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Abstract 1 

Tens of thousands of genetic variants associated with gene expression (cis-eQTLs) have been 2 

discovered in the human population. These eQTLs are active in various tissues and contexts, but the 3 

molecular mechanisms of eQTL variability are poorly understood, hindering our understanding of genetic 4 

regulation across biological contexts. Since many eQTLs are believed to act by altering transcription factor 5 

(TF) binding affinity, we hypothesized that analyzing eQTL effect size as a function of TF level may allow 6 

discovery of mechanisms of eQTL variability. Using GTEx Consortium eQTL data from 49 tissues, we 7 

analyzed the interaction between eQTL effect size and TF level across tissues and across individuals within 8 

specific tissues and generated a list of 6,262 TF-eQTL interactions across 1,598 genes that are supported 9 

by at least two lines of evidence. These TF-eQTLs were enriched for various TF binding measures, 10 

supporting with orthogonal evidence that these eQTLs are regulated by the implicated TFs. We also found 11 

that our TF-eQTLs tend to overlap genes with gene-by-environment regulatory effects and to colocalize 12 

with GWAS loci, implying that our approach can help to elucidate mechanisms of context-specificity and 13 

trait associations. Finally, we highlight an interesting example of IKZF1 TF regulation of an APBB1IP gene 14 

eQTL that colocalizes with a GWAS signal for blood cell traits. Together, our findings provide candidate TF 15 

mechanisms for a large number of eQTLs and offer a generalizable approach for researchers to discover 16 

TF regulators of genetic variant effects in additional QTL datasets. 17 

Author Summary 18 

Gene expression is regulated by local genomic sequence and can be affected by genetic variants. 19 

In the human population, tens of thousands of cis-regulatory variants have been discovered that are 20 

associated with altered gene expression across tissues, cell types, or environmental conditions. 21 

Understanding the molecular mechanisms of how these small changes in the genome sequence affect 22 

genome function would offer insight to the genetic regulatory code and how gene expression is controlled 23 
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across tissues and environments. Current research efforts suggest that many regulatory variants’ effects 24 

on gene expression are mediated by them altering the binding of transcription factors, which are proteins 25 

that bind to DNA to regulate gene expression. Here, we exploit the natural variation of TF activity among 26 

49 tissues and between 838 individuals to elucidate which TFs regulate which regulatory variants. We find 27 

6,262 TF-eQTL interactions across 1,598 genes that are supported by at least two lines of evidence. We 28 

validate these interactions using functional genomic and experimental approaches, and we find indication 29 

that they may pinpoint mechanisms of environment-specific genetic regulatory effects and genetic 30 

variants associated to diseases and traits. 31 

Introduction 32 

Gene expression is regulated by local genomic sequence and can be affected by genetic variants. 33 

In the human population, tens of thousands of cis-regulatory variants have been discovered by expression 34 

quantitative trait locus (eQTL) mapping that associates genetic variation to gene expression levels. These 35 

variants are enriched to fall in cis-regulatory elements and transcription factor binding sites [1–3], 36 

implying that many eQTLs act via allelic difference in transcription factor affinity. However, specific 37 

mechanisms of individual eQTL effects and their variation across tissues or other contexts remain elusive. 38 

Understanding eQTL mechanisms, as well as the contexts in which they are active, can shed light on the 39 

regulatory code of the genome and how genetic variation perturbs this regulation. 40 

Multiple efforts have sought to catalog eQTL effects across different contexts. The GTEx 41 

Consortium profiled gene expression in 49 tissues across 838 donors and discovered eQTLs for 1,260-42 

18,795 genes per tissue [4,5]. Approximately a third of these eQTLs were estimated to be active in all or 43 

almost all tissues, while a fifth were estimated to be active in five or fewer tissues. Further work using 44 

computational cell type deconvolution has discovered approximately three thousand GTEx eQTLs whose 45 

effects are likely cell-type-specific [6]. Additional context-specific eQTL effects have been assayed in a 46 
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variety of settings, including during immune stimulation [7,8], cell stress [9,10], cell differentiation [11], 47 

and drug or nutrient exposure [12–14]. 48 

However, few studies have been conducted to investigate what causes eQTL context specificity, 49 

i.e., why eQTLs are differentially active across contexts. Some of this variation is of course explained by 50 

gene expression: genes that are not expressed will not have a measurable eQTL. However, multiple 51 

studies have found that the link between gene expression and eQTL effect is not straightforward, 52 

observing both increasing and decreasing allelic effects with increasing gene expression [5,15]. When 53 

investigating the tissue variability of GTEx eQTLs, we discovered that ~4% of eQTLs show increasing effects 54 

with increasing gene expression across tissues, and ~4% show decreasing effects [5]. These findings show 55 

that the context variability of eQTL effects cannot be explained by gene expression alone and must depend 56 

on other features, such as chromatin accessibility, enhancer looping, or variable levels of transcription 57 

factor binding.  58 

Determining eQTLs’ mechanisms of action is challenging. The first obstacle lies in identifying the 59 

causal variant(s) of a locus from the typically numerous associated variants in high linkage disequilibrium 60 

(LD). Putatively functional variants can be pinpointed by statistical fine-mapping approaches, 61 

complemented with genomic annotations such as regions of open chromatin, TF binding sites predicted 62 

by motifs, or allele-specific binding of TF ChIP-seq data [5,16–19]. However, these annotations suffer from 63 

both low specificity and low sensitivity. In terms of specificity, a large percentage of variants in the genome 64 

overlap some functional annotation; for instance, Gaffney et al found that 40% of SNPs in eQTLs 65 

overlapped a DNAse I hypersensitive site or histone-modified region [2]. In terms of sensitivity, functional 66 

data may be missing for the context in which the eQTL is active, and especially the highly informative 67 

allelic binding data are relatively sparse [20–22]. While experimental assays that directly measure 68 

regulatory effects of variants are increasing in scale, they may miss in vivo interactions or chromatin-69 
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specific regulation [23], and intensive experimental approaches to directly profile the effects and 70 

mechanisms of genetic variants in an eQTL [24–27] are difficult to conduct in a high-throughput manner. 71 

One thing made clear by functional annotation data is that both eQTLs and chromatin-QTLs are 72 

enriched in known TF binding sites [2,4,28]. Given that TFs are one of the few sequence-specific 73 

interactors with the genome, it follows that noncoding eQTLs may exert their effects by altering TF 74 

binding, which would then affect chromatin accessibility, histone modifications, and gene expression. 75 

Adding to the hypothesis that TF binding may control eQTL variability, many cross-tissue eQTLs are 76 

enriched in TF binding sites for TFs with broad activity, while tissue-specific eQTLs are enriched for those 77 

relevant to their observed tissue [29]. By determining which TF’s binding is being altered by an eQTL, we 78 

would be able to identify its mechanism of action, as well as understand what could be regulating the 79 

eQTL’s context variability.  80 

In this study, we set out to discover TF regulators of eQTLs by identifying eQTL effects that 81 

correlate with TF levels across or within tissues, using primarily GTEx data. We use the natural variation 82 

of TF levels between tissues, individuals, and conditions to elucidate mechanisms of action of eQTL 83 

regulatory variants and understand the context specificity of eQTL effects. We hypothesize that a portion 84 

of the observed context variability of an eQTL may be explained by the level of the TFs that bind to the 85 

eQTL to regulate gene expression [Fig. 1A-C]. In the simplest form of the model, an allele may increase 86 

the affinity of an activating TF in a cis-regulatory site, which would lead to higher gene expression of that 87 

allele [Fig. 1A]. However, at low TF levels, the TF would not bind to either allele, resulting in the same low 88 

level of background gene expression from each allele. Conversely, at very high TF levels of saturated 89 

binding, even the lower affinity allele could bind the TF, and both alleles would have equal gene 90 

expression. This would translate to increasing and then decreasing eQTL effects as TF levels increase [Fig. 91 

1C]. Other models are explored in the supplement [SFig. 1]. 92 
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Our approach links variation in TF levels to variation in eQTL effect size and requires no additional 93 

datatypes to be captured, using the same genetic and gene expression data that are used for eQTL 94 

discovery. It offers a novel approach to understanding regulatory variant context specificity that can refine 95 

and complement existing approaches based on statistical fine-mapping and functional genomic 96 

experiments. Applying it to GTEx data, we find thousands of interactions between TF levels and eQTL 97 

effects both across tissues and within tissues which represent potential TF regulators of eQTL effects, and 98 

we validate these data using numerous approaches and datasets. Finally, we highlight an example of an 99 

IKZF1-regulated eQTL that colocalizes with multiple GWAS blood traits, evidencing how this TF-based 100 

model can be used to unravel effects on human health and disease. 101 

 102 

Figure 1. TF model of eQTL effects. A) TF binding to an eQTL variant with different allelic TF affinities is depicted at low, medium, 103 

and high TF levels. B) TF binding occupancy, resulting in target gene expression, for the two eQTL alleles across TF levels. C) 104 

Difference in expression of alleles or eQTL effect size, quantified as log2 allelic fold change, across TF levels. Our applied models 105 

only examine monotonic effects, which can be imagined as different sides of the hill. D) Tissues are plotted by eQTL effect size vs. 106 
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 7 

median TF expression for an example MS4A14 eQTL and the FOSL2 TF. Cross-tissue TF-eQTL interactions are discovered by a 107 

Spearman correlation of these two measures, or with TF protein levels for the protein-based analysis. Two tissues circled in black 108 

are highlighted in the following panels. E) & F) Individuals are plotted by eGene expression vs. TF expression in Skeletal Muscle (E) 109 

or Adipose Visceral (F) tissue and are shaded by the genotype of the eQTL variant. Within-tissue TF-eQTL interactions are 110 

discovered using a multiple linear regression interaction model of normalized eGene expression by TF level, genotype, and TF level 111 

by genotype. Linear regression lines are plotted separately for each genotype, with corresponding G*TF interaction beta and p-112 

value displayed on the chart. In Muscle, an eQTL is present, observable as a difference between the genotypes, and the difference 113 

gets larger as TF expression is higher, suggesting an interaction between TF level and eQTL effect. In Adipose, an eQTL is present, 114 

observable as a difference between the genotypes, but that difference does not appear to correlate with TF level. 115 

Results 116 

Selection of putative regulatory variants 117 

For the bulk of our analysis, we used the GTEx v8 dataset, including whole genome sequencing 118 

for 838 individuals and RNA sequencing from 73-706 samples across 49 tissues [STable 1]. We focused our 119 

analysis on common variants (>5% MAF) that have prior evidence of affecting gene expression and being 120 

regulated by a TF [Table 1]. We used Caviar fine-mapping of GTEx eQTLs in 49 tissues to select variants 121 

that fell into a 95% credible set in at least one tissue [5,30]. We also required evidence that a TF binds in 122 

the vicinity of the variant. We focused our analysis on 169 TFs with both ENCODE ChIP-seq and 123 

HOCOMOCO motif information and included variants that overlapped at least one ChIP-seq peak and 124 

matched at least one motif for these TFs.  125 

Filtering based on an intersection of these fine-mapping and functional annotations left us with 126 

473,057 variants that corresponded to 1,032,124 eQTLs across 32,151 genes. Each variant was associated 127 

with a median of two genes, and each gene was associated with a median of 28 variants across tissues 128 

[SFig. 2]. Next, we used cross-individual and cross-tissue analyses to discover which of this large number 129 

of candidate variants had additional evidence of TF mechanisms underlying their eQTL effects. 130 
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Table 1. GTEx variant annotations.  131 

Dataset 
>5% MAF GTEx variants 

Count Percent 

All 6,539,590 - 

Caviar fine-mapped set 2,867,556 44% 

ENCODE TF ChIP-seq peak 1,425,613 22% 

HOCOMOCO TF motif 3,716,312 57% 

Intersection 473,057 7% 

 132 
Overlap of variants with >5% minor allele frequency (MAF) in the GTEx dataset that overlap various eQTL and TF annotations. 133 

Percent is based on all 5% MAF variants. Filtering eQTL variants for TF binding sites based on TF ChIP-seq peak overlaps and TF 134 

motif matches still results in a large number of potentially causal eQTL variants. 135 

Interaction of eQTL effects and TF expression levels within tissues 136 

We first investigated how inter-individual variation in TF levels within a tissue impacts eQTL effect 137 

size, with the hypothesis that such effects could represent TF regulators of specific eQTLs. We chose 20 138 

diverse tissues that best represented all 49 GTEx eQTL tissues based on gene expression clustering [SFig. 139 

3]. For each of those tissues and each of our 169 TFs, we applied a linear regression with an interaction 140 

term to discover TF level - genotype interactions on gene expression for our filtered variants across 32,151 141 

genes, selecting the top eQTL variant per gene for each analysis [31] [Fig.1E,F]. We discovered 13 to 39,693 142 

TF-eQTLs (eQTLs with TF interaction) per tissue at a 20% TF-level Benjamini-Hochberg (BH) FDR, with 143 

133,111 relationships supported by at least one tissue [SFig. 4]. These TF-eQTL pairs represent potential 144 

TF regulators of eQTL effects. 145 

We observed that five tissues (Whole Blood, Fibroblast, Colon, Stomach, and Testis) were outliers 146 

in the number of TF-eQTLs, which could not be explained by tissue sample size alone [SFig. 4]. Analysis of 147 

in silico cell type estimates revealed that four of these tissues (Whole Blood, Fibroblast, Colon, and 148 
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Stomach) had particularly high inter-individual variability in cell type composition [SFig. 5]. Assuming that 149 

this high cell type composition variability was likely contributing to the large number of TF-eQTLs, we 150 

removed these tissues from our analysis so that our TF-eQTL results were not dominated by non-causal 151 

correlations of TFs with cell type composition. We also removed the Testis tissue due to its outlier status 152 

in previously reported gene expression and trans-regulation analyses [1,4], so that TF-eQTLs in this one 153 

tissue would not dominate the results. 154 

Our final within-tissue dataset consisted of 26,038 TF-eQTL relationships supported by at least 155 

one tissue, of which 2,315 were supported by multiple tissues [Fig. 2A; SFig. 6]. Some TFs with many 156 

interacting eQTLs in a tissue made clear biological sense. For instance, the TFs with the most interactions 157 

in Brain Cortex and Nucleus Accumbens tissues were BCL11A and MEF2D, respectively, both of which are 158 

involved in neuronal functions [32,33], and the TF with the most interactions in Adipose tissue was CEBPA, 159 

which is a key driver of adipogenesis [34] [Fig.2A]. We see that 90/120 tissue pairs were enriched for one 160 

another’s TF-eQTLs (OR = 14.1 to 2251, Fisher’s exact test, all p < 0.05) [Fig. 2C]. All those pairs with a 161 

negative direction of enrichment included a brain tissue and/or the lymphoblastoid cell line and did not 162 

have any overlapping TF-eQTL interactions, likely due to the small sample sizes and these tissue types 163 

being highly distinct from others (all ORs = 0, Fisher’s exact test ps = 1) [5]. In general, within-tissue TF-164 

eQTL relationships follow a similar clustering pattern to tissue gene expression [SFig. 3]. These results 165 

highlight unique and shared potential TF regulators of eQTL effects within different tissue contexts. 166 

Correlation of eQTL effect sizes and TF levels across tissues  167 

To obtain further insights into TFs driving eQTL effect size variation between tissues, we next 168 

investigated how TF levels across the 49 GTEx tissues correlated with eQTL effect sizes. We calculated log2 169 

allelic fold change effect sizes (aFCs) in every GTEx tissue for each filtered variant-gene pair; by ignoring 170 

eQTL significance cutoffs, we captured tissues lacking eQTL effects and avoided power differences in eQTL 171 
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detection caused by varying tissue sample sizes. We correlated aFCs for each eQTL with expression levels 172 

for each of 169 TFs [Fig. 1D] and selected the top eQTL variant per gene for each TF. We found 420,248 173 

TF-eQTL correlations at a 5% TF-level BH FDR [Fig. 2B]. These TF-eQTL pairs represent potential TF 174 

regulators of eQTL effects that may explain the variability of these eQTLs across tissues. Many of the TFs 175 

with the most correlations in the cross-tissue analysis were involved in immune (ELF1, IRF2, RELB, STAT3, 176 

RELA) or hormone response (THRA) [35–39] [Fig.2B]. Though we discovered many more potential TF-eQTL 177 

relationships across tissues than within tissues, the two sets of TF-eQTL interactions are enriched for one 178 

another (OR = 2.43, Fisher’s exact test p < 10-300), and cross-tissue correlations showed a positive direction 179 

of enrichment for all individual tissues except brain cerebellum [Fig. 2C].  180 

Gene expression levels do not always directly correspond to protein levels [40,41], so we 181 

performed a similar correlation analysis using TF protein levels across tissues, as assessed by high-182 

throughput mass spectrometry [42]. Protein quantification was available for 72/169 TFs in 20 or more 183 

tissues, with one to 11 samples per tissue [STable 1]. We discovered 12,289 TF protein-eQTL correlations 184 

at a 20% TF-level BH FDR [Fig. 2B]. These protein-based TF-eQTL correlations were not enriched for 185 

expression-based cross-tissue or within-tissue TF-eQTL correlations (OR = 0.95, 0.47; Fisher’s exact test p 186 

= 0.097, 7.9x10-7, respectively) [Fig. 2C, SFig. 7]. As discussed in Jiang et al., gene and protein levels may 187 

differ due to biological phenomena of RNA dynamics and translational regulation as well as technical 188 

variation in mass spectrometry technology that plagues especially lowly expressed proteins [42]. Given 189 

that TF protein levels are lower than other genes (Wilcoxon rank sum test p < 10-300) [SFig. 8] and the 190 

number of assayed tissues and samples is small, these protein measurements may be less suitable 191 

measurements of TF levels for the purposes of this analysis.  192 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.20.453075doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.453075
http://creativecommons.org/licenses/by/4.0/


 

 11 

 193 

Figure 2. Discovered TF-eQTL interactions. A) Number of within-tissue TF-eQTL interactions at 20% FDR is plotted per TF for each 194 

tissue analyzed. The TF with the most interactions per tissue is highlighted. B) Number of discovered cross-tissue TF-eQTL 195 

interactions per TF for expression-based interactions (at 5% FDR) and for protein-based interactions (at 20% FDR). TFs with the 196 

most correlations per analysis are highlighted. C) Sharing of TF-eQTL interactions between tissues and within/cross-tissues. Red 197 

indicates positive enrichment and blue, negative enrichment. Grey squares indicate no shared TF-eQTL gene pairs between the 198 

two datasets. 199 
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Annotation and TF-binding of TF-eQTL interactions 200 

Next, we set out to evaluate our discovered sets of putative TF regulators of eQTLs, based on 201 

orthogonal data of functional annotations and TF binding. We examined four TF-eQTL datasets: cross-202 

tissue expression-based, cross-tissue protein-based, within-tissue expression-based, and at least two lines 203 

of expression-based evidence (at least two tissues, or cross-tissue + at least one tissue). First, we examined 204 

genomic annotations of the top TF-eQTL variant for each gene and found that all three expression-based 205 

datasets were enriched to overlap promoters, 5’ UTR, and 3’ UTRs compared to all tested eQTL variants 206 

[SFig. 9]. This is consistent with overall eQTL enrichments [1,4], suggesting that TF-eQTL variants are 207 

further enriched for true causal regulatory variants. 208 

We tested whether our four sets of putative TF-eQTL interactions overlapped TF binding sites 209 

(TFBS) based on two datasets: ENCODE TF ChIP-seq peaks and HOCOMOCO predicted TF binding motifs. 210 

The top TF-eQTL variants showed enrichment for TF ChIP-seq overlap in most datasets and mixed results 211 

on TF motif matching enrichment [SFig. 10]. Given the complicated structure of our data, with multiple 212 

variants tested per gene and LD between variants [SFig. 2, 11], we set up a more sophisticated test of TFBS 213 

overlap enrichment of TF-eQTL interactions to account for this unusual data structure. We compared the 214 

observed overlap per gene to a null expectation and calculated significance using a permutation scheme 215 

of TFBS overlap annotations (see Methods). Our enrichment statistic can be interpreted as the average 216 

number of extra variants with overlap per TF-eQTL gene. Both cross-tissue and within-tissue expression-217 

based datasets were significantly enriched for ChIP-seq overlap (cross-tissue enrichment statistic = 0.024, 218 

p < 2x10-4; within-tissue enrichment statistic = 0.053, p = 8x10-4), and cross-tissue expression-based TF-219 

eQTLs showed a small trend of motif matching enrichment (enrichment statistic = 0.004, p = 0.06) [Fig. 220 

3A; SFig. 11]. TF-eQTLs with at least two lines of expression-based evidence did not reach nominal 221 

significance for ChIP-seq overlap or motif matching, but they showed a similar magnitude of enrichment 222 

to the individual datasets [Fig. 3A; SFig. 11]. The cross-tissue protein-based TF-eQTL interactions had low 223 
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enrichment for ChIP-seq overlap and motif matching [Fig. 3A; SFig. 10, 11]; thus, taken together with their 224 

low concordance with expression-based interactions [Fig. 2C], we decided not to pursue these 225 

interactions any farther. 226 

Though our discovered expression-based TF-eQTL relationships were generated using only 227 

genetic and gene expression data, those eQTLs were more likely to overlap a TFBS of their interacting TF 228 

than expected [Fig. 3A]. We included all TF-eQTL interactions with at least two lines of expression-based 229 

evidence to represent a high-confidence set of putative TF regulators of genetic variant effects. These TF-230 

eQTL genes were also enriched to fall into the regulon of the interacting TF (any regulon set OR = 1.54, 231 

Fisher’s exact test p = 1x10-17) [43], with the strongest enrichment seen for regulons defined by co-232 

expression analysis (OR = 2.08, Fisher’s exact test p = 1x10-22) [Fig. 3B]. These 6,262 dual-evidence TF-eQTL 233 

interactions, observed across 154 TFs and 1,598 genes, represent potential TF regulators of genetic variant 234 

effects [STable 2] that we then analyzed further. 235 

Allele-specific TF binding of dual-evidence TF-eQTL interactions 236 

We next examined TF ChIP-seq allele-specific binding data to determine if our dual-evidence TF 237 

regulators of genetic variant effects manifested altered TF binding in vivo. To accomplish this, we used the 238 

ADASTRA dataset, which contains allele-specific TF binding (ASB) results from over seven thousand TF 239 

ChIP-seq experiments, normalized for cell-type-specific background allelic dosage [44]. Like our TFBS 240 

overlap enrichment analysis, we compared the observed allele-specific TF binding of TF-eQTL interactions 241 

to a null expectation, followed by permutation of ASB annotations to estimate the enrichment 242 

significance. 243 

We observed that TF-eQTL variants were significantly more likely to have ASB in general, with any 244 

TF (enrichment statistic = 0.09, p=0.002) [Fig. 3C]. Testing for the enrichment of ASB for the matching TF-245 

eQTL TF was limited by the sparsity of the ASB data: only 9 out of 124 analyzed TFs were expected to have 246 
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more than one interacting TF-eQTL with an ASB event [SFig. 13]. However, 8/9 of these TFs showed more 247 

ASB than expected, though none to a significant degree [Fig. 3C], and the overall enrichment was modest 248 

but again non-significant (enrichment statistic = 0.011, p=0.10). These results demonstrate that our dual-249 

evidence TF-eQTL interactions are enriched for variants that alter TF binding, though these data are too 250 

sparse to validate this specifically for the implicated TF. 251 

 252 

Figure 3. TF binding of TF-eQTL interactions. A) Overlap enrichment of TFBS, based on TF ChIP-seq peaks, of TF-eQTL interactions 253 

by dataset. Permutation-based p-values are plotted above each measurement. Datasets include within-tissue (blue) interactions, 254 

cross-tissue expression-based (red), cross-tissue protein-based (yellow), and TF-eQTL interactions with at least two lines of 255 

evidence from cross-tissue expression-based and within-tissue interactions (purple). B) The enrichment of target genes with two 256 

lines of evidence for TF-eQTL interactions falling into that TF’s regulon. Large black dots depict overall enrichment across TFs. C) 257 

Enrichment for allele-specific TF binding (ASB) for TF-eQTL interactions with two lines of evidence. Shaded area contains statistics 258 

for unmatched TF ASB analysis. Below that, statistics for matched TF ASB analysis is shown, with TFs with more than one expected 259 

ASB event plotted individually, and all other TFs combined (other). 260 
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IRF1 knockdown validates IRF1-eQTL interactions 261 

Our dual-evidence TF regulators included 58 eQTL effects putatively regulated by IRF1, which we 262 

assessed further with an IRF1 knockdown experiment. We used data from a CRISPR-interference-263 

mediated knockdown of IRF1 in HEK293-TLR4 cells [45] and measured genes’ allele-specific expression 264 

(ASE) at knocked-down and control IRF1 levels [Fig. 4A,B]. A change in ASE between IRF1 conditions would 265 

suggest that IRF1 is regulating the effect of the heterozygous eQTL on gene expression. 266 

We compared allele-specific gene expression in IRF1-knockdown and control cells, combining 267 

reads across all samples per condition to increase our power to discover differences in allelic expression. 268 

After filtering for sufficient coverage of a heterozygous coding SNP (>60 reads, >5% REF reads, >5% ALT 269 

reads, and <5% non-REF/ALT reads), we were left with 1,221 genes for which we performed Fisher’s exact 270 

test for imbalanced allelic expression across conditions. A low Fisher’s test p-value indicates that the two 271 

alleles are expressed at different ratios in the knockdown and control conditions, suggesting that IRF1 272 

controls the expression of the gene in an allele-specific manner in this cell line. 273 

We discovered 87 nominally significant genes with differing ASE between IRF1 conditions (Fisher’s 274 

exact test p < 0.05). These genes were significantly enriched to overlap our previously discovered IRF1-275 

eQTL genes (dual evidence TF-eQTLs OR = 8.03, Fisher’s exact test p = 0.015) [Fig. 4C]. Of the dual-evidence 276 

TF-eQTL genes with measurable ASE, all seven were heterozygous for an implicated top IRF1-eQTL variant, 277 

thus we could expect all to show differing ASE between IRF1 conditions. Indeed, three genes, ERI1, 278 

MYOM2, and lncRNA RP5-1092A3.4 were nominally significant, and all seven genes had p values in the 279 

lower quartile of tested genes, with a maximum p value of 0.31 [Fig.4E; SFig. 14, 15]. Examining ASE in this 280 

IRF1 knockdown experiment validated 3/7 of our testable IRF1-eQTL interactions and demonstrates the 281 

high promise of this method to generate useful TF regulation information that can be applied to 282 

understand allele-specific regulation in new contexts.  283 
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 284 

Figure 4. IRF1-eQTL interactions in HEK293-TLR4 IRF knockdown. A) Depiction of allele-specific expression, with IRF1 285 

preferentially binding to the G-allele in the regulatory region of the ERI1 target gene. This leads to higher expression of allele 1, 286 

which we can measure based on the presence of a heterozygous coding SNP in the ERI1 transcript. Reads from allele 1 will have a 287 

T genotype (red) at the coding SNP and reads from allele 2 will have a G (orange). B) Read counts for ERI1 coding SNP alleles in 288 

both knockdown and control conditions. In this example, it appears that we observe allelic effects at lower (knockdown) IRF1 289 

levels, while higher (control) levels of IRF1 may saturate binding to both alleles. Conditions are compared using Fisher’s exact test 290 

of allelic counts. C) Sharing of IRF1-interacting eQTL genes in within-tissue (blue), cross-tissue expression-based (red), and HEK293 291 

IRF1 knockdown (green) datasets. Only genes with an adequately expressed heterozygous coding SNP in HEK293 samples are 292 

included. Inset shows enrichment for overlap between HEK293T IRF1-eQTL genes and listed datasets. D) HEK293 coding SNP 293 

alternative allele frequency in dual-evidence IRF1-eQTL genes that were heterozygous for a top TF-eQTL variant and had adequate 294 

coverage of a heterozygous coding SNP. * indicates a Fisher’s p value < 0.05, ** < 0.01 of allelic counts vs. condition. 295 

TF regulation of gene-by-environment effects and genetic effects on phenotype 296 

We hypothesized that our TF-eQTLs could shed light on mechanisms of gene-by-environment 297 

(GxE) interactions that represent environmental conditions that affect genetic control of a phenotype, 298 

and altered TF level could be the mechanism by which the environmental condition regulates the genetic 299 

effects. In a recent large-scale study, Findley et al. tested the effects of 14 environmental treatments on 300 
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allele-specific gene expression in three cell lines, discovering 979 genes with GxE effects, 850 of which 301 

were also found to have a GxE interaction by a previous study [12]. We overlapped our dual evidence TF-302 

eQTL genes with these replicated GxE interacting genes and found 92 overlaps (OR = 2.67, Fisher’s exact 303 

test p = 1.4x10-14) [Fig. 5A], which offer potential direct mechanistic interpretations of the environmental 304 

effects on genetic control of gene expression [STable 3]. For instance, we found multiple GxE interactions 305 

for copper treatment that overlapped TF-eQTL genes for MITF or RELA; both TFs have been found to 306 

respond to copper exposure [46,47], thus they could be the mechanism by which copper regulates genetic 307 

effects at these loci. Thus, combining TF-eQTL mechanisms with GxE interactions therefore has the 308 

potential to elucidate direct mechanisms of environmental effects. 309 

We next assessed if we could use our TF-eQTLs to discover TF regulators of GWAS loci. 310 

Colocalization methods can combine statistical signals from eQTLs and GWAS loci to determine if the gene 311 

and phenotype regulation share a causal variant, implying that genetic regulation of the gene may be the 312 

causal mechanism of the genetic effect on phenotype. We obtained GWAS-eQTL colocalization data of 313 

GTEx eQTLs and 76 GWAS traits [48,49] and combined these with our dual-evidence TF-eQTLs. We saw 314 

that our TF-eQTL genes were more likely to colocalize with GWAS loci than all tested eQTL genes, with 315 

27% of our TF-eQTL genes showing colocalization between a GWAS signal and an eQTL in any tissue and 316 

9.5% showing colocalization between a GWAS signal and an eQTL in the same tissue where the TF-eQTL 317 

was discovered (OR = 2.00, 1.65, Fisher’s exact test p = 2.1x10-29, 1.1x10-10, respectively) [Fig. 5B]. We 318 

found 205 colocalizations between a GWAS signal and an eQTL signal in a tissue with a dual evidence TF-319 

eQTL that had high LD between the lead colocalization and TF-eQTL variants (r2 > 0.4), which represent 320 

potential TF regulators of genetic effects on phenotype [STable 3]. 321 

One example of this relationship is an APBB1IP eQTL that interacts with transcription factor IKZF1. 322 

This eQTL is present in 31 GTEx tissues and colocalized with GWAS signals for four red and white blood 323 

cell traits (ENLOC regional conditional probability > 0.5), suggesting that genetic control of these traits 324 
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could be mediated by APBB1IP expression [48–50] [Fig. 5C; SFig. 16; STable 4]. We observed three tissues 325 

(pituitary gland, thyroid, and tibial artery) with TF-eQTL interactions for the APBB1IP gene with IKZF1 326 

[51,52] [Fig. 5D,E; SFig. 17]. Supporting IKZF1 regulation of this eQTL, the top TF-eQTL and GWAS variants 327 

were highly linked (r2 > 0.85) to rs1335540, a SNP found 15 bases upstream of an APBB1IP transcript start 328 

site that overlaps an IKZF1 ChIP-seq peak and matches a IKZF1 motif [53–55] [Fig. 5F, SFig. 17, 18]. APBB1IP 329 

eQTLs in all three tissues with an IKZF1-eQTL interaction showed colocalization with blood cell traits. 330 

APBB1IP mediates blood cell adhesion and immune response [56,57]. It is also involved in integrin-331 

mediated changes in the actin cytoskeleton of mammalian cells [58,59] and its orthologue MIG-10 has 332 

been shown to regulate axon outgrowth in C. elegans neurons [60]. IKZF1 is a chromatin-remodeling TF 333 

involved in lymphocyte development as well as the neuroendocrine system [51,52]. These findings offer 334 

two explanations for the genetic control of blood cell traits by APBB1IP expression: 1) via altered gene 335 

expression in the blood cells themselves, or 2) via neuroendocrine control of blood cell counts originating 336 

with altered gene expression in neurons. Offering further support to the neuroendocrine hypothesis, 337 

thyroid dysfunction has been shown to alter red and white blood cell counts [61,62], and the IKZF1-eQTL 338 

interactions were observed in neuroendocrine tissues. Regardless, given the shared genetic signal in 339 

multiple tissues, we can hypothesize that IKZF1 regulates both APBB1IP expression and the implicated 340 

blood traits, suggesting a TF regulator of a complex trait’s genetic association. 341 
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 342 

Figure 5. TF-eQTL implications for gene-by-environment and GWAS effects. A) Overlap of TF-eQTL genes with GxE genes from 343 

Findley et al. 2021. B) Overlap of TF-eQTL genes with GWAS colocalizing eQTL genes from GTEx. The first diagram shows overlap 344 

for a gene with a TF-eQTL in any tissue and colocalizing eQTL in any tissue. The second shows overlap of tissue eQTLs with TF-eQTL 345 

and/or colocalizing GWAS locus in the given tissue. C) Representative eQTL and GWAS p-values are plotted for variants in the 346 

region of an APBB1IP eQTL and blood trait GWAS locus. Lead variants from IKZF1-eQTL interactions in thyroid, pituitary, and tibial 347 

artery are larger and outlined in black. (The lead variant from pituitary/artery cannot be seen as it falls behind rs1335540.) D) & 348 

E) Individual samples in thyroid and pituitary tissues are plotted by IKZF1 and APBB1IP expression, and linear regression lines are 349 

plotted by genotype. The difference in APBB1IP expression between the genotypes gets smaller as IKZF1 expression increases 350 

across the samples. F) Schematic of IKZF1 regulation of APBB1IP and blood cell counts. An IKZF1 binding site predicted by the 351 

HOCOMOCO IKZF1 motif lies nine bases upstream of APBB1IP’s transcription start site, which is disrupted by the alternative allele 352 

of rs1335540. Under our neuroendocrine signaling hypothesis, APBB1IP expression in neuroendocrine tissues goes on to alter 353 

system-wide neuroendocrine signaling, which would cause changes in blood cell counts. As IKZF1 appears to regulate the APBB1IP 354 

eQTLs in these tissues, it would follow that IKZF1 TF therefore may regulate the effect of this locus on blood cell counts. 355 
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Discussion 356 

In this paper, we used the natural variation of TFs across tissues and individuals to discover 6,262 357 

TF-eQTL interactions across 1,598 genes, which represent putative TF-based mechanisms of genetic 358 

effects on gene expression. These TF-eQTLs were supported by at least two lines of evidence, including 359 

cross-tissue and/or within-tissue variation. They were enriched to overlap ChIP-seq peaks and fall into the 360 

regulon of the implicated TF, corroborating with orthogonal evidence that these eQTLs are regulated by 361 

the implicated TFs. Furthermore, analysis of an IRF1-knockdown experiment validated three out of seven 362 

testable IRF1-eQTLs. We see that TF-eQTL genes are more likely to colocalize with GWAS loci and overlap 363 

genes with gene-by-environment effects, and our example of IKZF1 regulation of an APBB1IP eQTL that 364 

colocalizes with GWAS signals for blood cell traits illustrates how our TF model can be used to discover 365 

likely TF regulators of GWAS effects. 366 

Given the high number of possible causal genetic variants and putative regulatory mechanisms 367 

based on statistical fine-mapping and functional annotation overlap, it is clear that additional methods 368 

are needed to pinpoint causal variants and mechanisms of quantitative trait loci. Our method offers a new 369 

approach to discovering TF regulation of a genetic variant’s effects, which can help us determine the 370 

eQTL’s potential mechanism of action and explain its context variability. One major advantage to our 371 

method is its accessibility. While functional annotations were used to choose variants to test and to 372 

validate our results, the main discoveries of the model were powered by sample genotypes and gene 373 

expression levels – the same data available in most eQTL analyses. We leverage variation cross-tissues 374 

and within-tissues, which both have value for discovering TF regulators of eQTL effects, but especially the 375 

within-tissue TF interaction analysis is applicable to any eQTL data set even when a large number of 376 

different conditions may not be available. 377 

Understanding TF regulation of an eQTL effect can allow us to focus functional fine-mapping 378 

efforts only on the implicated TF, hopefully narrowing the focus to one or a handful of variants that disrupt 379 
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binding sites predicted by that TF’s motif or show allele-specific binding in its ChIP-seq data. Unlocking 380 

these mechanisms allows us to eventually improve our understanding of the regulatory code of the 381 

genome and how human genetic variation perturbs that system. One clear application of our approach is 382 

for discovering and interpreting gene-by-environment (GxE) effects on gene expression and phenotype. 383 

While GxE interactions on human phenotype have been difficult to assess, GxE interactions in relation to 384 

gene expression have been studied under various contexts [8,12–15,63–65]. Overlapping these effects 385 

with TF-eQTLs as in our analysis, or even performing TF-eQTL analysis in the environmental exposure 386 

datasets themselves, provides mechanistic hypotheses of how environmental effects impact genetic 387 

control of gene expression and phenotype.  388 

We were surprised by the lack of validation of TF-eQTLs discovered with cross-tissue protein 389 

levels, since protein measurements should reflect TF activity levels more accurately than expression 390 

measurements. However, the protein data had less power, from a smaller number of individuals and 391 

tissues than the expression data, and mass spectrometry may have more technical noise than expression 392 

quantifications from RNA-seq. Another promising option for TF measurement in the model is TF activity 393 

as predicted by target gene expression [66], which should account for translation rates, post-translational 394 

modifications, and subcellular localization effects on TF activity that expression measurements cannot 395 

capture. Initial analyses with this datatype did not yield strong results, but as activity estimates improve, 396 

the option should be revisited. 397 

Though we saw enrichment for TF ChIP-seq peaks and allele-specific binding, our TF binding 398 

enrichments were quite modest. For instance, the TF ChIP-seq overlap enrichment statistic of 0.05 for 399 

dual-evidence TF-eQTLs means that we observed 0.05 more variants with ChIP-seq overlap per TF-eQTL 400 

gene than expected – or one additional overlap per twenty genes. Part of this may arise from the lack of 401 

ChIP-seq data from relevant tissue and cell type contexts that match the GTEx eQTL data. Nonetheless, it 402 

is likely that our dual-evidence TF-eQTLs likely contain false positives. One of the factors that may 403 
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contribute to this is the correlated expression between TFs, which is difficult to fully account for. Another 404 

important factor is TF-eQTL correlations that may be caused by cell type composition [6], such that an 405 

eQTL only found in a given cell type might be correlated with TFs that are highly expressed in that cell type 406 

even when the TF does not specifically regulate the eQTL. While some of our discovered TF-eQTLs may be 407 

false positives due to cell type variability, the ChIP-seq enrichments and IRF1 validation indicate that the 408 

applied filters successfully remove many of the major cell type composition effects. Altogether, we 409 

consider our 6,262 TF-eQTLs to represent regulatory variants with an indication of being regulated by the 410 

implicated TFs, but full validation will require additional work.   411 

In summary, in addition to this catalog of potential TF regulators of eQTLs, we hope that our 412 

methods of comparing TF level with genetic variant effect can be applied in additional eQTL datasets, as 413 

well as for splicing QTLs and other molecular phenotypes. Our approach has the potential to implicate 414 

mechanisms for eQTL effects that vary across contexts without requiring additional datatypes or 415 

experiments, though its integration with other lines of evidence can further strengthen the insights, as 416 

shown in this study. Additionally, our method can improve functional fine-mapping efforts by highlighting 417 

TFs that may be regulating a locus, which can be further investigated with functional genomic data for 418 

that TF such as motif prediction or allele-specific binding data. We believe this TF-based framework of 419 

genetic variant effect variability can advance our understanding of QTL and GWAS mechanisms and their 420 

context variability, with great promise for understanding environmental interactions that impact genetic 421 

disease risk. 422 
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Methods 423 

GTEx data 424 

For the bulk of our analysis, we used the GTEx v8 dataset, including whole genome sequencing 425 

for 838 individuals and mRNA sequencing from 15,201 samples across 49 tissues [Table 2, STable 1]. RNA-426 

seq data were aligned using STAR v2.5.3a, and gene counts were based on GENCODE Release 26 and 427 

analyzed using RNA-SeQC [5]. cis-eQTL calculations in each tissue and Caviar fine-mapping 95% confidence 428 

sets for those eQTLs were also previously generated [Table 2] [5]. High-throughput mass spectrometry 429 

protein measurements were separately available for 201 GTEx samples across 32 tissues [42] [Table 2, 430 

STable 1]. GTEx tissues were categorized into Blood/Immune, Adipose, Brain, Nervous System (non-brain), 431 

Epithelial, Muscle, or Organ/Other via a cursory literature search on biological composition and function.  432 

 433 

Table 2. Data Sources.  434 

Data Type Publication DOI / Citation Website 
GTEx v8 genetic, gene 
expression, eQTL, and fine-
mapping data 

10.1126/science.aaz1776 / [5] https://gtexportal.org/home/  

GTEx protein data 10.1016/j.cell.2020.08.036 / 
[42]  

GTEx GWAS colocalization 10.1186/s13059-020-02252-4 / 
[49]  

ENCODE TF ChIPseq peaks Multiple experiments https://www.encodeproject.org/ 
search/?type=Experiment  

HOCOMOCO TF motifs 10.1093/nar/gkx1106 / [54] https://hocomoco11.autosome.ru/  
ADASTRA allele-specific 
binding data 

10.1038/s41467-021-23007-0 / 
[22] https://adastra.autosome.ru/susan  

HEK293-TLR4 IRF1 
knockdown experiment 

10.1101/2020.02.21.959734 / 
[45]  

HEK293-TLR4 genome 
sequence 10.1038/ncomms5767 / [67] http://hek293genome.org/v2  

Gene-by-environment 
interactions 10.7554/eLife.67077 / [12]  

 435 
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Filtering variants 436 

We limit our analysis to variants where we have prior evidence to suggest that this could be a 437 

variant affecting gene expression that is regulated by a TF. We filtered for variants that matched four 438 

criteria: 1) >=5% minor allele frequency in GTEx v8 samples; 2) present in a Caviar fine-mapped 95% 439 

credible set for an eQTL in any GTEx tissue; 3) overlap an ENCODE TF ChIP-seq peak for at least one of 169 440 

TFs; 4) match a HOCOMOCO consensus sequence motif for at least one of 169 TFs. We used ENCODE 441 

narrowPeak regions in all available experiments that passed filtering criteria (as of January 2020) and 442 

HOCOMOCO v11 IUPAC consensus motifs [Table 2].  For the ENCODE TF ChIP-seq overlap, we used ChIP-443 

seq optimal irreproducible discovery rate (IDR) threshold peak files for experiments with a biological 444 

replicate, no red or orange audit categories, and no experimental conditions. We used a union of regions 445 

if multiple IDR files were available per TF. For HOCOMOCO TF motif matching, we converted the IUPAC 446 

consensus sequence motif to a regular-expression string for both the forward and reverse-compliment 447 

motif, trimming any less confident bases (lowercase letters) from the ends of the sequence. We extracted 448 

the genomic sequence surrounding each variant (motif length minus one on either side of the variant) 449 

using samtools, and we used grep to check if the forward or reverse-compliment motif was present in the 450 

reference and/or the alternative alleles. The above filtering left us with 473,057 variants. Using the Caviar 451 

fine-mapping data, we associated each filtered variant with one or more eGenes, which resulted in 452 

1,032,124 eVariant-eGene pairs across 32,151 genes. 453 

Within-tissue interactions 454 

For our within-tissue TF-eQTL interaction discovery, we selected twenty tissues that best 455 

represented all 49 GTEx eQTL tissues based on gene expression clustering. We clustered tissues based on 456 

median TPM across all genes using Euclidean distances and Ward.D clustering, cut the resulting tree to 457 

generate twenty clusters, and selected the tissue with the largest sample size from each cluster. If a tissue 458 
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was removed for cell type composition variability (below), the next largest tissue was selected from the 459 

cluster, if one was available. 460 

For each selected tissue, we applied an eQTL interaction model to discover TF-eQTL interactions 461 

on gene expression. We ran tensorQTL software per TF and per tissue for 32,151 genes and all filtered 462 

variants within a 10 mega-base window of the transcription start site, inputting individuals’ genotypes, 463 

normalized eGene expression, and normalized TF expression for each eQTL-TF pair, as well as genotype 464 

principal components and tissue covariates described in The GTEx Consortium, 2020 [5]. TensorQTL 465 

software applied a gene-level p-value correction based on the effective number of independent variants 466 

tested per gene, estimated with eigenMT (emt), and selected the variant with the lowest p-value per gene 467 

[31,68]. We then applied a Benjamini-Hochberg (BH) correction to the emt-corrected p-values across each 468 

tissue and TF. For all TF-eQTL interactions with BH FDR <= 20%, we selected those where the top TF-eQTL 469 

variant had a significant eQTL signal in the respective tissue and where the gene was not the implicated 470 

TF. 471 

We removed four tissues with high cell type composition variability so that our results were not 472 

dominated by non-causal TF-eQTL relationships due to cell type composition (Whole Blood, Fibroblast, 473 

Colon, Stomach), and we removed one tissue due to its high number of results and unique gene expression 474 

patterns (Testis). Cell type composition was estimated in Kim-Hellmuth et al., 2020 [6]: briefly, XCell was 475 

used to calculate enrichment of cell-type-specific gene expression signals in GTEx samples [69]. Since 476 

these estimates were not all experimentally validated, we ignored cell type estimates with high variability 477 

across tissues (aDC, iDC) [SFig. 5]. Four cell type estimates had high variability in a GTEx tissue (variance > 478 

0.04; Th2 cells in fibroblasts, epithelial cells in the colon, epithelial cells in the stomach, and basophils in 479 

blood) and those tissues were removed from the analysis to avoid strong cell type interaction signals in 480 

our results. Stomach clustered with other tissues [SFig. 4], so we added the next largest tissue in that 481 

group, Pancreas, to our within-tissue TF-eQTL analysis. 482 
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Cross-tissue correlations 483 

We correlated eQTL effect sizes and TF expression levels across up to 49 GTEx tissues. We used 484 

the aFC software package to calculate eQTL effect sizes based on log2 allelic fold change (aFC) for all 485 

eVariant-eGene pairs in each tissue [70], using genotype principal components and tissue covariates 486 

described in The GTEx Consortium, 2020 [5]. We determined the median TF level per tissue based on 487 

transcripts per million (TPM). Then we performed a cross-tissue Spearman correlation of eQTL aFC and TF 488 

median TPM for each eQTL-TF pair in all tissues with median eGene expression greater than 0 TPM, i.e., 489 

in all tissues where the eQTL target gene was sufficiently expressed. We tested 1-249 eVariants per eGene, 490 

and we selected the top variant per gene and calculated a corrected p-value using the effective number 491 

of independent variants tested per gene. We defined the effective number of tests per gene as the 492 

number of eigenvectors needed to capture 95% of the variance in the GTEx genotype matrix of all tested 493 

variants, using the Gao method in the poolr package [71]. We then performed a Benjamini-Hochberg TF-494 

level correction of the meff-corrected p-values across the top variants of each gene, and we selected 495 

variants with up to a 5% false discovery rate (FDR). 496 

For our protein-based analysis, we used a similar approach, substituting TF protein levels for TF 497 

expression levels. We examined median protein levels in 32 GTEx tissues using normalized high-498 

throughput mass spectrometry data [42]. We filtered for TFs with at least 20 unique protein values across 499 

tissues, then performed a cross-tissue Spearman correlation of eQTL aFC and TF median protein level. We 500 

tested 1,032,124 eQTLs and 72 TFs using the same p-value calculation procedure described above, then 501 

selected variants with up to a 20% FDR. 502 

Dataset comparison 503 

We tested for TF-eQTL sharing across multiple datasets: cross-tissue expression-based, cross-504 

tissue protein-based, and each within-tissue expression-based dataset. We performed Fisher’s tests based 505 
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on every TF-eGene pair’s presence in the significant interactions from each dataset. For comparisons with 506 

cross-tissue protein-based data, we only used TF-eGene pairs for 72 TFs tested in the protein data. 507 

TF binding overlap enrichment 508 

We tested whether our predicted TF-eQTL interactions overlap TF binding sites (TFBS) based on 509 

two orthogonal datasets: ENCODE TF ChIP-seq peaks and HOCOMOCO predicted TF binding motifs [Table 510 

2]. Given the complicated structure of our data, with multiple variants tested per gene and LD between 511 

variants, we used an expectation/observation model to test TFBS overlap enrichment of TF-eQTL 512 

interactions.  513 

For each TF (f), we calculated the number of expected overlaps per gene (g) based on the number 514 

of variants tested (v) and the probability that any variant overlapped that annotation (p), and compared 515 

that to the observed number variants that overlap the annotation (o): 516 

𝑆!,# = 𝑜𝑏𝑠!,# − 𝑒𝑥𝑝!,# = 𝑜!,# −	𝑣# ∗ 𝑝!  (Eq 1) 517 

We then averaged the per gene statistics across all genes with a significant TF-eQTL interaction (Gf): 518 

𝑆! =
∑ %!,##∈%!

|'!|
      (Eq 2) 519 

And we averaged across all 169 TFs to get our final enrichment statistic: 520 

𝑆()*+,-. =	
∑ %!∗|'!|
&'(
!)& 	

∑ |'!|&'(
!)&

    (Eq 3) 521 

The resulting statistic can be interpreted as the average extra number of overlaps per gene. For 522 

instance, an overlap enrichment statistic of 0.01 would mean that we observed 0.01 more variants with 523 

overlap per TF-eQTL gene than expected – or one additional overlap per 100 genes. 524 
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Permutations were carried out by shuffling overlap annotations across all tested variants and 525 

recalculating the overlap statistic 104 times. Permutation p-values were calculated by counting the 526 

number of times the permuted TF statistic is larger or smaller than the observed statistic, adding one, 527 

dividing by the number of permutations, and multiplying by two for a two-sided test. 528 

Allele-specific TF binding validation 529 

We examined TF allele-specific binding (ASB) data to determine if our high-confidence set of 530 

potential TF regulators led to altered TF binding in vivo. We based our analysis on the ADASTRA dataset 531 

(Susan version), which contains a meta-analysis of allele-specific TF binding results from over 7,000 TF 532 

ChIP-seq experiments [Table 2] [22]. Similar to our TFBS overlap enrichment analysis, we used an 533 

expectation/observation model to test allele-specific binding of TF-eQTL interactions, then permuted 534 

allele-specific binding annotations to calculate the enrichment significance.  535 

For the un-matched TF ASB overlap analysis, we calculated the number of expected variants with 536 

ASB per gene based on the number of tested variants that were assayed in the ASB dataset (v) and the 537 

probability that any variant had ASB for any TF (p). We then compared the expected to the observed 538 

number of variants with ASB (o) in each gene, and we averaged across all genes that had a significant TF-539 

eQTL interaction for any TF (Gany): 540 

𝑆-12 =
∑ %,##∈%*+,

|'*+,|
      (Eq 4) 541 

For our matched TF analysis, we calculated the number of expected variants with ASB per gene 542 

based on the number of tested variants that were assayed in the ASB dataset (v) and the probability that 543 

any variant had ASB for the specified TF (p). We then compared the expected to the observed number of 544 

variants with ASB (o) using the equation for Sg described previously (Eq 1), then averaged the per gene 545 

statistics across all correlated genes using the equation for Sf (Eq 2). 546 
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The overall enrichment was calculated using Sg and Sf, with genes with a significant TF-eQTL 547 

interaction per TF (Gf) and 124 total TFs, using the full equation: 548 

𝑆3-456*7 =	
∑ ∑ (!,#8	)#∗.!#∈%!
&-.
!)& 	

∑ |'!|&-.
!)&

    (Eq 5) 549 

We then permuted ASB annotations across all tested variants and recalculated the ASB statistic 550 

104 times. We calculated permutation p-values using the same two-sided test procedure described in our 551 

TFBS overlap enrichment analysis. 552 

IRF1 knockdown analysis 553 

Our high confidence set of potential TF regulators included 58 eQTL effects predicted to be 554 

regulated by IRF1. To test these, we used a CRISPR-i knockdown of IRF1 in TLR4-expressing HEK cells 555 

(HEK293T) and measured allele-specific expression (ASE) at varying IRF1 levels [Table 2] [45]. If we observe 556 

that ASE changes with IRF1 levels, this would suggest that IRF1 is truly regulating the effect of the eQTL 557 

on gene expression. First, we filtered the aligned HEK293T RNAseq data for coding variants that had 558 

adequate coverage to call ASE: at least 60 reads across all conditions, at least 5% reference allele and 5% 559 

alternative allele, and less than 5% of other alleles. Then, we used Fisher's test to compare the allelic 560 

balance across all promoter knockdown samples and all control samples. As our test was likely 561 

underpowered, we looked at genes with a 0.05 nominal p-value cutoff. We then checked which IRF1-eQTL 562 

top variants were heterozygous in the HEK293T cell line using VCF files from Complete Genomics [Table 563 

2] [67]. All seven testable IRF1-eQTL were heterozygous for a top IRF1-eQTL variant in the HEK293T cell 564 

line. 565 
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Comparison with GxE genes 566 

Gene-by-environment interaction analysis results were attained from Supplemental Table 4 in  567 

Findley et al., 2021 [Table 2] [12]. We matched these results by ENSG number with our dual-evidence TF-568 

eQTL genes and used Fisher’s exact test to calculate overlap compared to all tested genes in our dataset. 569 

GWAS colocalization 570 

To discover TF regulators of GWAS loci, we examined colocalization of GTEx eQTLs and 76 GWAS 571 

traits. We obtained ENLOC colocalization results (regional conditional probability > 0.5) from the GTEx 572 

Consortium [Table 2] [48,49] and overlapped these eQTL genes with our high confidence TF-eQTL genes. 573 

To test if our TF-eQTLs were enriched to colocalize with GWAS signals, we looked at all significant eQTL 574 

genes in any tissue and performed a Fisher's exact test for whether or not the gene had an eQTL that 575 

colocalized with a GWAS phenotype and whether or not we found a TF-eQTL interaction for that gene. 576 

We also performed a tissue-specific analysis where we looked at all significant eQTL genes in the 16 tissues 577 

where we performed within-tissue TF-eQTL discovery, and we performed a Fisher's exact test for whether 578 

or not the tissue’s eQTL signal colocalized with a GWAS phenotype and whether or not a high confidence 579 

TF-eQTL was found for that gene in the tissue. Our list of 205 colocalizing GWAS-eQTLs with a TF-eQTL 580 

were based on this tissue-specific comparison and were additionally filtered such that the r2 of the top TF-581 

eQTL variant and the lead ENLOC colocalizing variant was great than 0.4. 582 

Supplementary Information 583 

Supplementary tables 1-5 can be found in the supplementary Excel file. 584 

Supplementary figures 1-17 and supplementary table legends can be found in the supplementary PDF. 585 
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Data and Code Availability 586 

In addition to supplementary tables, additional relevant data tables as well as data analysis and plot-587 

generation code are available at https://github.com/LappalainenLab/TF-eQTL. 588 
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