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Physiological states of bacterial cells exhibit a wide spectrum of
timescale. Under the nutrient-rich conditions, most of the cells
in an isogenic bacterial population grow at certain rates, while a
small subpopulation sometimes stays in a dormant state where the
growth rates slow down by orders of magnitude. What is the ori-
gin of such heterogeneity of timescales? Here we addressed this
question by studying the kinetic model of Escherichia coli central
carbon metabolism including the dynamics of the energy currency
molecules, which have often been ignored. We found that the model
robustly exhibits both the growing- and the dormant state. In order
to unveil the mechanism of distinct behaviours, we developed a re-
cursive method to simplify the model without changing the qualita-
tive feature of the dynamics. Analytical and numerical studies of the
2-variable minimal model revealed the necessary conditions for the
distinct behaviour, namely, the depletion of energy due to the futile
cycle and its non-uniform impact to the kinetics because of the co-
existence of the energy currency-coupled and uncoupled reactions
as well as branching of the network. The result is consistent with
the experimental evidences of the appearance of the futile cycle in
mutants and provides a possible explanation for the appearance of
dormant cells that causes antibiotic persistence.
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Bacterial growth rates span in a wide range of timescales:1

Escherichia coli cells typically double every 20 minutes2

under the nutrient-rich conditions (1) while it is reported that3

non-sporulating Bacillus subtilis showed 4-day doubling time4

(2), and the doubling times of some oceanic bacteria are es-5

timated to be years (3). Interestingly, the growth rates of6

the cells in a single-cell level can be heterogeneous even in a7

clonal population growing at a constant rate (4–10). Further,8

a small fraction of the cells sometimes exhibit dormancy where9

the growth rate of such cells is slower than that of the other10

cells in the orders of magnitude. This phenotypic heterogene-11

ity showing dormancy in the log phase is the main cause of12

the type-II persister (5, 11–13) that have high tolerance to13

antibiotics.14

Where do the multiple timescales originate in the cellar15

dynamics? Several mechanisms for triggering dormancy and16

persistence have been proposed so far: studies discovered links17

between the expression of toxin-antitoxin modules and the18

persister fraction. The toxin is a protein that typically inhibits19

important cellular functions such as translation, and thus, it20

can slow down the cellular growth and trigger stress response21

mechanisms of the cells, increasing the persister fraction in22

some cases (14, 15). Aside from the toxin-antitoxin modules,23

the growth-modulating genetic circuits exhibiting bistability24

were found (16, 17). Also, the epigenetic "memory" by DNA25

modification in prokaryotes has recently been discussed in 26

relation to the slow timescale of persister cells (18). 27

The above listed studies attribute the origin of the slow 28

timescale to the gene expression patterns. Here in the present 29

manuscript, we explored another possibility: the multiple 30

timescales originated from the metabolic dynamics itself, with- 31

out regulatory changes. Metabolic reaction networks are highly 32

interconnected via cofactors such as ATPs, and thus, the ki- 33

netic models of metabolic networks should have high non- 34

linearities. The emergence of multiple timescales is one of the 35

hallmarks of nonlinear dynamical systems. Indeed, the studies 36

of simple catalytic reaction network showed that the relax- 37

ations to the steady-state are much slower than that inferred 38

from the rate-constants of the reactions and exhibit multiple 39

plateaux (19, 20). Thus, it is worth asking if the metabolic dy- 40

namics, by itself without regulations, lead to widely spanning 41

timescales. 42

However, in the studies of E.coli metabolic dynamics, little 43

research has been done to ascribe the origin of the multiple 44

timescales of cellular growths to metabolic dynamics. Instead, 45

most of the efforts have been devoted for the quantitative 46

predictions of the metabolic dynamics under given experimen- 47

tal conditions (21–31). Interestingly, the kinetic models for 48

such quantitative predictions have a common simplification 49

style: the dynamics of the cofactors are neglected (21–31), or 50

if included, only the steady-states are in the focus, and the 51

relaxation dynamics of the models are not actually computed 52
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(32–36). By such simplifications, we have possibly overlooked53

some aspects of the dynamics of cellular metabolism. Indeed,54

it is reported that a simple kinetic model of glycolysis exhibits55

anomalous relaxation behaviour when the energy currency56

molecules are introduced to the model (37).57

Therefore, in the present manuscript, we study the kinetic58

model of E.coli central carbon metabolism including the dy-59

namics of the cofactors. We show that the model robustly60

exhibits two distinct dynamics which are reminiscent of the ex-61

ponentially growing- and dormant (or persister) cells, depend-62

ing on the initial conditions. In order to derive the minimal63

reaction network showing qualitatively the same dynamics, we64

develop a recursive method to reduce the model variables. As65

a consequence of the model reduction, the minimal network66

is obtained consisting of five variables and six reactions. The67

analysis reveals two necessary conditions for the emergence of68

both growth and dormant dynamics.69

Results70

Model. In the present manuscript, we study the E. coli core net-71

work (38) as one of the simplest models of the real metabolic72

reaction networks. The E. coli core model was obtained from73

BiGG database (39). The model contains the stoichiometry74

and the reversibility of the reactions. The E. coli core model75

has 52 and 75 intracellular metabolites and reactions, respec-76

tively. After an appropriate data curation as described later,77

we implemented the model by using the ordinary differential78

equation (ODE) that describes dynamics of concentrations of79

metabolites.80

We applied several modifications to the model to make it81

suitable for the ODE implementation. First, small molecules82

such as O2, H2O, and NH4, were not considered as variables83

but treated as constants under the assumptions that the ex-84

ternal concentration of these chemicals are kept constant and85

uptakes/secretions of them take place quickly. The uptake86

and secretion pathway of all carbon sources except glucose are87

removed.88

Under the anaerobic conditions, cells transfer the free en-89

ergy to ATP directly, while under the aerobic conditions, most90

of the energy transfer takes an indirect form: the energy is first91

transferred to other chemicals such as NADH and NADPH,92

and then, the stored energy in NADH, NADPH, and others93

are used for converting ADP to ATP. The conversion yield94

of ATP per NADH in the E. coli core model is 1.25∗ and95

NADH/NADPH yield is roughly unity. For introducing the96

cofactors to the model in a simple manner, we suppose that the97

energy transfers via NADH and NADPH are sufficiently fast98

and ATP/NADH(NAPDH) yield as unity. According to these99

assumptions, we replace NAD(NADP) and NADH(NADPH)100

by ADP and ATP, respectively (we discussed the validity of101

this assumption in the Discussion section and SI text Section.9).102

Full lists of the chemical components and the reactions are103

provided in SI Data.1.104

Also, the stoichiometry of the growth reaction was mod-105

ified. The original E. coli core model has the biomass pro-106

duction reaction leading to the cell growth consisting of 16107

substrates and 7 products with non-integer stoichiometry con-108

stants. For the kinetic modeling, such reactions having too109

many substrates and products leads to numerical instability110

∗via NADH16, CYTB, and ATPS4r.

and non-integer stoichiometry is unreasonable. Thus, we re- 111

placed the biomass production reaction by a following reaction: 112

(Erythrose 4-phosphate) + (L-Glutamine) + (ATP)→ (ADP). 113

This reaction is much simpler than the original one but requires 114

the model to run all the modules of the metabolic reactions, 115

namely pentose phosphate pathway for Erythrose 4-phosphate 116

(e4p), TCA cycle for L-Glutamine (gln), and energy generation 117

for ATP. Hereafter, we call this simplified biomass production 118

reaction as the growth reaction. 119

The resulting model consists of 32 variables and 40 reac- 120

tions. The final metabolic reaction network is drawn in Fig. 1. 121

Our model cell takes up the nutrient from the node labeled 122

as "glc" which has a constant concentration, performs succes- 123

sive conversion of the chemicals with generating energy, and 124

proceeds the growth reaction. 125

2

2

2

glc

gln

e4p

Fig. 1. The metabolic network of the E. coli core model generated by Escher (39).
The sole carbon source (glucose-6-phosphate) is placed at the left top (abbreviated
as glc). We highlighted the substrates of the growth reaction other than ATP, namely,
e4p and gln. The growth reaction is not drawn.

First, we simulated the model with realistic setups. The 126

kinetic parameters of E. coli core model have been estimated 127

using the metabolic ensemble modeling (MEM) by Khodayari 128

and colleagues (34). We derived Michaelis-Menten type rate 129

equation for each reaction according to the enzyme kinetics 130

used in (34) with the presented kinetic parameters. Then we 131

assumed that each chemical species is consumed/synthesized 132

by associated reactions, diluted as the cell grows, and sponta- 133

neously degraded at a slow rate. Thus, the temporal change 134

of the concentration of the ith chemical species Xi is ruled by 135

d[Xi]
dt

=
∑
j

SijJj − d[Xi]− µ[Xi], [1] 136

where S is the stoichiomety matrix and Ji’s are the fluxes due 137

to chemical reactions. d and µ are the spontaneous degra- 138

dation rate and the growth rate, respectively. Note that the 139

concentrations of enzymes are supposed to be constant and 140

lumped in the kinetic parameters. We assumed that the spon- 141

taneous degradation is very slow process and represented by 142

a single parameter. The dilution and degradation terms are 143

omitted in the equations of AMP, ADP, and ATP because 144

de-novo synthesis of the adenine nucleotide carriers are not 145
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Fig. 2. A. Two characteristic dynamics of E. coli core model starting from different initial points. While the growth rate of the cell is≈ 0.5 per hour at the attractor, there are
huge differences in the relaxation behaviours between the top and bottom panel. B. The distribution of the relaxation time showing a clear bimodality. C. Trajectories are overlaid
in 2-dimensional principal component space. Color indicates log10 of time. The trajectories having shorter relaxation time (several hours) are colored in green-white-purple
while the others are colored in blue-white-red. All initial points cluster at the region highlighted in orange and the black point corresponds to the attractor. Initial concentration
of each metabolites is 10u (mM) with u as a random number uniformly distributed in [−1, 1] while the total concentrations of adenine nucleotide carriers are normalized.
Parameters other than ones obtained from (34) are [glc] = 20(mM),At = 1(mM),d = 5× 10−3(hour−1), vg = 3.6× 104(mM−2· sec−1) and r = 5.0(mM−1).

modelled in the E. coli core model. This assumption is equiva-146

lent to suppose the homeostasis of the total adenine nucleotide147

carriers. (Later we check that the assumption can be relaxed148

by introducing a phenomenological reaction for de-novo syn-149

thesis of AMP). According to the growth reaction which we150

have introduced above, our model cell grows as the reaction151

(Erythrose 4-phosphate) + (L-Glutamine) + (ATP) → (ADP)152

proceeds. We chose the simplest kinetics of the growth reac-153

tion given by Jg = vg[e4p][gln][atp] and the growth rate as154

µ = rJg. We fit the values vg and r so that the growth rate at155

the steady state is in the range of the typical growth rate of156

E. coli in minimal glucose media, in the order of 0.1 per hour,157

and set the spontaneous degradation rate d as approximately158

one-hundredth of it. The concentration of the nutrient ([glc])159

and the total concentration of the adenine nucleotide carriers160

(At) are set to 20mM and 1mM, respectibely (see SI Text161

Section.1).162

Dormant trajectory. We computed the dynamics of the E. coli163

core model from randomly chosen initial concentrations. The164

initial concentration of each chemical is given by 10u with u165

as a random number uniformly distributed in [−1, 1] while the166

concentrations of ATP, ADP, and AMP are normalised so that167

the total concentration is identical for all the initial conditions.168

We found that the model exhibited two qualitatively distinct169

relaxation behaviours depending on the initial conditions. The170

typical time course of each type is plotted in Figs. 2 A in171

log scale, to depict the wide range of the concentration and172

timescale. Even though the two trajectories eventually relax173

to the same attractor, the relaxation behaviours are evidently174

distinct. First, the concentrations after milliseconds (∼ 10−5
175

hours) are different between the top and bottom panel in176

many orders of magnitude. Furthermore, the characteristic177

timescale between them is clearly different. The concentrations178

of the chemicals reach close to the steady values in seconds in179

the top panel, while the concentrations keep changing for a180

much longer time, t ≈ 103 hours in the bottom panel. When181

sampled over various initial conditions, the distribution of the182

relaxation time has a clear bimodality as shown in Fig. 2B. 183

Here, the relaxation time is defined as the time when the 184

distance between the attractor and the state in the logarithm- 185

converted phase space first becomes less than 0.05. 186

For visualising the differences among the trajectories, we 187

analysed all the trajectories in the phase space by the principal 188

component analysis (PCA, see Materials and Methods) where 189

all the trajectories are converted to the logarithmic scale. We 190

plotted all trajectories projected onto the 2-dimensional princi- 191

pal component space (PCS) in Fig. 2C. The trajectories were 192

classified into two groups by the relaxation time and differ- 193

ently colored. The first group is quickly-relaxing trajectories 194

that the trajectory in the top panel of Fig. 2A belongs to 195

(colored in green-white-purple). The trajectory in the bottom 196

panel of Fig. 2A is grouped into the other group, colored by 197

blue-white-red which takes much longer time to relax to the 198

attractor. Interestingly, the two groups of the trajectories 199

are different not only in the relaxation time, but also in the 200

shape of the trajectory in the PC1-PC2 space. Note that, the 201

initial position of the two classes of trajectories (highlighted 202

in oragne) are not clearly separated in the PC1-PC2 space. 203

The remarkable gaps between the timescale of chemical 204

reactions, and accordingly, the growth rate during their re- 205

laxations highlight the difference between two time courses. 206

The specific growth rate µ at the attractor is ≈ 0.5 hour−1
207

and the model cell achieves this growth rate in few seconds 208

in the top panel of Figs. 2A, while less than 10−10 hour−1 in 209

the bottom panel at t = 102 hours (at plateau). Thus, in the 210

following sections, we call the trajectories of the second group 211

"dormant trajectories" because of its extremely slower growth 212

rate than the other group. Accordingly, the trajectories of the 213

first group are termed as "growth trajectories". The following 214

sections are devoted to unveiling the mechanism leading to 215

the differentiation of the growth and dormant trajectories. 216

Simplification of reaction kinetics. The kinetic E. coli core 217

model is, as it is, too complicated to understand the mechanism 218

that leads to the two distinct relaxation trajectories. Thus, we 219
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Fig. 3. A. Two characteristic dynamics of model0 starting from different initial points. The relaxation behaviours are qualitatively different between the top- and bottom panels. B.
The distribution of the relaxation time showing a clear bimodality. C. Trajectories are overlaid in 2-dimensional principal component space. Color indicates log10 of time. The
trajectories having shorter relaxation time (top panel of A) are colored in green-white-purple while the others are colored in blue-white-red. All initial points cluster at the region
highlighted in orange and the black point corresponds to the attractor. Initial concentration of each metabolites is 10u with u as a random number uniformly distributed in
[−1, 1] while the total concentrations of adenine nucleotide carriers are normalized. v = 1 and κ = 10−6 for all reactions. Other parameters are [glc] = 1, At = 1, r = 0.1
and d = 10−8.

simplified the E. coli core model as follows. First, we modified220

the kinetics of the chemical reactions from the Michaelis-221

Menten formula to the mass-action rate equation. The rate of222

the ith chemical reaction A
 B, Ji which was given by223

Ji = vi
[A]− ki[B]

1 + [A]/K(i)
A + [B]/K(i)

B

[2]224

is replaced by225

Ji = vi([A]− ki[B]), [3]226

where vi and viki are the rate constant of forward- and back-227

ward reaction, respectively. Note that the mass-action kinet-228

ics (Eq.[3]) is a special form of the Michaelis-Menten kinet-229

ics (Eq.[2]) in the parameter region where [A] � K
(i)
A and230

[B]� K
(i)
B hold (for general arguments, see (40)). We further231

simplified the rate equations by setting vi’s to unity and bi-232

narising ki’s for all i′s. The E. coli core model contains the233

information of irreversibility for each reaction, and thus, if the234

ith reaction is reversible, we set ki as unity, and otherwise,235

set it to κ� 1. We term this simplified version of the kinetic236

E. coli core model as model0 with an index for the following237

model reduction steps.238

Surprisingly, the emergence of distinct relaxation trajecto-239

ries is robust to such an extensive modification of the model.240

Figs. 3 are obtained from model0. While time courses, espe-241

cially that of the dormant trajectory, become much smoother,242

the qualitative difference of the trajectories (Figs. 3A), bi-243

modality of the distribution of the relaxation time (Fig. 3B),244

and the distinction of the trajectories in the PC1-PC2 space245

(Fig. 3C) were unchanged. This robustness implies that the246

emergence of the distinct trajectories stems from the structure247

of the metabolic reaction network of the E. coli core model,248

rather than choices of specific parameter values. Indeed, we249

confirmed that the distinct trajectories emerge if the kinetic250

parameters are randomly assigned instead of setting them251

unity (see SI Text Section.11).252

Now it is worth asking, if there are understandably simple,253

minimal network architecture(s) in the E. coli core network254

which leads to the distinct trajectories. For extracting the 255

architectures, we develop a method of systematic network 256

reduction in the following section. 257

Systematic Model Reduction. In the present section, we re- 258

duce the E. coli core network by simply removing few chemical 259

reactions step by step because we expect that most of the 260

reactions are not vital for the emergence of the distinct tra- 261

jectories. As illustrated in Fig. 4A, there are two types of 262

reaction removal, namely, the simple removal and the contrac- 263

tion. First we describe the simple removal. Suppose that there 264

are reactions A
 B, B 
 C and C 
 A, and also A and B 265

are connected to the rest part of the network by the other reac- 266

tions (Fig. 4A-(i)). The simple removal removes the reaction 267

B 
 C and C 
 A, and accordingly, eliminate the chemical 268

C because it is a disconnected component in the network. In 269

the contrast, chemical species are merged by the contraction 270

(Fig. 4A-(ii)). It removes a reaction A 
 E, and then, the 271

chemical A and E are identified forming a new chemical Æ. 272

Here, we avoided the appearance of the dead-end chemical 273

which has only one reaction because networks with dead-end 274

chemicals can cause the heavy accumulation of the chemicals 275

and it potentially leads to an artifactual anomalous relaxation 276

behaviour. If the simple removal of a reaction results in the 277

dead-end chemical(s), a few additional reactions are removed 278

at the same time to avoid the dead-end chemical(s). A detailed 279

algorithm for the network reduction is described in SI Text 280

Section.2. 281

At each reduction step, we checked if the reduced model 282

exhibits the two distinct classes of trajectories by computing 283

its dynamics from randomly generated 512 initial points. First 284

we used the bimodality of the relaxation time distribution as 285

a criterion of the distinct trajectories. However, we found in 286

some cases that the bimodality was unclear even though there 287

were clearly different types of trajectories when we plotted 288

the time courses and performed PCA. This is because the 289

growth rate during the relaxation of both types of trajectories 290

(growth and dormant) becomes smaller than the spontaneous 291
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Fig. 4. A. Two types of reaction removal. The simple removal (top) just removes one or a few reactions from the network. The number of the reaction to be removed is
determined so that the dead-end chemicals are not made by the removal. The contraction removes a single reaction first, and then, the substrate and product of the removed
reaction are identified and regarded as a new chemical species. B. Illustrative description of the Hausdorff distance and the expansion ratio. There are two cases are depicted:
the case with R > 1 (top) and R < 1 (bottom). The two lines (pink and cyan) are trajectories starting from the initial point of each (back circles), converging to the same
attractor (black dot). The length of the yellow dashed line and the black dashed line give the Hausdorff distance and the initial distance, respectively. If one trajectory (pink) goes
away from the other (blue), typically the Hausdorff distance becomes larger than the initial distance. In the contrast, in the case that the two trajectories approach each other,
the Hausdorff distance is smaller than the initial distance. Note that the information of time is discarded in the argument. C. The reduced networks of the intermediate models
(model 5, 15, and 25) are drawn. The sole nutrient (glucose) is at the left top corner of the network while the substrate(s) of the growth reaction except ATP are colored in yellow
((e4p,gln), akg, and icit for model 5, 15, and 25, respectively.). The distribution of the expansion ratio and the trajectories projected onto the PCS of each model are also plotted.
The areas in each panel are the region where the initial points cluster. For the coloring protocol of the trajectories, see the main text.

Himeoka et al. PNAS | July 21, 2021 | vol. XXX | no. XX | 5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2021. ; https://doi.org/10.1101/2021.07.21.453212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453212
http://creativecommons.org/licenses/by-nd/4.0/


DRAFT

degradation rate d, and thus, the relaxation time of all the292

trajectories becomes approximately 1/d †. Thus, we decided293

to focus on the similarity of the trajectories instead of the294

relaxation time itself. In the following few paragraphs, we295

first intuitively explain how we quantify the similarity of the296

trajectories, and then, introduce the actual measure.297

Suppose that an ODE model has a single attractor. Then,298

all the trajectories starting from different initial points even-299

tually converge. We like to categorize the trajectories into300

different groups in a way that, if a pair of trajectories monoton-301

ically approach each other as they converge to the attractor,302

they belong to the same group. One may naïvely expect that303

we can state that two trajectories x(t) and y(t) monotonically304

approach each other if the Euclidean distance between them305

at the same time point, d(x(t), y(t)), is a monotonically de-306

creasing function of t. However, since the initial points are307

distributed in the phase space, measuring the distance between308

the points on two trajectories at the same time point is unrea-309

sonable. Thus, instead of adopting this naïve definition of the310

monotonicity, we measure the maximum Euclidean distance311

between two trajectories in the phase space. It is known as312

the Hausdorff distance of the trajectories, given by313

dH(x, y) = max{max
t

min
s

d(x(t), y(s)),max
t

min
s

d(x(s), y(t))}.
[4]314

The Hausdorff distance first looks for the closest point of the315

trajectory y from the point x(t), y(s∗(t)), and then find the316

pair of the points (x(t), y(s∗(t))) which gives the maximum317

Euclidean distance. The same is done from the points of y(t)318

and the larger value is chosen for the symmetry dH(x, y) =319

dH(y, x). The Hausdorff distance thus measures how far the320

two trajectories are distant while trivially distant pairs of321

points are not taken into account (for example, the initial322

point of x and the endpoint of y, i.e, the attractor).323

We cannot judge whether the trajectories go away from324

each other or not directly from the Hausdorff distance since it325

needs to be compared with the initial separation. Thus, we326

normalize the Hausdorff distance by the Euclidean distance327

between the initial points, d(x(0), y(0)) leading to328

R(x, y) = dH(x, y)
d(x(0), y(0)) . [5]329

We call this ratio R(x, y) as the expansion ratio of the tra-330

jectories x and y. It measures how much the initial distance331

has expanded. If dH(x, y) is smaller than the initial distance,332

R(x, y) is less than unity‡. R(x, y) > 1 means that two tra-333

jectories go away from each other at least once despite they334

eventually converge to the same attractor. The concept of335

the Hausdorff distance and the expansion ratio are illustrated336

in Fig. 4B. Note that in this manuscript, the Euclidean dis-337

tance, and accordingly, the Hausdorff distance are measured338

in the original high-dimensional phase space after applying339

the logarithm-conversion of the variables, not in the lower-340

dimensional principal component space.341

The distribution is expected to have a trivial peak around342

R = 1. If the distribution has only a trivial peak, it indicates343

that all the trajectories are monotonically attracted to a single344

† In principle, we can overcome this problem by setting d to be sufficiently small such as 10−20 .
However, it requires ridiculous amounts of computation. The distributions of the relaxation time for
all the models in the reduction step are presented in SI Text Section.3

‡
R becomes smaller than 1 if there is any point on x which is closer to y(0) than x(0). This
argument is symmetric for the swap of the indices.

predominant stream in the phase space reaching the attractor. 345

Oppositely, if the distribution has a non-trivial peak(s), then it 346

means that the correlation between the initial distance and the 347

Hausdorff distance is not simply scaled to each other. There- 348

fore, in the present manuscript, we utilize the multimodality 349

of the distribution of the expansion ratio as the criterion of 350

the distinct trajectories (examples can be found in Fig. 4C). 351

We judged the multimodality by fitting the distribution by a 352

sum of Gaussian functions (see SI Text section.2). Note that 353

in the following analysis, the computation of the expansion 354

ratio and PCA were performed for the trajectories converted 355

to the logarithmic scale so that the dynamic behaviours of 356

the chemicals with low concentrations are also reflected to the 357

analysis§. 358

A Minimal Model. We have reduced the E. coli core model step- 359

by-step according to the model reduction method described 360

in the previous section. For accomplishing the network re- 361

duction, we manually determined the order of the reaction 362

removal so that subsystems of the network are removed or 363

contracted in consecutive reduction steps. We completed the 364

model reduction by removing and contracting the L-glutamine 365

synthesis pathway (4 steps), pentose-phosphate pathway (4 366

steps), glycolytic pathway (8 steps), and TCA cycle (12 steps) 367

with the indicated number of steps in the parenthesis. The full 368

list of the removed reactions is provided in SI Data.1. Also, 369

the distributions of the expansion ratio and the trajectories on 370

PCS of all the models are shown in SI Text Section.3. We also 371

tried the model reduction in random orders of the reaction 372

removal (see SI Text Section.10). 373

The reaction network, the distribution of the expansion 374

ratio, and the trajectories projected onto the PCS of selected 375

models are shown in Figs. 4C. The distributions of the expan- 376

sion ratio show clear bimodality. We colored the trajectories 377

based on the relaxation time of each. The figure shows that 378

dormant trajectories (blue-white-red trajectories) commonly 379

take detour ways to reach the attractor in the PCS. This is 380

not an artifact due to the PCA. We computed the ratio of the 381

line integral of the trajectory (L) to the Euclidean distance 382

between the initial point and the attractor (D) in the original 383

high-dimensional phase space for each trajectory. The average 384

L/D ratio of the dormant trajectories was indeed bigger than 385

that of the growth trajectories (SI Text Section.5). We found 386

only the 10th model showed bistability (all the other models 387

are monostable). While in the analysis, we chose the trajecto- 388

ries relaxing to the major attractor that approximately 92% 389

of the initial points converge to, the trajectories relaxing to 390

the minor attractor also showed the bimodal distribution of 391

the expansion ratio and a clear distinction of the trajectories 392

on PC1-PC2 space (see SI Text Section.6) 393

After the 28 steps of reductions, we reached the stage that 394

no more reduction is possible without losing the multimodal- 395

ity of the distribution of the expansion ratio. The reaction 396

network and reaction names remained in this minimal net- 397

work (model 28) are depicted together with the original E. 398

coli core network in Fig. 5A. The network consists of glucose 399

(glc), phosphoenolpyruvate (pep), pyruvate (pyr), oxaloacetate 400

(oaa), ATP, ADP, and AMP. As highlighted in the original 401

network, the reaction from glc to pep is the contraction of the 402

§As a side effect of the logarithm-conversion, the behaviours of the chemicals with quite low con-
centrations may be too much highlighted. We computed the expansion ratio with cut-offs of the
concentrations for a lower-side, see SI Text section.4
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Fig. 5. A. The list of the reactions in the minimal network (left). The structure of the minimal network (middle). The original network with the reactions in the minimal model is
highlighted (right). The minimal model consists of three parts, namely, the glycolytic pathway (pink bar and boxes), the joint part between the glycolytic pathway and the TCA
cycle (cyan bar and boxes), and the adenosine kinase reaction (yellow bar and boxes). B and C. Example time courses of the growth trajectory (B) and the dormant trajectory
(C) of the minimal model. D. The streamline representation of the vector field of the 2-variable minimal model where the steady values of [atp], [adp] and [oaa] under given
[pep] and [pyr] are numerically solved. E. The streamline representation of the simplified minimal model. Color indicates the norm of the vector v = (d[pep]/dt, d[pyr]/dt)
at each point and the black dots indicate the attractor of each in D and E. φ0 = 10−8 in E.

glycolytic pathway and oaa is representative of the chemicals403

in the TCA cycle. It is worth noting that the local structure404

of the network among pep, pyr, and oaa are unchanged (cyan405

boxes). Therefore, the minimal network is obtained by re-406

moving the pentose phosphate pathway and contracting the407

glycolytic pathway and the TCA cycle. Also, the reaction408

ADK1 converting two ADPs to ATP and AMP is conserved.409

As shown in Fig. 5B and C, the model still exhibits the distinct410

trajectories.411

The model consists of five variables (recall that [glc] and412

[atp] + [adp] + [amp] are constant). In order to simplify the413

model further, we adiabatically solved the concentrations of414

three chemicals, [atp], [adp], and [oaa], under given values of 415

[pep] and [pyr] to eliminate these variables from the model. 416

This adiabatic elimination of the three variables does not 417

violate the multimodality of the distribution of the expansion 418

ratio. The set of ODEs of the minimal model is then given by 419
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d[pep]
dt

= −([atp][pep]− [adp][glc])420

− ([pep]− κ[oaa]) + ([atp][pyr]− κ[amp][pep])421

− ([adp][pep]− κ[atp][pyr])422

− (d+ r[oaa][atp])[pep], [6]423

d[pyr]
dt

= −([atp][pyr]− κ[amp][pep])424

+ ([adp][pep]− κ[atp][pyr])425

− (d+ r[oaa][atp])[pyr], [7]426

where [atp], [adp] (accordingly [amp]), and [oaa] are adiabati-427

cally solved, and thus, are the functions of [pep] and [pyr].428

The two-variable system allows us to visualize the vector429

field. As shown in Fig. 5D, interestingly, there is a boundary430

below and above which the streamlines change the direction431

dramatically ([pep] . 0.1 and [pyr] ≈ 1). Below the boundary,432

the state relaxes to the attractor rather straightforwardly433

corresponding to the dynamics shown in Fig. 5B (growth434

trajectory). On the other hand, trajectories starting from435

the upper region first travel to the left side of the phase436

space (small [pep] region) and return back to the attractor,437

corresponding to Fig. 5C (dormant trajectory). We attribute438

the emergence of the distinct trajectories to this dramatic439

change of the directions of the vector field occurring across the440

boundary. Hereafter, we call the region above- and below the441

boundary as the dormant and the growth region, respectively.442

Conditions for the emergence of distinct trajectories. What443

determines the boundary between the growth- and the dormant444

region, and why is the vector field of the 2-variable model445

(Fig. 5D) almost parallel to the horizontal axis in the dormant446

region? For the first point, we found that there are large447

gaps of the concentrations of ATP and ADP between the two448

regions. In the dormant region, their concentrations are low449

(∼ 10−8) while the growth region, they are in the order of450

0.1. This gives an insight for the second point. We found that451

the drastic change of the direction of the vector field occurs452

because four of the five reactions of the model couple with the453

adenine nucleotide carriers, and thus, these reactions almost454

completely halt in the dormant region.455

Intuitively, the low level of ATP and ADP in the dormant456

region can be understood from the reactions in Fig. 5A as457

follows. First, let us consider the situation where the con-458

centrations of pep and pyr are in the dormant region. If in459

addition the concentration of pep is low, the uptake reaction460

proceeds the direction glc+adp→pep+atp. When this reac-461

tion accumlates some ATP, PPS proceeds in the direction462

pyr+atp→pep+amp, because the concentration of pep is low.463

In total, the uptake reaction and PPS form a futile cycle that464

converts ATP and ADP into AMP. Note that the PPS does not465

easily results in accumulation of pep, because of PPC reaction.466

If the concentration of pep is high but pyr is also high that467

the system is still in the dormant region, PYK plays the same468

role of the uptake reaction in the previous case. Thus, a futile469

cycle converting ATP and ADP into AMP is formed in both470

cases. If the conversion from ATP and ADP into AMP is471

slow enough, the other reaction, ADK1 (atp+amp
 2ADP)472

proceeds to balance [atp] + [adp] and [amp]. However, ADK1473

cannot balance them if the conversion is too fast because the474

reaction needs ATP.475

Indeed, this intuitive description is consistent with the 476

analytical estimate of the boundary. For that, we derive the 477

boundary between the growth and dormant region for [pep]� 478

1. The boundary is given by the concentration of pyr leading 479

to a low concentration of ATP and ADP with a given value 480

of [pep]. For the estimation of the critical [pyr], we sum up 481

d[atp]/dt and d[adp]/dt and assume [atp], [adp], [pep] = O(ε) 482

with ε� 1. Also, recall that the irreversibility parameter κ in 483

(Eq. 6) is small. Then we obtain 484

d([atp] + [adp])
dt

= JADK1−JPPS ∼ [atp](vADK1At−vPPS[pyr]),
[8] 485

where we explicitly write down the rate parameter v∗’s and 486

the total concentration of adenine nucleotide carriers At for 487

the interpretation of the estimate. If the first term of the right 488

most side is larger than the second term, [atp]+[adp] increases, 489

while in the opposite situation the sum keeps decreasing to zero 490

as long as [atp] is non-zero. This shift occurs at vPPS[pyr] ∼ 491

vADK1At, and it gives the boundary between the growing and 492

the dormant regions. 493

Next, we explain how the decrease of [atp] and [adp] leads 494

to the vector field parallel to the horizontal axis in the dormant 495

region (Fig. 5D). Let us assume that the concentrations of ATP 496

and ADP are approximately the same and well-represented 497

by a single lumped parameter φ. Also, for a simplicity, we set 498

the irreversibility parameter κ to zero. Then, the ODE for the 499

2-variable minimal model (Eq. 6) is given by 500

d[pep]
dt

= φ(1− [pep] + [pyr] + r[oaa])− (1 + d)[pep],[9] 501

d[pyr]
dt

= φ([pep]− [pyr] + r[oaa])− d[pyr], [10] 502

where [oaa] is the function of φ, while it becomes constant as 503

φ approaches 0. From the equation, we can see that if the 504

concentration of ATP and ADP, represented by φ, is O(1) (i.e, 505

in the growth region), the timescale of the system is O(1). On 506

the other hand, if ATP and ADP deplete and φ ≈ 0 holds in 507

the dormant region, the timescale of d[pyr]/dt becomes O(d). 508

Since the spontaneous degradation rate d is sufficiently smaller 509

than unity, |d[pep]/dt| � |d[pyr]/dt| holds, and it leads to the 510

vector field being almost parallel to the [pep] axis as depicted 511

in Fig. 5D. 512

To confirm if the simplification above still captures the 513

feature of the vector filed in Fig. 5D, we have drawn the 514

vector field of the simplified model Eq.[9] and [10] with φ = 515

max{1− [pyr], φ0} in Fig. 5E. It well captures the feature of 516

the original vector field. We have confirmed that the shape of 517

the vector field is robust to the choice of the function φ. Also, 518

we analytically solved the model without the growth dilution 519

term (Eq.[9] and [10] with r = 0) and found that the model 520

has only a single timescale which is O(1) in the growth region 521

(see SI Text Section.7). 522

The simplified model (Eq.[9] and [10]) highlights that the 523

timescale of d[pep]/dt is much faster than that of d[pyr]/dt in 524

the dormant region. The right hand side of Eq.[9] has the term 525

(1 + d)[pep], while that in Eq.[10] is only the degradation term 526

d[pyr], and this difference results in the parallel streamline 527

in the phase space (Fig. 5E). It is worth noting where the 528

term (1 + d)[pep] in Eq.[9] comes from. d corresponds to the 529

constant-rate degradation term, and the reactions coupled with 530

either ATP or ADP should have the rate being proportional 531
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to φ. Therefore, this timescale 1 comes from the reaction532

coupled neither with ATP nor ADP, namely, PPC (pep→oaa).533

All the reactions except PPC are coupled with either ATP or534

ADP, and thus, the reactions slow down over the boundary535

between the growth- and the dormant region. However, the536

rate of PPC has no direct effect from the depletion of ATP537

and ADP. Then, even after the slowing down of almost all538

reactions, pep is kept being consumed, and it leads to the539

characteristic dynamics of the dormant trajectory.540

Note that, if PPC were also coupled with ATP and ADP,541

(1 + d)[pep] term in Eq.[9] would have been replaced by (φ+542

d)[pep]. In such a case, all the reactions would have been543

uniformly slowed down by the depletion of ATP and ADP,544

and the direction of the vector field would not change over the545

boundary as drastically as Fig. 5D. Thus, it is vital that the546

reaction system partially slows down due to the depletion of547

ATP and ADP.548

It is noteworthy that the network structure is also a part549

of the mechanism: if PPC were the reaction converting pyr to550

oaa instead of pep to oaa, the drastic change of the direction of551

the vector field as Fig.5D would not be resulted. If PPC were552

pyr → oaa, the main part of the reaction network (reactions553

except ADK1) would have no branch. The slowing down of554

the upstream reactions of PPC (i.e, uptake, PYK, and PPS)555

would be rate-limiting steps of it and PPC would slow down556

coordinated with these reactions.557

The above two points may suggest that large discrep-558

ancies of the chemical concentrations between the steady-559

state and the plateaux lead to distinct dynamics. In both560

cases–PPC with energy coupling and the main network with-561

out a branch–the reactions uniformly slow down. In such sce-562

narios, even if ATP and ADP deplete, the difference between563

production and consumption of each chemical stay relatively564

small, and thus, the changes of the concentrations remain565

small. However, if the slowing-down occurs heterogeneously566

on the network, some chemicals will have a large mismatch be-567

tween the production and the consumption. As a consequence,568

the concentrations of such chemicals drastically change from569

the concentrations before the depletion of ATP and ADP.570

To sum up, the mechanism of the emergence of the dis-571

tinct trajectories has two parts: (i) the unbalance of energy572

(ATP and ADP) production and consumption, and (ii) partial573

slowing-down of the reaction system caused by non-uniform574

coupling to the energy currencies and branching of the network.575

Discussion. We have shown that E.coli central carbon576

metabolism exhibits distinctly different dynamics depending577

on the initial conditions. The two types of trajectories greatly578

differed in terms of the relaxation time and the growth rate dur-579

ing the relaxation, and thus, we termed them as the growth-580

and the dormant trajectories. We developed a systematic581

method to simplify the reaction network without losing the582

distinct trajectories. By the successive reduction of the model,583

we eventually reached the minimal network still exhibiting the584

qualitatively same behavior.585

By drawing the vector field of the 2-variable minimal model,586

we found that there is a boundary at which the vector field587

changes the direction drastically. Indeed, the two regions588

are divided by the boundary corresponding to the set of the589

initial points of the growth- and the dormant trajectories.590

Analysis led that there are at least two vital requirements591

for the distinct trajectories: (i) the unbalance of the energy592

production and consumption and (ii) the partial slowing-down 593

of the reactions due to the non-uniform coupling with the 594

energy currency molecules and branching of the network. 595

To confirm if the requirements are not limited to the specific 596

model reduction example, we performed the reaction removal 597

for the model reduction in 16 different randomized orders. 598

All the minimal networks obtained by the random reduction 599

were larger than that derived in the result section. However, 600

the models share two features: (a) the models keep ADK1 601

reaction and AMP (note that it is possible to eliminate AMP 602

from the model), and (b) in each networks, there are both 603

reactions, with- and without the coupling to the energy cur- 604

rency molecules (ATP, ADP and AMP) as well as branches. 605

The shared features correspond to the requirements above. 606

We also found that the total concentration of ATP and ADP 607

plays a central role in the emergence of distinct trajectories. If 608

[atp]+[adp] becomes lower than a certain threshold during the 609

relaxation, the corresponding trajectory takes a detour way to 610

the attractor comparing other trajectories that [atp] + [adp] 611

is higher than the threshold value (see SI Text Section.5). 612

The robustness of the emergence of distinct trajectories to 613

the parameter values was also examined. For several values of 614

the total adenine nucleotide carriers concentration (At), we 615

randomly assigned the rate constant (vi) and the irreversibil- 616

ity constant (ki) of each reaction (Eq.[3]) and checked if the 617

distribution of the expansion ratio is multimodal. The multi- 618

modality was robust to the parameter choice, and as expected 619

from the analysis, the total concentration, At is an important 620

parameter. If At is too large as the depletion of ATP and 621

ADP hardly occurs, the expansion ratio becomes unimodal 622

(SI Text Section.11). It is checked that the model without 623

the replacement of the nicotinamide nucleotide carriers by the 624

adenine nucleotide carriers exhibits distinct trajectories (SI 625

text Section.9). Also, we have confirmed that the distinct tra- 626

jectories emerge if the assumption on the total concentration 627

of the adenine nucleotide carriers is relaxed by introducing a 628

phenomenological reaction for the de-novo synthesis of AMP 629

to the minimal model (SI Text Section.8). 630

The present study was motivated by a naïve question: what 631

happens if the concentrations of the cofactors are also intro- 632

duced in the kinetic model of E. coli central carbon metabolism. 633

As we saw, it led to the emergence of the distinct trajectories, 634

and the necessity of the cofactors to the phenomenon is well 635

highlighted by the result of model reduction and additional 636

analysis presented in SI Text: all the minimal model obtained 637

from random orders of reaction removal keep ATP, ADP, and 638

AMP (Section.10), the importance of the total concentration of 639

ATP and ADP for discriminating the trajectories (Section.3), 640

and the dependency of the fraction of parameter sets leading 641

to distinct trajectories on At (Section.11). 642

If one is interested in the fitting and the prediction of 643

a typical cellular behavior in the log phase as most of the 644

previous works using kinetic models were aiming at (21–31), 645

the dormant dynamics is not of one’s interest because of the 646

extremely slow growth rate during the relaxation. In addition, 647

a huge range of the concentrations of chemicals in the dormant 648

trajectories results in the heavy computational burden. These 649

two points are possibly main reasons of why previous models 650

did not include the dynamics of cofactors (21–31) or dynamics 651

were not actually computed (32–36). However, the present 652

study and recent experimental reports taken together imply 653
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that the dormant dynamics is not just an useless artifact with a654

computational burden, but may reflects the nature of bacterial655

physiology.656

Indeed, slow growths and low metabolic activities that the657

dormant trajectories exhibit are parts of the characteristic658

nature of the bacterial persistence (5, 11, 12, 14, 41). Inter-659

estingly, recent studies shed light on the relationship of the660

persister formation to the ATP depletion, not only in E.coli661

(42, 43), but also in a Gram-positive bacterium Staphylococcus662

aureus (44, 45). Further, Radzikowski et. al suggested that663

the persister formation in E.coli was triggered first by a strong664

perturbation of metabolic state: metabolism is autonomous665

system in a sense that it generates, and at the same time,666

is driven by chemical energy. Thus, a collapse of metabolic667

homeostasis prohibits restoring the homeostasis. This vicious668

state may be stabilized by ppGpp, Toxin-Antitoxin modules,669

and the σS-mediated stress responses (41). In addition, Mok670

et. al showed that E. coli populations exhibit high persis-671

ter fractions and the accumulation of all four ribonucleotide672

monophosphates, including AMP, by inducing the expression673

of one of the toxin genes, MazF, known to lead to RNA futile674

cycles consuming the nucleotide triphosphates such as ATP675

(46).676

One of the advantages of the model reduction method677

developed in this work is that we can find the counterpart of678

the reactions in the minimal model in the full E.coli metabolic679

network because we never merged any reactions but simply680

removed them. The central part of the mechanism is that681

PPS and PYK can form the futile cycle and the competition682

between PPS and ADK1 on the consumption/production of683

ATP. Indeed, the experiments showed that one can induce684

the ATP-consuming futile cycle between phosphoenolpyruvate685

and pyruvate via PYK and PPS by overexpressing the ppsA686

gene (47, 48). Taken the experimental reports and the present687

computational results together, we can hypothesize that the688

overexpression of the pps gene leads to an increase of the689

persister fraction because PPS coverts ATP to AMP.690

Lastly, we like to remark that the model reduction method691

developed in the present manuscript can be applied also for692

the metabolic models of other organisms. We can find several693

reactions which potentially form a futile cycle from a vari-694

ety of species. For instance, each of Acetyl-CoA synthetase695

(KEGGID:R00235), Phosphoribosylpyrophosphate synthetase696

(R01049) and Asparagine synthase (R00578) (49) converts697

ATP to AMP and forms a loop in the metabolic networks.698

These are the minimum requirements for a reaction to form699

a futile cycle discussed above. Such reactions are widespread700

from prokaryote to eukaryote, and from unicellular to multicel-701

lular organisms. Comprehensive studies of the kinetic models702

of not only E. coli but also other organisms may pave a way for703

understanding the robust and generic network features leading704

to the multiple timescales of cellular growth and dormancy.705
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Materials and Methods710

Simulation of ordinary differential equations (ODEs). All the711

ODE computations were performed by using Matlab (Math-712

works) ode23s function. Initial values of the concentrations 713

of the chemicals are given as 10u where u is the random num- 714

ber generated from a uniform distribution in [−1, 1]. The 715

ODEs were computed with two tolerance options (AbsTol = 716

10−10, RelTol = 10−12) and (AbsTol = 10−10, RelTol = 717

10−14) from exactly the same initial points. After the com- 718

putation, the trajectories with two different RelTol values, 719

but from the same initial point were compared for the quality 720

check of the computation. If the Hausdorff distance of the 721

pair of the trajectories was less than 0.5, the trajectories were 722

considered as correctly computed and the trajectory obtained 723

with RelTol = 10−14 was used for the further analysis, and 724

otherwise, discarded. The quality check of the computation 725

was performed after the transformation x(t)→ ln(x(t)) where 726

x(t) is the concentration of the chemicals. 727

Hausdorff distance. Hausdorff distance is 728

computed by using the python package 729

scipy.spatial.distance.directed_hausdorff as the 730

maximum of two directed Hausdorff distances after the 731

transformation of concentration into the natural logarithm of 732

the concentration. 733

Principal Component Analysis. We used the python package 734

sklearn.decomposition.PCA (50) without whitening. The 735

whitening leads to only a minor effect on the results. The 736

concentrations of the chemicals were transformed into the 737

natural logarithm of the concentration before the analysis. 738
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