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Abstract 26 

  27 

Accurate characterisation of ecological communities with respect to their biodiversity and food-28 

web structure is essential for conservation. However, combined empirical study of biodiversity 29 

and multi-trophic food webs at a large spatial and temporal resolution has been prohibited by the 30 

lack of appropriate access to such data from natural systems. Here, we assessed biodiversity and 31 

food-web characteristics across a 700 km2 riverine network through time using environmental 32 

DNA. We find contrasting biodiversity patterns, with richness (α-diversity) of fish increasing 33 

towards downstream positions within the catchment, while freshwater bacteria and invertebrates 34 

having an invariant and minimal decrease in richness, respectively, with downstream position. 35 

Food-web characteristics, such as link density and nestedness, however, were relatively 36 

conserved across space, but varied over season. Patterns of biodiversity across major taxonomic 37 

groups are thus not directly scalable to food-web structures at the same spatial and temporal 38 

scales, indicating that effective conservation measures must consider them jointly.  39 
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Introduction 40 

  41 

The study of biodiversity patterns1–3 and the characterisation of food-web structures4,5 are 42 

essential, yet often disconnected goals in ecology. Understanding these patterns is not only of 43 

fundamental interest, but also needed to predict stability, functioning and resilience of natural 44 

ecosystems and to bend the curve of biodiversity loss in the context of anthropogenic pressures 45 

including contemporary global change6. 46 

  47 

Studies on biodiversity predominantly focus on analyses of a-, b- and g -diversity and possible 48 

underlying fundamental drivers of their spatial or temporal patterns7. Freshwater rivers are 49 

highly spatially structured systems8–10 in which theoretical and empirical studies have identified 50 

characteristic patterns of biodiversity for specific groups. For example, fish a-diversity has been 51 

found to increase with distance downstream11, whereas headwaters often show high endemic 52 

bacterial species richness12. Aquatic invertebrate biodiversity exhibits more complicated overall 53 

patterns with disproportionately high biodiversity being found in headwaters13 and a significant 54 

increase in biodiversity linked to catchment size14. However, these group-specific biodiversity 55 

patterns have been mostly studied in isolation from one another, although species are present 56 

within the same system and trophically interact with each other. Indeed, recent theoretical work 57 

shows that contrasting patterns driven by species’ resource competition are possible15. Therefore, 58 

to ensure optimal strategies for conservation and understanding of biodiversity patterns across 59 

different organismal groups, an ensemble approach integrating major taxonomic and trophic 60 

groups is crucial to reveal how species are linked through trophic interactions16. 61 

  62 
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Trophic interactions and food webs by definition encompass multiple groups of organisms. 63 

Individual freshwater food webs are well-resolved17, and often exhibiting distinct features, such 64 

as highly nested structures18 and prevalent omnivory17,19. Nevertheless, food-web studies often 65 

have a localised perspective due to methodological limitations of sampling food-web interactions 66 

and organismal occurrence in a standardized and comparable manner across different places and 67 

organismal groups20–22. Due to the same reason, these studies also tend to focus on simple spatial 68 

and environmental gradients23 or temporal change24 when spatio-temporal influences should be 69 

considered in conjunction25,26. This is particularly problematic in freshwater riverine ecosystems, 70 

that are characterised by a high spatio-temporal structure: they exhibit characteristic spatial 71 

structures, and have strong seasonal variations driven by changing abiotic conditions27 and 72 

pronounced life-cycle changes of key taxa inhabiting these systems. The variation in dynamics 73 

over the course of a year remains a significant gap in our understanding of freshwater food 74 

webs17,28. 75 

  76 

To effectively conserve riverine biodiversity, we must encompass spatio-temporal variation of 77 

multiple trophic levels to understand the underlying dynamics of both biodiversity patterns and 78 

food-web characteristics4,25,26. In particular, molecular monitoring techniques may now provide a 79 

suitable solution to break through the above-mentioned methodological constraints caused by 80 

sampling based primarily on species sight or capture. Environmental DNA, or eDNA, is the 81 

collection of DNA extracted from an environmental sample such as water, air or sediment29. By 82 

collecting eDNA we can screen samples for multiple taxonomic groups via metabarcoding30, 83 

thereby creating a biodiversity assessment suitable for food-web reconstruction. 84 

  85 
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Here, we use eDNA metabarcoding to assess patterns of biodiversity and reconstruct local food 86 

webs via a metaweb-based approach31. The metaweb approach is suitable to capture food-web 87 

patterns based on taxa co-occurrence data24,32 in both terrestrial and aquatic systems. We used 88 

high-throughput sequencing and a multi-marker approach to examine three taxonomically 89 

relevant groups, namely fish (via the 12S barcode region), invertebrates (cytochrome c oxidase I 90 

- COI) and bacteria (16S) in a large-scale river network over the course of three seasons (spring, 91 

summer and autumn). This approach allowed us to test for association of biodiversity patterns 92 

and food-web structures with network location and seasonal change. We found contrasting 93 

effects on biodiversity patterns and food-web structure from spatial and temporal influences, 94 

respectively, providing insight into the underlying changing ecosystem dynamics and indicating 95 

that effective and targeted conservation measures must consider them jointly. 96 

  97 

Results 98 

  99 

Data collection and community construction 100 

We collected water samples from the upper Thur catchment, Switzerland, which covers 101 

approximately 700 km2 and is made up of three sub-catchments: River Thur, Necker and Glatt. 102 

Seventy-three field sites were selected to allow for maximum coverage across the catchment 103 

area, comprising of a broad size range of upstream drainage sizes (i.e., the drainage area size 104 

indicates the location of the site within the catchment: upstream sites having a small drainage 105 

area and lowland sites having a larger drainage, see Fig. 1). Water samples were filtered on site 106 

and DNA extracted in a specialist clean lab environment at Eawag, Switzerland. A total of 12.29 107 

million, 14.32 million and 14.02 million raw reads were produced from the 12S, COI and 16S 108 
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libraries, respectively. After bioinformatic processing the average sequencing read depth per 109 

sample was: 43,176, 50,704 and 49,857 for 12S, COI and 16S, respectively. This included 159 110 

Zero-radius Operational Taxonomic Units (ZOTUs), 3179 ZOTUs and 11,320 ZOTUs for 12S, 111 

COI and 16S respectively (see Methods and Supplementary Information Table S1 for details on 112 

laboratory and bioinformatic analysis). For further analysis, ZOTUs were merged to genus level 113 

and only fish genera, invertebrate genera with an aquatic life stage and bacteria associated with 114 

freshwater were kept for further analysis (See Methods for further details). Analysis was 115 

performed on presence/absence data to merge the three libraries for the complete freshwater 116 

community and exclude a possible influence of uneven sample read depth generated from 117 

multiple markers (see also 33). 118 

  119 

To quantify biodiversity, we calculated α-diversity (local richness) at genus level at each site and 120 

compared β-diversity (variation in community composition between sites) by using Jaccard 121 

dissimilarity. Jaccard dissimilarity was also partitioned into taxon replacement (turnover) and 122 

taxon loss (nestedness) components to assess the mechanisms contributing to the variation in 123 

community assemblage across the catchment. 124 

  125 

To measure food webs and functional characteristics of the community, we constructed a 126 

metaweb based on known interactions of genera classified into different functional feeding 127 

groups (Fig. 2; see also Methods and Supplementary Information Table S2). We defined local 128 

food webs at each field site based on genera co-occurrence and the corresponding subset of 129 

interactions from the metaweb, to determine broad changes in the community over time and 130 
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space. With this approach, variation in food-web structures and function feeding groups emerge 131 

from the spatio-temporal differences in genus composition (See Methods for further details). 132 

  133 

To assess the relationship between α-diversity of each group (fish, invertebrates and bacteria) 134 

and food-web structures with site location within the catchment, we ran linear mixed model 135 

analysis. Drainage area (km2) was log transformed to fit model assumptions. For each dependent 136 

variable, drainage area and season were the fixed effects, while site was the random effect. We 137 

determined the overall effect of both factors using analysis of variance and contrast testing of 138 

estimated marginal means to determine the influence of seasonal changes on all α-diversity and 139 

food-web elements (see Methods for details). To examine the effect of river distance on β-140 

diversity we constructed a matrix of pairwise distances for sites that were connected along the 141 

fluvial network and to examine the effect of river distance on β-diversity we performed a Mantel 142 

test (see Methods and Supplementary information). 143 

  144 

Spatial and temporal biodiversity patterns 145 

In total we detected 374 genera across all organismal groups associated with freshwater, 146 

including 12 fish genera, 80 invertebrate genera and 282 bacteria genera. When combining all 147 

seasons, α-diversity (genus richness) ranged between 8–96 genera with all taxonomic groups 148 

combined (Fig. 1). Over the different seasons, mean local α-diversity was 70 (range 10–92) in 149 

spring, 48 (range 8–85) in summer, and 63 (range 19–96) in autumn (See Supporting Information 150 

Fig. S1 and Table S3). We used mixed models to assess the influence of drainage area and 151 

season on the local α-diversity of each group (Fig. 3, for model output see Supporting 152 

Information Table S4–S6). Of the three taxonomic groups, only fish α-diversity significantly 153 
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increased with the size of the drainage area (p < 0.001, Fig. 3a and Supporting Information for 154 

model output Table S4– S6), while for bacteria and invertebrates there was no significant 155 

relationship (p = 0.670 and p = 0.239, respectively, Fig. 3c and 3e). There was, however, a 156 

significant seasonal effect in α-diversity on invertebrate and bacteria genera (p < 0.001 for both 157 

groups, Fig. 3d and 3f, see Supporting Information Table S4–S6). The influence of seasons can 158 

be seen further in the contrast testing (Fig. 3b, d and f and Supporting Information Table S7 for 159 

full contrast testing results), which shows invertebrate α-diversity in spring was significantly 160 

higher compared to summer and autumn (p < 0.001, Fig. 3d), and bacteria α-diversity in summer 161 

was significantly lower compared to spring and autumn (p < 0.001, Fig. 3f). Fish α-diversity 162 

however did not vary significantly between seasons, with the mean number of 2 (range 0–6) fish 163 

genera remaining constant (Fig. 3b). 164 

  165 

Regarding the β-diversity across the catchment, the Jaccard’s dissimilarity significantly 166 

increased with the river distance among sites in all organismal groups across all seasons, apart 167 

from bacteria in spring and autumn (fish Mantel statistics: Spring 0.143, p < 0.01, Summer 168 

0.171, p = 0.001, Autumn 0.321, p = 0.001; invertebrate Mantel statistics: Spring 0.095, p < 0.05, 169 

Summer 0.169, p = 0.001 and Autumn 0.114, p < 0.05; bacteria Mantel statistics: Spring -0.058, 170 

p = 0.834, Summer 0.179, p < 0.005 and Autumn 0.069, p = 0.12, See Supplementary 171 

Information Table S8). Further partitioned analyses on taxon replacement and loss revealed 172 

contrasting patterns. Taxon replacement between sites increased over river distance for all 173 

groups in most seasons (significant or marginally significant, see Table S8), apart from fish in 174 

spring (Mantel statistics 0.07, p = 0.891) invertebrates in spring (Mantel statistics 0.066, p = 175 

0.051) and bacteria in spring and summer (Mantel statistics 0.016, p = 0.34 and Mantel statistics 176 
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0.07, p = 0.068, respectively). In contrast, taxon loss was only found to significantly increase 177 

over river distance for fish in spring and autumn (Mantel statistics 0.219, p = 0.001 and 0.059, p 178 

= 0.05, respectively) and bacteria in summer (Mantel statistics 0.089, p < 0.05). 179 

  180 

Spatial and temporal changes in food-web structure and functional characteristics 181 

We examined commonly used food-web structural characteristics (link density, connectance, 182 

nestedness, omnivory, coherence, number of links, modularity, and robustness), as well as 183 

functional characteristics (functional diversity and redundancy). Functional characteristics were 184 

examined by using the designated functional feeding groups (e.g., shredders and omnivorous 185 

fish), based on specialised feeding behaviours (Fig. 2 & Supporting Information Fig. S2). Here 186 

we describe the results of link density, connectance, nestedness and omnivory as the most 187 

ecologically important food-web descriptors in our study, while the results from the remaining 188 

descriptors (coherence, number of links, modularity, and robustness) are presented in the 189 

Supplementary Information (See Fig. S3). Drainage area did not significantly influence any of 190 

the food-web structures looked at (Fig. S3 and S4). However, season had a significant influence 191 

on the change in food-web structures (Fig. 4 and S4), namely, link density (p < 0.001, Fig. 4a), 192 

connectance (p < 0.001, Fig. 4b), nestedness (p < 0.001, Fig. 4c), and omnivory (p < 0.001, Fig. 193 

4c and see Supporting Information Table S4 - S6 for full results), indicating that seasonal 194 

variation is of more importance in food-web dynamics than site location within the riverine 195 

network. To examine seasonal variation further, we carried out contrast testing, which showed a 196 

range of seasonal change in food-web dynamics. In particular, spring had significantly higher 197 

link density than summer and autumn (p < 0.001 and p < 0.001, respectively, Fig. 4a); autumn 198 

had significantly lower connectance than spring and summer (p < 0.001 and p < 0.001, 199 
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respectively, Fig. 4b), and the same is true for nestedness (p < 0.01 and p < 0.01, respectively, 200 

Fig. 4c); finally, summer had significantly higher omnivory than autumn (p = 0.001, Fig 4d, see 201 

Supporting Information Table S7 for full contrast testing results). 202 

  203 

Functional diversity (defined as the change in function feeding groups used in this study) 204 

significantly decreased with drainage area and was also significantly different across seasons (p 205 

< 0.05 Fig. 5a and p <0.001 Fig. 5b, respectively, see Supporting Information Table S4 - S6 for 206 

full results), whereas only season has a significant influence on the functional redundancy (p < 207 

0.001, Fig. 5d). To further examine the changes in seasonal influence we compared seasonal 208 

values for all functional characteristics. Functional diversity in spring was significantly higher 209 

than in summer and autumn (p = 0.001 and p = 0.001, respectively, Fig. 5b), while functional 210 

redundancy in summer was significantly lower than in spring and autumn (p < 0.001 and p < 211 

0.001, respectively, Fig. 5d and Supporting Information Table S7). 212 

  213 

Discussion 214 

  215 

Studies of biodiversity and food-web assemblages in riverine networks are often constrained to 216 

local scales or aggregated to a single time point, which in essence fails to capture the spatial 217 

processes and the temporal fluctuations that together play a key role in community dynamics 218 

present within a river network8. Our study is a first assessment utilising data derived from eDNA 219 

metabarcoding to detect patterns of biodiversity and food-web characteristics across three major 220 

taxonomic groups, namely fish, invertebrates and bacteria, in a whole river network at a spatial 221 

and temporally large scale. In our study we find contrasting patterns of biodiversity across these 222 
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groups, which indicates different mechanisms may shape these organismal communities. By 223 

using a metaweb approach, we showed a strong signature of seasonality in food-web structures 224 

across the river network. We also showed that functional characteristics are influenced by both 225 

spatial and temporal changes. Overall, our study supports the need to include both spatial and 226 

temporal scales in order to understand changes in ecosystems, particularly as we see increased 227 

effects of contemporary global change. 228 

  229 

Aquatic biodiversity is subject to fluvial influences within a dendritic network, whereby spatial 230 

patterns of α-diversity and β-diversity are known for key groups, such as fish, invertebrates and 231 

microbes11–14,34. Our data is congruent with previous studies on fish diversity11,33, in that both α-232 

diversity significantly increased downstream, and β-diversity (community dissimilarity) 233 

significantly increased with river distance in all three seasons. However, patterns for 234 

invertebrates and bacteria differed from the predictions, and exhibited no significant influence of 235 

drainage size on α-diversity but were influenced by seasonal change. For invertebrates, seasonal 236 

variation can be linked directly to the emergence of the non-aquatic adult life stage of several 237 

macroinvertebrate genera we detected (Diptera, Ephemeroptera, Plecoptera and Trichoptera), 238 

which takes place in the late spring and summer months27, and literally removes these organisms 239 

from the aquatic food-web as they become air-bound and often end up in terrestrial food-webs. 240 

For the spatial patterns, past studies often looked at spatial scales much larger or much smaller, 241 

and thus disparity may be due to a mismatch in scale looked at here. For example, Finn and 242 

colleagues13 suggested headwaters harbour disproportionately high invertebrates compared to 243 

lower points in the catchment, but their studied focused on small (1–2) and mid (3–4) stream 244 

orders only, whereas the sites in our study ranged from small to much larger rivers (stream 245 
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orders 1–7, 35). Contrastingly, when looking at scales about 50-fold larger, Altermatt and 246 

colleagues14 showed the number of key aquatic invertebrate taxa (Ephemeroptera, Plecoptera and 247 

Trichoptera) increased with catchment size, however they also found a combination of local 248 

factors (catchment areas, drainage area, elevation and network centrality) had the greatest 249 

influence on local invertebrate α-diversity. Possibly, the scale at which we study invertebrate α-250 

diversity and contributing local factors falls between such small-scale vs large-scale perspective, 251 

but instead we detected regional patterns where α-diversity remains relatively constant 252 

throughout the catchment. Similarly, drainage area did not have a significant effect on bacterial 253 

α-diversity, and β-diversity increased with river distance in summer only. We can therefore 254 

postulate that aquatic bacteria are able to persist as they disperse through the catchment; 255 

however, the number of bacteria genera (the α-diversity) that do persist are subject to seasonal 256 

influences. Our findings expand on past studies, highlighting the influences of scale and 257 

temporal variation on different groups, which is of utmost importance when trying to conserve 258 

biodiversity and understand the differing drivers behind these patterns in a river network. 259 

  260 

By resolving the fundamental trophic relationships among broad feeding groups, we established 261 

a trophic interaction metaweb for the three taxonomic groups examined in this study. The meta-262 

web with genus co-occurrence data thus allowed our investigation of both spatial and temporal 263 

influences on the characteristics of local food webs. We found that the most significant factor 264 

driving freshwater riverine food-web characteristics was season. All food-web structural 265 

characteristics (apart from the number of links and robustness) were lowest in autumn, despite 266 

overall α-diversity being lowest in summer. This indicates that the food-web structural variation 267 

we detected is not merely reflecting the genera richness dynamics over seasons, but the genera 268 
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composition dynamics instead. In other words, the structures of the food webs are more 269 

influenced by those genera absent in autumn. Indeed, previous studies on freshwater food webs 270 

that have examined temporal changes have often found reduced productivity as the main driver 271 

behind a declined food-web structure in winter vs summer20,36. Thus, the decrease in structure we 272 

captured in this study could be the start of the productivity restriction seen in food webs over the 273 

winter months. The less-connected and less-nested food-web structure also implies weaker 274 

resource competition among consumers, which may be necessary for their coexistence in the 275 

food web37, especially when competition becomes more costly with lower resource productivity 276 

in autumn. 277 

  278 

Moving from broad food-web patterns to examining functional feeding groups enables us to 279 

study fundamental changes within the community and possible effects at the ecosystem level17. 280 

Interestingly, and contrary to the biodiversity patterns and food-web dynamics, we see 281 

significant effects of both drainage area and season on the functional diversity, which we found 282 

to be higher in smaller drainage areas and in spring. The spatial part of such a pattern along the 283 

hierarchical river network is demonstrated in the River Continuum Concept, which shows 284 

increased diversity of invertebrate functional feeding groups at low stream orders38,39. Whereas 285 

both drainage area and season influences functional diversity, season is the only significant 286 

influence on functional redundancy, with fewer genera per functional feeding group observed in 287 

summer rather than in autumn. These results indicate that in summer the genera absent are across 288 

functional groups, whereas in autumn the genera absent include whole functional feeding groups 289 

leading to the constriction of local food webs. The inconsistent temporal patterns of food-web 290 

structure versus functional characteristics further imply that multiple feeding groups share 291 
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similar trophic roles in the food web (Fig. S2), though they each adopt specialised feeding 292 

behaviour within the catchment and thus perform distinctive ecological functions (e.g., 293 

shredders, collectors, filterers). In other words, the structure and function of a food web does not 294 

necessarily match and synchronise (sensu stricto22,40). These results are particularly encouraging, 295 

because the patterns of both food-web structure and functional diversity are known to be 296 

important for ecosystem health assessment and identifying potential vulnerability to 297 

perturbation17,26,41. Addressing the consistency of their patterns across spatial and temporal scales 298 

will likely lead to novel and comprehensive understanding of biodiversity and ecosystem 299 

function loss due to environmental change. 300 

  301 

In our study, the functional feeding groups were defined at the level of genus, while we expect 302 

investigations at finer resolutions will be promising for future work that can reveal not only more 303 

accurate patterns, but also the influences of sampling taxonomic resolution. Similarly, our 304 

selection of focal taxa may have influenced the food-web patterns we detected. For example, 305 

algae become an increasingly important resource when moving from allochthonous inputs in 306 

headwaters to larger streams with increased light levels further down the catchment38,39. With the 307 

selected three key taxonomic groups in riverine ecosystems, we present a broad and relevant 308 

view capturing trophic roles from basal resources (cyanobacteria) to top consumers (piscivorous 309 

fish), captured by three relatively broad metabarcoding markers. However, we also by default 310 

excluded some further groups, such as algae or terrestrial taxa, which could have been relevant 311 

as primary producers and as terrestrial-aquatic linkages, respectively. The choice of taxonomic 312 

groups looked at was both methodologically defined, as well as driven by the goal to have an 313 
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overseeable and clearly aquatic-focused view on food webs. Thereby, it captures by default a 314 

subset from the real-world food web in which more species are involved. 315 

  316 

By using the eDNA technique, we gain three notable advantages: its scalability for monitoring 317 

complex and large systems, its reusable nature, and its being a non-invasive method of collecting 318 

biodiversity information42,43. Our understanding of how the information we ascertain from eDNA 319 

sample collection has greatly improved in recent years due to studies on the hydrological 320 

influences44 and a general understanding of the rate of eDNA persistence in lotic ecosystems45. 321 

However, the successful detection of taxa with eDNA is also linked to the ecology of individual 322 

species45, and some seasonal variation in the detection of several taxonomic groups is known46–323 

49. Therefore, it is possible that some taxa that were not detected in the colder season (autumn) in 324 

this study were false-negative records. However, these non-detections are likely linked to low 325 

abundance or low metabolic rates, and thus these species are, while not physically absent, at least 326 

“relatively absent” in ecological terms. 327 

  328 

In summary, our work showed we can construct comprehensible food webs at a large scale and 329 

over time by using eDNA sampling and combining multiple markers. Based on the biodiversity 330 

patterns we observed that spatial and temporal influences are different across groups. 331 

Furthermore, temporal influences were the significant driver of change for commonly used food 332 

web descriptors. Our approach is a first demonstration of the application of eDNA to a complex 333 

river network for the reconstruction of food web patterns and can be easily replicated in other 334 

systems worldwide. As biodiversity in freshwater systems face huge threats from anthropogenic 335 

pressures, including global climate change, establishing vital information on the changes in 336 
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biodiversity and food web composition over spatio-temporal scales is essential for the detection 337 

of these stressors in order to protect and conserve river systems. 338 

 339 

Methods 340 

  341 

Site selection and eDNA sample collection 342 

Environmental DNA samples were collected from the edge of the waterbody using single use 343 

disposable 50 ml syringes. At each site on each sampling event, a total of 1 L of water was 344 

filtered through two 0.22 μm sterivex filters (Merck Millipore, Merck KgaA, Darmstadt, 345 

Germany), sealed with luer caps and placed in individually labelled bags. Sampling was carried 346 

out over five consecutive days in May (spring), August (summer) and October (autumn) in 2018. 347 

During the summer sampling campaign, four sites were dry and could not be sampled (total 348 

samples across all seasons is n = 215). Negative field control samples were collected on each 349 

sampling day by filtering 500 ml of ddH2O through a sterivex filter in the same way as field 350 

samples were collected (n = 15). Negative field samples were processed alongside field samples. 351 

All samples were placed in labelled bags and cooled in a cool box until frozen at -20 °C on 352 

return to the laboratory. 353 

  354 

Extraction and library preparation 355 

DNA extraction and first round PCR set up was carried out in a specialist eDNA clean lab, with 356 

separate lab facilities for post PCR workflows.  Samples were extracted using DNeasy 357 

PowerWater Sterivex Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. 358 

Prior to extraction, each sterivex was defrosted at room temperature and then wiped with 10% 359 
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bleach, then 70% ethanol solution prior to extraction to remove any DNA from the outside of the 360 

filters. Extraction controls were carried out alongside sample extractions and consisted of blank 361 

sterivex filters (n = 5). Samples selected at random were analysed using a QuBit 3.0 fluorometer 362 

for double stranded DNA concentration, values measured between 0.317 - 27.5 ng/μl. All 363 

negative controls (field and extraction) were tested and recorded below detection limits. 364 

  365 

Samples were sequenced with the following markers: a 106 bp fragment of the mitochondrial 366 

12S marker (50, hereafter referred to as 12S) used to amplify vertebrate DNA, a 313 bp fragment 367 

of the mitochondrial cytochrome oxidase I marker (51 and 52, hereafter referred to as COI) used to 368 

amplify metazoan DNA and a 450 bp fragment of the V3-V4 region of the 16S marker 369 

(hereafter, 16S) used to amplify bacteria and archaea DNA (See Supporting Information Table 370 

S8 for primer sequences). Positive controls (n = 6 per library prep, see Supporting Information 371 

Table S9) and PCR negative controls (2 μl of ddH2O, n = 11 per library prep) were included in 372 

each library. Each library consisted of 252 samples in total (including positive and negative 373 

controls). 374 

  375 

Library preparation followed a two-step PCR process for both the 12S and COI markers, the 16S 376 

library was carried out using a three-step PCR53 (See Supporting Information Methods for full 377 

details), all samples were amplified in triplicate. After the initial amplification, where Nextera® 378 

transposase sequences (Microsynth, AG, Balgach, Switzerland) are added to the PCR product, all 379 

samples were tested for amplification success with the AM320 method on the QiAxcel Screening 380 

Cartridge (Qiagen, Germany). PCR products were cleaned using ZR-96 Plate clean-up Kit 381 

(Zymo Research) following the manufacturers protocol with the minor modification by which 382 
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the elution step was prolonged to 2 minutes at 4000 g. The clean amplicons were indexed using 383 

the Illumina Nextera XT Index Kit A, C and D following the manufacturer's protocol (Illumina, 384 

Inc., San Diego, CA, USA). A reaction contained 25 µL 2x KAPA HIFI HotStart ReadyMix 385 

(Kapa Biosystems, Inc., USA), 5 µL of each of the Nextera XT Index adaptors and 15 µL of the 386 

DNA templates. The final PCR products were then cleaned using the Thermo MG Magjet bead 387 

clean up kit (Thermo Fisher Scientific Inc., MA, USA) and a customized programme for the 388 

KingFisher Flex Purification System (Thermo Fisher Scientific Inc., MA, USA) in order to 389 

remove excessive Nextera XT adaptors. The cleaned product of 50 µl was then eluted into a new 390 

plate and stored at 4 °C prior to quantification. For each library, the clean indexed amplicons 391 

were quantified in duplicate on a Spark Multimode Microplate Reader (Tecan, US Inc. USA) 392 

prior to equimolar pooling using the BRAND Liquid Handling Station (BRAND GMBH + CO 393 

KG, Wertheim, GE). Negative extraction and PCR controls were added according to their 394 

concentration. Library concentration was quantified on the Agilent 4200 TapeStation (Agilent 395 

Technologies, Inc., USA) and verified by the Qubit the HS Assay Kit. Paired-end sequencing 396 

was performed on an Illumina MiSeq (Illumina, Inc. San Diego, CA, USA) at the Genetic 397 

Diversity Centre at ETH (See supporting information Table S1 for library loading information). 398 

  399 

Bioinformatics 400 

After each of the libraries were sequenced, the data was demultiplexed and reads were quality 401 

checked using usearch v11.0.667 54 and FastQC55. Raw reads were first end-trimmed, merged 402 

and full-length primer sites were removed using usearch v11.0.667 54 (16S reads were merged 403 

using Flash v1.2.11, 56). The merged and primer trimmed reads were quality filtered using 404 

prinseq-lite (0.20.4). The UNOISE3 (usearch v11.0.667) workflow with an additional clustering 405 
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of 99% (usearch v11.0.667) identity was applied to obtain error corrected and chimera-filtered 406 

sequence variants ZOTUs. The ZOTUs were then clustered using a 97 %, similarity approach 407 

and taxonomic assignment with a 0.85 confidence threshold was performed using SINTAX in 408 

the usearch software v11.0.667 54 with following databases: 12S: NCBI BLAST (v200416), COI: 409 

Custom reference database (Including MIDORI un-trimmed (V20180221) and 16S: GreenGenes 410 

(V13.5), RDP (160411) and SILVA (V128). See Supporting Information Methods for all 411 

bioinformatic parameters and reference database information used for each library. Prior to 412 

downstream analysis, 0.1% of reads were removed from each sample to reduce errors caused by 413 

tag-jumping or minor contamination in library preparation57. 414 

  415 

Biodiversity patterns 416 

We calculated α-diversity (genus richness) at each site and compared β-diversity between sites 417 

by using Jaccard dissimilarity using the betapart R-package58. We constructed a matrix of 418 

pairwise distances between sites along the fluvial network with the igraph R-package59 and 419 

compared the similarity between β-diversity and river distance using the Mantel test with the 420 

vegan R-package60. To further partition β-diversity into species loss and replacement, sites which 421 

did not record genus from a target group were removed from the analysis of that group only. 422 

  423 

Feeding group assignment 424 

Feeding groups were determined based on literature, species inventories and targeted expert 425 

knowledge61,62 for fish and invertebrates. Genera of bacteria were included if the phyla they 426 

belong to has a strong association with freshwater habitat63, bacteria were then broadly divided 427 

into heterotrophic and cyanobacteria, the latter constituting a basal resource. A constant basal 428 
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resource of detritus was also included in all food webs (See Supporting Information Table S2 for 429 

assignment of genera to feeding groups). 430 

  431 

Food-web structure 432 

We constructed a metaweb based on known trophic relationships among feeding groups 433 

(Supplementary Table S2), then defined local food webs using this metaweb at each field site, 434 

based on co-occurrence of genera (nodes) and their interactions (links). The metaweb approach 435 

has been applied to identify food-web characteristic change across spatial gradients in terrestrial 436 

ecosystems32, and temporal changes in aquatic ecosystems24, but has yet to be used at a large 437 

spatial scale in an aquatic ecosystem over time. 438 

  439 

We then quantified common food-web structural characteristics for each local food web 440 

generated. These included fundamental node-link composition features, i.e., number of links (L), 441 

link density (L/S, the number of feedings links per taxa divided by the genus α-diversity at each 442 

site) and connectance (L/S2, the proportion of realised interactions). To further explore the 443 

holistic topology of these food webs and their change over space and time, we adopted the 444 

following indices to determine some more key features. Nestedness is an indication that the diets 445 

of specialist taxa are subsets of generalist taxa’s diets, and was calculated using the nestedness 446 

metric based on Overlap and Decreasing Fill (NODF) function in vegan60. Modularity is 447 

indication of a less nesteded network64 in that the nodes are characterised into modules which, 448 

unlike nested structures, do not overlap, and was calculated using the multilevel.community() 449 

function from the igraph package59. Omnivory is defined as the proportion of taxa with a mixed 450 

trophic level diet. Thus, the more omnivores a community has, the less coherent the food web65. 451 
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Omnivory is often debated as a measure of food-web stability, and weak omnivorous interactions 452 

are likely to lead to a more stable food web66. Trophic level of genera and omnivory were 453 

calculated using the methods stated in William and Martinez21. Coherence is defined as the 454 

overall degree of homogeneity of the difference between trophic levels of every consumer-455 

resource pair within the local food web. As described by 65, the coherence of a network can 456 

reliably be used to establish the stability of a network by looking at the distribution of trophic 457 

distances over all links in each network. For example, a perfectly coherent network (q = 0) 458 

implies that each taxon within the food-web only occupies a single trophic level. Coherence was 459 

calculated using the methods stated in Johnson et al65. Robustness was defined by Dunne and 460 

Williams5 as the “proportion of species subjected to primary removals that resulted in a total 461 

loss … of some specified proportion of the species”. In our study we used 50% as the proportion 462 

of species lost and excluded basal resources for primary removal. Robustness was calculated 463 

using the methods stated in Dunne and Williams5. 464 

  465 

To explore the change in functional characteristics within the food webs, we used the broad 466 

feeding groups as described when constructing the interaction network (See Fig. 1 and Fig. S2). 467 

Functional diversity was calculated as the number of feeding groups that had at least one genus 468 

present in the sample. Functional redundancy was calculated as α-diversity divided by functional 469 

diversity, reflecting the average number of genera within a feeding group. 470 

  471 

Data analysis 472 

We ran linear mixed model analysis to assess the relationship between group genus α-diversity 473 

(bacteria, invertebrates and fish), food-web structural characteristics (coherence, connectance, 474 
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link density, number of links, omnivory, modularity, nestedness and robustness) and functional 475 

characteristics (functional diversity and redundancy) with site location within the catchment. 476 

Drainage area (km2) was log transformed to fit model assumptions. For each dependent variable, 477 

drainage area and season were the fixed effects. We included site as a random effect to account 478 

for repeated sampling of sites (e.g., genus α-diversity ~ drainage area + season + (1 | Site)). 479 

Significance was calculated using the lmerTest R-package67, which applies Satterthwaite’s 480 

method to estimate degrees of freedom and generate p-values for mixed models (Table S4 and 481 

S5). We then used anova() to see the overall effect of both factors: Drainage area and Season 482 

(Table S6) and follow up contrast testing were carried out using the emmeans R-package 68 to 483 

test for significant differences between seasons (Table S7). 484 
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Figures: 661 

Figure 1: Genus α-diversity of bacteria, invertebrates and fish collected from eDNA 662 

samples in the Thur catchment in (a) spring, (b) summer and (c) autumn. The circles are 663 

scaled proportionate to the α-diversity of each group. Grey lines give the sub-catchments Glatt, 664 

Necker, and Thur, respectively and the blue arrow shows the direction of flow. 665 

 666 

667 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.20.450136doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.450136
http://creativecommons.org/licenses/by/4.0/


Blackman et al.    
 

  33 

Figure 2: Food-web network generated from eDNA data. All genera were categorised into 668 

feeding groups dependant on their dominant feeding behaviour, we then used this information to 669 

construct a trophic interaction metaweb using these links. Number of genera in each group is 670 

shown in circles, arrows indicate energy flow. 671 
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Figure 3: Genus α-diversity in space and time. Plots a, c and e show α-diversity in each group 674 

as a function of drainage area. Line indicates linear mixed model with shaded area showing 95% 675 

confidence intervals as calculated using the model predictions and standard error. Plots b, d and f 676 

show change in α-diversity in each group over season. Grey lines indicate link sample points 677 

over the three sampling seasons. In all plots colour represents season: yellow – Spring, green – 678 

Summer and orange – Autumn. 679 

 680 
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Figure 4: Food-web structural characteristics: Box plots showing the change in each food-681 

web structural characteristic over the three seasons: a: Link Density, b: Connectance, c: 682 

Nestedness and d: Omnivory. Grey lines indicate link sample points over the three sampling 683 

seasons and colour represents season: yellow – Spring, green – Summer and orange – Autumn. 684 
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Figure 5: Functional diversity and functional redundancy. a and b: Functional Diversity, c 687 

and d: Functional Redundancy. Plots a and c show the change over drainage area. Line indicates 688 

linear mixed model with shaded area showing 95% confidence intervals as calculated using the 689 

model predictions and standard error. Plots b and d show change over season. Grey lines indicate 690 

link sample points over the three sampling seasons and colour represents season: yellow – 691 

Spring, green – Summer and orange – Autumn. 692 
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