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Abstract 

De novo somatic point mutations identified in breast cancer are predominantly non-

coding and typically attributed to altered regulatory elements such as enhancers and 

promoters. However, while the non-coding RNAs (ncRNAs) form a large portion of 

the mammalian genome, their biological functions are mostly poorly characterized in 

cancers. In this study, using a newly developed tool, SomaGene, we reanalyze de 

novo somatic point mutations from the International Cancer Genome Consortium 

(ICGC) whole-genome sequencing data of 1,855 breast cancers. We identify 929 

candidates of ncRNAs that are significantly and explicitly mutated in breast cancer 

samples. By integrating data from the ENCODE regulatory features and FANTOM5 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.453012doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.453012
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

expression atlas, we show that the candidate ncRNAs in breast cancer samples 

significantly enrich for active chromatin histone marks (1.9 times), CTCF binding 

sites (2.45 times), DNase accessibility (1.76 times), HMM predicted enhancers (2.26 

times) and eQTL polymorphisms (1.77 times). Importantly, we show that the 929 

ncRNAs contain a much higher level (3.64 times) of breast cancer-associated 

genome-wide association (GWAS) single nucleotide polymorphisms (SNPs) than 

genome-wide expectation. Such enrichment has not been seen with GWAS SNPs 

from other diseases. Using breast tissue related Hi-C data we then show that 82% of 

our candidate ncRNAs (1.9 times) significantly interact with the promoter of protein-

coding genes, including previously known cancer-associated genes, suggesting the 

critical role for candidate ncRNA genes in activation of essential regulators of 

development and differentiation in breast cancer. We provide an extensive web-

based resource (http://ncrna.ictic.sharif.edu), to communicate our results with the 

research community. Our list of breast cancer-specific ncRNA genes has the 

potential to provide a better understanding of the underlying genetic causes of breast 

cancer. Lastly, the tool developed in this study can be used in the analysis of 

somatic mutations in all cancers. 

Keywords: Breast cancer, de novo somatic point mutations, Non-coding RNAs, 

Non-coding RNAs prioritization, Enhancer-promoter interaction, Gene regulation.  

 

Introduction 

Despite the substantial early enhanced diagnostic techniques of breast cancer (BC) 

and the development of adjuvant therapy, radical and personalized surgery, breast 

cancer is still the most common cancer diagnosed among women. It is still the 

highest frequently leading cause of cancer-related mortality amongst females 

worldwide [1]. A deeper understanding of the underlying mechanisms of breast 

cancer genetics and pathogenesis can be used for detecting early-stage cancer 

cause to reduce morbidity and mortality as a result of breast cancer [2]. Over the last 

ten years, high-throughput sequencing has provided a comprehensive investigation 

on the underlying genetic mechanisms that initiate or drive cancer progression and 

revealed many cancer-associated mutations. International Cancer Genome 

Consortium (ICGC) [3] has provided an extensive catalog of somatic mutations for 
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various cancer types. This information has enabled researchers to characterize 

numerous protein-coding genes that play an essential role in cancer progression [4-

8]. 

Although most studies have mainly focused on protein-coding genes in investigating 

driver mutations in cancer, several lines of evidence imply that about 80% of the 

genome is biochemically functional. Additional to the lack of information on the 

genome's non-coding regions, our current understanding of genetic information's 

present functional consequences is highly primitive. It focuses instead on proteins 

found in only 2% of the genome. However, a large portion of non-coding regions 

operate as regulators of oncogenes [9] and non-coding RNAs (ncRNAs), which 

share traits with mRNAs such as sequence conservation, polyadenylation, and 

splicing [10, 11]. Additionally, around 93% of disease-associated genome-wide 

association single nucleotide polymorphisms (GWAS SNPs) are located within these 

regions [12, 13], which can significantly influence gene expression of coding and 

non-coding genes.  

Long non-coding RNAs (lncRNAs), an influential class of non-coding transcripts with 

more than 200 nucleotides, are potential cancer progression indicators and are 

emerging as diagnostic biomarkers [10, 14]. For example, GAS5 is one of the 

lncRNAs that is considerably down-regulated in breast cancer [15]. HOTAIR is 

another well-known lncRNA upregulated in breast cancer, contributing to aberrant 

histone H3K27 methylation and cancer metastasis [16, 17]. Furthermore, lncRNAs 

contribute to various regulatory activities in the cell, such as regulating gene 

expression via interaction with other chromatin regulatory proteins [18], function as 

active enhancers [19, 20], and regulate chromatin structure [21-23]. Despite various 

studies on the impact of non-coding somatic mutations occurring in ncRNAs, the role 

of such ncRNAs has remained underexplored in breast cancer. 

In this study, we developed a new tool, SomaGene, to identify 929 ncRNAs that are 

significantly and specifically mutated in breast cancer. Using SomaGene, we show 

that candidate ncRNAs identified in our study are significantly enriched for regulatory 

features (e.g., breast-specific H3K27ac, H3K4me1, CTCF, DNase hypersensitive 

sites, and enhancer marks). Notably, we show that our breast cancer candidate 

ncRNAs have a much higher fraction of both GWAS SNPs and eQTL (expression 

quantitative trait loci) polymorphisms. Finally, our analyses on high throughput 
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chromosome conformation capture (Hi-C) data from the Human Mammary Epithelial 

Cell (HMEC) indicate that many of our candidate ncRNAs significantly interact with at 

least one protein-coding gene which may suggest a potential enhancer role for these 

ncRNAs. An overview of the pipeline used in this study is shown in Figure 1. 

We also provide a list of non-coding genes with their mutational enrichment P-value 

and annotated genomic signals at http://www.ncrna.ictic.sharif.edu and 

https://www.ihealthe.unsw.edu.au/research. SomaGene as an open-source R 

package is also available at https://github.com/bcb-sut/SomaGene. 

 

Results 

To have a comprehensive list of ncRNAs, we used a combined list of ncRNAs 

provided by the FANTOMCAT [24] and Ensembl [25] consortia (see method section). 

This includes ncRNAs from different types inclusive of pseudogene (22.9%), lncRNA 

intergenic (21.4%), long intergenic ncRNAs (5.6%), lncRNA divergent (13.4%), 

antisense (3.3%), lncRNA sense intronic (6%), miRNA (5%), misc RNA (3%), 

lncRNA antisense (4.8%). A full list of ncRNAs provided in Supplementary figure 

S1a. Somatic mutations from 19 cancer types were downloaded from ICGC [3], 

including 1,855 breast cancer samples containing 17,163,482 single point somatic 

mutations and 10,460 samples with other cancers containing 67,752,271 somatic 

point mutations inside the ncRNA regions. 

 

Background model to identify significant non-coding RNAs in breast cancer 

To identify the ncRNAs that are significantly mutated in breast cancer samples, we 

counted the number of samples with somatic mutations in ncRNA from 1,855 breast 

cancer samples and 10,460 samples with other cancers. We then calculated a P-

value for each ncRNA using Fisher’s exact test (see method section). To identify 

significantly mutated ncRNAs, we calculated P-values for 1,000,000 random 

permutations of breast/non-breast labels for each ncRNA and estimated the 

probability that an association emerges by chance (see method section). This 

provides a threshold for each ncRNA separately (Figure 2). As a result, we identified 

929 ncRNAs (99% confidence interval – see method section) that significantly 
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mutated in breast cancer samples (Supplementary table S1). Looking into our 

candidate ncRNAs revealed that 27.2% of them are lncRNAs intergenic, 18.1% 

pseudogene, 3.8% long intergenic non-coding RNAs (lincRNA), 20.8% lncRNA 

divergent, 2.5% antisense, and 6.6% lncRNA sense intronic (Supplementary figure 

S1b). 

 

Enrichment of regulatory features in the BC-associated ncRNAs 

To determine if the somatic mutations are enriched in ncRNAs with regulatory 

function, we first examined the enrichment of HMEC-related chromatin states 

provided by the ENCODE consortium within our significant ncRNAs. As Figure 3a 

shows, both ENCODE promoters and enhancers have been significantly enriched 

within our candidate ncRNA genes (3.23 and 2.26 times with P-values 4.12e-29 and 

5.28e-32 enrichment for promoters and enhancers, respectively), suggesting breast 

cancer de novo somatic mutations are enriched in ncRNAs with enhancer and/or 

promoter like functions. 

We also investigated these enrichments in the 2nd and 3rd sets of ncRNAs (each set 

contains 929 ncRNAs) with the best mutational P-values in breast cancer and the 

last set of ncRNAs with worse mutational P-values (see method section). As Figure 

3a shows, there is the same trend of enrichment (but at much lower level) for 

ChromHMM predicted promoters and enhancers in the 2nd and 3rd sets of most 

mutated ncRNAs in breast cancer (Figure 3a). Interestingly, there is no such trend 

for the last set of ncRNAs (those ncRNAs with no de novo mutation in breast cancer 

samples), supporting our hypothesis that de novo somatic mutations are enriched in 

enhancer-like ncRNAs. We provided an annotated list of candidate ncRNAs with 

ChromHMM in Supplementary table S2. 

The FANTOM5 consortium has released lists of transcribed human promoters and 

enhancers and tissue-specific transcribed enhancers of humans using CAGE (Cap 

Analysis of Gene Expression [26]) to study cell-type-specific enhancers. Therefore, 

we investigated the enrichment of FANTOM5 promoters and enhancers that overlap 

with the significant ncRNAs identified in this study. Figure 3b shows that both 

FANTOM5 promoters and enhancers are enriched in the candidate ncRNAs (1.66 

and 1.76 times (P-value 3.59e-34 and 3.68e-27) enrichment for FANTOM5 
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promoters and enhancers, respectively). In other words, 52.4% of candidate ncRNAs 

overlapped with FANTOM5 promoters, and 36.4% of them overlapped with 

FANTOM5 enhancers; however, only 34.9% and 23.5% of all ncRNAs overlapped 

with FANTOM5 promoters and enhancers, respectively. Performing the same 

analysis on FANTOM5 mammary-specific enhancers demonstrated that the 

proportion of candidate ncRNAs that overlap with differentially expressed enhancers 

in the mammary epithelial cell is 3.84 times (P-value 4.03e-05) more than the 

genome-wide expectation (Figure 3b). There is also the same trend for 2nd and 3rd 

sets of ncRNAs with the best mutational P-values in breast cancer.  

An annotated list of candidate ncRNAs with FANTOM5 annotations is provided in 

Supplementary table S3. For example, the pseudogene NKAPP1 is differentially 

expressed in ABL1/ABL2 knockdown (shAA) breast cancer-associated cell lines [27] 

and downregulated in breast cancer [28]. It is also a biomarker associated with 

breast cancer prognosis [29, 30]. Our analysis demonstrated NKAPP1 as one of the 

most significant ncRNAs with a P-value of 3.43e-06. This non-coding gene also 

overlapped with both FANTOM5 enhancer and ChromHMM predicted enhancer and 

promoter. CATG00000062386 is another ncRNA gene that is significantly mutated in 

breast cancer samples. This FANTOMCAT specific ncRNA overlapped with 

FANTOM5 and ChromHMM enhancers and FANTOM5 mammary epithelial cell 

differentially expressed enhancers, indicating a potential enhancer role for this 

ncRNA in breast cancer. 

 

Histone modifications H3K27ac and H3K4me1, CTCF binding sites, and DNase 

hypersensitive sites are significantly enriched for BC-associated ncRNAs 

We next investigated the enrichment of HMEC-specific chromatin histone active 

marks (e.g., H3K27ac and H3K4me1), CTCF binding sites, and DNase 

hypersensitive sites in the candidate ncRNAs identified in this study. These active 

chromatin marks are involved in many processes, including transcriptional regulation 

that regulates gene expression [31]. Our investigation of histone active marks 

demonstrated that both histone marks H3K27ac and H3K4me1 are significantly 

enriched 2.1 times (P-value 3.65e-57) and 1.6 times (1.90e-42) for H3K27ac and 

H3K4me1, respectively, in the candidate ncRNAs (Figure 4a). As these histone 
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marks act as transcriptional activation and are found in both enhancer and promoter 

regions, our results suggest that our candidate list of ncRNAs is important for the 

transcriptional process in breast tissue. We performed the same analysis on histone 

marks H3K27me3, which is involved in the repression of transcription. Interestingly, 

we did not see significant enrichment (1.15 times with P-value 5.14e-02) for histone 

H3K27me3 within our BC-associated ncRNAs (Figure 4a). 

Transcription factors CTCF function as a transcriptional activator, repressor, 

insulator, or pausing transcription. In addition to CTCF sites, DNase hypersensitive 

sites (DHS) also have key roles in gene regulation as regulatory element markers 

[32]. Both CTCF and DNase are functionally related to transcriptional activity and are 

necessary to regulate chromatin structure. Here, we choose three CTCF ChIP-seq 

experiments (HMEC+Broad+CTCF, HMEC+Broad+EZH2 and HMEC+UW+CTCF) 

and three DHS ChIP-seq experiments (MCF-7, MCF-7+Hypoxia_LacAcid, T-47D), all 

related to the breast cancer. We calculated the enrichment for the four sets of 

ncRNAs, including significant, second, and third sets of ncRNAs with the best 

mutational P-values and the last set of ncRNAs with the lowest mutational P-values. 

Our assessment of CTCF binding and DNase hypersensitive sites also 

demonstrated that both CTCF (2.45 times on average with P-value 7.42e-35) and 

DNase (1.8 times on average with P-value 7.23e-50) are significantly enriched for 

our candidate ncRNA genes (Figure 4b). Having such significant enrichment for 

CTCF binding sites and DNase accessible sites is strong evidence that our 

significant set is not chosen randomly and is related to the gene regulation process. 

There is also the same trend for the 2nd and 3rd sets of ncRNAs (Figure 4b). 

However, the first set's enrichments are much higher than the 2nd and 3rd sets of 

most frequently mutated ncRNAs. As Figure 4b shows, there is no enrichment for 

the last set of ncRNAs, suggesting that these ncRNAs may not be involved in the 

transcriptional regulation. 

For example, LINC00535 is an antisense non-coding gene that is known to be 

associated with breast cancer [33]. LINC00894 is another non-coding gene that is 

the most downregulated lncRNA in MCF-7/TamR cells [34]. These ncRNAs are 

significantly mutated in breast cancer samples with P-values 4.21e-3 and 1.53e-11, 

respectively. LINC00152 is another example of ncRNAs with a substantial role in 

enhancing breast cancer, which causes inactivation of the BRCA1/PTEN by DNA 
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methyltransferases as tumorigenesis, mainly in triple-negative breast cancer (TNBC) 

[35]. All these ncRNAs overlapped with ENCODE predicted enhancers, histone 27 

acetylation, CTCF binding sites, and DNase hypersensitive sites, suggesting a 

potential transcriptional regulatory role for these ncRNAs. An annotated list of 

candidate ncRNAs with these features is provided in Supplementary tables S4 and 

S5. 

 

BC-associated GWAS SNPs are significantly enriched in the candidate non-

coding RNAs 

Multiple genome-wide association studies identified disease-associated genes and 

their respective pathways, which provided a comprehensive understanding of the 

disease's etiology. It has been reported that more than 93% of disease-associated 

variations found by GWAS are located in the non-coding regulatory regions of 

genomes [36], suggesting non-coding regulatory regions are relevant to disease and 

genetic mutations in gene regulatory regions is a significant mechanical contributor 

to diseases. To examine the enrichment of BC-associated GWAS SNPs in the 

candidate ncRNAs, we extracted the BC-associated SNPs from a pooled list of two 

GWAS datasets from the EBI GWAS Catalog [37] and GWASdb v2 from the Wang 

Lab [38] (for more details see the method section). As Figure 5a shows, BC-

associated GWAS SNPs are significantly enriched (P-value 2.3e-27) in the candidate 

ncRNAs. This enrichment is much higher for those ncRNAs that contain more than 4 

GWAS SNPs (> 10 times enrichment). Interestingly, when we performed the 

enrichment analysis for ncRNAs with more than 5 GWAS SNPs, only the candidate 

list of ncRNAs shows enrichment for GWAS SNPs (> 20 times), and there is no 

enrichment in the 2nd and 3rd sets of ncRNAs (Figure 5a). Performing the same 

analysis on lung cancer-associated GWAS SNPs did not show such enrichment for 

our candidate ncRNAs (Figure 5a), indicating the candidate ncRNAs are relevant to 

breast cancer. For example, candidate ncRNAs RP11-353N4.6 are known to carry 

breast cancer associated GWAS SNPs [39]. More details on the annotated list of 

ncRNAs with BC-related GWAS SNPs can be found in Supplementary table S6. 
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BC-associated non-coding RNAs have a significantly higher fraction of eQTL 

polymorphisms 

Expression quantitative trait loci are genomic locations that influence gene 

expression in disease-related tissue and are important for understanding its 

mechanisms. To assess the level of eQTL polymorphisms in the candidate non-

coding genes, we calculated the enrichment of breast mammary tissue eQTL 

polymorphisms downloaded from GTEx consortia [40] in the candidate ncRNAs. Our 

analysis revealed that breast mammary tissue eQTL polymorphisms are significantly 

enriched (1.77 times with P-value 4.11e-20) in the candidate ncRNAs. Interestingly, 

this enrichment is much higher for those ncRNAs that contain more than three eQTL 

polymorphisms (> 2x enrichment), and such an increase has not been seen in the 

2nd and 3rd sets of ncRNAs (Figure 5b and Supplementary table S6). As a control, 

we calculated the enrichment of lung-specific eQTL polymorphisms in the candidate 

ncRNAs. As Figure 5b shows, the enrichment of lung-specific eQTL polymorphisms 

in the breast-associated ncRNAs is much lower than the enrichment observed for 

mammary tissue eQTL polymorphisms (Figure 5b). For example, lncRNA 

RP11‐37B2.1 and RP11-426C22.5 are two of our candidate ncRNAs with significant 

P-values 7.91e-4 and 6.72e-06, respectively. These ncRNAs encompass 232 and 

111 eQTL polymorphisms, respectively. lncRNA RP11‐37B2.1 influences the risk of 

tuberculosis and the possible correlation with adverse drug reactions (ADRs) from 

tuberculosis treatment [41], and RP11-426C22.5 is downregulated in SW1990/GZ 

Cells [42]. Both RP11‐37B2.1 and RP11-426C22.5 overlapped with histone active 

mark H3K27ac, ChromHMM potent enhancer, and DNase hypersensitive sites, 

suggesting a potential transcription regulation role of these ncRNAs. 

 

Chromosome conformation capture data shows a potential regulatory role for 

BC-associated non-coding RNAs 

High-throughput chromosome conformation capture (Hi-C) based assays have been 

used to successfully identify regulatory regions and targets of disease-associated 

variations [43, 44]. To gain a further understanding of the genes that our candidate 

ncRNAs are interacting with, we analyzed two publicly available Hi-C datasets from 

HMEC obtained from the Rao et al. study [45]. Here, we used MHiC [46] and 
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MaxHiC [47] to analyze Hi-C raw data and identify statistically significant 

interactions, respectively. We identified 188,982 statistically significant interactions 

(P-value < 0.01 and read-count ≥ 10 – see method section) in the Hi-C library 1. For 

6,187 of the interactions (%3.3), one side of the interaction overlapped with at least 

one candidate ncRNA and another side of the interaction overlapped with protein-

coding genes (promoter regions of coding genes – see method section; 

Supplementary table S7). Repeating this analysis on the second Hi-C library also 

identified 318,034 statistically significant interactions. For 9,879 of the interactions 

(3.1%), one end of the interactions overlapped with the candidate ncRNAs and 

another end overlapped with the promoter region of protein-coding genes 

(Supplementary table S7). We identified 1,167 common significant interactions 

between the two libraries where one side of the interaction overlaps with at least one 

candidate ncRNA (Supplementary table S8) and another side with protein-coding 

genes. In other words, for 226 ncRNAs out of a pool of 929 candidate ncRNAs 

(24%), there was at least one significant interaction in both the libraries 

(Supplementary table S8); this is significantly higher (1.74 times; P-value 4.61e-11) 

than all ncRNAs that overlapped with one side of the interactions in both libraries 

(14%). 

Interestingly, for 757 significant ncRNAs (%82), we identified at least one interaction 

in either Hi-C library 1 or library 2, resulting in 21,564 interactions. For 19,674 out of 

21,564 interactions (Supplementary table S9), one end of the interaction that 

encompasses candidate ncRNAs overlapped with either ENCODE HMM predicted 

enhancer or active histone mark H3K27ac (both presented in HMEC). This 

observation suggests a potential enhancer role for these ncRNAs; In many cases, 

another end of the interactions overlap with protein-coding genes, including cancer-

associated genes (Supplementary table S9). We provided a prioritized list of 

candidate ncRNAs that interacted with cancer-associated protein-coding genes in 

both the Hi-C libraries and overlapped with ENCODE HMM predicted enhancers and 

active histone mark H3K27ac (Table 1). For example, MYC is a BC-associated 

protein-coding gene, acting as a transcription factor. In common with three other 

transcription factors (POU5F1, SOX2, and KLF4), it can induce epigenetic 

reprogramming of somatic cells to an embryonic pluripotent state [48]. We found 

significant Hi-C interactions between MYC and two of our candidate ncRNAs CASC8 
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and PVT1 in both Hi-C libraries. PVT1 is a known enhancer for MYC [49], however, 

CASC8 has not yet been identified as a putative enhancer for MYC. There are 

~200kb genomic distances between the CASC8 and transcription start site (TSS) of 

MYC in which there is no protein-coding gene that overlaps with CASC8. There are 

strong signals of histone active marks and ENCODE predicted enhancers, and most 

importantly, FANTOM5 breast differentially expressed enhancer overlapped with 

CASC8, suggesting a potential enhancer region in CASC8 (Figure 6). Interestingly, 

there is no somatic mutation or BC-associated GWAS SNPs overlap with MYC, 

however, CASC8 is significantly mutated in breast cancer samples, and most 

importantly, it encompasses ten BC-associated GWAS SNPs. Altogether, this 

evidence may indicate a putative enhancer role of CASC8 for MYC. 

Another example is non-coding RNA CATG00000061359 is a FANTOMCAT-specific 

intergenic lncRNA that is significantly mutated in breast cancer samples (P-value 

5.32e-4). There is a significant Hi-C interaction between CATG00000061359 and 

gene GTPBP8 (previously associated with breast cancer [50]) in both the libraries. 

We also found a breast tissue-associated eQTL polymorphism in this lncRNA that 

influences the expression of GTPBP8 in breast tissue. Interestingly, both HMEC 

specific H3K27ac and HMM predicted enhancer overlap with this lncRNA. This may 

suggest that variation in CATG00000061359 may influence the expression of 

GTPBP8 in breast cancer. We have provided an annotated list of candidate ncRNAs 

with Hi-C interactions in Supplementary table S9. 

 

Discussion 

Somatic point mutations play a key role in tumorigenesis and development of cancer 

[51]. Recent studies on somatic mutation evolution in cancer have led to the 

identification of cancer driver genes [52] and cancer mutational signatures [53, 54]; 

However, the analysis of somatic mutations has focused mainly on the protein-

coding genes of the genome and their potential contribution in the ncRNAs have 

been far less studied, particularly their functional significance across long ncRNAs. 

Recent studies have uncovered that the ncRNAs are involved in breast cancer 

development through a variety of mechanisms including regulating the expression of 

protein-coding genes and functions at transcriptional, translational, and post-
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translational levels [18-22]. In this study, we first focused on identifying ncRNAs that 

were significantly and specifically mutated in breast cancer patients and then 

uncovered the connection between somatic point mutations in BC-associated 

ncRNAs and ncRNA regulatory properties in breast cancer. 

We have shown that the candidate lncRNAs with enrichment of somatic point 

mutations have a much higher fraction of regulatory features compared to genome-

wide expectation, suggesting the potential impact of somatic mutations on the 

regulatory function of lncRNAs. Notably, we have shown that most of the candidate 

lncRNAs are interacting with promoters of protein-coding genes, again indicating the 

potential regulatory role of lncRNAs with significant enrichment of somatic point 

mutations in breast cancer. Our analysis demonstrated that highly mutated lncRNAs 

have more cell type-specific functions and are more likely to interact with protein-

coding genes. To our knowledge, this association has not been previously explored. 

However, our analysis is limited to the associations identified by pure data driven 

analyses. Future experimental validation can reveal finer details about the 

interdependence of lncRNA function in breast cancer. 

We have developed an extensive web-based resource to communicate our results 

with research community. Further works could focus on the candidate lncRNAs 

provided in this resource to check their complex regulatory functions and reveal 

novel mechanism underlying carcinogenesis and breast cancer treatment. 

We also presented a novel computational method, SomaGene, to prioritize and 

predict disease associated ncRNAs by integrating multi-level omics data including 

somatic mutations, transcriptomic and epigenetic signals, and chromatin 

confirmation data. 

 

Conclusion 

NcRNAs have long been considered as non-functional part of the human genome 

[55], however, these non-coding elements (majority lncRNAs) have recently opened 

a new insight in the study of breast cancer, acting as indispensable contributors to 

many cellular activities including the proliferation, apoptosis, survival, differentiation 

and the breast cancer metastasis [56]. In addition, lncRNAs have been used as 
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biomarkers in many cancers, including breast cancer, indicating their potential in 

diagnosis, prognosis, and therapeutics. In this study, we performed an integrative 

analysis to present the first comprehensive resource 

(http://www.ncrna.ictic.sharif.edu and https://www.ihealthe.unsw.edu.au/research) of 

ncRNAs that significantly and specifically mutated in breast cancer genomes. We 

showed that the majority of those ncRNAs act as enhancers, suggesting enhancer 

mutations may be relevant to the functions for such ncRNAs in breast cancer. Our 

results provide an extensive resource for researchers that can be used in the future 

to better understand the underlying genetic risk factors that contribute to breast 

cancer. We believe our study sets the stage for a new framework for future research 

in the role of non-coding RNAs in the treatment of breast cancer. We also developed 

SomaGene as a user-friendly tool to be used in the analysis of non-coding RNA 

genes in all cancers. 

 

 Methods and Materials 

Tool availability 

The SomaGene open-source R package, a sample dataset, and instructions on how 

to run SomaGene are provided at https://github.com/bcb-sut/SomaGene. 

 

ICGC Dataset 

We used the ICGC dataset, which contains somatic point mutations from 1,855 

breast cancer samples and 10,419 samples from 19 different types of cancers. 

 

A combined list of non-coding RNAs from FANTOMCAT and Ensembl 

consortia 

We have combined two genes lists from FANTOM5 [26] and Ensembl [57] consortia 

(genome building hg19) that enables us to have a comprehensive list of non-coding 

RNA genes. We used an in-house script to combine the lists based on gene 

coordinates and/or gene names. If both consortiums have the same gene but 
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different gene coordinates, we considered the FANTOM5 genes as the priority. In 

total, 60,156 non-coding RNA genes were available in the combined list. 

 

Identify significantly mutated non-coding genes 

We included all samples from ICGC with at least one de novo mutation. We only 

considered single nucleotide mutations and excluded insertions or deletions from the 

analyses. To identify ncRNAs that significantly mutated in breast cancer samples 

compared to other cancers, we used Fisher’s exact test and permutation testing in 

the following manner: 

We calculated a P-value for each ncRNA using one-sided Fisher’s exact test applied 

to a 2x2 contingency table whose elements are (1) the number of samples in breast 

cancer that are mutated in this ncRNA, (2) the number of samples in breast cancer 

that are not mutated in this ncRNA, (3) the number of samples in all cancers other 

than breast cancer that are mutated in this ncRNA and (4) the number of samples in 

all cancers other than breast cancer that are not mutated in this ncRNA 

(Supplementary figure S2). To identify significant ncRNAs, we calculated P-values 

for 1,000,000 random permutations (define by user) of sample IDs across all cancers 

to estimate the probability that an association emerges by chance confidence 

interval of 99%. From this, we identified a total of 929 significantly mutated ncRNAs 

in breast cancer. 

 

Overlap and aggregation score methods 

To adequately examine the overlapping of ncRNAs with regulatory features and 

calculate the overlapping score with each element, each annotation's overlapping 

ranges were used in our analysis. In the case of FANTOM5 promoters, enhancers, 

and tissue-specific enhancers, three binary variables for each ncRNA were 

calculated, indicating that an ncRNA has overlapped with any enhancer or promoter 

in the FANTOM5 dataset (Supplementary table S2). In eQTL annotation, a set of all 

entries whose location overlaps with each ncRNA was extracted by concatenating 

the variation_id and gene_id for each location. 
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The chromatin segmentation annotation comprises genomic ranges, which each of 

them attributed to one of 11 functional categories (segments). The percentage of 

overlap with a segment was calculated as the sum of proportions of nucleotides in 

that segment's ranges that overlapped with the ncRNA. Thus, a profile of overlapping 

chromatin segments was calculated with their corresponding coverage over the 

ncRNA (Supplementary figure S3, Supplementary table S4). 

For histone modifications annotation, besides the proportions of nucleotides covered 

with the overlapping histone modification ranges in each ncRNA, the peak scores of 

these ranges were averaged together by the corresponding overlap percentages as 

their weights to obtain a single histone modification score. The coverage (overlap 

percentage) of each ncRNA with histone modification ranges was also calculated as 

the total proportion of nucleotides in the ncRNA covered with histone modification 

ranges. 

In the case of DNase annotation, each genomic range is attributed to a group of cell 

types that show DNase hypersensitivity in that area. For each range, several cell 

type IDs with their corresponding DNase hypersensitivity scores are associated. We 

combined the annotation ranges that overlap with it to get an aggregated set of cell-

type IDs, scores, and overlap percentages by calculating the proportion of 

nucleotides in the ncRNA covered with these ranges. After this step, several IDs 

were duplicated in many aggregated sets that were summed over the overlap 

percentages to obtain a single overlap measure. Also, it was averaged over its 

scores by the corresponding overlap percentages as their weights to take a single 

score for that ID. For each genomic range in transcription factors annotation, a group 

of transcription factors (from ENCODE) with their corresponding ChIP-Seq peaks are 

reported. While the schema of transcription factors annotation is similar to that of 

DNase annotation, the same procedure as described for DNase annotation was 

performed to obtain an aggregated set of transcription factor IDs, scores, and 

overlapping percentages for each ncRNA (Supplementary table S5). The overlap of 

BC-related GWAS mutations loci with the overlapped ncRNA regions was identified. 

The total number of overlaps for each ncRNA was recorded in the output table 

(Supplementary table S6). 
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Calculating enrichments 

Every “enrichment” that is calculated throughout this study is defined as “the fraction 

of ncRNAs in the significant set that have the trait of interest (e.g., having overlap 

with or having a minimum score of a specific annotation) divided by genome-wide 

expectation”. It can be easily justified that the mentioned value equals the fraction of 

items in the whole set of ncRNAs with the trait of interest: assume that the total 

number of ncRNAs is �. The number of significant ncRNAs is � while � items among 

all and � items within the significant set have the property of interest. If a random 

collection of ncRNAs with size � is sampled, then the probability that � items within 

this set happen to have the property of interest follows a binomial distribution with 

parameters � and � �⁄ , i.e., � ~ 	
����, � �⁄ �. Thus, the expected value of � 

equals � � � �⁄  which shows that the expected fraction of items having the property 

of interest in a random set of ncRNAs with size � equals � �⁄ . We then conclude that 

the defined enrichment can be calculated as �� �⁄ � �� �⁄ �⁄ . 

 

FANTOM5 promoters, enhancers, and breast differentially expressed 

enhancers 

The online FANTOM5 CAGE expression atlas [24] represents the transcription of 

many cell-types states such as promoter, enhancers, and gene regulation in primary 

human cells, tissues, and cell lines. We used FANTOM5 CAGE expression atlas to 

interrogate significant ncRNAs to identify a set of significant ncRNA that overlapped 

with promoter and enhancer independently. The entire collection of enhancers and 

promoters found in the FANTOM5 data were downloaded from the FANTOM5 

Phase2 [26, 58]. We also downloaded FANTOM5 breast differentially expressed 

enhancers from [59]. 

 

ENCODE chromatin state segmentation 

The Chromatin State Segmentation uses a standard set of states that learned by 

computationally integrating ChIP-Seq data for nine factors plus input using a Hidden 

Markov Model (HMM) across various cell types. Also, it shows a classification of 

chromatin, like "enhancer," "promoter," or "repressed." We used this dataset to 
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interrogate with ncRNAs to identify the set of breast-specific candidate ncRNAs 

overlapped with chromatin state. The complete set of chromatin state segmentation 

for the models derived from HMECs, grown in vitro related to breast cancer, was 

downloaded from the ENCODE project [60]. 

 

ENCODE histone modifications by ChIP-Seq 

For this study, we used HMEC-specific ChIP-Seq data in the form of processed peak 

calls for histone modifications H3K27ac, H3K27me1, H3K4me3, and CTCF from the 

ENCODE project to interrogate with significant ncRNAs to identify a set of significant 

ncRNA that overlapped with three types of histone modifications [60]. 

 

ENCODE transcription factor ChIP-Seq data 

This data shows regions of transcription factor binding derived from an extensive 

collection of ChIP-Seq experiments and DNA binding motifs identified within these 

regions by the ENCODE Factorbook repository [61]. The transcription factors and 

proteins are responsible for modulating gene transcription bind as assayed by 

chromatin immunoprecipitation with antibodies specific to the transcription factor 

followed by sequencing of the precipitated DNA (ChIP-Seq). We used this dataset to 

interrogate significant ncRNAs to identify a set of significant ncRNA that overlapped 

with transcription factor ChIP-Seq. The set of transcription factor ChIP-Seq data for 

the HMEC cell line were downloaded from ENCODE project [60]. 

 

DNase clusters 

Regulatory regions tend to be DNase-sensitive which are accessible chromatin 

zones and functionally related to transcriptional activity. We used DNase 

hypersensitive sites from MCF-7 and T47D from ENCODE project to interrogate 

significant ncRNAs to identify a set of significant ncRNA that overlapped with DNase 

clusters. 

 

Hi-C data analysis 
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Hi-C is an experiment for identifying the number of interactions between genomic loci 

near 3D space. In our study, we used two replications related to the HMEC [45]. We 

used MHiC [46] and Hi-C Pro [62] with the default parameters for analyzing and 

aligning Hi-C data in 5kb fragment size. We then used MaxHiC [47] as a background 

correction model to identify significant Hi-C interactions for getting true cis-

interaction. Here, we included those significant interactions with P-value < 0.01, 

read-count >= 10, with the distance between two sides of interaction more than 5kb 

and less than 20Mb. We then annotated Hi-C interactions with coding and non-

coding genes from our combined genes list. At least 10% overlap between gene and 

Hi-C fragments has been considered to annotate Hi-C fragments with genes. 

 

Genotype-tissue expression eQTLs 

eQTL data were downloaded from the Genotype-Tissue Expression (GTEx) project 

[40]. We used the set of GTEx v7 eQTLs identified as significant in the HMEC line 

from the GTEx project.  

 

Literature search for non-coding interacting genes 

Our literature searches were focused on human studies and English language 

publications available in the PubMed, Scopus, and Web of Science. Both Medical 

Subject Headings (MeSH) terms and related free words were used in order to 

increase the sensitivity of the search. We also used data and text mining techniques 

to extract additional related studies [63-69]. A decision tree approach and a 

knowledge-based filtering system technique have been also used to categorize the 

texts from the literatures search [67, 70]. The search terms included "noncoding 

RNA" or "lncRNAs" or "genes name + cancer". "BC" or "breast carcinoma" and 

"breast neoplasm". 

 

Genome-wide association study (GWAS) analysis 

We have pooled two GWAS datasets, EBI GWAS Catalog [37] and GWASdb v2, 

from Wang Lab [38] to interrogate significant ncRNA to identify a set of significant 

ncRNAs that overlapped with GWAS SNPs. We first converted all GWAS SNP 
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coordinates to UCSC hg19 using UCSC Lift Genome Annotations tools [71] 

(www.ncbi.nlm.nih.gov/genome/tools/remap) and then used an in-house script to 

combine both GWAS datasets based on gene coordinates and/or gene symbols. 
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Tables 

Table 1. Prioritized list of candidate ncRNAs. Prioritized list of candidate ncRNAs 

interacting with both the Hi-C libraries and overlapped with ENCODE HMM predicted 

enhancer or active histone mark H3K27ac. A PUBMED ID is provided if protein-
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coding genes are known to be associated to cancer. A detailed list of Hi-C analyses 

is given in Supplementary tables S8-S9. 

Non-coding RNA interacting with 
protein-coding genes 

Non-coding RNA 
mutational P-value 

Protein-coding gene 
Distance 
(bp) 

PUBMED ID 

LINC00894 1.49E-11 MAMLD1 385,000 PMID: 21559465 

MIR223 6.55E-10 MSN 250,000 PMID: 9706140 

RNVU1-19 1.79E-06 HIST2H2BF 380,000  
RNVU1-19 1.79E-06 FCGR1A 380,000 

DOI: 10.21203/rs.3.rs-
38062/v1 

RNVU1-19 1.79E-06 CATG00000015899.1 4,665,000 
 

RP11-403I13.5 2.11E-06 HIST2H2BF 380,000  
RP11-403I13.5 2.11E-06 FCGR1A 380,000 DOI: 10.21203/rs.3.rs-

38062/v1 
RP11-403I13.5 2.11E-06 CATG00000015899.1 4,665,000 

 
CATG00000028030.1 5.47E-06 SWT1 395,000 PMID: 16698800  

CATG00000028030.1 5.47E-06 IVNS1ABP 370,000 
 

CASC8     

RP11-96B2.1 1.28E-05 TBC1D31 390,000 
 

RP11-318M2.2 1.54E-05 ATP6V1C1 165,000 PMID: 24155661 

RP11-318M2.2 1.54E-05 BAALC 165,000 PMID: 12750167 

GPX1P1 2.09E-05 PRPS2 440,000 PMID: 24855946 

GPX1P1 2.09E-05 CATG00000113128.1 440,000 
 

RP11-296O14.3 4.39E-05 CENPL 410,000 
 

RP11-296O14.3 4.39E-05 DARS2 410,000 
 

AF196970.3 6.36E-05 OTUD5 250,000 PMID: 32655987 

AF196970.3 6.36E-05 CATG00000111204.1 250,000 
 

AF196970.3 6.36E-05 KCND1 250,000 PMID: 30051729 

RP1-15D23.2 8.89E-05 TNFSF4 470,000 PMID: 31501955 

RP1-15D23.2 8.89E-05 PIGC 280,000 
 

RP1-15D23.2 8.89E-05 C1orf105 280,000  
RP1-15D23.2 8.89E-05 SUCO 130,000 PMID: 31434866 

RP1-15D23.2 8.89E-05 FASLG 10,000 PMID: 25394756 

RP11-426C22.5 1.16E-04 BANP 58,985,000 PMID: 28103507 

RP11-973F15.1 1.28E-04 TBC1D31 390,000 
 

RP11-973F15.1 1.28E-04 DERL1 295,000 PMID: 20375427 

RP11-973F15.1 1.28E-04 ZHX2 90,000 PMID: 19273305 

CATG00000095444.1 1.82E-04 MPP6 260,000 PMID: 31402947 

CATG00000113234.1 2.09E-04 REPS2 525,000 PMID: 19776672 

CATG00000103306.1 2.79E-04 PTDSS1 835,000 
 

CATG00000103306.1 2.79E-04 SDC2 555,000 PMID: 23747112 

CATG00000103306.1 2.79E-04 CPQ 460,000 
 

CATG00000017091.1 3.04E-04 CATG00000015899.1 3,995,000  
CATG00000017091.1 3.04E-04 PDE4DIP 3,455,000 PMID: 30030436 

RP4-668J24.2 3.55E-04 EXOC2 795,000  
RP11-94A24.1 4.40E-04 TBC1D31 390,000 

 
RP1-60N8.1 4.88E-04 REPS2 345,000 PMID: 19776672 

RP11-177F15.1 4.97E-04 ZP4 185,000 
 

CATG00000083054 6.21E-04 TNFSF4 380,000 PMID: 31501955 

RP11-689K5.3 6.29E-04 PRKG2 420,000  
CATG00000087401.1 6.40E-04 UCHL5 195,000 PMID: 28681694 

CATG00000098967.1 6.45E-04 IRF2BP2 380,000 PMID: 23185413 
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Figure legends 

Figure 1. The flow diagram of the SomaGene pipeline used in this study. ICGC 

cancer samples are used to identified BC-associated non-coding RNAs. Only 

samples with single point mutations are considered in the analysis. We also used 

both the FANTOM5 robust gene list and Ensembl gene list to have a comprehensive 

list of non-coding genes. After counting the number of mutated samples in each 

ncRNA, we then used Fisher’s exact test described in the method section to identify 

mutational P-values for each ncRNA. To identify significantly mutated ncRNAs for 

each ncRNA, we calculated P-values for 1,000,000 random permutations of 

breast/non-breast labels to estimate the 99%C.I. threshold of P-values. We then 

investigated the overlapping of non-coding RNAs with breast tissue-related 

regulatory features (e.g., ENCODE predicted chromHMM, H3K27ac), BC-related 

GWAS SNPs, HMEC related eQTL polymorphisms, and HMEC related Hi-C 

interacting regions. 

 

Figure 2. A schematic of permutation process to identify significantly mutated 

non-coding RNAs in breast cancer samples. To determine the significance level 

of mutations in ncRNAs, we calculated P-values for 1,000,000 random permutations 

of breast/non-breast labels to estimate the 99% C.I. threshold of P-values. The 

permutation accounts for statistical significance based upon our original data 

sampling and avoids Type II errors that may arise from multiple testing correction 

approaches such as Bonferroni. We performed the permutations for each ncRNA 

separately. In the figure, the red color indicates the 99% C.I. of observed P-values in 

the permutations. 

 

Figure 3. Enrichment of promoters and enhancers in the significant set of 

ncRNA genes. a) Enrichment of HMEC-related promoters and enhancers identified 

by ENCODE (using chromatin segmentation by HMM). b) Enrichment of promoters, 

enhancers, and breast tissue differentially expressed enhancers identified by 

FANTOM5. The enrichment is calculated by dividing the proportion of significantly 

mutated ncRNAs that overlap with each item by the proportion of all ncRNAs that 
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overlap with that item. This enrichment is calculated for a significant set of ncRNAs 

(929 ncRNAs) shown in red color, 2nd set (blue), 3rd set (brown) of highly mutated 

ncRNAs. The enrichment was also calculated for the last set of ncRNAs that had no 

mutation in breast cancer samples. Each set of ncRNAs contains 929 elements. 

 

Figure 4. Enrichment of promoters and enhancers in the significant set of 

ncRNA genes. a) Enrichment of histone modifications (for three antibodies: 

H3K27ac, H3K4me1, and H3K27me3). The candidate set of ncRNAs shows 

significant enrichment for H3K27ac and H3K4me1 and no significant enrichment for 

H3K27me3, which is a repressor histone mark. b) Enrichment of transcription factor 

binding sites (for 3 ChIP-seq experiments: HMEC+Broad+CTCF, 

HMEC+Broad+EZH2 and HMEC+UW+CTCF). In all experiments, the ncRNAs 

candidate set shows significant enrichment, much higher than other sets of ncRNAs. 

c) Enrichment of DNase clusters (for three cell types: MCF−7, 

MCF−7+Hypoxia_LacAcid, and T−47D). As the figure shows, the candidate set of 

ncRNAs significantly enriched for DNase clusters, for most of the scores, much 

higher than other sets. As described before, the enrichment is calculated by dividing 

the proportion of significantly mutated ncRNAs that overlap with each item by the 

proportion of all ncRNAs that overlap with the item. This enrichment is calculated for 

a significant set of ncRNAs (929 ncRNAs) as shown in red color, 2nd set (blue), 3rd 

set (brown) of highly mutated ncRNAs. The enrichment was also calculated for the 

last set of ncRNAs that had no mutation in breast cancers. Each set of ncRNAs 

contains 929 elements. 

 

Figure 5. Enrichment of promoters and enhancers in the significant set of 

nncRNA genes. a) Enrichment of breast and lung cancer-associated GWAS SNPs 

in the candidate non-coding RNAs. b) Enrichment of breast and lung tissues 

associated with eQTL pairs in the candidate non-coding RNAs. We repeated the 

enrichment analysis with many items (e.g., GWAS SNP or eQTL polymorphism) 

overlapping the ncRNA. E.g., counting the number of ncRNAs that encompass at 

least 2/3/4/5/6/7/8/9/ GWAS SNPs or eQTL polymorphisms. As the figure shows, the 

candidate set of ncRNAs significantly enriched for both BC-related GWAS SNPs and 
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breast tissue related eQTL polymorphisms. This enrichment is much higher than the 

enrichment in lung cancer related GWAS SNPs and lung tissue related eQTL 

polymorphisms. 

 

Figure 6. An example of Hi-C interaction between lncRNA CASC8 and protein-

coding gene MYC. Long non-coding RNA CASC8 is a breast-expressed lncRNA 

that is significantly mutated in ICGC breast cancer samples. Our analysis on HMEC-

related Hi-C data shows that this lncRNA is significantly interacting with the promoter 

of multiple coding genes, including MYC, a known breast cancer-associated gene. 

There are numerous strong signals of ENCODE predicted ChromHMM potent 

enhancers, histone active marks H3K27ac, and H3K4me1 (all presented in HMEC) 

that overlap with CASC8. Importantly, FANTOM5 breast differentially expressed 

enhancers also overlapped with CASC8. Our analysis of GWAS SNPs and de Novo 

somatic point mutations revealed that CASC8 covered multiple breast cancer GWAS 

SNPs and many somatic point mutations related to breast cancer samples. In 

contrast, MYC does not cover either GWAS SNP or BC-related somatic mutations. 

The figure also shows that the MYC gene interacts with PVT1, another significantly 

mutated lncRNA in breast cancer sample (30kb far away from MYC). PVT1 is also 

overlapped with breast tissue-related regulatory features and is a previously known 

enhancer for the MYC gene. We used MHiC [46] to analyze raw Hi-C data and 

MaxHiC [47] to identify significant Hi-C interactions. Significant interactions are 

shown in blue color. ENCODE predicted chromHMM files chromatin signals were 

used in peak format.   

 

Supplementary figures legends 

Figure S1. The proportion of classes of ncRNAs. a) for the entire dataset. b) for 

the set of significantly mutated non-coding RNAs.  

 

Figure S2. The contingency table was used for Fisher’s exact tests. For each 

ncRNA, a contingency table is constructed based on this scheme to perform a 
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Fisher’s exact test to determine if the corresponding non-coding gene is significantly 

mutated in breast cancer samples compared to other cancer types. 

 

Figure S3. Calculation of overlap between a non-coding gene and chromatin 

segments. This diagram shows an example situation in which a non-coding gene 

overlaps with different types of segments in chromHMM annotation. The percentage 

of overlap with each segment is calculated as the total number of nucleotides in the 

non-coding gene region covered by each type of segment divided by the non-coding 

gene length. 

 

Supplementary tables legend 

Table S1. Significantly mutated ncRNAs. A list of non-coding RNAs which are 

significantly mutated in breast cancer samples compared to samples with other 

cancers (P-value < 0.05). 

 

Table S2. Annotate candidate ncRNAs with ENCODE chromHMM predicted 

chromatin states. Annotating significantly mutated ncRNAs (candidate ncRNAs) 

with ENCODE predicted chromatin state marks (chromHMM) presented in the 

HMEC cell line. 

 

Table S3. Annotate candidate ncRNAs with FANTOM5 features. Annotating 

significantly mutated ncRNAs (candidate ncRNAs) with FANTOM5 promoters, 

enhancers, and FANTOM5 breast differentially expressed enhancers. 

 

Table S4. Annotate candidate ncRNAs with histone marks. Annotating 

significantly mutated ncRNAs (candidate ncRNAs) with HMEC related histone 

modification, including CTCF, H3K27ac, H3K4me1, and H3K4me3. For each 

category and each gene, we identified the percentage of overlap and average score. 
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Table S5. Annotate candidate ncRNAs with DNase hypersensitive sites and 

transcription factors. The list of significantly mutated ncRNAs (candidate ncRNAs) 

with HMEC-related DNase hypersensitive sites (DHSs) and transcription factors. For 

each gene and each category, we calculated the percentage and score of the 

overlapping. The name of each category is shown in the “Details for DNase Clusters” 

sheet. 

 

Table S6. Annotate candidate ncRNAs with BC-associated GWAS SNPs and 

breast tissue-related eQTL polymorphisms. Annotating significantly mutated 

ncRNAs with breast cancer-related GWAS SNPs. GWAS SNPs were downloaded 

from EBI GWAS Catalog [37] and GWASdb v2 from Wang Lab [38]. All GWAS SNPs 

with a P-value less than 1e-8 were considered. We also used GTEx breast-related 

eQTL polymorphisms to identify how many of our candidate ncRNAs encompass at 

least one breast tissue-related eQTL polymorphism. We calculated the number of 

eQTL polymorphisms and the eQTL paired coding genes for each ncRNA. 

 

Table S7. Annotate ncRNAs with HMEC related Hi-C interactions. We used 

chromosome conformation capture data (Hi-C) as evidence of potential enhancer 

activity for our candidate ncRNAs. We used two replications of HMEC-related Hi-C 

data from the Rao et al. study [45].  We only reported significantly interacting regions 

for each replication. We identified which ncRNA and coding gene overlapped with 

interaction for each fragment and annotated the ncRNA side of the interactions with 

breast-related regulatory features. 

 

Table S8. Same as Table S7, but only common interactions are considered. We 

only considered those Hi-C interactions that appeared as significant interactions in 

both replications (common interactions between SRR1658680 and SRR1658686-9). 

Common interactions also filtered out if neither left nor right sides of the interaction 

overlapped with our candidate ncRNAs. 
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Table S9. Same as Table S8, but we considered those interactions that become 

significant in either Hi-C replicate1 or replicate 2. We considered those Hi-C 

interactions that appeared as significant interactions in at least one of the 

replications. Significant interactions also filtered out if neither left nor right sides of 

the interaction overlapped with our candidate ncRNAs. 
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Figure S1
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Figure S3
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