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Highlights:  14 

 Characterization factors (for human health and ecotoxicological impacts) were 15 

predicted using molecular descriptors. 16 

● Several linear or non-linear machine learning methods were compared. 17 

● The non-linear methods tend to outperform the linear ones using a train and test 18 

procedure. Cluster-then-predict approaches often show the best performances, 19 

highlighting their usefulness. 20 

● This methodology was then used to derive characterization factors that were missing 21 

for more than a hundred chemicals in USEtox®. 22 

 23 

 24 

Abstract: It is a real challenge for life cycle assessment practitioners to identify all relevant 25 

substances contributing to the ecotoxicity. Once this identification has been made, the lack of 26 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.20.453034doi: bioRxiv preprint 

mailto:remi.servien@inrae.fr
https://doi.org/10.1101/2021.07.20.453034
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

corresponding ecotoxicity factors can make the results partial and difficult to interpret. So, it is 1 

a real and important challenge to provide ecotoxicity factors for a wide range of compounds. 2 

Nevertheless, obtaining such factors using experiments is tedious, time-consuming, and made 3 

at a high cost. A modelling method that could predict these factors from easy-to-obtain 4 

information on each chemical would be of great value. Here, we present such a method, based 5 

on machine learning algorithms, that used molecular descriptors to predict two specific 6 

endpoints in continental freshwater for ecotoxicological and human impacts. The different 7 

tested machine learning algorithms show good performances on a learning database and the 8 

non-linear methods tend to outperform the linear ones. The cluster-then-predict approaches 9 

usually show the best performances which suggests that these predicted models must be 10 

derived for somewhat similar compounds. Then, predictions were derived from the validated 11 

model for compounds with missing toxicity/ecotoxicity factors. 12 

 13 

Graphical abstract:  14 

 15 

 16 

 17 
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Keywords: machine learning, Life Cycle Assessment, characterisation factors, toxicity, 1 

ecotoxicity, continental freshwater. 2 

 3 

1. Introduction 4 

 5 

Recent legislations such as the Registration, Evaluation, Authorization and restriction of 6 

Chemicals (REACH) regulation in the EU requires that manufacturers of substances and 7 

formulators register to provide eco/toxicological data for substances with volume higher than 8 

one metric ton per year. As an example, the U.S. Environmental Protection Agency (EPA) has 9 

more than 85,000 chemicals listed under the Toxic Substances Control Act (Hinds and Weller, 10 

2016). So, robust (eco)-toxicological data are quickly needed to make informed decisions on 11 

how to regulate new chemicals. These data must also be coupled with environmental 12 

exposures and sources data, to better understand the impact on the environment.  13 

 14 

To address the cause-effect relationships between the flow of molecules emitted by human 15 

activities and the consequences for ecosystems and humans, LCA offers a structured, 16 

operational, and standardized (Finkbeiner et al., 2006) methodological framework. Two main 17 

steps are at the core of this approach:  18 

 Quantification of the masses of substances emitted into the environment through the 19 

Life Cycle Inventory (LCI). While it is possible to rely on databases that facilitate this 20 

inventory work for the background of the system under study, this task must 21 

nevertheless be carried out on a case-by-case basis to represent all the specificities 22 

of the foreground elements. To best describe human activities, their specificities must 23 

be represented on a case-by-case basis. This is the task of the LCA practitioner. 24 

 Calculation of the impacts on ecosystems and human health of these emitted masses. 25 

Due to the complexity of environmental mechanisms, it is not possible to (re)model 26 

impact pathways on a case-by-case basis. Therefore, LCA uses characterization 27 

factors (CF) to assess the potential impacts of a compound. Concretely, if two 28 
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compounds are emitted with the same mass, the one with the higher CFs will have the 1 

higher impact. Then, CFs are multiplied by the emitted masses of each compound to 2 

determine the impacts. CFs are not recalculated for each study but provided within a 3 

Life Cycle Impact Assessment (LCIA) method. 4 

 5 

For a given impact, the LCIA method designer refers to the knowledge of the scientific 6 

community to model the mechanisms involved. For human toxicity and freshwater ecotoxicity, 7 

USEtox® (Rosenbaum et al., 2008), was developed by life cycle initiative under the United 8 

Nations Environmental Programme (UNEP) and the Society for Environmental Toxicology and 9 

Chemistry (SETAC) (Henderson et al. 2011) to produce a transparent and consensus 10 

characterization model. USEtox® is also used for the European Product Environmental 11 

Footprint (PEF) (Saouter et al., 2020). This model gathers in one single characterization factor 12 

the chemical fate, the exposure, and the effect for each of the several thousands of organic 13 

and inorganic compounds. Then, the USEtox® model results can be extended to determine 14 

endpoint effects expressed as total (i.e. cancer and non-cancer) disability-adjusted life years 15 

(DALY) for human health impacts and potentially disappeared fraction of species (PDF) for 16 

ecotoxicological impacts. The PDF represents an increase in the fraction of species potentially 17 

disappearing as a consequence of emission in a compartment while the DALY represents an 18 

increase in adversely affected life years. These endpoints are now consensual at an 19 

international level (Verones et al., 2017).   20 

If the structure of the USEtox® multimedia model is always the same, to determine the CF of 21 

a molecule, numerous physico-chemical parameters (such as solubility, hydrophobicity, 22 

degradability) and detailed toxicological and ecotoxicological data must be provided. For 23 

example, EC50 values (i.e. the effective concentration at which 50% of a population died) for 24 

at least three species from three different trophic levels are required for the ecotoxocological 25 

effect factor.  26 

 27 
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Over the past few decades, thousands of tests (in laboratory and field) have been carried out 1 

to evaluate the potential hazard effects of chemicals (He et al., 2017). Usually, toxicity testing 2 

has relied on in vivo animal models, which is extremely costly and time-consuming (Xia et al., 3 

2008). In recent years, under societal pressures, there has been a significant paradigm shift 4 

in toxicity testing of chemicals from traditional in vivo tests to less expensive and higher 5 

throughput in vitro methods (National Research Council, 2007). However, it is still extremely 6 

hard to test the number of existing and ever-increasing numbers of new chemicals, which 7 

leaves their impacts largely unknown. That’s why more computational models are needed to 8 

complement experimental approaches to decrease the experimental cost and determine the 9 

prioritization for those chemicals which may need further in vivo studies. Such models already 10 

exist, like QSAR models that are mostly linear models based on the chemical structure of 11 

compounds (Danish QSAR database (DTU, 2015), ECOSAR (Mayo-Bean et al., 2011), VEGA 12 

(Benfenati et al., 2013)) and are used to predict ecotoxicological data (LC50) needed for 13 

REACH for example. Recently, machine learning algorithms have been used to predict 14 

hazardous concentration 50% (HC50) based on 14 physico-chemical characteristics (Hou et 15 

al., 2020a) or on 691 more various variables (Hou et al., 2020b). In the case of USEtox®, 16 

despite its wide use in LCA, it only offers characterization factors for approximately 3000 17 

chemicals and even for this limited number of compounds, 19% of ecotoxicity CFs and 67% 18 

of human toxicity CFs are missing.  19 

The objective of this article is thus to propose a new way of calculating CFs using machine 20 

learning approaches to solve the problem of nonlinearity that could affect a linear QSAR 21 

method. This makes it possible, when the CFs are not determined due to lack of time or lack 22 

of data, to propose values based solely on easily identifiable molecular descriptors. Here, the 23 

main differences with the above-cited methods are twofold: first, our input variables are only 24 

molecular descriptors that could be easily collected for any newly available compounds; 25 

second, our output variables are directly the CFs that are closer to the endpoints (DALY and 26 

PDF) than the HC50 or the LC50 (i.e. the acute aquatic toxicity experimental threshold). These 27 

two specific endpoints will be studied in the present paper through the emission of compounds 28 
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in continental freshwater and will be named CFET for ecotoxicological impacts and CFHT for 1 

human ones. To address this aim, we will test different methods (linear and non-linear) and 2 

assess their performances, to build a robust model that could predict CFs that are currently 3 

lacking. 4 

 5 

 6 

2. Materials & Methods 7 

2.1. USEtox® database 8 

 9 

The last version of the USEtox® database was downloaded, namely the corrective release 10 

2.12 (USEtox®, 2020). The whole USEtox® 2.12 database contains 3076 compounds.  11 

 12 

2.2. TyPol database 13 

 14 

We recently developed TyPol (Typology of Pollutants), a classification method based on 15 

statistical analyses combining several environmental parameters (i.e., sorption coefficient, 16 

degradation half-life, Henry constant) and an ecotoxicological parameter (bioconcentration 17 

factor BCF), and structural molecular descriptors (i.e., number of atoms in the molecule, 18 

molecular surface, dipole moment, energy of orbitals). Molecular descriptors are calculated 19 

using an in silico approach (combining Austin Model1 and Dragon software). In the present 20 

paper, we only extract and use the molecular descriptors from the TyPol database, as this 21 

information could be easily collected for any new compound. The 40 descriptors included in 22 

the TyPol database have been selected based on a literature review on QSAR equations used 23 

to predict the main environmental processes as degradation, sorption, volatilization. These 40 24 

descriptors were the ones most frequently used in the equations, meaning describing the best 25 

the behaviour of organic compounds in the environment. By consequence, even if no 26 

environmental parameters are directly incorporated as input in our model, some information 27 

that are directly linked to them are included in the 40 molecular descriptors. These descriptors 28 
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are constitutional, geometric, topological, and quantum-chemical descriptors (see Table 1); 36 1 

described the 2D-structure of the compound while the other four are linked to its 3D-structure. 2 

An important advantage of the unique use of molecular descriptors is that they are easily and 3 

quickly computable for not yet synthesized compounds. For more details, we refer the 4 

interested reader to Servien et al. (2014) where the choice of the 40 molecular descriptors is 5 

described in details. Now, TyPol gathers 526 compounds, including pesticides, 6 

pharmaceuticals and their transformation products (Benoit et al. 2017, Traoré et al. 2018). 7 

 8 

Table 1 – List of the 40 molecular descriptors in TyPol 9 

Category Molecular descriptors   

Constitutional Number of atoms Number of non-H 

atoms 

Number of hydrogen atoms 

 Number of hydrogen 

atoms 

Number of carbon 

atoms 

Number of nitrogen atoms 

 Number of oxygen 

atoms 

Number of phosphorus 

atoms 

Number of sulfur atoms 

 Number of fluorine 

atoms 

Number of chlorine 

atoms 

Number of halogen atoms 

 Number of bonds Number of non-H 

bonds 

Number of double bonds 

 Number of triple bonds Number of multiple 

bonds 

Number of rotatable bonds 

 Number of aromatic 

bonds 

Sum of conventional 

bond order 

Number of rings 

 Number of circuits Molecular weight 

 

 

Geometric  Connolly molecular 

surface area 
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Topological Connectivity index of 

order 0 

Connectivity index of 

order 1 

Connectivity index of order 2 

 Connectivity index of 

order 3 

Connectivity index of 

order 4 

Connectivity index of order 5 

 Valence connectivity 

index of order 0 

Valence connectivity 

index of order 1 

Valence connectivity index of 

order 2 

 Valence connectivity 

index of order 3 

Valence connectivity 

index of order 4 

Valence connectivity index of 

order 5 

Quantum-

chemical 

Polarizability Electric dipole moment HOMO energy 

 LUMO energy Total energy  

 1 

  2 

 3 

2.3. Machine learning methods 4 

 5 

To predict the CFs using the molecular descriptors we use three modelling methods combined. 6 

The first method is a linear well-known prediction method namely the Partial Least Squares 7 

(PLS) (Wold, 1985). It finds the multidimensional directions in the observable variable 8 

(molecular descriptor) space that explains the maximum multidimensional variance direction 9 

in the predicted variable (CF) space. That provides a linear regression model based on the 10 

observable variables to predict the predicted variable. We also choose to compare two 11 

machine learning methods adapted to non-linear problems: the random forest (Breiman 2001) 12 

and the support vector machines (SVM) (Drucker et al. 1996). Random forests are a machine 13 

learning method, for classification or, in our case, regression, that operate by constructing a 14 

multitude of decision trees that uses a random subset of the training data and limits the number 15 

of variables used at each split and outputting the mean prediction (regression) of the individual 16 
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trees. SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional 1 

space in which the problem is linearly separable. 2 

 3 

These choices allow us to compare several ideas. The PLS is a simple linear method that will 4 

not exhibit good performances if the underlying relationship is not linear. The SVM and RF 5 

methods are well-known non-linear machine learning algorithms that used to show good 6 

results in this kind of problem (Hou et al., 2020a).  7 

 8 

All the models were computed in the freeware R (R core team, 2019). The PLS has been 9 

computed using the package mixOmics (Rohart et al., 2017), the random forests using the 10 

package randomForest (Liaw et al., 2002), and the SVM using the package e1071 (Meyer et 11 

al., 2019). These 3 modelling methods have some parameters that needed to be fixed: the 12 

number of latent components for the PLS (fixed using the tune.pls function), the number of 13 

variables randomly sampled as candidates at each split for the random forests (selected using 14 

the tune.randomForest function) and, for the SVM, the gamma parameter of the radial kernel 15 

and the cost of constraints violation (using the tune.svm function). All these different tune 16 

functions are based on cross-validation (i.e. a training/test procedure to find the best value for 17 

the parameters) using default function values. 18 

 19 

2.4. Clustering-based model 20 

 21 

A recent popular way to make predictions is to use a cluster-then-predict approach. That is, 22 

clustering is used for pre-classification which is to arrange a given collection of input patterns 23 

into natural meaningful clusters. Then, the clustering results are used to construct a predictor 24 

in each cluster. The main idea of the cluster-then-predict approach is that if the clustering 25 

performs well the prediction will be easier by modelling only similar compounds. If a new 26 

compound with no CFET and/or CFHT is investigated, the clustering can easily be applied to it 27 

before the prediction model itself. The cluster-then-predict approach has already been applied 28 
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with success in various domains such as sentiment prediction (Sony et al., 2015), finance 1 

(Tsai et al., 2014), chemometrics (Minh Maï Le et al., 2018). So we decided to use the 2 

clustering given by the TyPol application (more details in Servien et al., 2014) based on the 3 

whole database and the molecular descriptors. Note that the TyPol clustering has already 4 

been shown relevant on various occasion: in combination with mass spectrometry to 5 

categorize tebuconazole products in soil (Storck et al., 2016), to explore the potential 6 

environmental behaviour of putative chlordecone transformation products (Benoit et al., 2017) 7 

or to classify pesticides with similar environmental behaviours (Traore et al., 2018). So, the 8 

clustering procedure of TyPol was applied on the whole database of 526 compounds using 9 

the 40 molecular descriptors. This approach provides us a global clustering based on all the 10 

available information contained in the TyPol database. It is based on PLS, hierarchical 11 

clustering and an optimal choice of the number of clusters and is detailed in Servien et al. 12 

(2014). The obtained clustering is given in Supplementary Figure S1 and relies on 5 different 13 

clusters. 14 

Based on this clustering, we then define three other competing methods. For these methods, 15 

a different model (with different parameters) will be derived for the compounds in each cluster. 16 

Consequently, six different models will be calibrated and tested for each CF prediction: global 17 

PLS, global SVM, global random forest, cluster-then-PLS, cluster-the-SVM and cluster-then-18 

Random Forest.     19 

 20 

2.5. Comparison procedure 21 

 22 

To assess the performances of the different models we will use the following procedure: 23 

1. Split each cluster between a training set (85% of the dataset) and a test set (15%). 24 

The test set is not used for any step of the procedure (such as the imputation of the 25 

missing data, the calibration of the parameters …). 26 

2. Imputation of the NA values (less than 1%) in the descriptor matrix using the NIPALS 27 

algorithm (Wold, 1985). 28 
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3. Tune the parameters and train the specific models by performing cross-validation on 1 

the training set. We have 3 global models to train (PLS, random forest, and SVM) and 2 

the cluster-then-test models (PLS, random forest and SVM for each cluster). 3 

4. Test the different models on the test set. Compute the absolute error. 4 

5. Back to step 1. 5 

 6 

The Typol clustering focused on the common compounds is plotted in Supplementary Figure 7 

S2 and we see that, for cluster 5, the 3 global models are the only ones available as we can’t 8 

define a cluster-then-test model due to a lack of data (only one compound remaining). The 9 

whole algorithm is repeated 200 times. All the performances are compared in terms of 10 

absolute error. The absolute error is the absolute difference between the prediction and the 11 

true value. It has been shown to be the most natural and unambiguous measure of error 12 

(Willmott et Matsuura, 2005) and is chosen to be easily comparable to the assumed error on 13 

the experimental CFs (2-3 logs, see Rosenbaum, 2008). For each cluster, we chose the model 14 

with the lowest median absolute error. 15 

 16 

Then, the best model is calibrated and computed on the whole cluster. Finally, it is applied to 17 

the compounds, according to their clusters, with a CFET (or a CFHT) equals to NA to provide a 18 

prediction. For the compounds in cluster 5, this best model cannot be a cluster-then-predict 19 

one and, by consequence, is a global one. To assess the robustness of our prediction we 20 

derive a 95% prediction interval for each prediction. The type of model and its corresponding 21 

parameters are fixed during this process, according to the best model of the cluster. For 22 

example, if the best model of cluster 1 was the random forest approach, random forest models 23 

are used with the parameters optimized during the previous step. Then, we perform a leave-24 

one-out bootstrap on the dataset that was used to compute the model (the whole dataset if 25 

the model is global, only the data lying in the dedicated cluster if that is a cluster-then-predict 26 

model) and a new model is computed on this leave-one-out sample. A prediction is carried for 27 
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each leave-one-out model and the 2.5% and 97.5% quantile of these predictions are computed 1 

and considered as the prediction interval (Hou et al., 2020a). 2 

 3 

The five descriptors contributing the most to the prediction are then derived for each chosen 4 

model to assess the differences between models and to interpret their relevance. For a 5 

random forest model, these descriptors are calculated using variable permutations (Breiman, 6 

2001), for the SVM they are the descriptors with the higher coefficients in absolute value. 7 

 8 

3. Results 9 

 10 

3.1. Descriptive analysis of the intersection of the TyPol and the USEtox® 11 

databases 12 

 13 

 As the objective of this proof-of-concept study is to predict USEtox® CFET and CFHT using the 14 

molecular descriptors contained in TyPol, we could only use the compounds that are present 15 

in both databases. This results in 274 compounds that are detailed in Table S1 in 16 

supplementary material and the range of their CFET and CFHT values are summarized in the 17 

boxplots in Figures 1 and 2. Note that for the 274 common compounds there are 15 NA values 18 

for the CFET and 102 for the CFHT.  19 
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 1 

Figure 1- Boxplots of the CFET for the USEtox® database and the common molecules 2 

between the USEtox® and the TyPol databases. This CFET is equal to the log10(PDF.m3.d.kg-3 

1). 4 
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 1 

Figure 2 Boxplots of the CFHT for the USEtox® database and the common molecules between 2 

the USEtox® and the TyPol databases. This CFHT is equal to log10((DALY+ε).kg-1). The ε is 3 

needed as some values of the DALY are exactly equal to zero. ε has been chosen equal to 4 

1e-10 to be below the minimum of the USEtox® database (5e-9). 5 

 6 

We could see on these two figures that the common compounds present higher CFET and 7 

CFHT values than the one of the complete USEtox® database: it focuses on the more 8 

dangerous compounds as their boxplots are above the USEtox® counterparts. 9 

 10 
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15 

The Typol clustering focused on the common compounds is plotted in Supplementary Figure 1 

S2 and the boxplots of each molecular descriptor per cluster are given in Supplementary 2 

Figure S3 with different indicators in Table S2. We could see that they are clustered in 5 groups 3 

with different sizes (respectively 33 compounds in the first black cluster, 122 compounds in 4 

the second red cluster, 91 compounds in the third green cluster, 27 compounds in the fourth 5 

blue cluster, and one compound in the fifth brown cluster). Cluster 1 grouped compounds with 6 

a high number of aromatic bonds, double bonds, rotatable bonds, and multiple bonds. Cluster 7 

2 is an intermediate one between clusters 1 and 3, with less extreme values. Cluster 3 is made 8 

of compounds with the lowest molecular mass. Cluster 4 gathered compounds presenting a 9 

high number of halogens, rings, and circuits. The unique compound in the fifth cluster is 10 

erythromycin (highest molecular mass and number of H and C, lowest number of rings) and, 11 

obviously, no cluster-then-predict model could be built for this cluster 12 

 13 

As a first analysis of the clustering given by TyPol, we could see in Figure 3 below the boxplots 14 

of the CFET and CFHT within the 5 clusters. 15 

 16 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.20.453034doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.453034
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 1 

Figure 3- Boxplot by cluster for the CFET and CFHT values. Note that the unique compound of 2 

Cluster 5 has no CFHT value. The size of the clusters and the numbers of NA are gathered in 3 

the legend. 4 

 5 

The predictions will be made difficult for the CFET of cluster 1 as it covers a wide range whereas 6 

it includes a relatively small number of compounds. On the contrary, cluster 3 covers a small 7 

range with no extreme values and includes a high number of compounds, for this cluster the 8 

cluster-then-predict approach could produce interesting results.  9 

 10 

3.2. Models and prediction of the CFET 11 
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3.2.1. Performances of the machine learning methods 1 

The methodology described in the previous section was applied to our dataset and gave the 2 

results gathered in Figure S4 for the global results and in Figure 4 for the results detailed on 3 

each cluster. 4 

 5 

 6 

Figure 4 - Performances of the different methods in terms of the log of the absolute error of 7 

the CFET with respect to the different clusters. In each cluster, the models are coloured from 8 

green (best) to red (worst) according to their median of the absolute error. 9 

 10 

The performances are not similar in each cluster. For example, performances of all methods 11 

for cluster 1 are very poor (median absolute error above 1) whereas performances for cluster 12 

4 seem good despite its smallest size (median absolute error around 0.6). So, a future 13 

prediction of an unknown compound which lies in cluster 1 will be less reliable than in other 14 

clusters. Note that we could not test this in the next section as no NA value is present in this 15 

cluster 1. 16 

 17 
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The cluster-then-predict methods seem more appropriate in each cluster. The cluster-then-RF 1 

approach has the best performances (with a global median absolute error equals to 0.64 and 2 

the best performances on clusters 2 and 3), even if there is not a big difference between the 3 

different methods. The cluster-then-SVM is also the best method for the two clusters 1 and 4. 4 

The linear methods (PLS and cluster-then-PLS) have higher absolute errors but are 5 

competitive. The individual predictions of the best method in each cluster are reported in 6 

Figure S5. 7 

 8 

3.2.2. Prediction with the best model 9 

 10 

Then we apply the best model in each cluster: a cluster-then-predict approach using SVM for 11 

clusters 1 and 4 and using random forest for clusters 2 and 3. To compare the different models 12 

in each cluster and give an idea of what are the important molecular descriptors we provide 13 

the five most important molecular descriptors for each cluster in the following table.  14 

 15 

Table 1- The five most important molecular descriptors for each best model for each cluster. 16 

The most important descriptors are in the first line of the table. 17 

Cluster 1: cluster-

then-SVM model 

Cluster 2: cluster-

then-RF model 

Cluster 3: cluster-

then-RF model 

Cluster 4: cluster-

then-SVM model 

HOMO energy 

Number of Chlorine 

atoms Number of triple bonds 

Number of double 

bonds 

Molecular surface area 

Number of halogen 

atoms Molecular mass 

Number of Nitrogen 

atoms 

Number of Sulfur 

atoms 

Number of Oxygen 

atoms 

Number of Phosphorus 

atoms HOMO energy 

Connectivity index chi-

5 Molecular mass 

Number of Oxygen 

atoms Number of triple bonds 
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Connectivity index chi-

3 Number of bonds 

Number of halogen 

atoms Electric dipole moment 

 1 

We could see in this Table that the important molecular descriptors strongly differ from one 2 

cluster to another, highlighting the usefulness of the cluster-then-predict approaches. 3 

 4 

Then the models were used to predict the missing CFET of the common compounds between 5 

USEtox® and TyPol databases. These values are by consequence new estimations of the 6 

CFET for compounds on which we have no information. The prediction intervals are relatively 7 

small: less than 0.5 log10 in a log scale which highlights the robustness of the estimation. They 8 

are given in Table S3. No NA value was present in cluster 1 with no prediction for this cluster. 9 

For cluster 2 gathering molecules with intermediate molecular mass, 9 CFET values were 10 

predicted for various kinds of compounds. One value concerns the antibiotic sulfamethazine 11 

and its value is quite near to the one of sulfamethoxazole and sulfadiazine of the same 12 

sulphonamide antibiotic family constituted of the sulphonamide group (-S(=O)2-NR2R3). Cluster 13 

3 grouped compounds with the lowest molecular mass and the lowest median CFET like 14 

ibuprofen, phthalates, cresol constituted of monoaromatic ring substituted with methyl, 15 

carboxylic groups. The CFET prediction for acetylsalicylic acid seemed coherent with the value 16 

of the nearest compounds (herbicides mecoprop) of this group. Cluster 4 gathered compounds 17 

with the highest median CFET and that presented a high number of rings halogenated or not, 18 

like PAH and hormones. The 5 CFET predicted concerned 4 PAHs and 1 hormone. By 19 

comparison to the 2 other PAHs present in this cluster, the 4 predicted CFET are quite similar 20 

and higher. Concerning the prediction for the hormone, the CFET is intermediate between the 21 

CFET of the 3 other hormones in the cluster. It seems that all these 5 predicted values are very 22 

closed, falling near the median value of this cluster.  23 

 24 

 25 
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3.3. Models and prediction of the CFHT 1 

3.3.1. Performances of the methods 2 

 3 

Let us recall that we have more NA values for the CFHT (102) than for the CFET (15). The 4 

performances of the methods are illustrated in the following figure. 5 

 6 

Figure 5- Performances of the different methods in terms of the log of the absolute error of 7 

the CFHT with respect to the different clusters. In each cluster, the models are coloured from 8 

green (best) to red (worst) according to their median of the absolute error. 9 

 10 

 11 

We observe that, despite its small size (11 compounds), the CFHT of the first cluster are well 12 

predicted (with the best performance for the cluster-then-RF approach). It could be explained 13 

by the small range of the CFHT values of this cluster, as illustrated on the boxplot in Figure 3. 14 

The performances of all the methods are comparable on clusters 2 and 3 where the best 15 

method is the SVM. Cluster 4 seems to be the more difficult to predict: all the methods have 16 

their worst results on this cluster and, if the SVM has an acceptable median absolute error of 17 
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0.82, all the medians of the other methods are above 1.3. Global performances of the different 1 

methods are given in Supplementary Figure S6. Note that, as for CFET, the linear methods 2 

based on PLS are outperformed by the other ones. 3 

 4 

3.3.2. Prediction with the best model 5 

 6 

The global SVM model was then calibrated and computed on the whole dataset. It was then 7 

used to predict the compound of clusters 2, 3, 4, and 5. Let us recall that there is a lonely 8 

molecule in cluster 5 and, as it has a NA value for its CFHT, the best global model (SVM) is 9 

used. For cluster 1, a cluster-then-RF model is computed. The more important descriptors of 10 

these two models are gathered in the following table.  11 

 12 

Table 2- Five most important molecular descriptors for each best model for each cluster. 13 

The most important descriptors are in the first line of the table. 14 

Cluster 1 : cluster-then-RF model Cluster 2, 3, 4 and 5: SVM model 

Number of Fluorine atoms Number of halogen atoms 

Connectivity index chi-5 Electric dipole moment 

Connectivity index chi-1 Number of double bonds 

Number of circuits Number of Chloride atoms 

Number of rings Number of Oxygen atoms 

 15 

Then, this model was used to predict the CFHT value for the 102 common compounds without 16 

a CFHT value. These predictions are reported in Supplementary Table S4. As for the CFET, the 17 

small width of the prediction interval (less than a log10 in a log scale) highlights the robustness 18 

of the approach even with a relatively small number like estimations made for compounds that 19 

lie in cluster 1. In this cluster 1, CFHT for a phthalate (DEHP) is already known, but the one for 20 
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diisodecyl and diisononyl phthalate was predicted with value in the same range. The 3 cyclines 1 

(tetracycline, aureomycin, and oxytetracycline) present in cluster 1, presented also similar 2 

predicted CFHT. This was also the case for triclosan and triclocarban in cluster 2. Similar 3 

predicted and known CFHT were found for four herbicides from the substituted urea family 4 

(linuron, diuron, monolinuron, isoproturon) in cluster 3. Cluster 4 gathered a small number of 5 

molecules but with the highest median CFHT, the predicted CFHT of the organochlorine 6 

insecticide isodrin was similar to another congener of the same family, aldrin. 7 

 8 

4. Discussion 9 

 10 

It is a real and important challenge to provide characterization factors for a wide range of 11 

compounds. Obviously, it is expected that these new calculated factors have an acceptable 12 

margin of error. As reported in UNEP/SETAC (2019), it is commonly assumed that the 13 

uncertainty of the characterization factors can vary by approximately 2-3 orders of log-14 

magnitude (Rosenbaum et al. 2008) or significantly higher (up to 7 orders) if all sources of 15 

uncertainty are considered (Douziech et al. 2019). Using our methodology, we can exhibit a 16 

median absolute error of 0.62 log for the prediction of the CFET and 0.75 log for the prediction 17 

of the CFHT. These results are very promising as they are below the level of uncertainty 18 

commonly assumed and as they are based on molecular descriptors that could be easily 19 

obtained for each compound without ecotoxicity factor. Based on this fact we could already 20 

provide 15 new CFET and 102 new CFHT for the common molecules between USEtox® and 21 

TyPol without a previous value. 22 

 23 

The idea of predicting ecotoxicity characterization factors for chemicals using machine 24 

learning algorithms has already been used (Hou et al., 2020a and 2020b). But, here, our 25 

findings go further. Indeed, we show that we could directly obtain accurate estimations of 26 

endpoint values from easy-to-obtain molecular descriptors. This will open the door to the fast 27 

characterization of each new unknown compound that appears, including transformation 28 
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products. We also show that the cluster-then-predict approach can give better performances 1 

than the usual ones. This local approach confirms that local models could be an efficient 2 

prediction method when heterogeneity of data generates nonlinear relations between the 3 

response and the explicative variables (Lesnoff et al., 2020).  4 

Across the clusters and models, there is a general trend that the non-linear models tend to 5 

outperform the linear ones. This suggests that a linear model is not fully adequate to capture 6 

the complexity of the relationship between the molecular descriptors and the CFs. However, 7 

the use of linear model for e.g. a QSAR is likely due to the ease of interpreting its coefficients, 8 

while interpretation is much more challenging for machine learning approaches such as 9 

random forest or SVM. Thus, the advantages or drawbacks of linear/non-linear approaches 10 

must be balanced according to the final goal of each study. Here, as the main goal is to 11 

calculate the most accurate CFs, non-linear models seem more suited.  We must also mention 12 

that a new emerging field is developing tools needed to help make black-box models (e.g. 13 

random forest) more interpretable (Bénard et al., 2021).  14 

The difficult interpretability of the machine learning models used in this study can thus be 15 

viewed as a limitation. On another side, even if we already had an acceptable number of 16 

compounds on our training datasets, the model accuracies would benefit of the inclusion of 17 

new compounds. These compounds could be carefully chosen to improve the models where 18 

there is a clear need (i.e. where the performances of the models are not good enough), for 19 

example in the cluster 1 for CFET or in the cluster 4 for CFHT.  20 

One of the interests of USEtox® and its three-step structure (fate - exposure - effect) is that it 21 

can be adapted to some specific contexts (a more accurate and spatialised fate model, a 22 

different exposure...) while keeping the steps that are not modified.  However, these 23 

adaptations of USEtox® are not widely used and are reserved for advanced users. Our 24 

approach does not allow this, with a direct one-step estimation of CFs. It was designed to 25 

provide default CF values for molecules where information is missing. We have chosen to 26 

directly predict the CF by simplicity, as the first tests revealed that doing three models (for the 27 

three steps) and then calculating the CFs produced less accurate results. It would however be 28 
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an interesting perspective to estimate only some of the stages by these learning approaches 1 

and to combine them with stages modelled in a classical way in USEtox® 2 

   3 

5. Conclusion 4 

 5 

In a recent study, Aemig et al. (2021) studied the potential impacts on Human health and 6 

aquatic environment of the release of 286 micropollutants (organic and inorganic) at the scale 7 

of France. One of their conclusion was that, due to a lack of characterization factors, these 8 

impacts could be assessed only for 1/3 of these molecules. This paper fills this gap by 9 

providing a new modelling method to derive characterization factors from easily obtainable 10 

molecular descriptors. The results presented here show that models that can handle non-11 

linearity and that could be adapted to a small number of compounds (using the cluster-then-12 

predict approaches) are the best suited. By consequence, the missing characterization factors, 13 

as well as those of new molecules, could now be quickly estimated with an overall good 14 

precision. More generally, one of the key factors in the evaluation of toxicity and ecotoxicity in 15 

LCA lies in the construction of the characterization factors: a task requiring a large amount of 16 

data and a consequent investment of time. The use of machine learning allows us to go 17 

beyond these constraints. This makes it possible to obtain characterization factor values in a 18 

fast and simple way, which can be used as long as conventionally established CFs are not 19 

available. 20 
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