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Abstract

Mediation analysis is a powerful tool for discovery of causal relationships. We describe
a Bayesian model selection approach to mediation analysis that is implemented in our
bmediatR software. Using simulations, we show that bmediatR performs as well or
better than established methods including the Sobel test, while allowing greater
flexibility in both model specification and in the types of inference that are possible.
We applied bmediatR to genetic data from mice and human cell lines to demonstrate
its ability to derive biologically meaningful findings. The Bayesian model selection
framework is extensible to support a wide variety of mediation models.

Keywords: Mediation; Causal inference; Sobel test; Quantitative trait loci; QTL;
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Introduction
Mediation analysis seeks to understand a causal process by determining whether

an intermediate variable (M) explains (at least partially) the response of a depen-

dent variable (Y) to changes in an independent variable (X). Though the causal

interpretations of mediation analysis are subject to a number of assumptions [1], it

has been widely used in both the social and natural sciences [2]. In a biomedical

context, mediation analysis has been used to investigate how gene expression me-

diates the effects of genetic variants on complex phenotypes and disease [3, 4]. It

has been used to infer causal relationships between biomolecular phenotypes, such

as transcripts, chromatin states, and proteins [5, 6]. Here we focus on mediating

genetic associations on biomolecular phenotypes, including gene expression, protein

abundance, and chromatin accessibility, in samples of model organisms and human

cell lines, but the mediation approach we introduce is broadly applicable.

Mediation analysis requires that X, M, and Y are measured in the same individu-

als, and its causal interpretation relies on assumptions that are not verifiable based

solely on the data [7, 1, 8]. In particular, it assumes that the direction of causal

effects is from X to Y (X→Y), referred to as the direct effect of X on Y, and from X

to M to Y (X→M→Y), referred to as the indirect effect of X on Y. Also assumed is

that these relationships are not subject to unobserved confounding, that observed

confounders are conditioned on, and that observed confounders of M to Y do not

depend on X. If these assumptions are satisfied, evidence for causal mediation lies

in the magnitude of the indirect effect. If this indirect effect is non-zero, then M is

a mediator of X on Y. Further, if M is a mediator and the direct effect is zero, then

M is a complete mediator of X on Y, whereas if the direct effect is non-zero, then

M is a partial mediator of X on Y. Our objective is to assess evidence of complete

or partial mediation including the non-standard case where X comprises more than

one independent variable.
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Our motivating context is quantitative trait locus (QTL) mapping, where a uni-

variate trait of interest Y (e.g., protein abundance) is associated with genetic varia-

tion represented in a matrix X, which could encode multiple variants or their combi-

nations (i.e., haplotypes). In particular, we are interested in assessing whether one

or more univariate candidate variables M may mediate the relationship between the

genetic matrix and the trait. For example, a candidate mediator M could be the

protein abundance of a gene encoded nearby a QTL for Y. In this case, it is rea-

sonable to assume that the direction of causal effects is X→M→Y, and we further

assume that the there is no unexplained confounding of these relationships. With

the assumptions of mediation satisfied, our objectives are two-fold: 1) assess the

evidence in favor of M being a causal mediator, 2) and determine if the mediation

is partial or complete, given that X contains complex genetic information.

Traditional methods for mediation analysis are poorly suited to the dual objectives

of detecting mediation and distinguishing complete from partial mediation when

there are many candidate mediators and when X is a matrix. A classic approach

for establishing mediation was introduced by Baron & Kenny [9]. This approach,

termed the causal steps (CS) method, establishes evidence for partial or complete

mediation by sequentially testing the relationships between X, M, and Y. Specifi-

cally, CS uses linear regression models to establish the following four conditions: 1)

X has a marginal effect on Y [X→Y]; 2) X has an effect on M [X→M]; 3) M is a par-

tial mediator of the effect of X on Y [M→Y|X]; and 4) M is a complete mediator of

the effect of X on Y [X⊥⊥Y|M]. The CS method can accommodate a matrix of inde-

pendent variables by using a likelihood ratio test for grouped predictors. Although

the CS method is useful due to its conceptual accessibility, its implementation in a

genomics setting with many candidate mediators can be awkward. In particular, it

is not straightforward to combine statistics across the steps while also accounting

for multiple testing, particularly for step (4), which requires a failure to reject a null

hypothesis. This makes it difficult to succinctly summarize evidence for complete

or partial mediation for many candidate M.

Other common tests for mediation analysis address the problems of the CS method

by ignoring complete mediation and instead providing a single test statistic for

the significance of the indirect effect. The indirect effect is formally given as the

product of regression coefficients from X → M and M → Y | X, that is, the effect

of M on Y controlling for the effect of X. Establishing that this coefficient product

is non-zero gives evidence for (at least) partial mediation, but it does not provide

information about complete mediation. The most popular methods for testing the

indirect effect include the Sobel test [10], which is based on an approximation to

the asymptotic distribution of the indirect effect; alternatively, bootstrapping can

be used to assess significance [11], which does not make distributional assumptions

but is computationally expensive. In addition to not providing information about

complete mediation, the Sobel test does not generalize when X is a matrix rather

than a vector.

Applications of mediation analysis to large scale genetic and molecular profil-

ing data have used modified versions of the traditional tests described above. Ap-

proximations to CS have been used in the multi-parent Collaborative Cross (CC

[12, 6, 13]) and Diversity Outbred mouse populations (DO [14, 5, 15, 16]). These
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studies identified QTL for gene expression (eQTL), protein abundance (pQTL),

and chromatin accessibility (cQTL). Detection of a significant QTL for the target

phenotype (Y) satisfies step (1) and detection of a QTL local to the molecular trait

(M), i.e., near the genomic position of M, satisfies step (2). For a given pheno-

type QTL, a mediation scan is performed by testing the effect of X on Y as being

mediated through each M (e.g., each observed gene transcript). For the approxima-

tion to CS, significant mediators are determined based on the reduction in log-odds

(LOD) score before and after accounting for the effects of M (hereafter referred to as

LOD drop). This approximates step (4) without requiring complete independence

between X and Y. Notably, the LOD drop method does not directly check step (3)

and, as a result, it may detect candidates that are correlated with the true mediator

but are not mediating the effect of X on Y. Thus, care is needed when interpreting

the LOD drop mediation scan.

More recent methodological developments in large-scale mediation of genetic and

molecular profiling data include the multi-SNP intersection union test [17], an ex-

tension of the CS method that simultaneously models the overall effect of multiple

genetic predictors by representing them as a similarity matrix-based (i.e., kernel-

based) random effect, and the divide-aggregate composite null test [18], an extension

of the joint significance test [19] that improves power relative to the Sobel and joint

significance tests by utilizing an empirical null distribution. As with other methods

based on the indirect effect, neither of these methods provide inference on distin-

guishing partial and complete mediation.

All of the approaches described rely on hypothesis testing, in which significance

criteria are used to choose between nested alternative models. In our view, a more

natural perspective for mediation analysis is provided by Bayesian model selection.

Specifically, the goal of mediation analysis is to classify the relationship between X,

M, and Y as a particular causal model. We note that the full space of potential causal

models is not nested; the classification of the observed data into a particular causal

model is, with finite data, necessarily uncertain; estimation of parameters when

the model is uncertain ideally requires incorporation of model uncertainty into the

estimate. These properties are well suited to the Bayesian model selection paradigm,

which considers a set of potential models (nested or otherwise) and assigns to each

a posterior probability.

Bayesian methods have been previously used in mediation analysis to estimate the

posterior distribution of the indirect effect [20, 21, 22], and Bayesian model selection

has been used to test for the presence of an indirect effect [23]. Here we develop a

more expansive Bayesian model selection approach that considers the full space of

causal models, distinguishing between—among others—complete mediation, par-

tial mediation, and independence (where X affects M and Y independently, e.g.

co-localized but distinct eQTL and pQTL). Bayesian approaches are often com-

putationally intensive, and even infeasible for many applications. We avoid this

problem by employing conjugate priors that allow us to avoid costly sampling when

calculating posterior summaries. Our approach is computationally efficient, gener-

alizes to multiple independent variables, and provides unique posterior summaries

in the form of causal model probabilities.
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Results
We developed a Bayesian model selection approach, implemented in the bmediatR

R package, to evaluate different causal models that define relationships between a

continuous dependent variable Y, an independent (or exogenous) variable X, and

a continuous mediator variable M. The causal models can be described as directed

acyclic graphs (DAGs) (Figure 1). There are three possible edges (a, b, c) and we

define each to be either present or absent using an indicator vector θθθ = (θa, θb, θc),

where for example θθθ = (1, 0, 0) denotes presence of a only. This leads to eight

possible combinations of edges, each defining a different causal relationship (causal

model) (ML1-8 in Figure 1). As an extension, the Bayesian model selection approach

can also consider four additional causal models in which the direction of edge b

(between M and Y) is reversed (ML9-12 in Figure 1, termed “reactive” models.),

though some of these are are not causally identifiable (see Methods).

We are primarily interested in models that describe mediation, defined as any

causal relationship where edges a and b are both present, i.e., θθθ = (1, 1, θc), indi-

cating a causal path from X to Y through M. Complete mediation describes models

where X acts entirely through M and thus X conveys no additional information

about Y beyond that provided by M (θc = 0); partial mediation describes models

where X conveys additional information beyond that contained in M (θc = 1); and

there is no mediation when θa = 0 or θb = 0, which includes the co-local model in

which X affects both Y and M but independently, and also includes the model in

which X and M affect Y but are independent of each other. Our approach calculates

a posterior probability for each causal model θθθ given data X, M, and Y.

Bayesian model selection requires specifying prior probabilities for the models un-

der comparison, as well as prior distributions for the parameters of those models

(model priors). Priors can be used to incorporate external information into medi-

ation analysis, which can improve power and reduce false positive rates. Since the

results of Bayesian model selection analysis can be sensitive to the choice of priors,

it is important to understand the role and interpretation of different prior speci-

fications. The model priors are specified by assigning probabilities to each of the

twelve possible configurations of θθθ (Figure 1). These probabilities can be viewed

as weights and modified to define informative prior expectations on the relative

frequency of different causal models. Setting a model prior to zero removes it from

consideration, and this allows a user to define a set of allowable models. By default,

we assign equal prior probability to the models that assume no reverse causality

from Y to M for edge b (i.e., probability 1/8 for each model ML1-8 but probability

zero for ML9-12).

Prior distributions on the effect sizes of the edges connecting X, M, and Y (effect

priors) are given conjugate prior distributions, which yields a closed form for the

joint likelihood of M and Y. The size of the effects is controlled by specifying the

hyperparameters φφφ, which are ratios of the edge effect sizes to the variability of

the errors (Methods). The default specification φφφ = (1, 1, 1) assumes that all edges

have a priori equal effect sizes, also equal in size to the error variances of M and

Y. Using conjugate priors and specifying the edge effect sizes make computing the

posterior fast and exact.
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Bayesian model selection performance in simulated data

We evaluated our Bayesian model selection against two alternative mediation anal-

ysis methods, the Sobel test and LOD drop, using simulated data. Data was simu-

lated by first specifying X and then simulating M and Y according to linear models

with normal error and effect sizes, expressed as proportion of variation explained,

that ranged from 0.05 to 0.95. This approach allows X to represent a non-normal

(and non-scalar) quantity. In particular, for genetics applications, X may represent

minor allele counts, multi-state founder haplotype probabilities, or multiple genetic

variants. Data were simulated for five scenarios: co-local, where X drives M and

Y independently; partial mediation, where X drives Y both directly and indirectly

through M; complete mediation, where X drives Y only through its effect on M;

and reactive versions of partial and complete mediation, where X drives M through

Y instead. For each scenario, we simulated 100 data sets with 200 observations

each. For each simulated data set, we applied bmediatR’s default model priors (i.e.,

uniform over ML1-8 in Figure 1). We also considered two other types of model pri-

ors: reduced model priors, which sets a uniform prior probability over models that

assume the direct effect c (ML4-8), and which is analogous to testing the indirect

effect like the Sobel test; and expanded model priors, which sets a uniform prior

over all models (ML1-12), including reactive ones (ML9-12) (Figures S1 and S2).

It should be noted that the Sobel test, LOD drop, and bmediatR provide different

inferences. The Sobel test does not distinguish between partial and complete medi-

ation, or their reactive forms. The LOD drop method does not distinguish between

co-local, complete, partial mediation, or the reactive forms of the mediation models.

Which models can be distinguished by the Bayesian model selection will depend on

which prior model probabilities are non-zero, resulting in less or more complicated

inference. If a direct effect from X to Y is assumed (edge c fixed), Bayesian model se-

lection no longer distinguishes partial and complete mediation, similar to the Sobel

test. Alternatively, more complex inference is possible by including reactive models

as non-zero prior models in situations when the effect from Y to M is plausible,

though inference between some models is not causally identifiable (see Discussion).

Bayesian model selection performs well when genotypes are correctly specified

We evaluated the performance of the three mediation methods, with bmediatR set

to default model priors, on data with a bi-allelic QTL with an allele frequency

of 0.5, simulated under the co-local, partial mediation, and complete mediation

models. Results from bmediatR with default model priors are shown in Figure 2;

results from all prior settings and all simulation settings, including reactive, are

shown in Figures S1 and S2.

The left panel of Figure 2a shows results for when the SNP affects both M and Y

but independently, as would be the case for an eQTL and a pQTL that are co-local

but otherwise unrelated. The top four boxes show the posterior probability given by

bmediatR for four types of models: complete mediation (ML4), partial mediation

(ML8), co-local (ML7), and other non-mediation models (ML1-3 and ML5-6). Each

box is a heatmap of the posterior probability under all possible simulated effect sizes

of X→M (x-axis) and X→Y (y-axis). Together, the four boxes show that, for all

but the most extreme combinations of effect sizes, bmediatR overwhelmingly favors
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the (correct) co-local model. Below these are heatmaps for the Sobel test and the

LOD drop. The Sobel test aims to identify mediation, and so any detections for this

co-local scenario will be false positives. Its heatmap shows that the false positive

rate is low in all cases. The LOD drop heatmap shows the magnitude of the signal

for mediation by that method. LOD drop is seen to correctly register a minimal

mediation signal when the effect size of the QTL for Y is large and that for M is

small; but it incorrectly detects mediation when the QTL for M is large (>80%), a

situation that is common in eQTL data.

The left panels of Figure 2b,c show results for the same set up but where mediation

is present, either partial or complete. For partial (Figure 2b), bmediatR correctly

identifies the type of mediation in most cases except for when the effect size of the

QTL for M much is disproportionately large, in which case it is misclassified as

complete or co-local. The Sobel test correctly identifies the presence of mediation

(type unspecified) with a similar error pattern as for bmediatR. The LOD drop

performs a little better than other methods, albeit with different error character-

istics. For complete mediation (Figure 2c), the Sobel test and LOD drop perform

slightly better than for partial mediation, while bmediatR accurately identifies the

mediation type across all but the most extreme effect size settings.

Misspecification of bi-allelic genotypes induces false mediation

Mediation was then evaluated when the bi-allelic X is misspecified. This can occur,

for example, when X represents a variant that is imperfectly correlated with the

true causal variant through linkage disequilibrium (LD) (Figure 2 right panels). In

this setting, Bayesian model selection begins to favor the partial mediation model

and the Sobel test begins to detect mediation when it is not present. LOD drop

also suffers with misspecification, exacerbating its issues when the QTL on M is

large. When data were simulated with mediation present (partial and complete),

misspecification of X was less problematic (Figure 2b-c right), although Bayesian

model selection was less accurate at distinguishing partial and complete mediation.

Misspecification of multi-allelic genotypes as bi-allelic induces false mediation

Next we evaluated how mediation would be affected by misspecifying a multi-state

haplotype effect. Data were simulated for 200 individuals with equal frequency of

four alleles with distinct effects. Fitting X based on a bi-allelic SNP that tags the low

and high haplotype groups worked well for complete mediation, but resulted in false

mediation signals for co-local data, only correctly preferring the co-local model when

at least one of the QTL on M and Y were small (< 50%) (Figure 3a). This issue was

exacerbated when the SNP was more imbalanced, resulting in false mediation signal

for co-local data across a wider range of effect sizes (Figure 3b). We then looked at

simulated bi-allelic data but modeled the genetic effect as eight haplotypes. Bayesian

model selection performed well for co-local and complete mediation data, aside from

some edge cases with extreme effect sizes, most notably at the corners of large QTL

on M with small QTL on Y (prefers complete mediation) and small QTL on M and

large QTL on Y (prefers partial mediation) (Figure 3c).
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Bayesian model selection can detect mediation of multi-allelic QTL

To demonstrate mediation analysis in the context of multi-allelic QTL analysis, we

simulated data based on the genomes of 192 DO mice [5]. A genetic locus X was

randomly selected and M and Y were simulated assuming no mediation (QTL for

Y, no QTL for M, M and Y uncorrelated; ML5), co-local (ML7), and complete

mediation (ML4). QTL mapping was then performed for both M and Y to obtain

LOD scores and estimated haplotype effects (Figure 4). The simulations demon-

strate characteristic features of co-mapping QTL with correlated effects for co-local

and complete mediation simulations, as they would appear in a multi-allelic QTL

analysis. Data were simulated assuming a bi-allelic genetic variant, but the QTL

mapping and Bayesian model selection were performed based on 8-state founder

haplotypes.

Bayesian model selection applied to DO mice

In order to illustrate how bmediatR works in QTL mapping applications, we ana-

lyzed previously reported liver proteomics data from 192 DO mice [5, 13]. We first

illustrate how multi-state haplotypes help to identify the causal driver of a distal

pQTL for Snx4. Then we look at a case in which bmediatR identifies a biologi-

cally plausible mediator for a distal pQTL of Tubg1 where LOD drop favored a less

plausible candidate.

Multi-state haplotypes improves mediation inference for SNX4 distal pQTL

The Snx4 gene is located on chromosome 16 and has a distal pQTL on chromosome

3 that co-maps with a local pQTL for Snx7 (Figure 5). The proteins for both genes

are sorting nexins that bind phospholipids, form protein-protein interactions, and

play a role in membrane trafficking and protein sorting [24]. The haplotype effects

of the Snx7 local pQTL and the Snx4 distal pQTL are highly correlated (r = 0.99)

and reveal a complex haplotype effects pattern that cannot be explained by a single

bi-allelic variant. We used the TIMBR software [25] to determine that the pQTL

has as many as ≈5 distinct functional alleles (Figure S3a). Bi-allelic variants in

the pQTL region with alleles shared by the B6 and 129 strains partially match the

haplotype effects and thus have strong associations with both proteins. In order to

evaluate SNX7 as a mediator of the pQTL effect, we first applied Bayesian mediation

using the peak SNP (with B6 + 129 allele) and find that this analysis assigns most

of the posterior probability to the partial mediation model. In contrast, Bayesian

mediation using the 8-state haplotype information finds strong support for complete

mediation. We then evaluated all proteins (genome-wide) as potential mediators of

the Snx4 distal pQTL, and only SNX7 is identified as a likely complete mediator

based on the log posterior odds (Figure 5e). The co-local model is highly unlikely

for SNX7. Summing the posterior probabilities for complete and partial mediation

we see clearly that SNX7 is the most likely candidate mediator of the distal QTL

for Snx4.

Bayesian model selection favors a biologically plausible driver for TUBG1

The gene Tubg1 is located on chromosome 11 and has a distal pQTL on chromosome

8. In our previous work, genome-wide mediation analysis by the LOD drop method
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identified NAXD as the best candidate mediator, but also revealed a significant

LOD drop score for TUBGCP3 (Figure 6). Both mediation candidates have local

pQTL. The Naxd local pQTL is stronger (LOD score ≈40) than both the Tubg1

distal and Tubgcp3 local pQTL (LOD scores ≈10). The pQTL haplotype effects for

Tubgcp3 and Naxd are highly correlated with the distal pQTL effects on TUBG1

(although flipped for NAXD) (Figure 6c). The allelic series could be either bi-

or tri-allelic (k of 2-3; Figure S3b). We applied Bayesian model selection to both

candidate mediators using the haplotype effects. The posterior probabilities at the

two candidate mediators show that (Figure 6f) TUBGCP3 has 98% probability

as a partial mediator, with the remaining probability for complete mediator. In

contrast, NAXD, which is the best candidate using the LOD drop method, has

79% probability of being a complete mediator, 20% partial mediator, and 1% co-

local probability. Due to the non-zero co-local probability of NAXD, TUBGCP3 is

preferred based on the combined posterior odds of partial and complete mediation. A

related tubulin gene, Tubgcp2, encoded on chromosome 7, has a distal pQTL at this

locus on chromosome 8 (Figure 6g). Bayesian model selection analysis of the Tubgcp2

distal pQTL also supports TUBGCP3 as a candidate mediator. These findings

support a model for stoichiometric co-regulation of the protein constituents of the

tubulin small complex [26, 27] that is mediated by the abundance of TUBGCP3.

Mediation of genetic effects on gene expression through chromatin accessibility in

human cell lines

We applied Bayesian model selection to data from 63 human lymphoblastoid cell

lines (LCLs) using genotype [28], RNA-seq [29], and DNase-seq [30, 31] data. We

used both Bayesian model selection and the Sobel test to identify chromatin re-

gions near transcription start sites that may act as mediators of gene expression.

Previously, genetic variants that affect chromatin accessibility and gene expression

were mapped in the LCLs [30]. Variants associated with chromatin accessibility

were also likely to be associated with the expression of nearby genes, indicating

that chromatin accessibility may be a common mechanism by which transcription

is regulated.

To illustrate, we looked at the expression of gene SLFN5 which was strongly

associated with local genetic variation (eQTL). These genetic variants were also

strongly associated with chromatin accessibility (cQTL) (Figure 7a). The SNP most

strongly associated with SLFN5 expression and chromatin accessibility is located

within an interferon-stimulated response element (ISRE) in the first intron of SLFN5

[30], and the co-mapping chromatin site is directly above the SNP. The juxtaposition

of chromatin site to gene makes it a likely mediator for the expression of SLFN5,

an interferon-regulated gene, because it controls the accessibility of the ISRE to

transcription factors [32]. Bayesian model selection and the Sobel test both detect

partial mediation.

Co-mapping eQTL and cQTL can also represent independent signals. A SNP

within 10 Kbp of the start of GPR63 is a local eQTL and a local cQTL for a nearby

chromatin site (Figure 7b). The Sobel test does not support the chromatin site as

a mediator of the genetic effect on GPR63 expression. Bayesian model selection

results are consistent with the Sobel test in ruling out mediation but, unlike the

Sobel test, it clearly identifies the relationship as co-local.
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Discussion
Results from our Bayesian model selection analysis can be sensitive to the choice

of model prior; therefore, it is important to understand the role and interpretation

of different prior specifications. In our framework, is is possible to define any con-

figuration and relative weight of causal models using the model prior. For example,

if one believes that X is not a QTL for most candidate mediators, we could assign

a smaller prior probability to models that include the a edge; or, if we believe that

reactive models are unlikely but do not want to exclude them completely, we could

assign these models a small prior probability (with the caveat that some reactive

models are not identifiable). The appropriateness of such choices depends on the

context of the analysis and the set of candidate mediators under consideration (e.g.,

considering only genes nearby X, versus all genes in the genome).

A straightforward elaboration of our approach is to use a set of candidate me-

diators to learn an empirical prior distribution over the causal models. If suitably

constructed, an empirical prior could improve power within a given dataset. An

empirical prior could be implemented, for example, by computing the model pos-

terior for all candidate mediators using the uniform model prior, and then taking

the average over all posteriors as the empirical prior distribution for downstream

analyses. Conceptually, this approach is similar to the empirical null employed in

Liu et al [18]. As an illustration, in the case where X is a QTL for Y, if most of the

candidates are not actually mediators, an empirical prior would put a high prior

probability on models that include the c edge and do not represent mediation. Our

simulations indicate that the default uniform model prior led to reasonable model

selection inference over a range of true effect sizes and causal models. That said, ex-

ploring alternative prior distributions over the causal models is an intriguing avenue

for future research, and many strategies could be implemented within our flexible

framework.

There may also be opportunities to improve inference by adjusting the effect size

hyperparameters, φφφ. By default, we assume a priori equal effect sizes for each edge,

which are also equal to the size of the error variances. Tuning these hyperparameters

to reflect prior beliefs about relative effect sizes may improve posterior model infer-

ence, provided these prior beliefs are closer to the truth. It is possible to put prior

distributions on the effect size hyperparameters, but doing so would complicate

posterior inference, as conditioning on these hyperparameters makes inference fast

and exact. Other possibilities for setting the effect size hyperparameters include

maximum a posteriori estimation (e.g., via grid search) or defining an empirical

prior based on the data, though we have not explored these ideas here.

Mediation analysis critically assumes that there is no confounding between M

and Y, i.e., M ← U → Y. In the presence of confounding, M and Y may be as-

sociated even if there is no direct effect from M to Y. Known confounders can be

adjusted for as covariates (Z in the Methods). Unobserved confounders present a

more fundamental problem. Approaches that account for unobserved confounders

[33] could be implemented, but only as part of a two-stage approach, where latent

factors are inferred first, naive to the mediation model, and then either removed or

included as covariates in the mediation analysis. In our real data applications, we

analyzed experimental data from mice and human cell lines, which we assumed was

unconfounded after controlling for sex, batch, and other experimental variables.
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There are other non-mediation approaches that are commonly used to investigate

the relationship between X, M, and Y. These include Mendelian randomization

(MR) [34, 35, 36, 37], which is an instrumental variables approach for estimating

the causal effect of M on Y in the presence of confounding. MR involves building

a predicted M (using X → M), and regressing Y on the predicted (rather than

observed) M. This approach is robust to confounding, but it requires the additional

strong assumption of no direct effect of X on Y (i.e., no partial mediation). This

means that classical MR cannot be used to distinguish between partial and complete

mediation. Emerging MR methods relax the assumption of no direct effect and may

be useful in this context, but this field is rapidly developing and a full review of

these methods is beyond the scope of this paper. A different, non-causal method

for evaluating the relationship between M and Y is colocalization analysis [38, 39,

40, 41, 42], which evaluates if two variables (M and Y) share a common X, when

only one of many independent variables are under consideration. This approach is

typically motivated by fine-mapping genetic variants (i.e., evaluating candidate X,

rather than candidate M), and it does not establish a causal relationship between

M and Y in the way that mediation analysis can.

Mediation analysis commonly assumes that the direction of causal effect is from

M to Y. This assumption must be justified based on the context of the analysis. For

example, the mediator of a distal pQTL is expected to possess a corresponding local

QTL. In the presence of reverse causality from Y to M, however, standard mediation

analysis (i.e., inference that excludes the reactive models) will still detect an edge

from M to Y, yielding spurious evidence for mediation. In our framework, is it

straightforward to include the reactive models in settings where reverse causality is a

possibility. We examined inference in the presence of reverse causality via simulation

(Figures S1 and S2). These results demonstrate that it is possible to distinguish

complete mediation from complete reactive mediation, but also indicate that it is not

possible to distinguish partial mediation from reactive partial mediation. This is not

unexpected, as these models are not identifiable. Our simulation results also show

that, for the priors we specified, true partial mediation can appear more consistent

with reactive complete mediation than partial mediation, for a particular space

of effect sizes (Figure S2b bottom row). These findings emphasize the importance

of the assumption that M → Y in mediation analysis. By default, our bmediatR

software excludes reactive models, and we recommend interpreting inferences made

using the reactive models with caution.

Bayesian model selection provides an opportunity for more flexible model specifi-

cations than are possible for other methods, such as the Sobel test. In particular, the

exogenous variable X can be categorical (with more than two groups) or multivari-

able. This is useful for modeling genetic effects in some contexts, as we demonstrated

by the improvement in mediation using 8-state haplotypes in the DO mouse data.

Mediation analysis with multiple exogenous variables [43] is easily implemented in

bmediatR. The bmediatR software offers a framework that could be generalized to

account for moderated mediation [44, 9, 45], in which the effect of the mediator

is moderated by another factor. Increasing the complexity of the model space can

increase computation time and may require more complex posterior summaries. De-

spite these hurdles, compared to methods like the Sobel test, implementing more
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general mediation models settings is straightforward within the Bayesian model

selection framework.

Lastly, we caution that mediation analysis is sensitive to misspecification. In our

simulations, we showed that when a genotype X is misspecified (i.e., a haplotype is

incompletely described by a single variant), a true co-local model can be inferred as

mediation. Simulations in other studies have demonstrated that greater precision in

the measurement of Y relative to M can lead to true complete mediation appearing

as partial mediation [46]. These issues highlight the need for careful examination

and independent validation of inferences based solely on mediation analysis.

Conclusions
Mediation analysis is a powerful tool for discovery and integrative analyses of high

dimensional biological data, with the caveat that proper caution and awareness

of the potential pitfalls are needed. Here we describe a flexible Bayesian model

selection approach to mediation analysis that is implemented as the R package

bmediatR. Using simulations, we show that bmediatR performs as well or better

than established methods including the Sobel test, while allowing greater flexibility

in both model specification and in the types of inference that are possible. We ap-

plied bmediatR to genetic data from mice and from human cell lines, demonstrating

its ability to derive biologically meaningful findings. The Bayesian model selection

approach provides a flexible framework to support further advances in mediation

analysis methods.
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Figure 1 Possible relationships among X, M, and Y. X is assumed to be exogenous, and thus M
and Y have no effects on X. A model and corresponding marginal likelihood (ML) are defined by
the presence or absence of any the three edges a, b, and c according to an indicator variable θθθ. In
this work and by default in bmediatR, the direction of edge b is assumed to be from M to Y (M
→ Y), but a set of reactive models can also be accommodated in which the direction of edge b is
reversed (M ← Y), indicated with θθθ = (θa, ∗, θb). Models can be favored or even excluded by
adjusting the model priors. By default, there are five models (ML1-3 and ML5-6) that represent
non-mediation, i.e., the effect of X on Y, if present, is not mediated through M. The co-local
model (ML7) represents a special case where there is no mediation between X and Y, but X
independently affects M and Y. The complete mediation model (ML4) and the partial mediation
model (ML8) represent cases where the effect of X on Y is explained, completely or partially, by
the effect of X on M.
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Figure 2 Performance of Bayesian model selection, Sobel test, and LOD drop in simulated
data with a binary exogenous variable. Data for 200 individuals were simulated according to (a)
co-local, (b) partial mediation, and (c) complete mediation models based on a balanced bi-allelic
variant X. We applied mediation analysis with X as the true variant (left) and as a variant in
linkage disequilibrium (r = 0.77) with the true variant (right). DAGs indicate the model used to
simulate the data. Heat maps for Bayesian model selection represent the mean posterior
probability associated with each inferred model for a range of fixed settings of the model
parameters as indicated on x- and y-axes. Heat maps for the Sobel test represent false positive
probability for co-local simulations and power for mediation simulations. Heatmaps for LOD drop
represent mean LOD drop, scaled to the proportion of the simulated QTL’s LOD score. See
Figures S1 and S2 for results from non-default model priors and all simulated models, including
reactive.
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Figure 3 Performance of Bayesian model selection in simulated data with a multi-state
exogenous variable. Data for 200 individuals were simulated according to co-local (left) and
complete mediation (right) models. DAGs indicate the model used to simulate the data. (a-b) The
genetic effect assumes four functional alleles with balanced allele frequencies (25%). Mediation
analysis was performed using (a) a variant that tags the two higher functional alleles and (b) a
variant that tags only the highest functional allele. (c) Data from a bi-allelic variant with allele
frequency 50% were simulated, and mediation analysis performed using 8 founder haplotype
states. Tables describe the relationships of the structure of X used to simulate the data versus the
structure of X used in the mediation analysis. Heat maps for Bayesian model selection represent
the mean posterior probability associated with each inferred model for a range of fixed settings of
the model parameters as indicated on x- and y-axes.
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Figure 4 Illustration of Bayesian model selection applied to QTL mapping with simulated DO
mouse data. (a) The DAG is labeled to indicate how each arm in the mediation model is
interpreted in the QTL mapping setting. Y and M were simulated based on a bi-allelic QTL X at a
randomly selected locus, with (b) each allele distributed to four founder strains. Genome-wide
genotype data were obtained from 192 Diversity Outbred mice, according to one of three models:
(c) M is a non-mediator of X on Y, (d) M and Y are independently driven by X (co-local), and (e)
M is a complete mediator of X on Y, as illustrated with the corresponding model DAG (left).
Genome-wide LOD scores for QTL mapping of M and Y, a scatter plot of the founder haplotype
effects at the QTL for M and Y, and the Bayesian model selection posterior model probabilities
are shown (from left to right).
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Figure 5 Mediation analysis of a distal pQTL for Snx4 in DO mice. Genome-wide LOD scores
for associations of (a) SNX4 and (b) SNX7 abundance were performed using founder haploptye
linkage mapping. Zooming into the QTL region, LOD scores for variant association within the
pQTL region (peak ± 5 Mbp) for bi-allelic vartiants with LOD scores > 5 are overlaid on the
haplotype association LOD curve. Variants with alleles specific to B6 and 129 (pink) and PWK
(red) are highlighted. (c) The founder haplotype effects at the pQTL are multi-allelic and highly
similar for the two proteins. (d) Posterior probabilities of mediation models for the pQTL (top)
using founder haplotypes and (bottom) using the peak bi-allelic variant. (e) Genome-wide
mediation scan where all observed proteins are individually evaluated as mediators of the Snx4
distal pQTL highlights SNX7 as a complete mediator and strongly indicates that the co-local
model is unlikely. Each point represents the log posterior odds for a candidate mediator for the
specified mediation model. (f) Summing complete and partial mediation posterior probabilties
distinguishes SNX7 as the single best candidate mediator. (g) The complete mediation model with
SNX7 as mediator of the Snx4 distal pQTL is shown as a DAG with estimated effect sizes in units
of percent variance explained. The dashed line indicates the strength of the distal pQTL that is
not included in the model because it is completely mediated.
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Figure 6 Mediation analysis of a distal pQTL for Tubg1 in DO mice. (a) Genome-wide LOD
scores for TUBG1 abundance. Black arrow indicates distal pQTL on chromosome 8. (b)
Genome-wide LOD scores for two genes Tubgcp3 (top) and Naxd (bottom), with co-mapping
local pQTL. (c) Comparison of the founder haplotype effects of the Tubg1 pQTL with Tubgcp3
(left) and Naxd (right) pQTL. (d) Mediation scans of all observed proteins on chromosome 8 by
LOD drop with an overlay of the pQTL LOD scores in gray (top) and Bayesian model selection
log posterior odds for mediation (bottom) show different prioritization for candidate mediators
NAXD and TUBCP3. Note that low LOD drop scores indicate stronger mediation signal. (e)
Posterior model probabilities for the Tubg1 distal pQTL for candidate mediators (top) TUBGCP3
and (bottom) NAXD. (f) Mediation scan for the Tubgcp2 distal pQTL identifies TUBGCP3 as
the best candidate mediator. (g) The DAG summarizes the mediation analysis results with effect
size estimates shown as percent variance explained. Dashed lines indicate the strength of distal
pQTL effects that are not part of the model assuming complete mediation through TUBGCP3.
(h) TUBG1, TUBGCP2, and TUBGCP3 comprise the γ-tubulin small complex.
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Figure 7 Mediation analysis of local chromatin state and gene expression data in human cell
lines. SNP associations with (a) SLFN5 and (b) GPR63 expression (top) and nearby chromatin
accessibility (bottom) for variants on the genes’ chromosome. Peak SNPs are labeled. Mediation
results for the (c) SLFN5 eQTL and (d) GPR63 eQTL. Log posterior odds from Bayesian model
selection (top), -log10 p-values from Sobel test (middle), and zoomed-in window highlighting
gene start, peak SNP, and peak mediator (bottom). Peak mediator or co-local chromatin peak is
labeled. Each gray point represents a chromatin peak candidate mediator located near the gene of
interest. For SLFN5 expression, complete and partial mediation models were summed in the
posterior summary from Bayesian model selection. For GPR63 expression, the co-local model was
also summed with the mediation models. Posterior model probabilities from Bayesian model
selection for the peak mediator and co-local chromatin peaks and the implied DAG for the (e)
SLFN5 eQTL and (f) GPR63 eQTL.
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Methods

The standard mediation model, the Sobel test, and LOD drop

The standard mediation model can be described using two linked linear models. For

individual i = 1, . . . , N , let yi be the value of the primary outcome or dependent

variable, let mi be the value of the mediator variable, and let xi be a (scalar)

independent variable. Mediation analysis frames the relationships between these

variables in terms of the following regressions:

mi = µm + xiβa + εi

yi = µy + xiβc +miβb + εi ,

where µm and µy are intercepts, εi and εi are normally distributed, independent

random noise variables, βa is the effect of xi on mi, βb is the effect of mi on yi, and

βc is the effect of xi on yi. The effects {βa, βb, βc} correspond to edges {a, b, c} in

the DAG in Figure 1. In the language of mediation, βc describes the direct effect of

xi on yi, whereas the combination of βa and βb describe the indirect effect of xi on

yi via mi.

The Sobel test for mediation focuses on the estimation of the product βaβb. This

product, which provides a single number description of the indirect effect, can take

any value from −∞ to ∞ but is zero only when either βa = 0 or βb = 0 or both.

The traditional implementation of the Sobel test uses classical estimates of βaβb,

and bootstrapping or other approximations [47], to estimate confidence interval for

βaβb and thereby a p-value for βaβb 6= 0. Bayesian implementations of the Sobel test

analogously determine a posterior for βaβb and thereby a suitable tail probability

[20] or Bayes factor [23]. In either implementation, the Sobel test provides a succinct

way to quantify the evidence for mediation and uncertainty about the strength

and direction of the indirect effect. By contrast, the CS approach [9], and thereby

its approximation, the LOD drop method (both defined in the Introduction), is

awkwardly constructed [48], lacks power [19, 49], and does not quantify uncertainty;

it does, however, take into account the X → Y relationship, potentially enabling

discrimination between partial and complete mediation. Note that distinguishing

partial and complete mediation is sensitive to misspecification [46] and its value is

subject to debate [50].

Mediation with multiple independent variables

The standard mediation model is trivially adapted to cases where the independent

variable is multivariable, that is, of dimension D > 1: the scalar predictor xi and

scalar effects βa and βc are simply replaced by their D-vector counterparts, xi, βa,

βc. In this case, the CS (or LOD drop) approach to testing mediation may still be

applied but, because the product βaβb is a vector, the Sobel test cannot. Sobel test-

like procedures have been developed for specific cases, including a bootstrap-based

test for when X is multicategorical [43] and a bespoke Bayesian model for when X is

a scalar-by-multi-category interaction [21], but these are computationally intensive

and do not generalize easily to multivariable X.
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A Bayesian model selection approach for mediation analysis

We propose a Bayesian model selection approach that combines the generality of the

CS method with the inferential coherence of the Sobel test. Our approach is most

similar to the one in Nuijten et al. 2015 [23], which is also a Bayesian formulation

of mediation, but only considers a single independent variable in X. To describe our

approach, we first elaborate the standard mediation model to

mi = µm + z>m,iαm + θax
>
i βa + εi

yi = µy + z>y,iαm + θcx
>
i βc + θbmiβb + εi ,

where xi is a D-length column vector, βa and βc are D-length effects vectors, zm,i

and zy,i are column vectors encoding any covariates for mi and yi, αm and αy are

the corresponding covariate effects, εi ∼ N(0, σ2
m/wm,i) and εi ∼ N(0, σ2

y/wy,i) are

noise variables with individual-specific weights wm,i and wy,i, and θ = {θa, θb, θc} ∈
{0, 1}3 are indicator variables denoting the presence or absence of edges {a, b, c}
in the DAG in Figure 1, such that, for example, θ = {1, 1, 0} denotes complete

mediation (a and b active) with no effect of edge c. The parameter space of θ

contains 23 = 8 possible combinations of edges, each of which corresponds to a

particular causal model. From a Bayesian perspective, making inferences about the

identity of the true causal model is equivalent to calulating the posterior distribution

of θ, that is,

p(θθθ|y,m) ∝ p(y,m|θθθ)p(θθθ),

where y = {yi}Ni=1 and m = {mi}Ni=1. This involves calculating a joint likelihood

for Y and M given a causal model, p(y,m|θθθ), and a prior distribution over causal

models, p(θθθ). These are described separately below.

Likelihood and priors conditional on a causal model

The conditional joint likelihood function is given by

m|θa, µm,αααm,βββa, σm ∼ N(µm1 + Zmαααm + θaXβββa, σ
2
mW−1

m ),

y|m, θb, θc, µy,αααy, βb,βββc, σy ∼ N(µy1 + Zyαααy + θcXβββc + θbmβb, σ
2
yW

−1
y ),

where Zm and Zy are matrices for the covariates, Wm = diag({wm,i}Ni=1) and

Wy = diag({wy,i}Ni=1) are diagonal matrices of observation weights. By default,

Zm = Zy = 0, and Wm = Wy = I.

Conjugate priors are given for the following variables:

µm|σm ∼ N(0, σ2
mτ

2
µm

) µy|σy ∼ N(0, σ2
yτ

2
µy

)

αααm|σm ∼ N(0, σ2
mτ

2
Zm

I) αααy|σy ∼ N(0, σ2
yτ

2
Zy

I)

βββa|σm ∼ N(0, σ2
mφ

2
aI) βββc|σy ∼ N(0, σ2

yφ
2
cI)

βb|σy ∼ N(0, σ2
yφ

2
b)

σ−2m ∼ Ga(0.5κm, 0.5λm) σ−2y ∼ Ga(0.5κy, 0.5λy)
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These variables can be integrated from the likelihood due to conjugacy, giving a

closed form expression for the marginal joint likelihood function:

m|θa ∼ tκm(0, λm[W−1 + XmVmX Tm])

y|m, θb, θc ∼ tκy(0, λy[W−1 + XyVyX Ty ])

where Xm and Xy are concatenated design matrices and Vm and Vy are prior

covariance matrices for the effect variables, specifically,

Xm =
[
1 Zm θaX

]
Vm =

τ2µ 0 0

0 τ2ZI 0

0 0 φ2aI



Xy =
[
1 Zy θcX θbm

]
Vy =


τ2µ 0 0 0

0 τ2ZI 0 0

0 0 φ2cI 0

0 0 0 φ2b


This marginal joint likelihood is evaluated for all causal models θθθ = (θa, θb, θc),

given prior hyperparameters κκκ = (κm, κy), λλλ = (λm, λy), τττ2µ = (τ2µm
, τ2µy

), τττ2Z =

(τ2Zm
, τ2Zy

), and φφφ2 = (φ2a, φ
2
b , φ

2
c). Non-informative priors are used for the scale of

the data [κκκ = λλλ = (0.001, 0.001)], the location of the intercept [τττµ = (1000, 1000)],

and covariate effects [τττZ = (1000, 1000)]. The hyperparameter φφφ2 controls the prior

effect size of each edge, relative to error, on m or y. We set φφφ2 = (1, 1, 1) by default,

such that effect sizes for all edges are equal and relatively large a priori.

Priors for the causal models

In our framework, a prior probability is assigned to each possible causal model.

The default model prior places uniform prior probability across the eight models

for which edge b is either absent or present as M→Y (no reactive models). That is,

Default: p(θ) ∝ 1 for θ ∈ {0, 1}3 ,

such that the prior probability for each of ML1-8 in Figure 1 is 1
8 . We also consider

two other prior specifications: the reduced model prior, which additionally assumes

that edge c is present, that is,

Reduced: p(θ) ∝ 1 for (θa, θb) ∈ {0, 1}2 and θc = 1 ,

such that the prior probability for each of ML4-8 is 1
4 ; and the expanded model prior,

which allows models with a reversed edge b (i.e., Y→M) and is described in more

detail below. In our framework and using our bmediatR software, it is possible

to specify priors as any distinct set of allowable causal models, or, with greater

granularity, as relative weights across the set of models. This feature provides a

foundation that could accommodate empirically-determined prior weights out-of-

the-box.
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Allowing reverse causality between M and Y

The bmediatR software can also model reverse causality between the candidate

mediator and trait (i.e., Y→M). This can be described using a third state for

θb, denoted by θb = ∗, giving a total of twelve possible causal models encoded

by θ. These include the eight causal models previously described, as well as four

additional reverse causality (or “reactive”) cases, given by (θa, θb = ∗, θc), where

models with θb = ∗ are specified with the roles of all Y- and M-related variable

above interchanged (explicit formulae given in Supplemental Methods). Although

any set of relative prior probabilities could be used, we here consider a simple prior

(the expanded prior) that is uniform over the 12 causal models, that is,

Expanded: p(θ) ∝ 1 for (θa, θc) ∈ {0, 1}2 and θb ∈ {0, 1, ∗} ,

such that the prior probability for each of ML1-12 in Figure 1 is 1
12 .

Note that two pairs of these twelve causal models are not identifiable from one

another: θθθ = (0, 1, 0) is indistinguishable from θθθ = (0, ∗, 0); and θθθ = (1, 1, 1) (partial

mediation) is indistinguishable from θθθ = (1, ∗, 1) (reactive partial mediation). The

marginal joint likelihood functions for these pairs of models are identical, and these

causal relationships cannot be distinguished without additional information. Despite

this limitation, we include all twelve causal relationships as possibilities in our

expanded model prior, and emphasize that inference about the direction of causality

in these cases depends entirely on prior information and assumptions.

Simulation of QTL data

To simulate data with an exogenous variable representing genetic variation (e.g.,

SNPs, founder haplotypes), we expanded our previous approach for simulating QTL

in the Collaborative Cross mouse population [51]. The model describes relationships

between two traits with shared genetic drivers, representing either co-local or me-

diation.

We simulate a single trait with a single QTL based on a simple linear model:

y
sim

= Xβ + ε (1)

where y is the trait vector, X is the design matrix of the genetic information (e.g.,

SNP allele count, founder haplotype count), β is the genetic effects vector (e.g.,

SNP allele effect, haplotype effects), and ε is a random noise vector. We scale β

and ε such that their relative contributions to y
sim

match a specified proportion of

variation of y
sim

explained by Xβ, i.e., the effect size of X on Y. If an initial genetic

effect vector (βraw) is not specified, we sample one according to βraw ∼ N(0, I),

where I is the identity matrix of rank equal to length of β. An initial noise vector

is also sampled as εraw ∼ N(0, In) where In is the identity matrix of rank n, the

number of rows of X. For a specified effect size φ2 (ranging from 0 to 1), we define

scaling factors for βraw and εraw to approximate the desired effect size of X on Y:

sβ =

(
nφ2

(n− 1)V (Xβraw)

) 1
2

sε =

(
n(1− φ2)

(n− 1)V (εraw)

) 1
2
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where V () returns the population variance of its argument. The effects and noise

vectors are then scaled: β = sββraw and ε = sεεraw .

For the co-local simulations, both the dependent variable y
sim

and the mediator

variable m
sim

are simulated as in Equation 1 with the same βraw but independent

draws of εraw. For the complete mediation simulations, m
sim

is simulated according

to Equation 1, and the dependent variable y
sim

is simulated based on a linear model

with the mediator as a predictor:

y
sim

= m
sim
βm + ε

where βm and ε are derived from scaled raw variables just as β and ε were in

Equation 1 in order to strictly control how M contributes to variation in Y (i.e.,

effect size of M on Y).

The partial mediation simulations are necessarily more complicated. The mediator

m
sim

is again simulated according to Equation 1. The linear model for y
sim

includes

effects from both X and M:

y
sim

= Xβ + m
sim
βm + ε

where β is the direct effect of X on Y and βm is the indirect effect. β, βm, and ε

were derived from scaled raw variables as before in order to strictly control how X

and M together contribute to variation in Y (i.e., combined effect size on Y). Reac-

tive partial and reactive complete mediation were simulated exactly as partial and

complete mediation, but with y
sim

and m
sim

swapped in the mediation procedures.

For the large-scale simulations of a single local (Figures 2, 3, S1, S2), X rep-

resented balanced functional allele counts (SNP or founder haplotypes) for 200

individuals. One hundred simulations were performed for each combination of ef-

fect size on M and Y (ranging from 0.05 to 0.95 at regular intervals of 0.05) for

each data-generating model (co-local, partial mediation, complete mediation, reac-

tive complete mediation, and reactive partial mediation). For the partial mediation

simulations, the ratio of direct and indirect effect were fixed at 1 (b:c = 1). For each

data-generating model, Bayesian model selection, Sobel test (if X represented a

SNP), and LOD drop were summarized. For the simulations demonstrating multi-

allelic QTL analysis with mediation in Figure 4, the design matrix X represents

additive effects of founder haplotypes at a randomly sampled genetic locus from a

population of 192 DO mice [5]. The underlying simulated genetic effect was from a

bi-allelic SNP, with each allele present in four of the founder strains.

Diversity Outbred mouse data

The DO mouse data represent 192 animals [5] with both gene expression and protein

abundance from bulk liver tissue, representing a subset of a larger cohort of 850

animals [52]. Approximately equal numbers of males and females are present as

well as animals on standard and high fat diets. The data are publicly available

for interactive analysis as a QTL Viewer (https://github.com/churchill-lab/

qtlapi) which also allows a bulk download of the underlying R data files (https:

//qtlviewer.jax.org/viewer/SvensonHFD).
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QTL analysis

Samples of liver tissue were collected and processed for quantitative mass-

spectrometry as previously described [5]. Estimation and normalization of the pro-

tein abundance data from component quantitative peptide data and subsequent

QTL analysis have been previously described [13]. Genetic mapping was based on

final quantities output from the rank-based inverse normal transformation (RINT)

[53].

The examples related to the distal pQTL of Snx4 and Tubg1 were previously

identified [13]. QTL were mapped using the following linear mixed effect model:

traiti = intercept + covariatesi + QTLi,m + ui + εi (2)

where traiti is the phenotype of interest (abuandance of a protein) for individual i,

intercept is a shared intercept that represents the mean trait value, covariatesi is

the effect of known covariates on individual i, QTLi,m is the effect of genetic varia-

tion at genomic interval m on individual i, ui is a random error term that accounts

for the similarity of individual i to other samples proportional to overall genetic

relatedness (kinship effect), and εi is the unstructured error on individual i. For

the QTL term: QTLi,m = dT
i βQTL, where di is the vector of additive dosages of

founder haplotypes for the genomic interval m and βQTL are the haplotype effects at

the putative QTL, estimated as fixed effects. The random error terms are modeled

as u ∼ N(0,Kτ2) and εi ∼ N(0, σ2), where K is the realized genetic relationship

matrix excluding information from the chromosome of the current genomic interval

m (“loco” method), and τ2 and σ2 are variance components for ui and εi, respec-

tively. Covariates adjusted for include sex, diet, and DO litter (2 levels). Equation

2 is fit at genomic intervals spanning the entire chromosome, comprising a QTL

genome scan. Models were fit using the qtl2 R package [54]. For the variant asso-

ciation performed for the Snx4 and Snx7 pQTL, Equation 2 was used, but with

the QTLi,m adjusted. Instead of representing the effects of doses of founder haplo-

types, variant allele dosages were imputed based on the founder haplotype dosages

and the variant genotype-to-founder strains distribution (SQLite variant database:

https://doi.org/10.6084/m9.figshare.5280229.v3).

Haplotype effect estimation

To compare the similarity of the genetic effects on M and Y, the correlation coef-

ficients between haplotype effects of QTL were calculated. To stabilize haplotype

effect estimates, instead of the fixed effect estimate from Equation 2, they were

estimated as best linear unbiased predictions (BLUPs) in the qtl2 R package.

Modeling the allelic series of QTL with TIMBR

We modeled the allelic series at the pQTL for to SNX4 and TUBG1 using a Bayesian

hierarchical model as implemented in TIMBR [25]. The model is roughly equivalent

to Equation 2, with the kinship effect excluded in order to make the computation

feasible. A Chinese restaurant process prior was used for the allelic series, as well

as the prescribed shape and rate parameters of 1 and ≈2.33, respectively, for the

concentration parameter, which favors smaller numbers of functional alleles with

low variance.
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TIMBR models founder haplotype uncertainty at the QTL based on the

36 genotype states. We reconstructed founder haplotype probabilities from the

available genotype array data (https://www.jax.org/research-and-faculty/

genetic-diversity-initiative/tools-data/diversity-outbred-database),

which represented 187 of the 192 mice.

Human cell line data

The genotype data from 119 Yoruba LCLs represent variants from the intersection

of HapMap2 and HapMap3, coded as the major allele count for each SNP [28]. The

RNA-seq data [29] were adjusted with WASP [55] and normalized [30], representing

69 LCLs [28]. Both genotype and RNA-seq data are publicly available for download

(http://eqtl.uchicago.edu/jointLCL/). The DNase-seq data for the 69 cell lines

with RNA-seq data were used as previously processed [31]. The overlap of samples

across genotypes, RNA-seq, and DNase-seq was 63 LCLs.

Chromatin accessibility and expression QTL analysis

To identify candidates for co-mapping eQTL and cQTL, we correlated the expres-

sion of gene with chromatin peaks within 80 Kbp of the gene start. QTL mapping

was then performed for genes and chromatin peaks that had correlations > 0.5.

Mapping was performed by regressing a trait (gene expression or chromatin acces-

sibility) onto the genotypes of individual SNPs located on the gene’s chromosome,

and compared to a null model with no genotype term. QTL were called for SNPs

that produced a -log10 p-value > 8, representing a stringent threshold for 63 indi-

viduals. Gene-chromatin peak pairs were then filtered to those with an eQTL and

cQTL co-mapping to the same SNP. For each passing gene, all chromatin peaks

on the gene’s chromosome were tested as candidate mediators using both Bayesian

model selection, without default prior settings, and the Sobel test.

Availability of data and materials

All data and R code used to generate the results are available at figshare

(https://doi.org/10.6084/m9.figshare.14912484).
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Supplemental Methods
Joint likelihood for causal models in the reactive mode

For causal models describing reverse causality between M and Y, that is, the reactive

models θ = (θa, θb = ∗, θc), the roles of M and Y are switched relative to the other

models, so that the conditional joint likelihood p(y,m|θ) in these case is

m|y, θa, θb = ∗, µm,αααm,βββa, βb, σm ∼ N(µm1 + Zmαααm + θaXβββa + yβb, σ
2
mW−1

m ),

y|θb = ∗, θc, µy,αααy,βββc, σy ∼ N(µy1 + Zyαααy + θcXβββc, σ
2
yW

−1
y ),

where βb is now the scalar effect of y on m. Prior distributions for all variables are

unchanged (except for θθθ). When θb = ∗, the marginal joint likelihood function is

given by:

m|y, θa, θb = ∗ ∼ tκm(0, λm[W−1 + XmVmX Tm])

y|θb = ∗, θc ∼ tκy(0, λy[W−1 + XyVyX Ty ])

Xm =
[
1 Zm θaX y

]
Vm =


τ2µ 0 0 0

0 τ2ZI 0 0

0 0 φ2aI 0

0 0 0 φ2b



Xy =
[
1 Zy θcX

]
Vy =

τ2µ 0 0

0 τ2ZI 0

0 0 φ2cI


Hyperparameters for κκκ,λλλ,τττµ, τττZ, and φφφ2 are unchanged.
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Figure S1 Performance of Bayesian model selection, Sobel test, and LOD drop in simulated
QTL data, including reactive models. Data for 200 individuals were simulated according to (a)
co-local, (b) partial mediation, and (c) complete mediation models from a balanced bi-allelic SNP.
There is no misspecification of X. The DAGs represent the underlying models of each set of
simulations. Heat maps for Bayesian model selection represent the mean posterior probability
associated with each inferred model for a range of fixed settings of the model parameters as
indicated on x- and y-axes. Heat maps for the Sobel test represent false positive probability for
co-local simulations and power for mediation simulations. Heat maps for LOD drop represent
mean LOD drop, scaled to the proportion of the simulated QTL’s LOD score. Empty squares
represent posterior model categories not evaluated based on the set of admissible models encoded
in the model priors.
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Figure S2 Performance of Bayesian model selection, Sobel test, and LOD drop in simulated
reactive QTL data, including reactive models. Data for 200 individuals were simulated according
to (a) reactive partial mediation and (b) reactive complete mediation models from a balanced
bi-allelic SNP. There is no misspecification of X. The DAGs represent the underlying models of
each set of simulations. Heat maps for Bayesian model selection represent the mean posterior
probability associated with each inferred model for a range of fixed settings of the model
parameters as indicated on x- and y-axes. Heat maps for the Sobel test represent false positive
probability for co-local simulations and power for mediation simulations. Heat maps for LOD drop
represent mean LOD drop, scaled to the proportion of the simulated QTL’s LOD score. Empty
squares represent posterior model categories not evaluated based on the set of admissible models
encoded in the model priors.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452969
http://creativecommons.org/licenses/by-nc-nd/4.0/


Crouse et al. Page 32 of 32

posterior E(k) = 5.1 a posterior E(k) = 5.3 

b posterior E(k) = 2.6 posterior E(k) = 3.3

posterior E(k) = 3.5 posterior E(k) = 2.6

low high
Effect

low high
Effect

k - number of functional alleles

k - number of functional alleles

Snx4 distal pQTL

H
a

p
lo

ty
p

e

WSB (H)

PWK (G)

CAST (F)

NZO (E)

NOD (D)

129 (C)

B6 (B)

AJ (A)

−2 −1 0 1 2 3

Snx7 local pQTL

H
a

p
lo

ty
p

e

WSB (H)

PWK (G)

CAST (F)

NZO (E)

NOD (D)

129 (C)

B6 (B)

AJ (A)

−2 −1 0 1 2 3

A

BC

D
E

F G

H

A

BC

D
E

F G

H

Tugcp2 distal pQTL

H
a

p
lo

ty
p

e

WSB (H)

PWK (G)

CAST (F)

NZO (E)

NOD (D)

129 (C)

B6 (B)

AJ (A)

−2 −1 0 1

A

BC
D

E

F G

H

Tubgcp3 local pQTL

H
a

p
lo

ty
p

e

WSB (H)

PWK (G)

CAST (F)

NZO (E)

NOD (D)

129 (C)

B6 (B)

AJ (A)

−2 −1 0 1 2

A
BC

D
E

F G

H

Naxd local pQTL

H
a

p
lo

ty
p

e

WSB (H)

PWK (G)

CAST (F)

NZO (E)

NOD (D)

129 (C)

B6 (B)

AJ (A)

−2 −1 0 1 2

A

BC

D
E

F G

H

Tubg1 distal pQTL

H
a

p
lo

ty
p

e

WSB (H)

PWK (G)

CAST (F)

NZO (E)

NOD (D)

129 (C)

B6 (B)

AJ (A)

−1.5 −0.5 0.0 0.5 1.0 1.5

A

BC

D
E

F G

H

Figure S3 Modeling the allelic series of pQTL for Snx4, Tubg1, and related genes identified
through mediation. The allelic series were modeled with TIMBR. (a) Posterior haplotype effects
and allelic series for the Snx4 distal pQTL and the local pQTL for its mediator, Snx7. Haploytpe
effects are represented as histograms of the posterior samples. Allelic series are represented as
circos plots where the opacity of the links represent how often TIMBR assigned founder
haplotypes to the same functional allele. (b) Posterior haplotype effects and allelic series for the
Tubg1 and Tubgcp2 distal pQTL and the local pQTL for their candidate mediators, Tubgcp3 and
Naxd. The posterior expected number of functional alleles, k, is included for each pQTL.
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