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Abstract 21 

HIV-associated neurological disorders (HAND) is a term used to describe a variety of 22 

neurological impairments observed in HIV-infected individuals. The pathogenic mechanisms of 23 

HAND and its connection to HIV infection remain unknown. The brain samples from HIV-24 

infected individuals, both with and without HAND, were characterized by increased abundance 25 

of p-Tau217 peptide, which correlated with the abundance of flotillin 1, a marker of lipid rafts. 26 

HIV-1 Nef was detected in some, but not all, samples from HAND-affected individuals. Samples 27 

positive for Nef had lower abundance of cholesterol transporter ABCA1, higher abundance of 28 

flotillin 1 and p-Tau217, and were obtained from individuals with higher severity of HAND 29 

relative to Nef-negative samples. These results highlight the contribution of Nef and Nef-30 

dependent effects on cholesterol metabolism and lipid rafts to the pathogenesis of HAND and 31 

support a connection between pathogenesis of HAND and Alzheimer’s disease. 32 
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Introduction 36 

HIV-associated neurological disorders (HAND) have clinical hallmarks of a 37 

neurodegenerative disease with progressive cognitive decline reflected initially by neuronal 38 

dendritic simplification and ultimately by the neuronal loss [1]. With the introduction of 39 

combination anti-retroviral therapy (cART), prevalence of the severe form of HAND, HIV-40 

associated dementia (HAD), has diminished, but that of milder forms, mild neurocognitive 41 

disorder (MND) and especially asymptomatic neurocognitive impairment (ANI), have increased 42 

[2], suggesting that cART slows progression, but does not prevent initiation of the disease. The 43 

reasons for this persistence are not fully understood and several possible explanations have been 44 

suggested (reviewed in [3, 4]). One of the mechanisms gaining support in the recent studies links 45 

HAND pathogenesis to beta amyloid, suggesting a connection between HAND and Alzheimer’s 46 

disease (reviewed in [5]). HAND has many similarities to Alzheimer’s disease (AD), such as 47 

neuroinflammation, similar transcriptional signatures, and increased abundance and changed 48 

localization of intracellular beta amyloid (Aβ), a critical component in AD pathogenesis [5-8]. 49 

While the possibility that HIV infection “speeds up” the underlying AD is an attractive 50 

hypothesis, the mechanisms of this connection remain unclear. Described below are results of 51 

our previous studies of the effects of Nef on cellular cholesterol metabolism and lipid rafts, 52 

which provide a plausible mechanism.  53 

Expression of Nef in HIV-infected cells induces degradation of the key cellular 54 

cholesterol transporter ABCA1, causing suppression of cholesterol efflux and increasing 55 

abundance of the lipid rafts [9, 10]. Most importantly, the same activity was demonstrated for the 56 

Nef-carrying extracellular vesicles [11, 12], which continue to be released into circulation and 57 

the brain from HIV-infected cells even after suppression of HIV replication by cART [7, 13, 14]. 58 
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Amyloidogenic proteins concentrate in the lipid rafts [15], and most amyloid proteins involved in 59 

pathogenesis of neurodegeneration are raft proteins [16-18]. High local concentration of 60 

amyloidogenic proteins is a prerequisite for the effective nucleation and cascading progression of 61 

their misfolding, a key pathogenic element of neurodegeneration. Therefore, upregulation of the 62 

lipid rafts by Nef or Nef-containing extracellular vesicles and accumulation of amyloidogenic 63 

proteins in the rafts may accelerate the progress of their misfolding and promote its spread 64 

through the brain. A similar mechanism has been shown for prions, which also promote lipid raft 65 

formation and depend on lipid rafts for progression of prion misfolding [19]. 66 

In this study, we demonstrated associations between the presence of Nef with reduced 67 

levels of ABCA1, increased abundance of flotillin 1, disease severity, and the increased 68 

abundance of p-Tau217 - which is a characteristic marker of the Alzheimer’s disease [20-22]. 69 

Our findings support the proposed mechanism of HAND whereby Nef-mediated suppression of 70 

ABCA1 increases the abundance of lipid rafts, which in turn enables the progression of 71 

tauopathy.  72 

 73 

Materials and Methods 74 

Brain samples: Fresh-frozen post-mortem samples from hippocampus or mid-temporal gyrus of 75 

HIV-infected individuals with or without HAND diagnosis were obtained from National 76 

NeuroAIDS Tissue Consortium (NNTC). Brain samples from uninfected individuals without 77 

neurodegenerative disease diagnosis were obtained from the National Institutes of Health 78 

NeuroBioBank. All samples were deidentified, and provided clinical information is presented in 79 

Table S1. The studies abided by the Declaration of Helsinki principles. 80 
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Western blot analysis: Samples were analyzed by automated Western immunoblotting using the 82 

JessTM Simple Western system (ProteinSimple, San Jose, CA). For analysis of ABCA1, a 66-440 83 

kDa Jess separation module (SM-W008) was used, for Nef – a 2-40 kDa module (SM-W012), 84 

for p-Tau217 and Flotillin 1 – 12 - 230 kDa module (SM-W004). Three μL of brain lysates (1 85 

μg/μL protein) was mixed with 1 μL of Fluorescent 5X Master mix (ProteinSimple) in the 86 

presence of fluorescent molecular weight markers and 400 mM dithiothreitol (ProteinSimple). 87 

This preparation was denatured at 95°C for 5 min for Nef, p-Tau217 and Flotillin 1 analysis. For 88 

ABCA1, the mix was incubated at 37°C for 15 min. Molecular weight ladder and proteins were 89 

separated in capillaries through a separation matrix at 375 volts. A ProteinSimple proprietary 90 

photoactivated capture chemistry was used to immobilize separated viral proteins on the 91 

capillaries. Capillaries with immobilized proteins were blocked with KPL Detection Block (5X) 92 

(SeraCare Life Sciences, Gaithersburg, MD, cat. #5920-0004) for 60 min, and then incubated 93 

with antibodies for 60 min. After a wash step, HRP-conjugated goat anti-rabbit (cat. #042-206), 94 

donkey anti-goat (cat. #043-522-2), or goat anti-mouse antibodies (cat. #042-205) from 95 

ProteinSimple were added for 30 min. The chemiluminescent revelation was established with 96 

peroxide/luminol-S (ProteinSimple). Digital image of chemiluminescence of the capillary was 97 

captured with Compass Simple Western software (version 5.1.0, Protein Simple) that calculated 98 

automatically heights (chemiluminescence intensity), area, and signal/noise ratio. Results were 99 

visualized as electropherograms representing peak of chemiluminescence intensity and as lane 100 

view from signal of chemiluminescence detected in the capillary. A total protein assay using 101 

Total Protein detection module DM-TP01 and Replex Module RP-001 was included in each run 102 

to quantitate loading.  103 

 104 
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Antibodies: For Nef detection, the following mouse monoclonal antibodies were used: 3D12 105 

(ABCAM ab42355) against amino acids 35RDLEKHGAITSSNTAA50 of HIV-1 HXB2; EH1 106 

(AIDS reagents #ARP-3689) against 194MARELHPEYYKDC206  of HIV-1 B subtype consensus; 107 

SN20 (gift from Dr. Bernhard Maier, Indiana University) against the SH3 binding domain of Nef 108 

(FPVTPQ); and 6JR (ABCAM ab42358) mapped to 195ARELHPEYYKD205 of the HIV-1 B 109 

subtype consensus. P-Tau217 was detected using the rabbit polyclonal antibody to Tau 110 

phosphorylated on Threonine 217 (Thermofisher (Waltham, MA), cat. #44744); ABCA1 – using 111 

mouse monoclonal anti-ABCA1 antibody H10 (Abcam (Cambridge, MA), cat. #ab18180); and 112 

flotillin 1 – using goat anti-flotillin 1 polyclonal antibody (Novus Biologicals (Littleton, Co), cat. 113 

#NB1001043). 114 

 115 

Statistics: Statistical analyses including Spearman correlations, Wilcoxon rank-sum tests, 116 

Kruskal-Wallis test with DSCF multiple comparisons option, and multivariate linear regression 117 

were conducted in SAS v9.4. Data visualization was conducted in GraphPad PRISM v.9. For 118 

multivariate analysis, Box Cox transformation of variables was performed in SAS v9.4 prior to 119 

regression. Figure captions describe the statistical test used. 120 

 121 

Results 122 

The role of amyloid proteins in pathogenesis of HAND has been previously suggested 123 

[23-25]. Our earlier study of a small number of postmortem brain samples from HAND patients 124 

found a trend towards increased abundance of APP and Tau relative to samples from uninfected 125 

individuals [11]. To substantiate this finding, we now analyzed postmortem brain samples from 126 

22 HIV-infected individuals diagnosed with HAND, 11 HIV-infected individuals without HAND 127 
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diagnosis, and 12 uninfected controls without diagnosed neurological disease (Table S1) for Tau 128 

protein phosphorylated on Threonine 217 (p-Tau217). This Tau isoform has been shown to 129 

strongly correlate with Aβ deposition [26] and was proposed as a marker for Alzheimer’s disease 130 

[20, 27, 28]. Results presented in Fig. 1A demonstrate that the abundance of p-Tau217, measured 131 

by quantitative automated capillary Western blot, was significantly increased in samples from 132 

HIV-infected individuals with HAND diagnosis, relative to HIV-infected individuals without 133 

HAND diagnosis and especially relative to uninfected controls (supporting Western blot 134 

evidence is presented in supplementary Fig. S1). Significant difference in the abundance of this 135 

peptide was also observed between samples from HIV-infected individuals without HAND 136 

diagnosis and uninfected controls (Fig. 1A). Given that p-Tau217 is an early marker of 137 

neurodegeneration and Alzheimer’s [20, 27, 28], these results are consistent with the role of 138 

phosphorylated Tau in HAND pathogenesis and suggest that increase in this factor may precede 139 

HAND diagnosis. 140 

 Amyloidogenic proteins and amyloid peptides are associated with lipid rafts [29-33], and 141 

our previous study suggested that increased abundance of lipid rafts caused by Nef-containing 142 

extracellular vesicles (exNef) may be the reason for the upregulation of APP and Tau [11]. 143 

Unfortunately, immunohistochemical analysis of lipid rafts in fresh-frozen tissue blocks was 144 

technically challenging. We evaluated the abundance of lipid rafts in the brain tissue samples by 145 

measuring the lipid raft marker flotillin 1 (by quantitative Western blot). Results of these 146 

analyses are presented in Fig. S2. Although there was no difference in the abundance of flotillin 147 

1 between brain samples from HIV-infected HAND-positive or HAND-negative individuals vs 148 

uninfected individuals (Fig. S3), the abundance of p-Tau217 in HAND brain samples 149 

significantly correlated with the abundance of flotillin 1 (Fig. 1B). This result is consistent with 150 
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the proposed relationship between lipid rafts and amyloid peptides [11, 32]. Of note, no such 151 

correlation was observed in samples from uninfected brains, or brains from HIV-infected 152 

individuals without HAND diagnosis (Fig. S4), suggesting that the relationship between rafts and 153 

p-Tau217 formation is changed in HAND. 154 

 Results above suggest that abundance p-Tau217 in HAND brains may be associated with 155 

the abundance of flotillin 1 and, by extension, of lipid rafts. Previous studies suggested that 156 

downmodulation of ABCA1 in macrophages infected with HIV-1 or treated with exNef regulates 157 

the abundance of lipid rafts [10-12, 34]. Our analysis showed a negative correlation between the 158 

quantity of ABCA1 in all samples and the quantity of flotillin 1 (Fig. 1C). Comparison of 159 

ABCA1 abundance between all samples from HIV-infected individuals to samples from 160 

uninfected controls showed a trend towards reduced ABCA1 in the brains from infected 161 

individuals, although the statistical significance was not achieved (Fig. 1D, supporting Western 162 

blot evidence is in Fig. S5).  163 

A known problem with detection of Nef in biological samples is that Nef proteins from 164 

different HIV-1 strains have vastly varying ability to interact with different antibodies, 165 

significantly affecting accuracy of comparison of the abundance of Nef between infected 166 

participants. In addition, low specificity of most anti-Nef antibodies makes detection of low Nef 167 

concentrations in clinical samples challenging. To get around these limitations, we detected Nef 168 

in the brain samples by Western blot using four different antibodies raised against conservative 169 

epitopes in different Nef regions: 3D12 mapped to the N-terminus region of HXB2 Nef, EH1 170 

mapped to the C-terminus region, SN20 mapped to the SH3-binding domain of Nef, and 6JR 171 

mapped to the C-terminus region (see Materials and Methods). Analysis with 3D12, SN20, and 172 

EH1 antibodies was performed with all samples, except HIV 40, HIV 42, HIV 43, HAND 41, 173 
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HAND 44, HAND 45, and showed some cross-reactivity with cellular proteins in uninfected 174 

samples (Fig. S6). All samples were analyzed using the 6JR antibody, which provided the 175 

cleanest results, with least cross-reactivity with cellular proteins and negative results with all 176 

uninfected samples (Fig. 2), and was used for the final interpretation of the Nef status. Table 1 177 

summarizes results of this analysis. Eight of 22 HAND samples were Nef-positive, whereas only 178 

one sample from HIV-positive individual without HAND diagnosis (HIV 19) was positive.  179 

We further separated HAND samples into two groups, Nef-positive and Nef-negative, 180 

and compared these groups for expression of ABCA1, flotillin 1, p-Tau217, and HAND severity 181 

according to the clinical score (Fig. 3). Samples positive for Nef had lower abundance of 182 

ABCA1 (Fig. 3A), higher abundance of flotillin (Fig. 3B), and higher abundance of p-Tau217 183 

(Fig. 3C) relative to HAND samples with undetectable Nef. To determine whether the observed 184 

differences were associated with the disease status, we compared the clinical HAND scores 185 

between subjects providing the Nef-positive and Nef-negative brain samples. Clinical 186 

neurological status was assessed using three existing dementia rating scales, American Academy 187 

of Neurology (AAN), Memorial Sloan Kettering (MSK), and Frascati; the scales were not 188 

universally applied to all individuals and in some cases disagreed (Table S1). Although a good 189 

concordance between these scales has been reported, Frascati provided a more graded evaluation, 190 

especially for mild cases [35]. We therefore used the Frascati score, were available, to grade the 191 

clinical status, and the AAN score in the other cases (Table 2). The HAND clinical score was 192 

significantly higher in individuals providing Nef-positive samples relative to individuals 193 

providing samples with undetectable Nef (Fig. 3D), indicating that presence of Nef was 194 

associated with a more severe disease. Multivariate regression analysis demonstrated that the 195 

effect of detectable Nef on all continuous outcome variables (ABCA1, flotillin 1, p-Tau217) 196 
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considered jointly was significant in all HIV-infected individuals, in both the unadjusted model 197 

and the adjusted model controlling for age, HIV duration, and viral load (Table S2). The 198 

difference in results between analysis of all samples from HIV-positive individuals and those 199 

from HAND only may be due to the smaller sample size in HAND only set. 200 

Taken together, these results suggest that Nef, via modification of cholesterol metabolism 201 

and lipid rafts may be one of the key causative factors promoting amyloid formation and disease 202 

progression in HAND. 203 

 204 

Discussion 205 

 The role of amyloid proteins in HAND pathogenesis remains an open question. In this 206 

study, we demonstrated a significant increase in the brains of HIV-infected individuals of the 207 

abundance of p-Tau217, which is also involved in pathogenesis of Alzheimer’s disease [36]. 208 

This finding is consistent with our previous report where in vitro analysis suggested increased 209 

abundance of amyloid precursor proteins and Tau in exNef-treated neuronal cells [11]. 210 

Surprisingly, this was true for brain samples from both HAND-diagnosed and HAND-free HIV-211 

infected individuals. One explanation is that HIV-infected individuals without HAND diagnosis 212 

were at an early stage of disease when clinical manifestations could not yet be detected. This 213 

explanation is consistent with a demonstrated utility of p-Tau217 as an early marker of 214 

Alzheimer’s, which allows detection of the disease at the stage preceding neurodegeneration and 215 

clinical symptoms [37].  216 

In these studies, we measured total flotillin 1 to evaluate the abundance of the lipid rafts. 217 

Flotillins 1 and 2 are integral membrane proteins that assist in raft assembly [38-40]. While 218 

flotillin 1 can be recruited to lipid rafts under certain stimulatory conditions [41], suggesting that 219 
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the number of flotillin molecules per lipid raft may vary, the level of flotillin expression, and 220 

thus the per cell abundance of flotillin, appears to regulate the abundance of lipid rafts [42]. 221 

Therefore, the abundance of total flotillin 1 provides only a crude estimate of the abundance of 222 

lipid rafts. This limitation is taken in the account in our interpretations. 223 

 Tau hyperphosphorylation is a characteristic feature of Alzheimer’s disease, and a 224 

number of studies established that phosphorylation of Tau in AD is closely linked to Aβ 225 

pathology [26, 43, 44]. Lipid rafts were proposed to be the sites where Tau phosphorylation takes 226 

place, and where phosphorylated Tau accumulates and interacts with Aβ during development of 227 

Alzheimer’s disease [33]. The observed correlation between abundancies of flotillin 1 and p-228 

Tau217 may reflect this paradigm, suggesting that lipid rafts may be a target for potential 229 

therapeutic interventions in HAND, as had been proposed for other neurodegenerative diseases 230 

[45]. We recognize, however, that, as discussed above, abundance of flotillin 1 provides only a 231 

crude estimate of the abundance of lipid rafts, which may be the reason for low flotillin 1 in 232 

some brain samples from subjects diagnosed with HAND, and high flotillin 1 in some samples 233 

from HIV-infected individuals without the HAND diagnosis. But the most likely explanation for 234 

this variability is that a driving factor in HAND pathogenesis is not the absolute amount, but the 235 

change in the quality and quantity of the lipid rafts during disease progression. Our previous 236 

studies documented functional impairment of lipid rafts associated with the effect of Nef [10], 237 

which may occur without a major change in the raft abundance. We have previously reported 238 

that exNef modify the fatty acid content of the lipid rafts [12], although the functional 239 

consequences of these changes have not been investigated. Prospective studies will be needed to 240 

evaluate this idea. 241 
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Our analysis demonstrated that majority of samples where Nef could be detected came 242 

from individuals with diagnosed HAND. This result suggests an important role of Nef in HAND 243 

pathogenesis. Indeed, Nef-positive samples were characterized by reduced ABCA1, increased 244 

flotillin 1, increased p-Tau217, and increased clinical disease score. These results suggest that 245 

Nef may drive ABCA1 downmodulation in HAND initiating lipid raft modifications and 246 

subsequent pathological events.  247 

A limitation of this study is a relatively small number of samples available for analysis. 248 

Since samples were not cryopreserved, we could not perform flow cytometry analysis of the lipid 249 

rafts, or cell-specific characterizations. Another limitation is lack of a sensitive quantitative assay 250 

for Nef. Despite these limitations, our study supports the pathogenic role of Tau in HAND 251 

pathogenesis, and suggests the sequence of events that lead to HAND: Nef EVs downmodulate 252 

ABCA1 changing the properties of the lipid rafts, thus increasing formation of amyloid plaques 253 

and Tau phosphorylation and fibrillation. Future studies in animal models will establish the 254 

temporality of this ordering and will determine whether therapeutic treatments breaking the 255 

pathogenic course described above can prevent development of HAND.   256 
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Table 1. Results of Nef analysis in experimental samples.  
Study ID SN20 3D12 EH1 6JR 

HAND 2 - - - - 
HAND 3 + + + + 
HAND 4 - - - - 
HAND 6 + + + + 
HAND 7 + + + + 
HAND 11 + + + - 
HAND 12 - + - - 
HAND 13 + + + + 
HAND 14 - - + - 
HAND 15 - - - - 
HAND 16 + - - - 
HAND 17 + + + + 
HAND 18 - - - + 
HAND 25 - - - - 
HAND 26 + - - - 
HAND 27 - - - - 
HAND 28 - - + - 
HAND 29 + + + + 
HAND 30 - - - - 
HAND 41 ND ND ND + 
HAND 44 ND ND ND - 
HAND 45 ND ND ND - 

HIV 1 - - - - 
HIV 5 - - - - 
HIV 8 + - - - 
HIV 9 - - - - 
HIV 10 + + - - 
HIV 19 + + + + 
HIV 20 + - - - 
HIV 24 - - - - 
HIV 40 ND ND ND - 
HIV 42 ND ND ND - 
HIV 43 ND ND ND - 

Uninf 21 + - - - 
Uninf 22 + - - - 
Uninf 23 + - - - 
Uninf 31 + - - - 
Uninf 32 - - - - 
Uninf 33 ND ND ND - 
Uninf 34 - - - - 
Uninf 35 + - - - 
Uninf 36 - - - - 
Uninf 37 + - - - 
Uninf 38 - - ND - 
Uninf 39 + - + - 

ND – not done. + - Nef detected, - - Nef undetected. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 21, 2021. ; https://doi.org/10.1101/2021.07.20.453134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.453134


Table 2. HAND severity evaluation in donors of  

post-mortem brain samplesA 

ID Frascati 

score 

AAN 

score 

HAND score 

in the study 

HAND 2 
 

3 3 

HAND 3 
 

5 5 

HAND 4 
 

4 4 

HAND 6 
 

4 4 

HAND 7 
 

5 5 

HAND 11 
 

3 3 

HAND 12 
 

2 2 

HAND 13 
 

5 5 

HAND 14 
 

3 3 

HAND 15 
 

3 3 

HAND 16 3 
 

3 

HAND 17 3 
 

3 

HAND 18 2 
 

2 

HAND 25 3 
 

3 

HAND 26 
 

3 3 

HAND 27 
 

3 3 

HAND 28 
 

3 3 

HAND 29 
 

3 3 

HAND 30 
 

3 3 

HAND 41 5 4 5 

HAND 44 5 4 5 

HAND 45 3 5 3 
AHAND score used in the study was based on Frascati  

score where available, and AAN score in other cases. 
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A B C D

Figure 1. Analysis of pathogenic correlates of HAND. A – Analysis of p-Tau217 in brain samples from uninfected individuals and HIV-infected individuals with and without HAND diagnosis
for p-Tau217 adjusted to total protein were obtained using ProteinSimple Compass software and are presented as arbitrary units. Group comparisons were made by 
Kruskal-Wallis test with post hoc Dwass, Steel, Critchlow-Fligner multiple comparison analysis adjustment for FWER (DSCF option in SAS NPAR1WAY procedure). 
B – Simple linear regression analysis of p-Tau217 and Flotillin 1 in HAND samples (data adjusted to total protein obtained using Compass software). C - Simple linear 
regression analysis of ABCA1 and Flotillin 1 in all samples (protein abundance adjusted to total protein was obtained using Compass software). D – Analysis of ABCA1 
in HIV-infected (HAND-positive and HAND-negative samples) vs uninfected samples. Data points representing ABCA1 abundance adjusted to total protein were 
obtained using Compass and are presented as box and whiskers plot with p value calculated by Mann Whitney nonparametric two-tailed t test.
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Figure 2. Analysis of Nef in brain samples. Brain lysates were assayed by Western immunoblot using the 6JR mouse monoclonal anti-Nef antibody from Abcam. 
Samples were run on ProteinSimple Jess instrument and analyzed by Compass software. Color-coded lines denote group assignment of the samples.
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Figure 3. Comparative analysis of Nef-positive and Nef-negative brain samples from HAND-diagnosed individuals. A, B, C - Data points for ABCA1 (A), 
Flotillin 1 (B), and p-Tau217 (C) adjusted to total protein levels were obtained using ProteinSimple Compass software and are presented as arbitrary units. Results 
are presented as violin plots, showing p values calculated for unpaired parametric two-tailed t test. D – HAND clinical scores are presented for individuals from 
whom Nef-positive and Nef-negative brain samples were obtained as violin plots, showing p values calculated for unpaired non-parametric Mann-Whitney two-tailed
t test.  
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