Title: Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics

 across a river catchment
Author list:

Rosetta C. Blackman ${ }^{1,2, *}$
Hsi-Cheng Ho ${ }^{1}$
Jean-Claude Walser ${ }^{3}$
Florian Altermatt ${ }^{1,2, *}$

Author affiliation:

${ }^{1}$ Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
${ }^{2}$ Department of Evolutionary Biology and Environmental Studies, University of Zurich,
Winterthurerstr. 190, CH-8057 Zürich, Switzerland
${ }^{3}$ Genetic Diversity Centre (GDC), Department of Environmental Systems Sciences (D-USYS), Federal Institute of Technology (ETH), Rämistrasse 101, 8092 Zurich, Switzerland

* Corresponding Authors:

Email: rosiecblackman@gmail.com or florian.altermatt@eawag.ch

ORCID IDs:

Rosetta C. Blackman - https://orcid.org/0000-0002-6182-8691
Hsi-Cheng Ho - https://orcid.org/0000-0002-0734-0249
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.450136; this version posted July 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Blackman et al.

24 Jean-Claude Walser - https://orcid.org/0000-0003-1513-0783
25 Florian Altermatt - https://orcid.org/0000-0002-4831-6958

Abstract

Accurate characterisation of ecological communities with respect to their biodiversity and foodweb structure is essential for conservation. However, combined empirical study of biodiversity and multi-trophic food webs at a large spatial and temporal resolution has been prohibited by the lack of appropriate access to such data from natural systems. Here, we assessed biodiversity and food-web characteristics across a $700 \mathrm{~km}^{2}$ riverine network through time using environmental DNA. We find contrasting biodiversity patterns, with richness (α-diversity) of fish increasing towards downstream positions within the catchment, while freshwater bacteria and invertebrates having an invariant and minimal decrease in richness, respectively, with downstream position. Food-web characteristics, such as link density and nestedness, however, were relatively conserved across space, but varied over season. Patterns of biodiversity across major taxonomic groups are thus not directly scalable to food-web structures at the same spatial and temporal scales, indicating that effective conservation measures must consider them jointly.

Introduction

The study of biodiversity patterns ${ }^{1-3}$ and the characterisation of food-web structures ${ }^{4,5}$ are essential, yet often disconnected goals in ecology. Understanding these patterns is not only of fundamental interest, but also needed to predict stability, functioning and resilience of natural ecosystems and to bend the curve of biodiversity loss in the context of anthropogenic pressures including contemporary global change ${ }^{6}$.

Studies on biodiversity predominantly focus on analyses of α-, β - and γ-diversity and possible underlying fundamental drivers of their spatial or temporal patterns ${ }^{7}$. Freshwater rivers are highly spatially structured systems ${ }^{8-10}$ in which theoretical and empirical studies have identified characteristic patterns of biodiversity for specific groups. For example, fish α-diversity has been found to increase with distance downstream ${ }^{11}$, whereas headwaters often show high endemic bacterial species richness ${ }^{12}$. Aquatic invertebrate biodiversity exhibits more complicated overall patterns with disproportionately high biodiversity being found in headwaters ${ }^{13}$ and a significant increase in biodiversity linked to catchment size ${ }^{14}$. However, these group-specific biodiversity patterns have been mostly studied in isolation from one another, although species are present within the same system and trophically interact with each other. Indeed, recent theoretical work shows that contrasting patterns driven by species' resource competition are possible ${ }^{15}$. Therefore, to ensure optimal strategies for conservation and understanding of biodiversity patterns across different organismal groups, an ensemble approach integrating major taxonomic and trophic groups is crucial to reveal how species are linked through trophic interactions ${ }^{16}$.

Trophic interactions and food webs by definition encompass multiple groups of organisms. Individual freshwater food webs are well-resolved ${ }^{17}$, and often exhibiting distinct features, such as highly nested structures ${ }^{18}$ and prevalent omnivory ${ }^{17,19}$. Nevertheless, food-web studies often have a localised perspective due to methodological limitations of sampling food-web interactions and organismal occurrence in a standardized and comparable manner across different places and organismal groups ${ }^{20-22}$. Due to the same reason, these studies also tend to focus on simple spatial and environmental gradients ${ }^{23}$ or temporal change ${ }^{24}$ when spatio-temporal influences should be considered in conjunction ${ }^{25,26}$. This is particularly problematic in freshwater riverine ecosystems, that are characterised by a high spatio-temporal structure: they exhibit characteristic spatial structures, and have strong seasonal variations driven by changing abiotic conditions ${ }^{27}$ and pronounced life-cycle changes of key taxa inhabiting these systems. The variation in dynamics over the course of a year remains a significant gap in our understanding of freshwater food webs ${ }^{17,28}$.

To effectively conserve riverine biodiversity, we must encompass spatio-temporal variation of multiple trophic levels to understand the underlying dynamics of both biodiversity patterns and food-web characteristics ${ }^{4,25,26}$. In particular, molecular monitoring techniques may now provide a suitable solution to break through the above-mentioned methodological constraints caused by sampling based primarily on species sight or capture. Environmental DNA, or eDNA, is the collection of DNA extracted from an environmental sample such as water, air or sediment ${ }^{29}$. By collecting eDNA we can screen samples for multiple taxonomic groups via metabarcoding ${ }^{30}$, thereby creating a biodiversity assessment suitable for food-web reconstruction.

Here, we use eDNA metabarcoding to assess patterns of biodiversity and reconstruct local food webs via a metaweb-based approach ${ }^{31}$. The metaweb approach is suitable to capture food-web patterns based on taxa co-occurrence data ${ }^{24,32}$ in both terrestrial and aquatic systems. We used high-throughput sequencing and a multi-marker approach to examine three taxonomically relevant groups, namely fish (via the 12 S barcode region), invertebrates (cytochrome c oxidase I - COI) and bacteria (16S) in a large-scale river network over the course of three seasons (spring, summer and autumn). This approach allowed us to test for association of biodiversity patterns and food-web structures with network location and seasonal change. We found contrasting effects on biodiversity patterns and food-web structure from spatial and temporal influences, respectively, providing insight into the underlying changing ecosystem dynamics and indicating that effective and targeted conservation measures must consider them jointly.

Results

Data collection and community construction

We collected water samples from the upper Thur catchment, Switzerland, which covers approximately $700 \mathrm{~km}^{2}$ and is made up of three sub-catchments: River Thur, Necker and Glatt. Seventy-three field sites were selected to allow for maximum coverage across the catchment area, comprising of a broad size range of upstream drainage sizes (i.e., the drainage area size indicates the location of the site within the catchment: upstream sites having a small drainage area and lowland sites having a larger drainage, see Fig. 1). Water samples were filtered on site and DNA extracted in a specialist clean lab environment at Eawag, Switzerland. A total of 12.29 million, 14.32 million and 14.02 million raw reads were produced from the $12 \mathrm{~S}, \mathrm{COI}$ and 16 S
libraries, respectively. After bioinformatic processing the average sequencing read depth per sample was: $43,176,50,704$ and 49,857 for 12 S , COI and 16 S , respectively. This included 159 Zero-radius Operational Taxonomic Units (ZOTUs), 3179 ZOTUs and 11,320 ZOTUs for 12S, COI and 16S respectively (see Methods and Supplementary Information Table S1 for details on laboratory and bioinformatic analysis). For further analysis, ZOTUs were merged to genus level and only fish genera, invertebrate genera with an aquatic life stage and bacteria associated with freshwater were kept for further analysis (See Methods for further details). Analysis was performed on presence/absence data to merge the three libraries for the complete freshwater community and exclude a possible influence of uneven sample read depth generated from multiple markers (see also ${ }^{33}$).

To quantify biodiversity, we calculated α-diversity (local richness) at genus level at each site and compared β-diversity (variation in community composition between sites) by using Jaccard dissimilarity. Jaccard dissimilarity was also partitioned into taxon replacement (turnover) and taxon loss (nestedness) components to assess the mechanisms contributing to the variation in community assemblage across the catchment.

To measure food webs and functional characteristics of the community, we constructed a metaweb based on known interactions of genera classified into different functional feeding groups (Fig. 2; see also Methods and Supplementary Information Table S2). We defined local food webs at each field site based on genera co-occurrence and the corresponding subset of interactions from the metaweb, to determine broad changes in the community over time and
space. With this approach, variation in food-web structures and function feeding groups emerge from the spatio-temporal differences in genus composition (See Methods for further details).

To assess the relationship between α-diversity of each group (fish, invertebrates and bacteria) and food-web structures with site location within the catchment, we ran linear mixed model analysis. Drainage area $\left(\mathrm{km}^{2}\right)$ was \log transformed to fit model assumptions. For each dependent variable, drainage area and season were the fixed effects, while site was the random effect. We determined the overall effect of both factors using analysis of variance and contrast testing of estimated marginal means to determine the influence of seasonal changes on all α-diversity and food-web elements (see Methods for details). To examine the effect of river distance on β diversity we constructed a matrix of pairwise distances for sites that were connected along the fluvial network and to examine the effect of river distance on β-diversity we performed a Mantel test (see Methods and Supplementary information).

Spatial and temporal biodiversity patterns

In total we detected 374 genera across all organismal groups associated with freshwater, including 12 fish genera, 80 invertebrate genera and 282 bacteria genera. When combining all seasons, α-diversity (genus richness) ranged between 8-96 genera with all taxonomic groups combined (Fig. 1). Over the different seasons, mean local α-diversity was 70 (range 10-92) in spring, 48 (range 8-85) in summer, and 63 (range 19-96) in autumn (See Supporting Information Fig. S1 and Table S3). We used mixed models to assess the influence of drainage area and season on the local α-diversity of each group (Fig. 3, for model output see Supporting Information Table S4-S6). Of the three taxonomic groups, only fish α-diversity significantly
increased with the size of the drainage area ($\mathrm{p}<0.001$, Fig. 3a and Supporting Information for model output Table S4- S6), while for bacteria and invertebrates there was no significant relationship $(p=0.670$ and $p=0.239$, respectively, Fig. $3 c$ and $3 e$). There was, however, a significant seasonal effect in α-diversity on invertebrate and bacteria genera ($\mathrm{p}<0.001$ for both groups, Fig. 3d and 3f, see Supporting Information Table S4-S6). The influence of seasons can be seen further in the contrast testing (Fig. 3b, d and fand Supporting Information Table S7 for full contrast testing results), which shows invertebrate α-diversity in spring was significantly higher compared to summer and autumn ($\mathrm{p}<0.001$, Fig. 3d), and bacteria α-diversity in summer was significantly lower compared to spring and autumn (p <0.001, Fig. 3f). Fish α-diversity however did not vary significantly between seasons, with the mean number of 2 (range $0-6$) fish genera remaining constant (Fig. 3b).

Regarding the β-diversity across the catchment, the Jaccard's dissimilarity significantly increased with the river distance among sites in all organismal groups across all seasons, apart from bacteria in spring and autumn (fish Mantel statistics: Spring 0.143, p <0.01, Summer $0.171, p=0.001$, Autumn $0.321, p=0.001$; invertebrate Mantel statistics: Spring $0.095, p<0.05$, Summer $0.169, \mathrm{p}=0.001$ and Autumn 0.114, $\mathrm{p}<0.05$; bacteria Mantel statistics: Spring -0.058 , $\mathrm{p}=0.834$, Summer 0.179, $\mathrm{p}<0.005$ and Autumn $0.069, \mathrm{p}=0.12$, See Supplementary Information Table S8). Further partitioned analyses on taxon replacement and loss revealed contrasting patterns. Taxon replacement between sites increased over river distance for all groups in most seasons (significant or marginally significant, see Table S8), apart from fish in spring (Mantel statistics 0.07, $\mathrm{p}=0.891$) invertebrates in spring (Mantel statistics $0.066, \mathrm{p}=$ 0.051) and bacteria in spring and summer (Mantel statistics $0.016, \mathrm{p}=0.34$ and Mantel statistics
$0.07, p=0.068$, respectively). In contrast, taxon loss was only found to significantly increase over river distance for fish in spring and autumn (Mantel statistics $0.219, \mathrm{p}=0.001$ and $0.059, \mathrm{p}$ $=0.05$, respectively) and bacteria in summer (Mantel statistics 0.089, $\mathrm{p}<0.05$).

Spatial and temporal changes in food-web structure and functional characteristics

We examined commonly used food-web structural characteristics (link density, connectance, nestedness, omnivory, coherence, number of links, modularity, and robustness), as well as functional characteristics (functional diversity and redundancy). Functional characteristics were examined by using the designated functional feeding groups (e.g., shredders and omnivorous fish), based on specialised feeding behaviours (Fig. 2 \& Supporting Information Fig. S2). Here we describe the results of link density, connectance, nestedness and omnivory as the most ecologically important food-web descriptors in our study, while the results from the remaining descriptors (coherence, number of links, modularity, and robustness) are presented in the Supplementary Information (See Fig. S3). Drainage area did not significantly influence any of the food-web structures looked at (Fig. S3 and S4). However, season had a significant influence on the change in food-web structures (Fig. 4 and S4), namely, link density ($p<0.001$, Fig. 4a), connectance ($p<0.001$, Fig. 4b), nestedness ($p<0.001$, Fig. 4c), and omnivory ($p<0.001$, Fig. 4 c and see Supporting Information Table S4-S6 for full results), indicating that seasonal variation is of more importance in food-web dynamics than site location within the riverine network. To examine seasonal variation further, we carried out contrast testing, which showed a range of seasonal change in food-web dynamics. In particular, spring had significantly higher link density than summer and autumn ($p<0.001$ and $p<0.001$, respectively, Fig. 4a); autumn had significantly lower connectance than spring and summer ($\mathrm{p}<0.001$ and $\mathrm{p}<0.001$,
respectively, Fig. 4b), and the same is true for nestedness ($\mathrm{p}<0.01$ and $\mathrm{p}<0.01$, respectively, Fig. 4c); finally, summer had significantly higher omnivory than autumn ($p=0.001$, Fig $4 d$, see Supporting Information Table S7 for full contrast testing results).

Functional diversity (defined as the change in function feeding groups used in this study) significantly decreased with drainage area and was also significantly different across seasons (p <0.05 Fig. 5a and p <0.001 Fig. 5b, respectively, see Supporting Information Table S4-S6 for full results), whereas only season has a significant influence on the functional redundancy ($\mathrm{p}<$ 0.001 , Fig. 5 d). To further examine the changes in seasonal influence we compared seasonal values for all functional characteristics. Functional diversity in spring was significantly higher than in summer and autumn ($p=0.001$ and $p=0.001$, respectively, Fig. $5 b$), while functional redundancy in summer was significantly lower than in spring and autumn ($\mathrm{p}<0.001$ and $\mathrm{p}<$ 0.001, respectively, Fig. 5d and Supporting Information Table S7).

Discussion

Studies of biodiversity and food-web assemblages in riverine networks are often constrained to local scales or aggregated to a single time point, which in essence fails to capture the spatial processes and the temporal fluctuations that together play a key role in community dynamics present within a river network ${ }^{8}$. Our study is a first assessment utilising data derived from eDNA metabarcoding to detect patterns of biodiversity and food-web characteristics across three major taxonomic groups, namely fish, invertebrates and bacteria, in a whole river network at a spatial and temporally large scale. In our study we find contrasting patterns of biodiversity across these
groups, which indicates different mechanisms may shape these organismal communities. By using a metaweb approach, we showed a strong signature of seasonality in food-web structures across the river network. We also showed that functional characteristics are influenced by both spatial and temporal changes. Overall, our study supports the need to include both spatial and temporal scales in order to understand changes in ecosystems, particularly as we see increased effects of contemporary global change.

Aquatic biodiversity is subject to fluvial influences within a dendritic network, whereby spatial patterns of α-diversity and β-diversity are known for key groups, such as fish, invertebrates and microbes ${ }^{11-14,34}$. Our data is congruent with previous studies on fish diversity ${ }^{11,33}$, in that both $\alpha-$ diversity significantly increased downstream, and β-diversity (community dissimilarity) significantly increased with river distance in all three seasons. However, patterns for invertebrates and bacteria differed from the predictions, and exhibited no significant influence of drainage size on α-diversity but were influenced by seasonal change. For invertebrates, seasonal variation can be linked directly to the emergence of the non-aquatic adult life stage of several macroinvertebrate genera we detected (Diptera, Ephemeroptera, Plecoptera and Trichoptera), which takes place in the late spring and summer months ${ }^{27}$, and literally removes these organisms from the aquatic food-web as they become air-bound and often end up in terrestrial food-webs. For the spatial patterns, past studies often looked at spatial scales much larger or much smaller, and thus disparity may be due to a mismatch in scale looked at here. For example, Finn and colleagues ${ }^{13}$ suggested headwaters harbour disproportionately high invertebrates compared to lower points in the catchment, but their studied focused on small (1-2) and mid (3-4) stream orders only, whereas the sites in our study ranged from small to much larger rivers (stream
orders $1-7,{ }^{35}$). Contrastingly, when looking at scales about 50 -fold larger, Altermatt and colleagues ${ }^{14}$ showed the number of key aquatic invertebrate taxa (Ephemeroptera, Plecoptera and Trichoptera) increased with catchment size, however they also found a combination of local factors (catchment areas, drainage area, elevation and network centrality) had the greatest influence on local invertebrate α-diversity. Possibly, the scale at which we study invertebrate α diversity and contributing local factors falls between such small-scale vs large-scale perspective, but instead we detected regional patterns where α-diversity remains relatively constant throughout the catchment. Similarly, drainage area did not have a significant effect on bacterial α-diversity, and β-diversity increased with river distance in summer only. We can therefore postulate that aquatic bacteria are able to persist as they disperse through the catchment; however, the number of bacteria genera (the α-diversity) that do persist are subject to seasonal influences. Our findings expand on past studies, highlighting the influences of scale and temporal variation on different groups, which is of utmost importance when trying to conserve biodiversity and understand the differing drivers behind these patterns in a river network.

By resolving the fundamental trophic relationships among broad feeding groups, we established a trophic interaction metaweb for the three taxonomic groups examined in this study. The metaweb with genus co-occurrence data thus allowed our investigation of both spatial and temporal influences on the characteristics of local food webs. We found that the most significant factor driving freshwater riverine food-web characteristics was season. All food-web structural characteristics (apart from the number of links and robustness) were lowest in autumn, despite overall α-diversity being lowest in summer. This indicates that the food-web structural variation we detected is not merely reflecting the genera richness dynamics over seasons, but the genera
composition dynamics instead. In other words, the structures of the food webs are more influenced by those genera absent in autumn. Indeed, previous studies on freshwater food webs that have examined temporal changes have often found reduced productivity as the main driver behind a declined food-web structure in winter vs summer ${ }^{20,36}$. Thus, the decrease in structure we captured in this study could be the start of the productivity restriction seen in food webs over the winter months. The less-connected and less-nested food-web structure also implies weaker resource competition among consumers, which may be necessary for their coexistence in the food web ${ }^{37}$, especially when competition becomes more costly with lower resource productivity in autumn.

Moving from broad food-web patterns to examining functional feeding groups enables us to study fundamental changes within the community and possible effects at the ecosystem level ${ }^{17}$. Interestingly, and contrary to the biodiversity patterns and food-web dynamics, we see significant effects of both drainage area and season on the functional diversity, which we found to be higher in smaller drainage areas and in spring. The spatial part of such a pattern along the hierarchical river network is demonstrated in the River Continuum Concept, which shows increased diversity of invertebrate functional feeding groups at low stream orders ${ }^{38,39}$. Whereas both drainage area and season influences functional diversity, season is the only significant influence on functional redundancy, with fewer genera per functional feeding group observed in summer rather than in autumn. These results indicate that in summer the genera absent are across functional groups, whereas in autumn the genera absent include whole functional feeding groups leading to the constriction of local food webs. The inconsistent temporal patterns of food-web structure versus functional characteristics further imply that multiple feeding groups share

Blackman et al.

similar trophic roles in the food web (Fig. S2), though they each adopt specialised feeding behaviour within the catchment and thus perform distinctive ecological functions (e.g., shredders, collectors, filterers). In other words, the structure and function of a food web does not necessarily match and synchronise (sensu stricto ${ }^{22,40}$). These results are particularly encouraging, because the patterns of both food-web structure and functional diversity are known to be important for ecosystem health assessment and identifying potential vulnerability to perturbation ${ }^{17,26,41}$. Addressing the consistency of their patterns across spatial and temporal scales will likely lead to novel and comprehensive understanding of biodiversity and ecosystem function loss due to environmental change.

In our study, the functional feeding groups were defined at the level of genus, while we expect investigations at finer resolutions will be promising for future work that can reveal not only more accurate patterns, but also the influences of sampling taxonomic resolution. Similarly, our selection of focal taxa may have influenced the food-web patterns we detected. For example, algae become an increasingly important resource when moving from allochthonous inputs in headwaters to larger streams with increased light levels further down the catchment ${ }^{38,39}$. With the selected three key taxonomic groups in riverine ecosystems, we present a broad and relevant view capturing trophic roles from basal resources (cyanobacteria) to top consumers (piscivorous fish), captured by three relatively broad metabarcoding markers. However, we also by default excluded some further groups, such as algae or terrestrial taxa, which could have been relevant as primary producers and as terrestrial-aquatic linkages, respectively. The choice of taxonomic groups looked at was both methodologically defined, as well as driven by the goal to have an
overseeable and clearly aquatic-focused view on food webs. Thereby, it captures by default a subset from the real-world food web in which more species are involved.

By using the eDNA technique, we gain three notable advantages: its scalability for monitoring complex and large systems, its reusable nature, and its being a non-invasive method of collecting biodiversity information ${ }^{42,43}$. Our understanding of how the information we ascertain from eDNA sample collection has greatly improved in recent years due to studies on the hydrological influences ${ }^{44}$ and a general understanding of the rate of eDNA persistence in lotic ecosystems ${ }^{45}$. However, the successful detection of taxa with eDNA is also linked to the ecology of individual species ${ }^{45}$, and some seasonal variation in the detection of several taxonomic groups is known ${ }^{46-}$ 49. Therefore, it is possible that some taxa that were not detected in the colder season (autumn) in this study were false-negative records. However, these non-detections are likely linked to low abundance or low metabolic rates, and thus these species are, while not physically absent, at least "relatively absent" in ecological terms.

In summary, our work showed we can construct comprehensible food webs at a large scale and over time by using eDNA sampling and combining multiple markers. Based on the biodiversity patterns we observed that spatial and temporal influences are different across groups.

Furthermore, temporal influences were the significant driver of change for commonly used food web descriptors. Our approach is a first demonstration of the application of eDNA to a complex river network for the reconstruction of food web patterns and can be easily replicated in other systems worldwide. As biodiversity in freshwater systems face huge threats from anthropogenic pressures, including global climate change, establishing vital information on the changes in
biodiversity and food web composition over spatio-temporal scales is essential for the detection of these stressors in order to protect and conserve river systems.

Methods

Site selection and eDNA sample collection

Environmental DNA samples were collected from the edge of the waterbody using single use disposable 50 ml syringes. At each site on each sampling event, a total of 1 L of water was filtered through two $0.22 \mu \mathrm{~m}$ sterivex filters (Merck Millipore, Merck KgaA, Darmstadt, Germany), sealed with luer caps and placed in individually labelled bags. Sampling was carried out over five consecutive days in May (spring), August (summer) and October (autumn) in 2018. During the summer sampling campaign, four sites were dry and could not be sampled (total samples across all seasons is $n=215$). Negative field control samples were collected on each sampling day by filtering 500 ml of $\mathrm{ddH}_{2} \mathrm{O}$ through a sterivex filter in the same way as field samples were collected $(\mathrm{n}=15)$. Negative field samples were processed alongside field samples. All samples were placed in labelled bags and cooled in a cool box until frozen at $-20^{\circ} \mathrm{C}$ on return to the laboratory.

Extraction and library preparation

DNA extraction and first round PCR set up was carried out in a specialist eDNA clean lab, with separate lab facilities for post PCR workflows. Samples were extracted using DNeasy PowerWater Sterivex Kit (Qiagen, Hilden, Germany) following the manufacturer's protocol. Prior to extraction, each sterivex was defrosted at room temperature and then wiped with 10%
bleach, then 70% ethanol solution prior to extraction to remove any DNA from the outside of the filters. Extraction controls were carried out alongside sample extractions and consisted of blank sterivex filters $(\mathrm{n}=5)$. Samples selected at random were analysed using a QuBit 3.0 fluorometer for double stranded DNA concentration, values measured between $0.317-27.5 \mathrm{ng} / \mu \mathrm{l}$. All negative controls (field and extraction) were tested and recorded below detection limits.

Samples were sequenced with the following markers: a 106 bp fragment of the mitochondrial 12 S marker $\left({ }^{50}\right.$, hereafter referred to as 12 S$)$ used to amplify vertebrate DNA, a 313 bp fragment of the mitochondrial cytochrome oxidase I marker (${ }^{51}$ and ${ }^{52}$, hereafter referred to as COI) used to amplify metazoan DNA and a 450 bp fragment of the V3-V4 region of the 16 S marker (hereafter, 16S) used to amplify bacteria and archaea DNA (See Supporting Information Table S8 for primer sequences). Positive controls ($\mathrm{n}=6$ per library prep, see Supporting Information Table S9) and PCR negative controls ($2 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}, \mathrm{n}=11$ per library prep) were included in each library. Each library consisted of 252 samples in total (including positive and negative controls).

Library preparation followed a two-step PCR process for both the 12 S and COI markers, the 16 S library was carried out using a three-step PCR^{53} (See Supporting Information Methods for full details), all samples were amplified in triplicate. After the initial amplification, where Nextera ${ }^{\circledR}$ transposase sequences (Microsynth, AG, Balgach, Switzerland) are added to the PCR product, all samples were tested for amplification success with the AM320 method on the QiAxcel Screening Cartridge (Qiagen, Germany). PCR products were cleaned using ZR-96 Plate clean-up Kit (Zymo Research) following the manufacturers protocol with the minor modification by which
the elution step was prolonged to 2 minutes at 4000 g . The clean amplicons were indexed using the Illumina Nextera XT Index Kit A, C and D following the manufacturer's protocol (Illumina, Inc., San Diego, CA, USA). A reaction contained $25 \mu \mathrm{~L} 2 \mathrm{x}$ KAPA HIFI HotStart ReadyMix (Kapa Biosystems, Inc., USA), $5 \mu \mathrm{~L}$ of each of the Nextera XT Index adaptors and $15 \mu \mathrm{~L}$ of the DNA templates. The final PCR products were then cleaned using the Thermo MG Magjet bead clean up kit (Thermo Fisher Scientific Inc., MA, USA) and a customized programme for the KingFisher Flex Purification System (Thermo Fisher Scientific Inc., MA, USA) in order to remove excessive Nextera XT adaptors. The cleaned product of $50 \mu 1$ was then eluted into a new plate and stored at $4{ }^{\circ} \mathrm{C}$ prior to quantification. For each library, the clean indexed amplicons were quantified in duplicate on a Spark Multimode Microplate Reader (Tecan, US Inc. USA) prior to equimolar pooling using the BRAND Liquid Handling Station (BRAND GMBH +CO KG, Wertheim, GE). Negative extraction and PCR controls were added according to their concentration. Library concentration was quantified on the Agilent 4200 TapeStation (Agilent Technologies, Inc., USA) and verified by the Qubit the HS Assay Kit. Paired-end sequencing was performed on an Illumina MiSeq (Illumina, Inc. San Diego, CA, USA) at the Genetic Diversity Centre at ETH (See supporting information Table S1 for library loading information).

Bioinformatics

After each of the libraries were sequenced, the data was demultiplexed and reads were quality checked using usearch v11.0.667 ${ }^{54}$ and FastQC ${ }^{55}$. Raw reads were first end-trimmed, merged and full-length primer sites were removed using usearch v11.0.667 ${ }^{54}$ (16 S reads were merged using Flash v1.2.11, ${ }^{56}$). The merged and primer trimmed reads were quality filtered using prinseq-lite (0.20.4). The UNOISE3 (usearch v11.0.667) workflow with an additional clustering
of 99% (usearch v11.0.667) identity was applied to obtain error corrected and chimera-filtered sequence variants ZOTUs. The ZOTUs were then clustered using a 97%, similarity approach and taxonomic assignment with a 0.85 confidence threshold was performed using SINTAX in the usearch software v11.0.667 ${ }^{54}$ with following databases: 12S: NCBI BLAST (v200416), COI: Custom reference database (Including MIDORI un-trimmed (V20180221) and 16S: GreenGenes (V13.5), RDP (160411) and SILVA (V128). See Supporting Information Methods for all bioinformatic parameters and reference database information used for each library. Prior to downstream analysis, 0.1% of reads were removed from each sample to reduce errors caused by tag-jumping or minor contamination in library preparation ${ }^{57}$.

Biodiversity patterns

We calculated α-diversity (genus richness) at each site and compared β-diversity between sites by using Jaccard dissimilarity using the betapart R-package ${ }^{58}$. We constructed a matrix of pairwise distances between sites along the fluvial network with the igraph R-package ${ }^{59}$ and compared the similarity between β-diversity and river distance using the Mantel test with the vegan R-package ${ }^{60}$. To further partition β-diversity into species loss and replacement, sites which did not record genus from a target group were removed from the analysis of that group only.

Feeding group assignment

Feeding groups were determined based on literature, species inventories and targeted expert knowledge ${ }^{61,62}$ for fish and invertebrates. Genera of bacteria were included if the phyla they belong to has a strong association with freshwater habitat ${ }^{63}$, bacteria were then broadly divided into heterotrophic and cyanobacteria, the latter constituting a basal resource. A constant basal
resource of detritus was also included in all food webs (See Supporting Information Table S2 for assignment of genera to feeding groups).

Food-web structure

We constructed a metaweb based on known trophic relationships among feeding groups (Supplementary Table S2), then defined local food webs using this metaweb at each field site, based on co-occurrence of genera (nodes) and their interactions (links). The metaweb approach has been applied to identify food-web characteristic change across spatial gradients in terrestrial ecosystems ${ }^{32}$, and temporal changes in aquatic ecosystems ${ }^{24}$, but has yet to be used at a large spatial scale in an aquatic ecosystem over time.

We then quantified common food-web structural characteristics for each local food web generated. These included fundamental node-link composition features, i.e., number of links (L), link density (L/S, the number of feedings links per taxa divided by the genus α-diversity at each site) and connectance ($\mathrm{L} / \mathrm{S}^{2}$, the proportion of realised interactions). To further explore the holistic topology of these food webs and their change over space and time, we adopted the following indices to determine some more key features. Nestedness is an indication that the diets of specialist taxa are subsets of generalist taxa's diets, and was calculated using the nestedness metric based on Overlap and Decreasing Fill (NODF) function in vegan ${ }^{60}$. Modularity is indication of a less nesteded network ${ }^{64}$ in that the nodes are characterised into modules which, unlike nested structures, do not overlap, and was calculated using the multilevel.community() function from the igraph package ${ }^{59}$. Omnivory is defined as the proportion of taxa with a mixed trophic level diet. Thus, the more omnivores a community has, the less coherent the food web ${ }^{65}$.

Omnivory is often debated as a measure of food-web stability, and weak omnivorous interactions are likely to lead to a more stable food web ${ }^{66}$. Trophic level of genera and omnivory were calculated using the methods stated in William and Martinez ${ }^{21}$. Coherence is defined as the overall degree of homogeneity of the difference between trophic levels of every consumerresource pair within the local food web. As described by ${ }^{65}$, the coherence of a network can reliably be used to establish the stability of a network by looking at the distribution of trophic distances over all links in each network. For example, a perfectly coherent network ($q=0$) implies that each taxon within the food-web only occupies a single trophic level. Coherence was calculated using the methods stated in Johnson et al ${ }^{65}$. Robustness was defined by Dunne and Williams ${ }^{5}$ as the "proportion of species subjected to primary removals that resulted in a total loss ... of some specified proportion of the species". In our study we used 50% as the proportion of species lost and excluded basal resources for primary removal. Robustness was calculated using the methods stated in Dunne and Williams ${ }^{5}$.

To explore the change in functional characteristics within the food webs, we used the broad feeding groups as described when constructing the interaction network (See Fig. 1 and Fig. S2). Functional diversity was calculated as the number of feeding groups that had at least one genus present in the sample. Functional redundancy was calculated as α-diversity divided by functional diversity, reflecting the average number of genera within a feeding group.

Data analysis

We ran linear mixed model analysis to assess the relationship between group genus α-diversity (bacteria, invertebrates and fish), food-web structural characteristics (coherence, connectance,
link density, number of links, omnivory, modularity, nestedness and robustness) and functional characteristics (functional diversity and redundancy) with site location within the catchment. Drainage area $\left(\mathrm{km}^{2}\right)$ was log transformed to fit model assumptions. For each dependent variable, drainage area and season were the fixed effects. We included site as a random effect to account for repeated sampling of sites (e.g., genus α-diversity \sim drainage area + season $+(1 \mid$ Site $)$). Significance was calculated using the lmerTest R-package ${ }^{67}$, which applies Satterthwaite's method to estimate degrees of freedom and generate p-values for mixed models (Table S4 and S5). We then used anova() to see the overall effect of both factors: Drainage area and Season (Table S6) and follow up contrast testing were carried out using the emmeans R-package ${ }^{68}$ to test for significant differences between seasons (Table S7).

Acknowledgments: We thank Samuel Hürlemann and Jeanine Brantschen for their help in the laboratory and field. We also thank Xing Xing, Silvana Kaeser, Elvira Mächler and Roman Alther for their assistance with field sample collection and Silvia Kobel and Aria Minder (GDC), for their help with library preparation. The data generation and analysis in this paper was generated in collaboration with the Genetic Diversity Centre (https://gdc.ethz.ch), ETH Zurich. Funding is from the University of Zurich Research Priority Programme Global Change and Biodiversity and the Swiss National Science Foundation (grants No. PP00P3_179089 and 31003A_173074) to FA.

Author contributions:

R.C.B and F.A conceived the study. R.C.B performed the genomic lab analyses and J.C.W. performed the bioinformatics. R.C.B assigned trophic levels to all taxa and constructed the
metaweb, and H.H performed food-web analysis. R.C.B performed all statistical analyses. R.C.B produced all figures and illustrations. All authors contributed to the interpretation of the networks and discussed and commented on the paper.

Competing interests:

The authors confirm there are no competing interests.

Materials \& Correspondence:

Correspondence to Rosetta C. Blackman or Florian Altermatt

Data availability

Sequencing data generated during this study will be made available in a public repository upon publication.

References

1. Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279-338 (1960).
2. Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B. \& Kunin, W. E. Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393-396 (2004).
3. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45-50 (2015).
4. Ings, T. C. et al. Ecological networks--beyond food webs. J. Anim. Ecol. 78, 253-269 (2009).
5. Dunne, J. A. \& Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1711-1723 (2009).
6. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551-556 (2020).
7. Vellend, M. The Theory of Ecological Communities. vol. 57229 (Princeton University Press., 2016).
8. Altermatt, F. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47, 365-377 (2013).
9. Peterson, E. E. et al. Modelling dendritic ecological networks in space: an integrated network perspective. Ecol. Lett. 16, 707-719 (2013).
10. Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 63, 141-163 (2018).
11. Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453, 220-222 (2008).
12. Besemer, K. et al. Headwaters are critical reservoirs of microbial diversity for fluvial
networks. Proc. Biol. Sci. 280, 20131760 (2013).
13. Finn, D. S., Bonada, N., Múrria, C. \& Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. jnbs 30, 963-980 (2011).
14. Altermatt, F., Seymour, M. \& Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40, 2249-2260 (2013).
15. Harvey, E., Gounand, I., Fronhofer, E. A. \& Altermatt, F. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proceedings of the Royal Society B: Biological Sciences 285, 20182441 (2018).
16. Jason M. Tylianakis, Etienne Laliberté, Anders Nielsen, Jordi Bascompte. Conservation of species interaction networks. Biol. Conserv. 143, 2270-2279 (2010).
17. Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689-697 (2012).
18. Woodward, G. \& Hildrew, A. G. Food web structure in riverine landscapes. Freshw. Biol. 47, 777-798 (2002).
19. Williams, R. J. \& Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163, 458-468 (2004).
20. Thompson, R. M. \& Townsend, C. R. The Effect of Seasonal Variation on the Community Structure and Food-Web Attributes of Two Streams: Implications for Food-Web Science. Oikos 87, 75-88 (1999).
21. Wood, S. A., Russell, R., Hanson, D., Williams, R. J. \& Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769-3782 (2015).
22. J. M. Tylianakis \& R.J. Morris. Ecological networks across environmental gradients.

Annual Review of Ecology, Evolution, and Systematics 48, 25-48 (2017).
23. Romanuk, T. N. et al. The Structure of Food Webs along River Networks. Ecography 29, 3-10 (2006).
24. Olivier, P. et al. Exploring the temporal variability of a food web using long-term biomonitoring data. Ecography 42, 2107-2121 (2019).
25. Poisot, T., Canard, E., Mouillot, D., Mouquet, N. \& Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353-1361 (2012).
26. Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. Camb. Philos. Soc. (2018) doi:10.1111/brv. 12433.
27. Tavares-Cromar, A. F. \& Williams, D. D. The importance of temporal resolution in food web analysis: Evidence from a detritus-based stream. Ecol. Monogr. 66, 91-113 (1996).
28. Poisot, T., Stouffer, D. B. \& Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243-251 (2015).
29. Thomsen, P. F. \& Willerslev, E. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4-18 (2015).
30. Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. \& Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).
31. Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure and Dynamics (ed. Pascual, J. A. \& Dunne, J. A.) 27-86 (University Press, Oxford., 2006).
32. Neff, F. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci Adv 7, (2021).
33. Blackman, R. C. et al. Mapping biodiversity hotspots of fish communities in subtropical streams through environmental DNA. Scientific Reports 4, e65352 (2021).
34. Widder, S. et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc. Natl. Acad. Sci. U. S. A. 111, 12799-12804 (2014).
35. Mächler, E. et al. Assessing different components of diversity across a river network using eDNA. Environmental DNA 1, 290-301 (2019).
36. Peralta-Maraver, I., López-Rodríguez, M. J. \& de Figueroa, J. M. T. Structure, dynamics and stability of a Mediterranean river food web. Mar. Freshwater Res. 68, 484-495 (2017).
37. Kondoh, M., Kato, S. \& Sakato, Y. Food webs are built up with nested subwebs. Ecology 91, 3123-3130 (2010).
38. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. \& Cushing, C. E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130-137 (1980).
39. Power, M. E. \& Dietrich, W. E. Food webs in river networks. Ecol. Res. (2002) doi:10.1046/j.0912-3814.2002.00503.x.
40. Montoya, D., Yallop, M. L. \& Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).
41. Gravel, D., Albouy, C. \& Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, (2016).
42. Ruppert, K. M., Kline, R. J. \& Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17, e00547 (2019).
43. Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607-618 (2020).
44. Carraro, L., Mächler, E., Wüthrich, R. \& Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).
45. Barnes, M. A. \& Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1-17 (2016).
46. Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).
47. Erickson, R. A., Merkes, C. M., Jackson, C. A., Goforth, R. R. \& Amberg, J. J. Seasonal trends in eDNA detection and occupancy of bigheaded carps. J. Great Lakes Res. 43, 762770 (2017).
48. Troth, C. R., Sweet, M. J., Nightingale, J. \& Burian, A. Seasonality, DNA degradation and spatial heterogeneity as drivers of eDNA detection dynamics. Sci. Total Environ. 768, 144466 (2021).
49. Thalinger, B. et al. The Effect of Activity, Energy Use, and Species Identity on Environmental DNA Shedding of Freshwater Fish. Frontiers in Ecology and Evolution 9, 73 (2021).
50. Kelly, R. P., Port, J. A., Yamahara, K. M. \& Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS One 9, e86175 (2014).
51. Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
52. Geller, J., Meyer, C., Parker, M. \& Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic
surveys. Mol. Ecol. Resour. 13, 851-861 (2013).
53. Mansfeldt, C. et al. Microbial community shifts in streams receiving treated wastewater effluent. Sci. Total Environ. 709, 135727 (2020).
54. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461 (2010).
55. Andrews, S. FASTQC A Quality Control tool for High Throughput Sequence Data. Babraham Institute (2015).
56. Magoč, T. \& Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957-2963 (2011).
57. Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101-3119 (2016).
58. Baselga, A. \& Orme, C. D. L. betapart : an R package for the study of beta diversity : Betapart package. Methods Ecol. Evol. 3, 808-812 (2012).
59. Csárdi, G. \& Nepusz, T. The igraph software package for complex network research. Inter Journal, Complex Systems 1695, 1-9 (2006).
60. Oksanen, J. et al. vegan: Community Ecology Package 2.5-6. https://CRAN.Rproject.org/package=vegan (2019).
61. Tachet H., Bournaud M., Richoux P. \& Usseglio-Polatera P. Invertébrés d'eau douce systématique, biologie, écologie. (CNRS Editions, Paris., 2010).
62. Schmidt-Kloiber, A. \& Hering, D. www.freshwaterecology.info - An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271-282 (2015).
63. Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. \& Bertilsson, S. A guide to the
natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14-49 (2011).
64. Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811-817 (2010).
65. Johnson, S., Domínguez-García, V., Donetti, L. \& Muñoz, M. A. Trophic coherence determines food-web stability. Proc. Natl. Acad. Sci. U. S. A. 111, 17923-17928 (2014).
66. Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality? Freshw. Biol. 62, 821-832 (2017).
67. Kuznetsova, A., Brockhoff, P. B. \& Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, Articles 82, 1-26 (2017).
68. Lenth, R. V. Estimated Marginal Means, aka Least-Squares Means [R package emmeans version 1.6.1]. (2021).

Blackman et al.

Figures:
Figure 1: Genus α-diversity of bacteria, invertebrates and fish collected from eDNA samples in the Thur catchment in (a) spring, (b) summer and (c) autumn. The circles are scaled proportionate to the α-diversity of each group. Grey lines give the sub-catchments Glatt, Necker, and Thur, respectively and the blue arrow shows the direction of flow.

Blackman et al.

Figure 2: Food-web network generated from eDNA data. All genera were categorised into feeding groups dependant on their dominant feeding behaviour, we then used this information to construct a trophic interaction metaweb using these links. Number of genera in each group is shown in circles, arrows indicate energy flow.

Blackman et al.

a.

d.

Blackman et al.

Figure 4: Food-web structural characteristics: Box plots showing the change in each foodweb structural characteristic over the three seasons: a : Link Density, b : Connectance, c :

Nestedness and d: Omnivory. Grey lines indicate link sample points over the three sampling seasons and colour represents season: yellow - Spring, green - Summer and orange - Autumn.

Blackman et al.

Figure 5: Functional diversity and functional redundancy. a and b: Functional Diversity, c and d: Functional Redundancy. Plots a and c show the change over drainage area. Line indicates linear mixed model with shaded area showing 95% confidence intervals as calculated using the model predictions and standard error. Plots b and d show change over season. Grey lines indicate link sample points over the three sampling seasons and colour represents season: yellow Spring, green - Summer and orange - Autumn.

