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Abstract 18 

Metabolic modelling has emerged as a key tool for the characterisation of biopharmaceutical cell 19 

culture processes. Metabolic models have also been instrumental in identifying genetic 20 

engineering targets and developing feeding strategies that optimise the growth and productivity 21 

of Chinese hamster ovary (CHO) cells. Despite their success, metabolic models of CHO cells still 22 

present considerable challenges. Genome scale metabolic models (GeMs) of CHO cells are very 23 

large (>6000 reactions) and are, therefore, difficult to constrain to yield physiologically 24 

consistent flux distributions. The large scale of GeMs also makes interpretation of their outputs 25 

difficult. To address these challenges, we have developed CHOmpact, a reduced metabolic 26 

network that encompasses 101 metabolites linked through 144 reactions. Our compact reaction 27 

network allows us to deploy multi-objective optimisation and ensure that the computed flux 28 

distributions are physiologically consistent. Furthermore, our CHOmpact model delivers 29 

enhanced interpretability of simulation results and has allowed us to identify the mechanisms 30 

governing shifts in the anaplerotic consumption of asparagine and glutamate as well as an 31 

important mechanism of ammonia detoxification within mitochondria. CHOmpact, thus, 32 

addresses key challenges of large-scale metabolic models and, with further development, will 33 

serve as a platform to develop dynamic metabolic models for the control and optimisation of 34 

biopharmaceutical cell culture processes. 35 

1. Introduction 36 

Production of recombinant proteins is known to compete with biomass synthesis for externally 37 

provided nutrients. This is particularly true for mammalian cell lines, such as Chinese hamster 38 

ovary (CHO) cells, which are the dominant host for industrial production of therapeutic proteins 39 

(O'Flaherty et al., 2020). Metabolic modelling has become an essential tool for understanding 40 

resource allocation and, coupled with advances in genome editing, designing rational cell 41 

engineering strategies. Publication of the CHO-K1 genome, and the omics analyses this enabled, 42 

laid the foundation for systems-level understanding of this host. This knowledge has been 43 

reconstructed mathematically in a community-curated genome-scale metabolic model (GeM) of 44 
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the CHO cell termed iCHO1766 (Hefzi et al., 2016). Crucially, the GeM organised knowledge of all 45 

biochemical conversions, transport and exchange reactions to create a large, interlinked network 46 

of metabolites and their associated reactions. 47 

The inclusion of gene-protein reaction associations provided a direct link between genes and 48 

metabolic reactions. Since then, significant expansions and improvements to iCHO1766 have 49 

been achieved, such as gap-filling studies that also removed dead-end reactions (Fouladiha et al., 50 

2021), and the integration of a core protein secretory pathway, iCHO2048, enabling the 51 

computation of energetic costs and machinery demands of each secreted protein (Gutierrez et al., 52 

2020). Interestingly, iCHO2048 was subsequently used to direct host cell protein knockout 53 

studies which resulted in increased recombinant protein productivity and a cleaner feedstock for 54 

downstream processing steps (Kol et al., 2020), highlighting the power these models hold for 55 

identifying diverse cellular engineering strategies. 56 

The solution of GeMs, and any undetermined metabolic model, relies on constraint-based 57 

methods, such as flux balance analysis (FBA), to predict steady-state intracellular flux 58 

distributions (Orth et al., 2010). Although FBA offers the advantage of not requiring detailed 59 

knowledge of enzymatic kinetic parameters, it does not return a unique set of intracellular flux 60 

values. In addition, the larger the metabolic network considered, the more difficult it becomes to 61 

interpret such predictions (Gardner and Boyle, 2017). GeMs therefore require large datasets, 62 

preferably across different omics levels (e.g., metabolomic, transcriptomic) to increase 63 

confidence in results. This is also true for curating GeMs for specific cell lines or systems, raising 64 

the need for extensive experimentation that goes beyond typical analytical measurements 65 

conducted in an industrial setting. 66 

Several algorithms have been developed to improve the predictive performance of GeMs, for 67 

example by constraining the amount of carbon able to flowthrough reaction fluxes, based on the 68 

maximum amount carbon uptake by the cell (ccFBA) (Lularevic et al., 2019), taking into account 69 

the selective pressure that exists within cell cultures for fast-growing cell lines with a low enzyme 70 
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usage (Lewis et al., 2010), or introducing enzyme capacity constraints (Yeo et al., 2020). Despite 71 

these advances, both the accuracy and interpretability of intracellular flux predictions remain 72 

challenging. An additional limitation is the computational difficulty in creating dynamic versions 73 

of GeMs that would reflect the nature of cell culture processes, although recent efforts coupling a 74 

CHO GeM with statistical models have yielded promising results in predicting the time evolution 75 

of extracellular amino acid concentrations (Martínez et al., 2015). 76 

In this work, we introduce a reduced-scale metabolic model, CHOmpact, where the reaction 77 

network is based on the work by Carinhas et al. (2013) and has been augmented with a detailed 78 

description the aspartate-malate (Asp-Mal) shuttle, the urea cycle, de novo serine synthesis from 79 

glycolytic intermediates, and nucleotide sugar donor biosynthesis. The resulting network 80 

comprises 101 metabolites and 144 reactions, which due to its compact nature, significantly 81 

enhances the interpretability of simulation results. The reduced scale of the network and 82 

associated FBA problem also allow for more complex, non-linear formulations of the objective 83 

function to be incorporated compared to biomass maximisation that is often employed in FBA of 84 

GeMs. The multi-objective optimisation framework used to solve CHOmpact allows us to solve 85 

across all phases of cell culture and provides insight into the dynamics of cellular metabolism. We 86 

envisage that the advantages presented by CHOmpact will enable the development of dynamic 87 

flux balance models that can serve as digital twins for the control and optimisation of 88 

biopharmaceutical cell culture processes. 89 

2. Materials & Methods 90 

2.1. Experimental 91 

2.1.1. Cell culture 92 

The GS46 GS-CHO cell line producing a humanized anti-Tumour-Associated Glycoprotein (TAG-93 

72) IgG4κ mAb (cB72.3), a kind gift by Lonza Biologics (Slough, UK), was cultured with three 94 

different amino acid feeds: Feed C, Feed U and Feed U40 (Kyriakopoulos and Kontoravdi, 2014). 95 

Briefly, triplicate cultures for each feeding regime were performed in orbitally shaken (140 rpm) 96 
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250mL vented conical flasks (Corning, Amsterdam, Netherlands) with a 50mL working volume. 97 

The cultures were performed in a humidified incubator with CO2 controlled at 8% and 98 

temperature set at 36.5°C. The basal culture medium for all cultures was CD CHO (Life 99 

Technologies, Paisley, UK) supplemented with 25μM methionine sulfoximine (Sigma-Aldrich, 100 

Dorset, UK). All feeding regimes consisted in adding 10% v/v every 48 hours of culture starting 101 

on day 2. The Feed C regime used commercial CD EfficientFeed™ C AGT™ (Invitrogen, UK), 102 

whereas the U and U40 feeds aimed to provide growth-limiting nutrients (glucose and amino 103 

acids) beyond the amounts available in Feed C. The glucose and amino acid concentrations 104 

present in the different feeds is detailed in previous work by Kyriakopoulos and Kontoravdi 105 

(2014). 106 

2.1.2. Analytical methods 107 

Viable and dead cell density was determined using the trypan blue dye exclusion method and 108 

light microscopy. mAb titre was determined using the BLItz® system (Pall ForteBio, Portsmouth, 109 

UK). Time profiles for glucose, lactate, and ammonia were generated using the Bioprofile 400 110 

analyser (NOVA Biomedical, Waltham, MA). Residual amino acid profiles were generated using 111 

the PicoTag method (Waters, Hertfordshire, UK) on an Alliance HPLC instrument (Waters, 112 

Hertfordshire, UK). Extracellular pyruvate concentrations were determined with an enzyme 113 

assay kit (Abcam, Cambridge, UK). mAb Fc glycoprofiling was performed with an automated 114 

sample preparation workflow (Stockmann et al., 2013). Briefly, the mAb samples were affinity-115 

purified from the cell culture supernatant with a 96-well Protein G IgG purification plate (Thermo 116 

Fisher Scientific, Dublin, Ireland). Glycans were released from the mAb through PNGase 117 

(Prozyme, Hayward, California) digestion and labelled with 2-amino benzamide (Ludger, Oxford, 118 

UK). Labelled glycans were separated using ultra-performance hydrophilic interaction 119 

chromatography (UPLC-HILIC) and quantified through fluorescence detection (Stockmann et al., 120 

2013). Glycans were initially assigned by comparing their Glucose Unit retention times with those 121 

available in the NIBRT GlycoBase 3.2 structural N-glycan library (Campbell et al., 2008). Glycan 122 
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assignment was confirmed through weak anion exchange chromatography and quadrupole time-123 

of-flight mass spectrometry on exoglycosidase-digested samples (Albrecht et al., 2014).  124 

2.1.3. Dry cell weight measurement 125 

Cells were cultured under the same conditions as described for Feed C, above. Duplicate cultures 126 

were harvested at day 4 and day 10 for dry cell weight (DCW) measurements for cells undergoing 127 

mid-exponential and stationary growth, respectively. Prior to harvest, viable cell density was 128 

determined using the trypan blue dye exclusion method. Immediately after cell counting, 40mL 129 

of the cultures was harvested and centrifuged at 1000g for one minute in pre-weighed 50mL 130 

falcon tubes. The supernatant was then discarded, and the cell pellets were washed once with 131 

40mL 0.9% w/v NaCl (Sigma-Aldrich, Dorset, UK) solution and centrifuged at 1000g for one 132 

minute. The wash was discarded, and the cell pellet was left to dry in a non-humidified incubator 133 

at 37°C until no changes in weight were observed. The tubes were weighed within 1mg accuracy 134 

(ACCULAB, Sartorius, Surrey, UK). 135 

2.1.4. Data processing and analysis 136 

The cell-specific rates for nutrient consumption and metabolite/product secretion, 𝑞𝑞𝑖𝑖(𝑡𝑡𝑛𝑛), were 137 

calculated by performing linear regressions to obtain the slopes in Eq. 1 (Sauer et al., 2000), 138 

where 𝑁𝑁𝑖𝑖,𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝑡𝑡𝑛𝑛) is the consumed/produced amount of component 𝑖𝑖 (in units of nmoli or mgmAb) 139 

up to time 𝑡𝑡𝑛𝑛 and 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑛𝑛) is the integral of viable cells up to time 𝑡𝑡𝑛𝑛 in units of 106 cells h. 140 

𝑁𝑁𝑖𝑖,𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝑡𝑡𝑛𝑛) = 𝑞𝑞𝑖𝑖(𝑡𝑡𝑛𝑛)𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑛𝑛) Eq. 1 

𝑁𝑁𝑖𝑖,𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝑡𝑡𝑛𝑛) = [𝐼𝐼]𝑖𝑖,𝑟𝑟𝑟𝑟𝑐𝑐(𝑡𝑡𝑛𝑛)𝐼𝐼𝑉𝑉𝑉𝑉(𝑡𝑡𝑛𝑛) −�[𝐼𝐼]𝑖𝑖,𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝐼𝐼𝑉𝑉𝑉𝑉𝑓𝑓𝑟𝑟𝑓𝑓�𝑡𝑡𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 Eq. 2 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑛𝑛) = �
[𝑋𝑋𝑣𝑣]�𝑡𝑡𝑗𝑗�𝐼𝐼𝑉𝑉𝑉𝑉�𝑡𝑡𝑗𝑗� + [𝑋𝑋𝑣𝑣]�𝑡𝑡𝑗𝑗−1�𝐼𝐼𝑉𝑉𝑉𝑉�𝑡𝑡𝑗𝑗−1�

2
�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1�

𝑛𝑛

𝑗𝑗=1

 Eq. 3 

𝑁𝑁𝑖𝑖,𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝑡𝑡𝑛𝑛) and 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑛𝑛) were computed using Eq. 2 and Eq. 3, respectively. In Eq. 2, [𝐼𝐼]𝑖𝑖,𝑟𝑟𝑟𝑟𝑐𝑐(𝑡𝑡𝑛𝑛) is 141 

the residual concentration of component 𝑖𝑖 at time 𝑡𝑡𝑛𝑛, [𝐼𝐼]𝑖𝑖,𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓  is the concentration of component 142 
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𝑖𝑖 in the feed and 𝐼𝐼𝑉𝑉𝑉𝑉𝑓𝑓𝑟𝑟𝑓𝑓�𝑡𝑡𝑗𝑗� is the feed volume added at time 𝑗𝑗. In Eq. 3, [𝑋𝑋𝑣𝑣]�𝑡𝑡𝑗𝑗� is cell density at 143 

time 𝑡𝑡𝑗𝑗  and 𝐼𝐼𝑉𝑉𝑉𝑉�𝑡𝑡𝑗𝑗� is liquid volume in the culture flask at time 𝑡𝑡𝑗𝑗 . 144 

The linear regressions for the determination of cell specific uptake rates were computed using 145 

the LINEST function in Microsoft Excel. Confidence intervals for the obtained 𝑞𝑞𝑖𝑖(𝑡𝑡𝑛𝑛) values were 146 

computed with the least square residuals and a t-value for 𝑝𝑝 = 0.05. Data analysis identified six 147 

distinct intervals with constant uptake/secretion rates: early exponential, mid-exponential, late 148 

exponential, early stationary, and stationary. Raw cell culture data is presented in Supplementary 149 

Figure 1, and the processed data, along with the identified intervals are presented in 150 

Supplementary Figure 2. 151 

The amount of mAb glycoform secreted across different intervals was calculated using Eq. 4, 152 

where 𝑓𝑓𝑘𝑘 represents the fraction of mAb glycoform 𝑘𝑘 secreted during the time interval 153 

(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1), [𝑚𝑚𝑚𝑚𝑚𝑚]𝑖𝑖(𝑡𝑡𝑛𝑛) is the concentration of mAb glycoform 𝑘𝑘 present at time 𝑡𝑡𝑛𝑛 and [𝑚𝑚𝑚𝑚𝑚𝑚](𝑡𝑡𝑛𝑛) 154 

is the total mAb titre at time 𝑡𝑡𝑛𝑛 (del Val et al., 2016a; Fan et al., 2015). 155 

𝑓𝑓𝑘𝑘 =
[𝑚𝑚𝑚𝑚𝑚𝑚]𝑘𝑘(𝑡𝑡𝑛𝑛) − [𝑚𝑚𝑚𝑚𝑚𝑚]𝑘𝑘(𝑡𝑡𝑛𝑛−1)

[𝑚𝑚𝑚𝑚𝑚𝑚](𝑡𝑡𝑛𝑛) − [𝑚𝑚𝑚𝑚𝑚𝑚](𝑡𝑡𝑛𝑛−1)  Eq. 4 

2.2. Flux balance model development 156 

Our flux balance model (Figure 1) is based on previous work for GS-CHO cells (Carinhas et al., 157 

2013), which has been expanded to include the aspartate-malate (Asp-Mal) shuttle (Mulukutla et 158 

al., 2012; Nolan and Lee, 2011), the urea cycle (Zamorano et al., 2010), de novo serine synthesis 159 

from glycolytic intermediates, and ATP synthesis via oxidative phosphorylation. The pathway for 160 

nucleotide sugar donor biosynthesis (Kremkow and Lee, 2018) has also been included. 161 

Manual curation of our FBA model was performed using the KEGG database (Kanehisa et al., 2017; 162 

Kanehisa et al., 2019) and the reference CHO-K1 and Cricetulus griseus genome annotations 163 

(Kremkow et al., 2015; Lewis et al., 2013; Rupp et al., 2018). The resulting model comprises 101 164 

metabolites linked through 299 reactions (Supplementary Table 1). Supplementary Table 1 also 165 
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provides links for all enzymatic reactions to KEGG (Kanehisa et al., 2017; Kanehisa et al., 2019) 166 

as well as to reference sequences in the NCBI database (O'Leary et al., 2016). 167 

 168 

Figure 1. FBA reaction network 169 

The present FBA model considers 101 species linked through 144 fluxes. Different colours indicate 170 

particular metabolic pathways: glycolysis, TCA and oxidative phosphorylation (Green), nucleotide 171 

sugar donor metabolism (Red), aspartate-malate shuttle (Orange), urea cycle (Purple), amino acid 172 

and nucleotide metabolism (Dark Blue) and cycle fluxes that must be constrained and/or estimated 173 

during optimisation (Light Blue). 174 

Sequential reactions throughout the metabolic pathways were combined into single reaction 175 

fluxes to reduce degrees of freedom within the model (Nolan and Lee, 2011). Overall, the resulting 176 

metabolic model considers material balances for 101 species, one additional equation that 177 

defines the consumption of ATP towards active amino acid transport and 144 fluxes (Figure 1 178 
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and Supplementary File, Section 2), yielding 42 degrees of freedom. The full stoichiometric matrix 179 

underlying our model is presented in Supplementary Table 2. 180 

2.2.1. Stoichiometric equations for biomass and product 181 

Calculations for the biomass stoichiometric coefficients are presented in Supplementary Table 3. 182 

Based on experimental measurements, the biomass stoichiometric equation considers a dry cell 183 

weight of 219 pg/cell for exponentially growing cells and 311 pg/cell for cells in stationary phase. 184 

The mass composition of GS-CHO cells is based on Sheikh et al. (2005) and Hefzi et al. (2016) and 185 

assumes 74.2% protein, 11.1% lipids, 5.0% RNA, 1.4% DNA, 0.4% glycogen, 0.2% N-glycans, 0.3% 186 

O-glycans, 2.9% other intracellular components (e.g. MTHF, NAD(P)H, AcCoA) and 4.5% non-187 

balanced components (ash). 188 

The individual amino acid content of protein was computed from CHO cell proteomic data 189 

(Baycin-Hizal et al., 2012), as reported previously (del Val et al., 2016b). The glycan content of 190 

biomass, which has been included by using the biomass NSD stoichiometric coefficients for 191 

cellular protein N- and O-linked glycosylation as well as glycolipid glycosylation (del Val et al., 192 

2016b). 193 

The stoichiometric equation for the cB72.3 product, a humanised IgG4κ mAb, was computed 194 

based on the amino acid sequences for the human IgG4 Fc (Heilig et al., 2003), the constant 195 

fragment of a human kappa light chain (Brady et al., 1991; Xiang et al., 1999), as well as the 196 

variable heavy and light chain fragments for the cB72.3 mAb (Xiang et al., 1999). The sequences 197 

and calculations for the mAb amino acid stoichiometric coefficients are presented in 198 

Supplementary Table 4. 199 

mAb glycoprofiling at three culture timepoints (192h, 240h, and 288h) allowed us to calculate 200 

stoichiometric coefficients for NSD consumption towards mAb glycosylation across three culture 201 

intervals: 0 to 192 hours, 192 to 240 hours, and 240 to 288 hours. These calculations were made 202 

with Eq. 4, and the obtained stoichiometric values are presented in Supplementary Table 5. 203 
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2.2.2. FBA solution: multi-objective optimisation 204 

As with most FBA models, no intracellular accumulation of species has been assumed in the 205 

material balances generated from our stoichiometric matrix, leading to a problem of the form: 206 

0S F× =  Eq. 5 

Where S is the stoichiometric matrix defined in Supplementary Table 2 and F is the vector of 207 

unknown fluxes. Because the model contains more unknown fluxes (144) than equations (102), 208 

it must be solved using constraint-based optimisation strategies that have been outlined 209 

elsewhere (Banga, 2008). 210 

Two constraint-based optimisation strategies have been used to solve our FBA. The first is typical 211 

in that it maximises the rate of biomass synthesis while maintaining the transport flux for all 212 

nutrients, metabolites, and product set to their experimentally determined values. Reaction 213 

reversibility constraints, based on enzyme data available in the KEGG (Kanehisa et al., 2017; 214 

Kanehisa et al., 2019) and BRENDA (Jeske et al., 2019) databases, were included and are indicated 215 

in Supplementary Tables 1 and 2. 216 

The multi-objective optimisation strategy proposed herein simultaneously maximises the fluxes 217 

where ATP is synthesised while minimising the sum of squared intracellular fluxes. This objective 218 

function represents maximum energetic efficiency by the cells (Schuetz et al., 2007) and was used 219 

to ensure consistent directionality of central carbon metabolism fluxes. Alongside maximising the 220 

energetic efficiency of the cells, the squared difference between measured and computed fluxes 221 

was minimised to ensure consistency between our flux model results and our experimental 222 

measurements. In order to avoid flux 𝐹𝐹15 being bypassed by 𝐹𝐹17, the 𝐹𝐹17 𝐹𝐹14⁄  ratio was constrained 223 

to values within the [0, 1] interval and minimised. Finally, the sum of non-measured by-product 224 

secretion fluxes was also minimised as part of this multi-objective optimisation strategy. As with 225 

the traditional optimisation strategy, flux reversibility constraints were included within our 226 

multi-objective optimisation strategy. 227 
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An additional constraint was included for the maximum allowable fluxes along the aspartate-228 

malate (Asp-Mal) shuttle. Flux through the Asp-Mal shuttle was constrained by limiting the 229 

maximum amount of glutamate transported into the mitochondrial lumen (𝐹𝐹20) to the flux of 230 

glutamate internalised by the cells or produced through reactions independent of the Asp-Mal 231 

shuttle. 𝐹𝐹20 was constrained because this antiport transport flux is the rate-limiting step of the 232 

Asp-Mal shuttle (LaNoue et al., 1974; LaNoue and Tischler, 1974). 233 

Importantly, a constraint for Asp-Mal fluxes is required because the sum of all reactions in the 234 

shuttle result, exclusively, in net transport of cytosolic NADH into the mitochondrial lumen (see 235 

Supplementary File). Thus, the fluxes through the reactions underlying the Asp-Mal shuttle can 236 

take any value as long as the balances for cytosolic and mitochondrial NADH are met (i.e., all other 237 

fluxes cancel each other out). This is likely to be the cause of what may be considered high (and 238 

possibly inconsistent) Asp-Mal shuttle fluxes with values that are comparable with glucose 239 

uptake fluxes (Mulukutla et al., 2012; Nolan and Lee, 2011). Avoiding these potential 240 

inconsistencies led us to include this Asp-Mal constraint within our FBA solution strategy. 241 

Our multi-objective optimisation strategy also constrains 𝐹𝐹16 to be 1% of the glucose uptake flux 242 

(𝐹𝐹105), as previously determined for CHO cells undergoing both exponential and stationary 243 

growth (Ahn and Antoniewicz, 2013). Both optimisation strategies are outlined in Table 1, where244 

jF are all intracellular fluxes, .synthATP is the squared sum of ATP synthesis reaction fluxes, SSE245 

is the sum of square errors between the measured and computed transport fluxes, ,k BPF are the 246 

fluxes of by-product synthesis reactions, iLB and iUB are lower and upper bounds for flux values 247 

(a reaction is irreversible when 0iLB = ), /Asp MalC  is the Asp-Mal shuttle constraint, ε represents 248 

a small threshold value, .Comp
mF  and .Meas

mF are the computed and measured transport fluxes, 249 

respectively, gF  are the fluxes of reactions where Glu is produced or consumed (excluding Asp-250 

Mal shuttle reactions), and gν is the stoichiometric coefficient for these Glu synthesis reactions.  251 
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Table 1. Optimisation strategies for flux balance model solution 252 
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The biomass maximisation strategy was used to compare performance of our reduced FBA model 254 

with the iCHO1766 GeM (Hefzi et al., 2016) while the energetic efficiency maximisation strategy 255 

was used for all other simulations presented herein. All optimisations were performed using the 256 

nonlinear programming sequential quadratic programming (NLPSQP) solver built into gPROMS 257 

ModelBuilder v6.0.2 (Process Systems Enterprise) on a standard desktop workstation (AMD 258 

Ryzen 2700x @ 4GHz and 16GB RAM).  259 

3. Results and discussion 260 

3.1. The reduced reaction network performs comparably with the iCHO1766 GeM 261 

The maximum specific growth rates (𝜇𝜇𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚) of multiple CHO cell lines cultured under different 262 

conditions were calculated through the biomass synthesis rate maximisation strategy. The 263 
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required inputs for this solution strategy, namely the nutrient, metabolite, and product transport 264 

fluxes, were obtained from previously published data (Carinhas et al., 2013; Martínez et al., 2015; 265 

Selvarasu et al., 2012), as summarized in the supplementary information of Hefzi et al. (2016). 266 

In order to assess whether our assumed biomass composition and reduced reaction network 267 

performs comparably with a large-scale model for CHO cell metabolism, Figure 2 compares our 268 

predicted 𝜇𝜇𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 values with those obtained using the iCHO1766 GeM (Hefzi et al., 2016) and the 269 

corresponding experimental data. 270 

 271 
Figure 2. Comparison of experimentally determined and predicted maximum specific growth rates 272 

(𝝁𝝁𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎) for different CHO cell lines and culture conditions. The dark blue bars present the 273 

experimentally determined μg,max values reported by Carinhas et al. (2013), Martínez et al. (2015), 274 

and Selvarasu et al. (2012). The medium blue bars present 𝝁𝝁𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 predictions reported by Hefzi et 275 

al. (2016) and the light blue bars show the 𝝁𝝁𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 values predicted with CHOmpact. 276 

Figure 2 shows that our model accurately predicts (within 15% deviation) the experimental data 277 

for the Low Producing CHO cell line cultured with sodium butyrate (LP+NaBu) from Carinhas et 278 

al. (2013) as well as the early and late exponential growth phases reported by Selvarasu et al. 279 

(2012). Our model underpredicts the growth rate reported for the High Producing CHO cell line 280 
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cultured in absence and presence of NaBu (HP and HP+NaBu, respectively) (Carinhas et al., 2013) 281 

as well as CHO cells cultured under normal and mild hypothermic conditions (Warm 1, Warm 2, 282 

and Cold 1, respectively) (Martínez et al., 2015). Our model overpredicts the biomass synthesis 283 

rate of the second hypothermic dataset (Cold 2) reported by Martínez et al. (2015). 284 

𝜇𝜇𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 optimisations were performed using the biomass composition assumed by Hefzi et al. 285 

(2016) in order to discern whether the deviation in predictive capabilities of our model were 286 

caused by our assumed biomass composition. These optimisations yield overall average 287 

deviations from the experimental data that are indistinguishable from those obtained with our 288 

assumed biomass composition (data not shown). These results are expected, especially when 289 

considering that the minor differences between our assumed biomass composition and the one 290 

used in the  GEM involve prototrophic amino acids (Ala, Gln, Gly) (Supplementary Figure 4). 291 

Although the deviations are considerable in some cases, our predictions are similar to those 292 

reported for the CHO GeM (Hefzi et al., 2016), and are better for Carinhas HP, Selvarasu Late Exp, 293 

Martinez Cold 1, and Martinez Warm 2. Overall, the GeM has an average percent deviation across 294 

the ten experimental 𝜇𝜇𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 values of 30%, whereas our model has an average deviation of 32.5%. 295 

When considering that our model includes only 144 reactions when compared to 6,663 in the 296 

GeM, a 2.5% reduction in predictive capability is acceptable, especially considering gains in model 297 

output consistency and interpretability (to be discussed in subsequent sections) as well as 298 

reductions in computational expense, when using non-linear, multi-objective optimisation 299 

strategies for solution. 300 

3.1.1. CHOmpact identifies the source of 𝝁𝝁𝒈𝒈 prediction inaccuracies 301 

An advantage of our proposed multi-objective optimisation strategy is that it enables the 302 

identification of nutrient uptake rates that lead to shortfalls in calculated specific growth rates 303 

when compared with the experimental values. This is achieved by constraining the maximum 304 

allowable value for the percent error of biomass growth rate and specific productivity to low 305 

values (5×10-6) while fixing the uptake/secretion flux values of Glc, Lac, NH4+, Pyr, Ala, Asn, Asp, 306 
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Glu, Gly to the experimentally determined flux values. The upper bounds for the uptake fluxes of 307 

the remaining (mainly auxotrophic) amino acids are relaxed and obtained via constrained 308 

optimisation where the SSE is minimised. This strategy ensures that the optimal solution matches 309 

the experimental growth rate and specific productivity while finding the combination of amino 310 

acid uptake fluxes that minimises deviations from the experimental uptake rates. 311 

The above strategy yields the results presented in Table 2, where the percent increases in specific 312 

uptake rates required for matching the experimentally determined 𝜇𝜇𝑔𝑔 and 𝑞𝑞𝑝𝑝 are shown 313 

(positive/red values denote percent increase in uptake fluxes required to match 𝜇𝜇𝑔𝑔 and 𝑞𝑞𝑝𝑝). Table 314 

2 shows that for Car LP (NaBu), Selv (Early), Selv (Late), and Mart (Cold2), small or no increases 315 

in amino acid uptake rates are required to match 𝜇𝜇𝑔𝑔 and 𝑞𝑞𝑝𝑝. This is expected, considering the 316 

results of Figure 2, where the predicted values for 𝜇𝜇𝑔𝑔 are matched or exceeded for these datasets. 317 

Table 2. Percent increases in amino acid uptake rates required to match μg and qp. The intensity of 318 

the colours (from green = 0% to red) corresponds to magnitudes across all datasets. 319 

 Car HP Car HP 
(NaBu) Car LP Car LP 

(NaBu) 
Selv 

(Early) 
Selv 

(Late) 
Mart 

(Cold1) 
Mart 

(Cold2) 
Mart 

(Warm1) 
Mart 

(Warm2) 
μg 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qp 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

qGlc 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qLac 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qNH4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qPyr 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

qAla 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qAsn 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qAsp 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qGln 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 48.7% 35.0% 
qGlu 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
qGly 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

qArg 0.2% 0.0% 8.4% -0.1% -0.3% 0.0% 0.8% -0.4% 17.4% 18.6% 
qHis 0.5% 25.0% 33.9% 0.0% 0.0% 2.6% 1.8% 0.0% 22.7% 6.8% 
qIle 0.9% 0.0% 20.2% 0.0% 0.0% 0.0% 2.5% 0.0% 9.5% 13.2% 
qLeu 13.0% 1.4% 29.8% 0.0% 0.4% 9.0% 5.7% 0.1% 18.6% 16.2% 
qLys 24.7% 0.1% 38.8% 0.0% 0.0% 4.0% 22.0% 0.0% 41.0% 18.7% 
qMet 9.4% 0.0% 23.4% 0.0% 0.0% 0.0% 0.0% 0.0% 13.8% 0.1% 
qPhe 25.4% 0.0% 47.4% 3.3% 8.4% 10.1% 16.4% 0.1% 33.2% 8.1% 
qPro 0.9% 0.0% 21.9% 0.0% 0.0% 0.0% 2.0% 0.0% 2.4% 7.3% 
qSer 3.3% 0.1% 41.1% 0.1% 0.0% 0.0% 9.1% 0.2% 25.0% 33.4% 
qThr 3.8% 0.0% 15.0% 0.0% 0.5% 0.0% 13.9% 5.3% 9.4% 13.2% 
qTrp 0.2% 0.0% 6.2% 0.0% 0.0% 0.0% 0.5% 0.0% 20.0% 2.2% 
qTyr 21.8% 0.0% 41.7% 2.6% 0.0% 0.0% 5.5% 0.1% 28.3% 5.3% 
qVal 12.5% 5.1% 34.1% 0.0% 0.6% 6.8% 3.6% 0.0% 17.1% 14.2% 
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Across all other datasets, substantial increases in amino acid uptake rates are required to match 320 

the experimental values for 𝜇𝜇𝑔𝑔 and 𝑞𝑞𝑝𝑝. Except for both Martínez et al. (2015) Warm datasets, the 321 

uptake rate for amino acids which limit growth are auxotrophic (outlined in the bottom half of 322 

Table 2) and, in all but one case (Car HP NaBu), multiple auxotrophic amino acids limit the growth 323 

rate predictions. Particularly sharp deviations across multiple amino acids are observed for the 324 

Car LP and both Mart Warm datasets. In addition, both Mart Warm datasets are the only ones that 325 

require increased uptake of Gln. 326 

Interestingly, when the upper bound for the Gln uptake flux is completely relaxed for the Mart 327 

Warm 2 dataset, a 74.5% increase in uptake for this nutrient is obtained, and only Lys (required 328 

14.2% increase) and Thr (required 6.7% increase) are observed to limit growth (data not shown). 329 

This result indicates that, for this dataset, the uptake rates of the remaining amino acids do not 330 

stoichiometrically limit biomass synthesis. Rather, the limitation in growth is associated with the 331 

relatively low uptake rate of Ser which, according to our model, can be overcome by Glu-332 

associated biosynthesis via 𝐹𝐹55. It is this additional intracellular Glu demand which pushes the 333 

uptake rates for Gln, Ile, Leu, Lys, and Val to higher values (Glu can be produced from these amino 334 

acids via reactions 𝐹𝐹32, 𝐹𝐹44, 𝐹𝐹45, 𝐹𝐹39, and 𝐹𝐹41, respectively). 335 

Full relaxation of the Gln uptake upper bound leads to a 65.9% increase and completely curbs the 336 

excess requirements for Ser. However, the excess demand for all remaining auxotrophic amino 337 

acids (His, Ile, Leu, Lys, Met, Phe, Trp, Tyr, and Val) is unchanged, indicating that for the Mart Cold 338 

1 dataset, the uptake rates of auxotrophic amino acids stoichiometrically limit growth. 339 

It is key to mention that underestimations for 𝜇𝜇𝑔𝑔 arise from two possible sources (or a 340 

combination thereof): (i) either the assumed stoichiometric coefficients for auxotrophic amino 341 

acids in biomass are too high or (ii) the measured uptake rates for auxotrophic amino acids is 342 

underestimated. Beyond typical experimental variability, the measured uptake rates are unlikely 343 

to have such drastic effects on the predicted growth (errors in uptake rate measurements above 344 

30% are unlikely – see Table 2). Therefore, uncertainty associated with biomass composition is 345 
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the more likely culprit, especially when considering that it has seldom been measured for flux 346 

balance studies. 347 

Questions surrounding CHO cell biomass composition have been recently addressed, where an 348 

average protein content (w/w) of 55.7% ± 5.5% and a dry cell weight (DCW) of 262.1 ± 28.2 349 

pg/cell is reported for multiple CHO cell lines cultured under different conditions (Szeliova et al., 350 

2020). When comparing these values with the 350pg/cell and 74.2% w/w protein assumed (not 351 

measured) for the datasets with the largest shortfalls in predicted 𝜇𝜇𝑔𝑔 (Martinez Warm), a 352 

maximum reduction of �55.7%−5.5%
74.2%

� �
262.1 𝑝𝑝𝑝𝑝

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−28.2 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
350 𝑝𝑝𝑝𝑝

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� = 45.3% in amino acid demand towards 353 

biomass synthesis can be computed. Such a reduction would compensate for the calculated 354 

shortfalls in auxotrophic amino acid uptake rates presented in Table 2 and, therefore, enhance 355 

the predictive capability of both our model and Hefzi’s GeM. 356 

Although detailed data for CHO cell biomass composition is now available (Szeliova et al., 2020), 357 

the values of 350pg/cell and 74.2% w/w protein were used for the results presented in Figure 2 358 

and Table 2 in order to pinpoint how model predictive capability is impacted by our reduced 359 

reaction network when compared with the full GeM. In addition, Supplementary Figure 4 360 

provides a comparison between the stoichiometric coefficients of amino acids in biomass 361 

assumed here with the experimentally determined ones from Szeliova et al. (2020). Despite 362 

considerable differences in DCW (219 pg/cell for exponential growth vs. 262.1 ± 28.2 pg/cell) 363 

and protein content (74.2% vs. 55.7% ± 5.5%), the stoichiometric coefficients result in quite 364 

comparable values. Therefore, we have elected to retain our originally assumed biomass 365 

composition for all subsequent calculations presented herein. 366 

The above results highlight the importance of using accurate measurements for DCW and 367 

biomass composition in flux balance modelling. However, it is also important to mention that that 368 

biomass composition will impact model predictive capabilities only when auxotrophic 369 

components of biomass and product stoichiometrically limit growth and will be less of a factor 370 
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when nutrient uptake rates exceed stoichiometric requirements. The latter case is observed for 371 

the Martinez Cold 2 dataset, where both the GeM and our model considerably over-predict 𝜇𝜇𝑔𝑔. 372 

Several strategies have been developed to address situations where cell growth is not limited by 373 

stoichiometry. On one hand, exploring different metabolic objectives, such as maximising 374 

energetic efficiency, minimising redox stress or the uptake of essential nutrients (Chen et al., 375 

2019; Feist and Palsson, 2010; Schuetz et al., 2007) can improve the predictive capability of flux 376 

models where nutrient uptake rates stoichiometrically exceed demand for growth and product 377 

synthesis. On another hand, strategies to further constrain the allowable values of fluxes through 378 

the reaction network have also been explored. For example, Lularevic et al. (2019) provide 379 

additional constraints using carbon balancing and Yeo et al. (2020) have developed an interesting 380 

framework whereby the fluxes through the reaction network are constrained based on the 381 

maximum rates and expression levels of the corresponding metabolic enzymes.  382 

3.2. CHOmpact facilitates easier interpretation of flux distributions. 383 

Our reduced reaction network and multi-objective optimisation strategy has two key advantages 384 

over full genome-scale models and the traditional growth rate maximisation objective function 385 

used to solve them. Firstly, our multi-objective optimisation strategy enables us to calculate flux 386 

distributions across different growth phases (beyond exponential growth) and, therefore, 387 

provides enhanced insight into flux distribution dynamics. In addition, the use of multiple 388 

objectives further constrains the solution space to achieve flux distributions that are biologically 389 

consistent. Secondly, our reduced reaction network simplifies model output interpretation and 390 

allows us to better relate the obtained flux distributions with cellular physiology. 391 

3.2.1. Flux distribution dynamics 392 

Figure 3 presents central carbon metabolism and Asp-Mal shuttle fluxes obtained with our 393 

reduced reaction network and multi-objective optimisation framework, where the flux maps 394 

correspond to three different feed compositions (Feed C, Feed U, and Feed U40) across the five 395 

phases of culture identified Supplementary Figure 2. 396 
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 397 
Figure 3. Flux map comparison 398 

The flux distributions for central carbon metabolism and the aspartate/malate shuttle are shown for five culture intervals (early, mid, and late 399 
exponential as well as early and late stationary) across three feed compositions (Feed C, U, and U40). The line thickness corresponds to flux magnitude, 400 
as indicated by the legend at the top left-hand corner of each box. 401 
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For all feed compositions, the glycolytic fluxes decrease with time, with the highest fluxes 402 

observed during early exponential growth and the lowest during stationary growth. The 403 

magnitude of the glycolytic flux is largely determined by the glucose uptake rates, which are 404 

shown to steadily decrease as culture progresses (Supplementary Figure 2). Conversely, the 405 

tricarboxylic acid (TCA) pathway fluxes increase with culture time, which occurs because reduced 406 

lactate production allows for more glycolysis-derived pyruvate to reach mitochondria. This 407 

phenomenon, often referred to as the Warburg effect, has been widely reported for rapidly 408 

proliferating cells, including CHO cells (Buchsteiner et al., 2018; Kelly et al., 2018). 409 

The calculated fluxes through the Asp-Mal shuttle are defined by our imposed constraint on F20 410 

(Table 1), which limits its value to the flux of ‘free’ Glu (i.e., the sum of fluxes where this amino 411 

acid is produced which are not involved in the Asp-Mal shuttle). This constraint was set because 412 

all fluxes along the Asp-Mal shuttle cancel out and, therefore, can have any magnitude if the 413 

transfer of reducing equivalents from cytosolic to mitochondrial NADH is balanced. If left 414 

unconstrained, Asp-Mal shuttle fluxes have been reported to reach values that are comparable to 415 

those through central carbon metabolism (Mulukutla et al., 2012; Nolan and Lee, 2011). Although 416 

mathematically correct, these excessive flux values would be limited by the intracellular 417 

availability of Glu, which is the key substrate for the rate-limiting Asp-Mal shuttle flux (𝐹𝐹20) 418 

(LaNoue et al., 1974; LaNoue and Tischler, 1974). Despite not directly representing Glu 419 

availability, our proposed constraint does limit the upper values of Asp-Mal shuttle fluxes to ones 420 

that fall well below those of glycolysis and, therefore, make them more biologically consistent. 421 

3.2.2. Glutamate anaplerosis and cataplerosis 422 

Glutamate can either be consumed towards TCA and energy production (anaplerosis) or 423 

produced from TCA metabolites for subsequent use in biomass generation (cataplerosis). 424 

According to our reaction network, net Glu anaplerosis occurs when more of this amino acid is 425 

transported into mitochondria (𝐹𝐹20) than what is transported out, in the form of αKG. Net Glu 426 
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cataplerosis occurs when less of it is transported into mitochondria than the αKG transported out. 427 

αKG is then converted into Glu by either 𝐹𝐹30 or 𝐹𝐹31, the latter of which uses Asp as a co-substrate. 428 

Figure 4 shows that, in Feed C, net Glu cataplerosis (Glu produced from TCA) is observed during 429 

the three exponential growth intervals. This trend is reversed during stationary phase, where net 430 

anaplerosis (Glu consumed towards TCA) occurs. Feed U and Feed U40 contrast with Feed C in 431 

that they present Glu anaplerosis (consumption towards TCA) across all but one culture interval 432 

(Figure 4 – bottom). 433 

In Feed U, Glu cataplerosis is only observed during mid exponential growth, where its production 434 

from TCA accounts for 42.4% of the total Glu inlet (Figure 4 – top). Another interesting feature 435 

from Feed U is the level of anaplerosis observed during the early stationary interval, where it 436 

accounts for 93.3% of the total consumed Glu (Figure 4 – bottom). This high level of anaplerosis 437 

is associated with increased Glu production from Gln (37.3% of total) and, to a lesser extent, from 438 

His (18.5% of total) (Figure 4 – top). It is worth noting that this is the only culture condition and 439 

interval where Gln is consumed from the extracellular environment (Supplementary Figure 1). 440 

In Feed U40, Glu cataplerosis is observed only during the early stationary interval, where 21.4% 441 

of all Glu produced is derived from TCA (Figure 4 – top). Glu cataplerosis during early stationary 442 

phase is most likely to arise to offset the high level of Gln secretion observed during this interval 443 

(Supplementary Figure 1). 444 

In our GS-CHO Feed C cultures, Glu cataplerosis is driven by the high Asn uptake rates observed 445 

during exponential growth (Supplementary Figure 2), where a high 𝐹𝐹31 flux provides a path for 446 

Asn overflow towards pyruvate via oaxaloacetate (𝐹𝐹29). An alternative cataplerotic pathway for 447 

Glu is its direct synthesis from cytosolic αKG via 𝐹𝐹30 (catalysed by enzyme EC 1.4.1.3), which 448 

consumes NH4+ and produces cytosolic NAD+ (Yang et al., 2005) and may, thereby, reduce lactate 449 

production (Freund and Croughan, 2018). Its ability to reduce NH4+ and lactate production make 450 

EC 1.4.1.3 a potential target for metabolic engineering. 451 
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 452 
Figure 4. Glutamate flux distributions 453 

The glutamate inlets for all feed compositions are shown in the top half and the outlets are shown 454 

in the bottom half. Glutamate sources and sinks are indicated by the shading and the top and bottom 455 

legends. The percent contributions to the total inlet or outlet are shown within the bars. 456 

Prior flux balance work on standard (non-GS) CHO cells commonly reports net Glu anaplerosis 457 

during the exponential growth phase of cells, where high lactate production results in low TCA 458 

fluxes (Ahn and Antoniewicz, 2013). It is thought that Glu anaplerosis is used by the cells to 459 

replenish flux through TCA and is also known to be a major source of ammonia production 460 

because much of the anaplerotic flux involves glutamine aminolysis (Dean and Reddy, 2013; 461 

Wahrheit et al., 2014).  462 

In contrast to past work, our FBA results indicate substantial Glu anaplerosis during the 463 

stationary phases of culture across all three feeding strategies (Figure 4 – bottom). Our results 464 

suggest that the high uptake rate of Asn observed across all cultures throttles Glu anaplerosis. 465 

The Asn overflow pathway discussed above produces Glu in F31, which, in turn causes Glu 466 

overflow that is taken up by TCA. Anaplerosis as a means to cope with Glu overflow is also 467 

substantiated by the early stationary phase flux distribution of Feed U, which presents the highest 468 

level of Glu anaplerosis observed across all datasets (9.88 nmol/106cells/h) (Figure 4 – bottom). 469 

This culture interval is the only one across all datasets where glutamine (Gln) is consumed by the 470 

cells. It is this Gln uptake which causes Glu overflow through the glutaminolysis pathway that is 471 

commonly reported for non-GS-CHO cells. 472 
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Glu anaplerosis is commonly described as the cytosolic production of αKG from Glu (via 𝐹𝐹30 – 473 

Figure 1), the former of which is transported into the mitochondrial matrix (𝐹𝐹21) for uptake by 474 

TCA (Ahn and Antoniewicz, 2013; Mulukutla et al., 2012; Nicolae et al., 2014). Crucially, the 475 

transport of αKG into the mitochondrial matrix depends on malate availability in the cytosol: 𝐹𝐹21 476 

(OGCP) has an antiport mechanism whereby one molecule of αKG is transported into the 477 

mitochondrial lumen for every malate molecule that is transported out (Iacobazzi et al., 1992). 478 

Our results indicate an alternative mechanism for Glu anaplerosis, where Glu is first transported 479 

into the mitochondrial matrix (via 𝐹𝐹20 – the rate-limiting and only irreversible reaction of the Asp-480 

Mal shuttle (LaNoue et al., 1974; LaNoue and Tischler, 1974)) where it is then converted, with the 481 

consumption of mitochondrial Asp, into αKG via 𝐹𝐹22. This alternative mechanism arises from the 482 

high Asn uptake by our GS-CHO cells, where a substantial amount of this nutrient is funnelled 483 

towards cytosolic malate through reactions 𝐹𝐹51, 𝐹𝐹31, and 𝐹𝐹24. This Asn overflow pushes αKG out 484 

of the mitochondrial matrix where it can be consumed to produce Glu, mainly through 𝐹𝐹31. 485 

Irrespective of the metabolic route, the magnitudes of Glu anaplerosis and cataplerosis are 486 

consistent with those determined through Metabolic Flux Analysis (Ahn and Antoniewicz, 2013; 487 

Nicolae et al., 2014). 488 

3.2.3. Asparagine and aspartate are key anaplerotic nutrients 489 

The asparagine/aspartate pair (Asn/Asp), linked through 𝐹𝐹51, is a key contributor to TCA flux 490 

through its sequential conversion to oxaloacetate (𝐹𝐹31) and pyruvate (𝐹𝐹29), the latter of which is 491 

ultimately transported into mitochondria for consumption in the TCA. Because alanine and 492 

lactate are also produced from pyruvate (through reactions 𝐹𝐹26 and 𝐹𝐹25, respectively), the 493 

Asn/Asp pair is also a key source of these metabolites. 494 

During the early exponential interval, cells cultured with Feed C consume 43.9% of Asn/Asp 495 

towards TCA and 34.1% towards lactate (Figure 5 – bottom). As lactate secretion subsides, the 496 

contribution of Asn/Asp towards TCA increases to beyond 70% for the remaining culture 497 
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intervals. The trend for Asn/Asp consumption towards TCA is even more pronounced for cells 498 

cultured with Feeds U and U40, where it exceeds 85% across the final three culture intervals. 499 

 500 
Figure 5. Asparagine + Aspartate flux distributions 501 

The sources for asparagine (Asn) and aspartate (Asp) for all feed compositions is shown in the top 502 

half and the sinks are shown in the bottom half. The source and sink fluxes for Asn and Asp have 503 

been summed for simplicity. The different Asn+Asp sources and sinks are indicated by the shading 504 

and the top and bottom legends. The percent contributions to the total sources and sinks are shown 505 

within the bars. 506 

Across all feeds, the maximum proportion of Asn/Asp consumed towards biomass and mAb 507 

product is 27.8% for Feed U40 during early exponential phase (Figure 5 – bottom). These results 508 

show that Asn/Asp are fed well beyond stoichiometric requirements for growth and product 509 

formation and that anaplerosis provides an overflow pathway for when these nutrients are fed in 510 

excess. These results are consistent with prior work where excess Asn/Asp feeding has been 511 

observed to increase alanine and lactate secretion by CHO cells (Calmels et al., 2019; Selvarasu et 512 

al., 2012). 513 

The anaplerotic overflow pathway for Asn/Asp results in a rapid uptake of Asn and a concomitant 514 

reduction in its concentration in the culture medium (Supplementary Figure 1). Particularly low 515 

residual Asn concentrations are observed in the Feed C culture, where Asn and Asp are fed at the 516 

lowest levels. In absence of flux balance calculations, the observed reduction in Asn availability 517 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452953doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452953


del Val et al. 2021 A reduced flux balance model for Chinese hamster ovary cells 25 of 38 
 

could be interpreted as being growth limiting and would lead to increasing the concentration of 518 

Asn in the media and/or feed to alleviate the perceived bottleneck. Our experimental and FBA 519 

results demonstrate that Asn is indeed not a growth limiting nutrient, and that increasing its 520 

concentration in the feed in fact reduces cell growth (Supplementary Figure 1), likely due to the 521 

production of ammonia associated with Asn anaplerosis. Similar observations were recently 522 

reported by Calmels et al. (2019), where GeM FBA calculations were applied to industrial CHO 523 

DG44 cells.  524 

FBA also allows us to estimate the Asn/Asp uptake rates at which the anaplerotic pathway 525 

becomes saturated (i.e., where no more Asn/Asp can be funnelled towards TCA). The raw 526 

experimental data shows that Asp accumulates in the extracellular environment of Feed U40 527 

cultures during the late exponential, early stationary, and stationary phases (Supplementary 528 

Figure 1) implying that, under these conditions, the cells resort to secreting Asp instead of 529 

consuming it towards central carbon metabolism. The flux of Asn/Asp towards TCA during these 530 

culture phases are 38.7 nmol/106cells/h, 25.7 nmol/106cells/h, and 32.1 nmol/106cells/h, 531 

respectively and represent the range of Asn/Asp overflow our GS-CHO cells can cope with. 532 

Interestingly, these values closely correlate with the values of total available Glu flux, which are 533 

7.3 nmol/106cells/h, 5.5 nmol/106cells/h, and 6.6 nmol/106cells/h for the corresponding culture 534 

intervals. This correlation indicates that intracellular Glu availability may regulate the extent of 535 

Asn/Asp anaplerosis.  536 

3.2.4. NH4+ sources and sinks 537 

NH4+ is a key determinant of CHO cell culture performance because it is known to impact cell 538 

growth (Synoground et al., 2021; Wahrheit et al., 2014) as well as product quality (Borys et al., 539 

1994; Hong et al., 2010). In standard CHO cells, NH4+ is mainly generated as a by-product of Gln 540 

anaplerosis (glutaminolysis) (Dean and Reddy, 2013; Hong et al., 2010; Wahrheit et al., 2014). 541 

Glutamine synthase (GS) cells, such as the ones used in this study, satisfy their Gln requirements 542 

by producing it from Glu via ectopic expression of glutamine synthase, thus circumventing the 543 
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negative impact of NH4+ on the cell culture process. Despite considerable reductions in NH4+ 544 

accumulation, GS-CHO cells still produce ammonia to levels that may still impact product 545 

glycosylation (Borys et al., 1994; Hong et al., 2010) so it is therefore important to characterise the 546 

major sources and sinks of this key metabolite. 547 

The dark blue bars in the top half of Figure 6 show that the vast majority (>75%) of ammonia is 548 

produced from asparagine (𝐹𝐹51). The only exceptions are the Early Stationary intervals of Feed C 549 

and Feed U where, respectively, Asn is the source of 46.4% and 67.5% of all produced NH4+. 550 

During the Early Stationary phase of Feed C, the lower levels of NH4+ production from Asn are due 551 

to depletion of this nutrient in the culture media along with NH4+ uptake by the cells 552 

(Supplementary Figure 1). In Feed U, the lower proportion of NH4+ generated from Asn is caused 553 

by glutaminolysis – this is the only interval across all experiments where Gln is consumed by the 554 

cells (Supplementary Figure 1). Additional sources of NH4+ include Ser (𝐹𝐹36), Thr (𝐹𝐹37) and His 555 

(𝐹𝐹54), although to much lower levels, when compared with Asn. These results indicate that, in GS-556 

CHO cells, NH4+ production is throttled by the Asn/Asp anaplerosis discussed in section 3.2.3 and 557 

is consistent with previous work with GS-CHO cells (Calmels et al., 2019; Carinhas et al., 2013). 558 

The total production rate of NH4+ further confirms its link with Asn/Asp anaplerosis. The top half 559 

of Figure 6 shows that the total amount of NH4+ produced by the cells increases with higher levels 560 

of Asn feeding. After the Mid Exponential interval, cells cultured with basal Asn feeding levels 561 

(Feed C) have NH4+ production rates below 8 nmol/106cells/h, whereas the Feed U and Feed U40 562 

cultures (increasingly higher levels of Asn feeding) produce above 20 nmol/106cells/h of NH4+. 563 

The bottom half of Figure 6 presents the major NH4+ sinks across the three feed conditions, as 564 

obtained through our FBA framework. There, it can be seen that three NH4+ sinks predominate: 565 

(i) secretion to the extracellular (EC) environment (dark blue bars – F108), (ii) consumption in 566 

mitochondria (intermediate blue bars) and (iii) consumption towards Gln synthesis (light blue 567 

bars – F32). Of the three major sinks, EC secretion can be deduced from the experimental data. The 568 

sink towards Gln synthesis is similarly intuitive and occurs because our GS-CHO cells are not fed 569 
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Gln and must cover their demand for this amino acid through its GS-enabled synthesis using Glu 570 

and NH4+ as substrates. 571 

 572 
Figure 6. NH4+ Flux distributions 573 

The NH4+ sources for all feed compositions are shown in the top half and the sinks are shown in the 574 

bottom half. The different sources and sinks are indicated by the shading and the top and bottom 575 

legends. The percent contribution of each source/sink to the total produced/consumed is shown 576 

within the bars. 577 

The less intuitive NH4+ sink is the one associated with mitochondria. According to our FBA results, 578 

a substantial amount of NH4+ is consumed by a mitochondrial reaction cycle, where OAA is 579 

combined with Glu to produce αKG and Asp (𝐹𝐹22) and where the resulting αKG is combined with 580 

NH4+ to produce Glu (𝐹𝐹23). This mitochondrial NH4+ sink is governed by the presence of Asp within 581 

the mitochondrial lumen and is therefore coupled with the Asp-Mal shuttle, where 𝐹𝐹20 transports 582 

Asp out of mitochondria. If Asp accumulates within mitochondria, 𝐹𝐹22 and 𝐹𝐹23 will be reversed 583 

and may, thereby, cause net NH4+ production by mitochondria. These results are consistent with 584 

experimental findings where high NH4+ concentrations increased the cell specific consumption 585 

rates of Asp and Glu (Lao and Toth, 1997). 586 

Due to the constraint imposed on 𝐹𝐹20 by our FBA solution strategy (discussed in Section 2.2.2 and 587 

presented in Table 1), a second sink for mitochondrial Asp is required to drive mitochondrial 588 

NH4+ consumption. Within our FBA reaction network, this additional sink is given by 𝐹𝐹59 of the 589 
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urea cycle, where mitochondrial Asp is irreversibly combined with citrulline to produce fumarate 590 

and arginine (Supplementary Table 1). Our results indicate that 𝐹𝐹59 consumes over half of the 591 

mitochondrial Asp across all culture conditions (Supplementary Figure 5) and is, therefore, a key 592 

determinant of mitochondrial consumption of NH4+. 593 

The above mitochondrial Asp sink (𝐹𝐹59) enables mitochondrial consumption of NH4+ that is 594 

independent of the Asp-Mal shuttle and, therefore, of cytosolic Glu availability. This Glu-595 

independent NH4+ detoxification pathway would require diverting aKG directly from TCA to be 596 

consumed in reaction 𝐹𝐹23. The produced Glu would then react with TCA-derived oxaloacetate to 597 

replenish aKG and produce mitochondrial Asp (𝐹𝐹22). Finally, mitochondrial Asp would be 598 

consumed by 𝐹𝐹59 to yield arginine and fumarate, which could also feed back into TCA. 599 

Interestingly, CHO cells are reported to produce only trace amounts of urea (Zamorano et al., 600 

2010), indicating that certain enzymes of the cycle may be inactive. The mitochondrial sink 601 

identified by our FBA may be an alternate route of NH4+ detoxification (independent of urea 602 

secretion) that leverages two of the urea cycle enzymes (EC 6.3.4.5 and EC 4.3.2.1) which are 603 

known to be expressed in CHO cells (Heffner et al., 2020). 604 

4. Concluding remarks 605 

We have presented a reduced reaction network to describe the metabolism of mAb-producing 606 

CHO cells. Our reduced metabolic network (144 reactions) performs comparably with the 607 

iCHO1766 GeM (>6000 reactions) in predicting the growth rates of different CHO cell lines. Our 608 

FBA framework also allowed us to identify the absence of cellular weight and composition 609 

measurements as the most likely cause of inaccuracies in predicting the growth rates. 610 

We have also presented a comprehensive multi-objective optimisation strategy to solve our 611 

metabolic model. Our multi-objective optimisation framework constrains the solution space to 612 

yield physiologically consistent flux distributions across all phases of cell culture. 613 
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When coupled with multi-objective optimisation, our compact reaction network greatly enhances 614 

the interpretability of metabolic flux distributions across the different phases of cell culture. In 615 

this context, our results provide insights into the mechanisms underlying Glu anaplerosis and its 616 

dependence on the uptake rate of Asn/Asp. We have also identified Asn and Asp as the key 617 

anaplerotic nutrients of GS-CHO cells and that, in this role, they are an important source of lactate 618 

during the early stages of culture. 619 

Our results also show that Asn is the predominant source of NH4+ across all culture conditions 620 

and that the major sink for this key metabolite is consumption within mitochondria. The presence 621 

of Asp within mitochondria determines whether this organelle is a source or sink of NH4+: when 622 

Asp accumulates, mitochondria can become a net source of NH4+, when Asp is depleted, NH4+ is 623 

consumed within mitochondria. The Asp-Mal shuttle determines the intracellular flux 624 

distributions of Asn, Asp, Gln, Glu and NH4+. Our FBA solution strategy constrains fluxes through 625 

the Asp-Mal to not exceed the flux of ‘free’ Glu entering or produced by the cells in order to obtain 626 

physiologically consistent flux distributions for Asn, Asp, Gln, Glu and NH4+. 627 

Moving forward, the enhanced understanding of metabolic dynamics afforded by our reduced 628 

reaction network and multi-objective optimisation framework can be used to define feeding 629 

strategies that optimise cell culture performance. Furthermore, the compact size of our reaction 630 

network will also facilitate the creation of hybrid dynamic FBA/culture dynamics models which 631 

can be used as digital twins for dynamic optimisation and control of cell culture bioprocesses. 632 
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