protein half-lives are log-normally distributed. 
The natural log of 5028 protein half-lives, averaged over two experiments, were taken from 
(Schwanhäusser et al., 2011) and mean-subtracted.  The quantiles of this distribution were then plotted 
against quantiles from a standard Normal distribution and superimposed over the line y=x (gray). 
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Supplementary Figure 5. Cross-correlation between features. 
Pearson correlation coefficients were calculated between all pairs of features and plotted as a matrix.  
Hierarchical clustering was used to order the rows and columns, with clustering being performed 
separately for static versus kinetic features.  Six clusters were identified after sorting, S1-S4, K1, and K2.  
We use hue to distinguish between cross-correlations within static features (blue), within kinetic 
features (red), and between static and kinetic features (violet).  Color saturation is used to indicate the 
strength of the correlation, from weak (low saturation) to strong (high saturation). 
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Supplementary Figure 6. QPFS weighted correlation in the context of slow protein turnover. 
This figure plots QPFS-weighted correlations between each feature and the response to TRAIL in the 
context of 66-fold slower protein turnover than in default model.  As before, independent species are 
dark blue, dependent species are light blue, degradation rate constants are dark red, and synthesis rates 
are light red. 
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Supplementary Figure 7. Exploring the sensitivity of kinetic or static features within the minimal 
model of the C3-XIAP module. 

(A) Slowed turnover renders cells more sensitive to sublethal TRAIL doses. Upper panel: time course of 
XIAP and C3* abundances under indicated of XIAP synthesis and degradation rates, given a 2-fold lower 
amplitude in the input activation flux than in Figure 5C. Given the XIAP synthesis and degradation rates 
in Figure 5B, the steady state shows high XIAP and low C3* abundances, corresponding to live cell state.  
Decreasing XIAP synthesis and degradation rates render cells sensitive to death. Lower panel: synthesis 
and degradation flux lines of C3* similar as Figure 5D. The brightness of lines denotes foldchange of XIAP 
synthesis and degradation rates simultaneously. With lower kinetic rates, the degradation on C3* by 
XIAP becomes sufficiently low, such that the steady state with higher C3* is reached. (B) The same plots 
as (A), with 4-fold lower amplitude of the input activation flux than in Figure 5C. Cells are sensitized to 
death by decreasing XIAP synthesis and degradation rates 10-fold. Lower input activation flux thus 
requires a more substantial decrease in XIAP kinetic rates to affect the cell fate change. (C) Steady state 
abundances of XIAP do not substantially affect the sensitivity of cells to lethal doses. Time course of 
XIAP and C3* abundances under indicated of XIAP abundances, given the input activation flux 33.77 
molecules/s and 2-fold lower amplitude as Figure 5C. The varying static abundances of XIAP do not alter 
the cell fate decision, indicating that static feature is not predictive for the current network motif of 
minimum model. (D) Steady state abundances of XIAP do not substantially affect the sensitivity of cells 
to sublethal doses. These simulations are produced in the same conditions as (C) but with a lower 
activation flux. (E, F) If XIAP functioned as an enzymatic inhibitor, its abundance and not its flux, would 
be a key determinant of death. The plots and simulation conditions are identical to C, except XIAP is 
modeled as an enzyme by removing the C3*-mediated degradation reaction and correspondingly 
decreasing the inhibition rate of XIAP on C3*.  

 

 

 

 

 

 

 

 

 

Supplementary Video 

Timecourses of the phase analysis at XIAP fluxes of 1x, 1.5x and 2x. 
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