
Kalikar et al.

Accelerating long-read analysis on modern CPUs
Saurabh Kalikar1, Chirag Jain2, Vasimuddin Md1 and Sanchit Misra1*

Abstract

Long read sequencing is now routinely used at scale for genomics and transcriptomics applications. Mapping of
long reads or a draft genome assembly to a reference sequence is often one of the most time consuming steps
in these applications. Here, we present techniques to accelerate minimap2, a widely used software for mapping.
We present multiple optimizations using SIMD parallelization, e�cient cache utilization and a learned index
data structure to accelerate its three main computational modules, i.e., seeding, chaining and pairwise
sequence alignment. These result in reduction of end-to-end mapping time of minimap2 by up to 1.8⇥ while
maintaining identical output.

Keywords: architecture-aware optimizations; SIMD; sequence alignment; minimap2; learned-index

Background

Long-read or single molecule sequencing technol-
ogy from Pacific Biosciences (PacBio) and Oxford
Nanopore Technology (ONT) have made significant
leaps in terms of read lengths, sequencing throughput
and accuracy since their introduction to the market.
Longer read lengths naturally benefit genomics and
transcriptomics applications, e.g., to detect complex
structural variation in case of DNA sequencing [1],
or for novel isoform discovery during RNA sequenc-
ing [2]. As a result, long read sequencing is now being
adopted in population-scale and biodiversity genome
surveys [3–5]. However, increased sequencing through-
put, e.g., > 1 Tbp per day [6], also demands faster
processing of data to save time and cloud computing
costs. Among the many steps performed to analyse
a long-read data set, mapping of long DNA or RNA
reads to a reference sequence is usually the first and
among the most time-consuming steps in any bioinfor-
matics workflow.
Minimap2 is a widely used sequence alignment pro-

gram which supports many use-cases including map-
ping long reads or a draft genome assembly to a ref-
erence sequence [7]. Even though minimap2 uses well-
engineered heuristics and software libraries, its per-
formance remains significantly below peak comput-
ing performance of a modern CPU. Presence of fre-
quent branching in the code, irregular memory ac-
cesses and irregular computation in minimap2 make
it challenging to e�ciently utilise the available hard-
ware resources. Owing to its complexity, only a few at-
tempts have been made to accelerate minimap2, and
they have also been confined to accelerating only one of

*Correspondence: sanchit.misra@intel.com
1Intel Labs, 560103 Bangalore, India
Full list of author information is available at the end of the article

the three modules within minimap2 [8–10]. The high-
est speed-up reported till date for minimap2 on multi-
core CPUs remains 1.4x, and this was achieved with-
out guaranteeing identical output as the original im-
plementation [10].

Minimap2 Algorithm
The algorithm used in minimap2 [7] is based on
the standard seed-chain-align procedure (Figure 1).
The seeding stage identifies short fixed-length exact
matches between a read and a reference sequence. Min-
imap2 makes use of minimizer technique [11], a popu-
lar k-mer sampling method to improve time and space
requirements. Prior to mapping, minimap2 does o✏ine
indexing of the reference sequence where it builds a
multimap using a hash table with minimizers as keys
and minimizer locations as values. This hash table is
used during the seeding step when exact matches are
collected by searching read minimizers in the reference
index. Such matching pairs of minimizers form a set of
anchors which are sorted and passed onto the chain-
ing stage. From the complete list of sorted anchors,
the chaining stage identifies an ordered subset of an-
chors that are co-linearly positioned along a diagonal
[12, 13]. Minimap2 uses a customized chaining score
function to prioritise the highest-scoring chains which
are likely to yield the desired base-to-base alignments
of a read. It uses dynamic programming for chaining
and has two versions: DP chaining and RMQ-based DP
chaining. DP chaining algorithm is O(n2) in the num-
ber of anchors and is used when the number of anchors
are expected to be small. RMQ-based DP chaining al-
gorithm is O(nlog(n)) in the number of anchors and is
used when the number of anchors are expected to be
large. It is used as a “long-join” heuristic in minimap2
to chain anchors that are too far in the array. It uses

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

mailto:sanchit.misra@intel.com
https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 2 of 15

Figure 1 Minimap2 workflow depicting its three key modules: (i) seeding, (ii) chaining, and (iii) alignment. Our optimizations to
each of the modules are shown in the blue dotted rectangle.

a simplified cost function whereas DP chaining penal-
izes gaps more e↵ectively. The third and final align-
ment stage computes base-level alignments for filling
the gaps between adjacent anchors in these chains.

Our contributions
In this work, we re-engineered the three key compu-
tational modules in minimap2: (i) seeding, (ii) anchor
chaining, and (iii) pairwise sequence alignment. Opti-
mization of the seeding stage was achieved by replac-
ing the standard hash-table lookup with a machine
learning based lookup using an hardware-e�cient im-
plementation of learned index data structure [14]. Ac-
celeration of the anchor chaining step was achieved
by designing a novel SIMD-parallel chaining algorithm
which uses vector processing units available on mod-
ern CPUs. In the final sequence alignment stage, we
reduced runtime by converting 128-bit (SSE) SIMD
instructions to 256-bit (AVX2) and 512-bit (AVX512)
SIMD instructions. In all the proposed optimizations,
we ensured that the final output remains 100% iden-
tical to that of minimap2, which allows users to easily
switch to a faster version of minimap2 whenever faster
computing throughput is desired.
We compared our optimised minimap2 implementa-

tion mm2-fast with minimap2 by mapping real ONT,
PacBio CLR, PacBio HiFi human sequencing data,
and human de novo genome assemblies to the human
genome reference using multiple generations of server
grade CPUs. For each of the three modules, we devel-
oped both AVX2 and AVX512 based versions. Given
the wider SIMD width, our AVX512 version achieves
significantly higher speedups compared to the AVX2
version. The speedups achieved by mm2-fast AVX512
version ranged from 1.7�1.8⇥, 1.4�1.7⇥, 1.5�1.6⇥,
and 1.3 � 1.5⇥ for ONT, PacBio CLR, PacBio HiFi
and genome-assembly inputs respectively.
To the best of our knowledge, no prior work has

reported better speedup of end-to-end runtime of

minimap2 using a single processor or even using
hsingle CPU, single GPUi or hsingle CPU, single
FPGAi combinations. mm2-fast implementation is
open-sourced and available at https://github.com/
lh3/minimap2/tree/fast-contrib-v2.22.

Results

In this section, we discuss our experimental settings,
various datasets we used, a summary of optimiza-
tions implemented in mm2-fast, and finally demon-
strate the performance gains by comparing mm2-fast
against minimap2.

Experimental setup

We performed our experiments on four di↵erent pro-
cessor architectures, Intel® Xeon® Platinum 8180
(Skylake), Intel® Xeon® Platinum 8280 (Cascade
Lake), Intel® Xeon® Platinum 8380 (Ice Lake), and
AMD EPYCTM 7742 (Rome). Architectural specifi-
cations of these system are listed in Supplementary
Table S1. Our implementation mm2-fast was built on
top of minimap2 (v2.22), therefore, all our bench-
marks show a comparison of mm2-fast with minimap2
(v2.22). Our tests involved three types of real hu-
man long-read sequencing data (ONT Guppy 3.6.0,
PacBio HiFi, PacBio CLR), and also three human
genome assemblies for mapping to the standard ref-
erence GRCh38 [15]. The latter was useful to demon-
strate utility of mm2-fast for faster genome-to-genome
comparisons. Long-read sequencing datasets used here
were available publicly, and derived from human trio
benchmark genomes HG002, HG003 and HG004 (Ta-
ble 1). The three human genome assemblies are as-
sociated with nearly-haploid CHM13 [16] and diploid
HG002 genomes [17]. Each type of dataset was mapped
using parameters recommended in minimap2 docu-
mentation.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://github.com/lh3/minimap2/tree/fast-contrib-v2.22.
https://github.com/lh3/minimap2/tree/fast-contrib-v2.22.
https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 3 of 15

Table 1 Description of datasets which were used to evaluate mm2-fast. Each of these were mapped to GRCh38 human genome
reference.

Query data set Genome sample
Number of
reads/contigs N50

Maximum
length Source

ONT
HG002 19M 50K 543K https://precision.fda.gov/

challenges/10/view
HG003 24M 44K 760K
HG004 29M 48K 1.1M

PacBio HiFi
HG002 8M 13K 30K https://precision.fda.gov/

challenges/10/view
HG003 7M 15K 32K
HG004 7M 15K 31K

PacBio CLR
HG002 30M 11K 89K https://github.com/genome-in-a-bottle/

giab data indexes
HG003 15M 11K 26M
HG004 13M 10K 5M

Genome
assemblies

CHM13 24 154M 248M NCBI (GCA 009914755.3)
HG002 (hap1) 523 46M 107M https://zenodo.org/record/4393631/files/

NA24385.HiFi.hifiasm-0.12.hap1.fa.gz
HG002 (hap2) 507 40M 131M https://zenodo.org/record/4393631/files/

NA24385.HiFi.hifiasm-0.12.hap2.fa.gz

Minimap2 profile
We profiled a single-threaded execution of minimap2
using datasets listed in Table 1, and separately mea-
sured time consumed by three key modules (1) seeding,
(2) chaining (DP chaining and RMQ-based DP chain-
ing), and (3) alignment. Figure 2 shows the perfor-
mance comparison and profile of minimap2 and our op-
timized implementation (mm2-fast). All runtime val-
ues shown are normalized by the total time consumed
by minimap2 corresponding to each dataset. For pro-
filing using a single thread, we used a random subset of
100K reads from each of the ONT, PacBio CLR, and
PacBio HiFi datasets, but no sampling was done in
the case of draft genome assemblies. We observed that
the three modules collectively contribute to around
85% to 97% of the total mapping time across di↵erent
datasets. Breakdown of time consumption among the
modules was: seeding (3-13% time), chaining (9-68%)
and alignment (18-76% time). Out of the time spent
in chaining, 0-54% was spent in DP chaining, while
RMQ based chaining accounted for 4-36% time. In-
terestingly, the time distribution of the three modules
varied across all the input data types. For instance, the
chaining was the most time consuming step for ONT
and assembly datasets, whereas PacBio CLR and HiFi
datasets required spending majority of the time in the
alignment phase. Therefore, we focused on all the three
key modules to achieve better performance.

Summary of our optimizations
In mm2-fast, we implemented the following optimiza-
tions while ensuring that the mapping output obtained
from our optimized minimap2 remains identical to
minimap2:
• Seeding. We replaced hash-based minimizer look-
up with learned index-based search over sorted list of
the minimizers in the reference sequence. Internally,

learned indexes use machine learning models to pre-
dict the positions of the desired minimizers. This re-
sulted in nearly 3�4⇥ speedup in minimizer lookup
and up to 1.15⇥ speedup in the seeding phase.

• Chaining. We accelerated DP chaining by vector-
izing the traversal over the predecessor anchors us-
ing SIMD instructions and 32-bit integer/floating-
point representation. Our AVX512-based vectorized
chaining achieved up to 3.1⇥ speed-up over the im-
plementation of DP chaining in minimap2.

• Alignment. Minimap2 implements base-level align-
ments using SSE2 instructions with 128-bit vec-
tor registers. As AVX2 and AVX512 instructions
with support of 256-bit and 512-bit vector registers,
respectively, are available in majority of modern
general-purpose processors, we modified the align-
ment phase to add AVX2 and AVX512 based imple-
mentations. Our AVX512-based version yielded up
to 2.2⇥ speed-up over the SSE2-based implementa-
tion in minimap2.

Performance comparison
In Figure 2, the bars for minimap2 and our optimized
implementation (mm2-fast) show relative time con-
sumption of each module across various datasets using
a single thread on Cascade Lake CPU. The speedups
achieved for each dataset is also shown on top of the
bars of mm2-fast. For single threaded execution, we
achieved up to 1.7⇥ speed-up compared to minimap2.
Figure 3 shows performance comparison of minimap2

and mm2-fast over full datasets listed in Table 1 using
multi-threaded execution on an entire socket of Cas-
cade Lake CPU. The labels above the bars for min-
imap2 show the end-to-end mapping time in hours,
and the labels above the bars of our optimized imple-
mentation mm2-fast show the speedup achieved. Us-
ing multi-threaded execution on a single socket, we
achieved up to 1.8⇥ speed-up compared to minimap2.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 4 of 15

mm2-fast also scales well with multi-threading. On a
single socket system with 28 cores, we achieved up
to 24.5⇥ speed-up compared to single-threaded execu-
tion (Supplementary Figure S1). mm2-fast consumes
nearly the same amount of memory as minimap2 (Sup-
plementary Table S2). Step by step guide to use mm2-
fast and verify the correctness is provided in Supple-
mentary Note 1. The optimization details and the de-
sign choices are described in Methods section.

Cross-platform performance and compatibility
To ensure that our optimizations deliver speedup
across various architectures, we compared performance
of mm2-fast and minimap2 on three generations of In-
tel architectures– (i) Skylake, (ii) Cascade Lake, and
(iii) Ice Lake – and the recent AMD Rome architec-
ture. The first three support both AVX2 and AVX512
vector processing , so we used AVX512 version of mm2-
fast on them for these experiments. Rome only sup-
ports AVX2 and hence, AVX2 version of mm2-fast was
used on Rome. Supplementary Table S1 provides the
details of the architectural specifications of these sys-
tems. Figure 4 shows the speedups achieved on the
four architectures. For each of the query datasets, we
consistently achieved high speedups on Skylake, Cas-
cade Lake, Ice Lake, and Rome processors. Note that
these systems with di↵erent architectures run on dif-
ferent turbo-frequencies, so, their relative performance
is not comparable.

Time required for construction of the learned index
Across the four use-cases mentioned in Table 1, the
construction of the learned index for mm2-fast takes
only 2min23sec to 3min27sec. Moreover, the construc-
tion of the learned index is a one time activity for any
reference sequence and use-case combination. Thus,
the time spent in the construction of index gets amor-
tized over the multiple samples that are mapped
against the index. Therefore, we did not include it for
both mm2-fast and minimap2 during the comparisons.

Discussion

Improving long-read and genome assembly mapping
time is important for three reasons: (a) it cuts down
waiting time for a general user, (b) it is desirable for
population-scale sequencing to achieve better through-
put and reduce cloud computing costs, and (c) it
improves the e�ciency of real-time sequencing ap-
plications, including targeted sequencing [18–20], by
matching speed of computation with the rate of data-
generation.
Mapping tools designed for long-read analysis need

to account for high sequencing error-rate, and as a re-
sult, involve complex heuristics to maintain scalability

using large genomes. Three computational modules,
i.e., seeding, co-linear chaining and alignment were
identified to be the most time consuming steps in min-
imap2. We focused on accelerating all three of them
while developing mm2-fast.
During the development of mm2-fast, we did ex-

tensive profiling of software performance, e.g., to
optimize the count of instructions executed, cache-
e�ciency, and other important hardware parameters
which dictate the CPU performance. mm2-fast is de-
signed to achieve end-to-end hardware-aware acceler-
ation of minimap2 on CPUs, while maintaining iden-
tical output. Unlike minimap2, mm2-fast implements
a learned-index to allow faster minimizer look-ups,
a SIMD-parallel co-linear chaining algorithm, and a
revised implementation for sequence-alignment. Al-
though the proposed optimizations will generally be
useful for any tool which follows seed-chain-align pro-
cedure [21–23], we chose minimap2 to demonstrate
the impact of these optimizations because it is a com-
monly used read mapper. mm2-fast leverages features
available in modern CPUs (e.g., wide SIMD instruc-
tions), and will work on any modern general-purpose
processor. mm2-fast o↵ers a similar user-interface as
minimap2 for compilation, learned-index-construction
and read mapping.
Using mm2-fast, we achieved variable speedups de-

pending on the type of input data, i.e., ONT, PacBio-
CLR, PacBio-HiFi, and genome assemblies. This is
attributed to the fact that input sequence lengths and
error-rates change with the type of data, and also
minimap2 uses di↵erent parameters (e.g., k parame-
ter to set k-mer size) for each type of data. As output
of mm2-fast remains identical to minimap2 (v2.22)
in all scenarios, mm2-fast can be directly used as a
faster alternative to minimap2. New features may be
added in future into minimap2’s algorithm, at which
point the output of mm2-fast and minimap2 may dif-
fer. To manage this better, we are working with the
author of minimap2 to merge our optimizations in
next release of minimap2. Currently, mm2-fast is made
available as open-source code on GitHub as a branch
in minimap2 repository https://github.com/lh3/

minimap2/tree/fast-contrib-v2.22.

Methods

Seeding using a learned index
A recent work on learned index structures by Kraska
et al. [24] has shown that an index structure can be
viewed as a model that maps a key to its position, and
therefore, can be replaced by machine learning mod-
els. For instance, a B-tree can be seen as a model that
maps a key to its position in a sorted list. The learned

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://github.com/lh3/minimap2/tree/fast-contrib-v2.22.
https://github.com/lh3/minimap2/tree/fast-contrib-v2.22.
https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 5 of 15

Figure 2 Work distribution for three modules: (1) hash look-up, (2) chaining (DP chaining and RMQ based chaining), and (3)
alignment for minimap2 and mm2-fast across di↵erent datasets. Both the implementations were run using a single thread of Cascade
Lake CPU. X-axis shows various query datasets, y-axis is the normalized time with respect to the mapping time consumed by
minimap2 corresponding to each dataset. Speedup achieved by our mm2-fast over minimap2 for randomly sampled 100K reads for
ONT, PacBio CLR, and PacBio HiFi and assembly contigs is shown on top of the mm2-fast bars.

Figure 3 Performance comparison of minimap2 and minimap2-fast on a single socket Cascade Lake CPU (28 cores,) for full
datasets. X-axis shows various query datasets, y-axis is the normalized time with respect to the mapping time taken by minimap2
corresponding to each dataset. On top of the bars of minimap2, we show the actual mapping time in hours by minimap2. The
speedup achieved by minimap2-fast is shown on top of the bars of mm2-fast.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 6 of 15

Figure 4 Cross-platform performance of our optimizations for
Rome, Skylake, Cascade Lake and Ice Lake architectures using
single socket. X-axis shows various query datasets and y-axis
indicates the speedup achieved by mm2-fast over minimap2 –
both running on the same CPU. The maximum speedup
achieved was 1.8⇥.

index structures can take advantage of the distribu-
tion of the keys and train a machine learning model,
e.g., a recursive model index (RMI), such that it out-
performs traditional B-trees in search time and mem-
ory footprint. Following [24], several other learned in-
dex structures have been proposed [25–28]. Learned
indexes have emerged as a performant alternative to
solve problems in various domains including bioinfor-
matics, e.g., for genome indexing using FM-index [14]
and su�x array [29]. In this work, we design a learned
index based hash table to improve the query time for
minimizer lookup during the seeding phase.

Hash table implementation in minimap2. A hash
table index is used in minimap2 to store all minimizers
of a reference sequence as keys and their positions in
the reference sequence as values. In the seeding phase,
a successful hash lookup returns all positions where
a query minimizer occurs in the reference sequence.
Typically, such hash table lookups are known to be
faster. However, they may incur overheads due to a
large number of collisions, and also incur high cache
misses as a side-e↵ect of irregular memory accesses
during hash table access, including, collision resolu-
tion. For instance, the hash table in minimap2 uses
a traditional quadratic probing technique which may
lead to sub-optimal cache performance. In the follow-
ing, we present our learned-index-based hash table de-
sign which outperforms the traditional hash table im-
plementation in minimap2.

Design of a learned hash table. Hash lookup prob-
lem can be modeled as a search on a list of key-
value pairs that is sorted according to the keys. In
our learned hash table design, we maintain two data
structures as illustrated in Figure 5. The first is a key-
sorted list of key-value pairs where keys are the actual

Figure 5 Data structures used for hash table: Minimizers
extracted from the reference sequence are stored in a sorted
list as key-value pairs. Position list maintains a separate list of
the positions of minimizers on the reference sequence.

minimizers. The second is a position-list contain-
ing a concatenated list of lists of positions of all the
minimizers. For each minimizer key, the value part of
the first data structure encodes the starting index in
the position-list and the count of the positions for
the minimizer. For instance, in Figure 5, a minimizer
entry: mm5 ! [8, 3] represents that mm5 appears 3
times on the reference sequence – at index 5, 21, and
57; and these three positions are stored at three consec-
utive locations in position-list starting from index
8. We use a learned index structure to search for the
minimizer entry in the first data structure.
Among the proposed learned index structures, RMI

exhibits the best performance/size tradeo↵ for real-
world read-only in-memory dense arrays [30]. RMI
consists of a multi-layer tree structure with a model
at each tree node. An RMI with more than two layers
is almost never needed [31]. Therefore, we train a two-
layer RMI model to learn the distribution of the sorted
keys and use the trained RMI to search through the
sorted list. Figure 6 shows a two-level RMI model and
illustrates, with an example, how we perform a lookup
operation. While performing a lookup operation for a
minimizer, the model at the root layer is used to pre-
dict the correct model to use at the leaf layer. The
predicted model at the leaf layer is used to predict the
position of the key in the sorted list. RMI guarantees
that the key is present within a certain range from the
predicted location [30]. If the desired key is not found
at the predicted position, the last mile search is con-
ducted in the provided range to find the key. The last
mile search is typically short because the key is ex-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 7 of 15

Figure 6 Two-layer RMI: An example minimizer lookup is
illustrated - get mm hits(mm5) calls a lookup for a
minimizer mm5. The RMI root predicts the leaf layer model
which in turn predicts the location of mm4 in the sorted list.
Finally, the last mile search from mm4 walks to the location
of mm5 and returns its value to the caller.

pected to be in proximity of the predicted location. In
our experiments, we observed that RMI-based lookup
is nearly 3 � 4⇥ faster than the existing hash table
implementation in minimap2.

Design choices. We make the following design
choices and apply architecture-aware optimizations
similar to [14] so as to achieve maximum speedup using
RMI:
• Number of leaf nodes. The number of leaf layer
models plays a crucial role in the e�ciency of the
RMI lookup [30]. Using a large number of leaf layer
models delivers better prediction and shorter last-
mile searches - at the cost of larger memory con-
sumption. By default, we use n/32 leaf layer models
where n is the total number of minimizers in the
list since empirically that provided a good trade-o↵
between prediction accuracy and memory consump-
tion.

• Vectorized last mile search. The last mile search
is performed using binary search. Once only a few el-
ements remain for search (say, less than eight 64-bit
elements for AVX512 vector instructions), we com-
pare them simultaneously using SIMD instructions.

• Batched processing. Irregular memory accesses
while traversing through the RMI tree and the last
mile search lead to higher cache misses, which ad-
versely a↵ect the performance. We use software
prefetches to hide the memory latency by processing
a batch of lookups at a time. Each individual lookup
can be split into a sequence of steps to be performed
- (i) visit the RMI root and predict leaf layer model,
(ii) visit leaf model and predict the location of the

Figure 7 Chaining of two co-linear anchors A and B. Here
two anchors overlap on the query sequence. Gap cost function
in minimap2 is calculated using the reference gap, query gap,
and the average length of all anchors avg qlen

key, and (iii) one step for each iteration of the bi-
nary search performed around the prediction. Dur-
ing batch processing, we process all the lookups in
a batch in round-robin fashion. Every time a lookup
gets a turn, we advance that lookup by one step and
use software prefetches to start prefetching the data
into the caches for its next step. While the data is
getting prefetched, we go over the rest of the lookups
in the batch one by one and advance them by one
step and start their prefetches. By the time, a lookup
gets a turn again, the data it requires for the next
step is already expected in cache. If all the steps of
a lookup are done, we replace it with the next un-
processed lookup from outside the batch. We con-
tinue this till all the lookups are done. The batch
size should be large enough to hide the memory la-
tency but not so large that data corresponding to all
the lookups in a batch do not fit in cache. We the-
oretically compute a range of ideal batch sizes and
empirically find the best batch size from that range.

SIMD acceleration for co-linear chaining
Chaining in minimap2. The seeding phase outputs
a list of all identified anchors sorted according to their
position in the reference sequence for further process-
ing in the chaining stage. An anchor is defined as a
matching minimizer between a query and a reference
sequence. It can be represented as a 3-tuple (r, q, l),
where r and q are the positions of the matching mini-
mizer on the reference and the query sequence, respec-
tively, and l is the length of the minimizer.
Given a list L : {a1, a2, . . . , an} of anchors sorted ac-

cording to their reference positions, the chaining step
identifies ordered subsets of co-linear anchors as chains

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 8 of 15

which achieve the highest chaining scores. Let S(i) be
the highest chaining score for a chain that ends at an-
chor ai; S(i) is computed using the following dynamic
programming (DP) recursion in minimap2:

S(i) = max
�
max
j<i

(S(j) + ai.l

� gap cost(i, j)� overlap(i, j)), ai.l
�

where gap cost(i, j) function penalizes the score based
on the distance between anchors ai and aj , and
overlap(i, j) denotes the count of overlapping bases
between anchors ai and aj . DP chaining linearly scans
the previous S(j) values, thus requiring the O(n) time
in computation of every S(i). RMQ based DP chain-
ing performs an RMQ query over a binary tree to get
the best S(j) in O(log(n)) time, but needs to sim-
plify the cost function to enable that. In mm2-fast, we
accelerate the former. Figure 7 depicts the chaining
of two co-linear anchors and their corresponding gaps
and overlap.
Dynamic Programming (DP) chaining in min-
imap2. Algorithm 1 presents a DP-based anchor-
chaining implementation in minimap2. For each an-
chor ai in the list (line 3), the inner loop (line 8) it-
erates over all the anchors aj where start j < i.
DP-based execution pattern ensures that the maximal
chaining scores till anchor ai�1 are already computed
before the computation of score for ai. The expres-
sion in line 11 computes the chaining score. The two
variables max score and predecessor index (lines 12-
14) track the maximum scoring chain found so far and
the index of the predecessor anchor connected to it.
Considering that the gap cost and the overlap can be
computed in constant time, the worst-case time com-
plexity for the whole chaining step is O(n2).
Minimap2 applies a set of heuristics to accelerate

the chaining step. The while loop (line 6) decides the
range of predecessors based on the distance between
the two anchors with respect to the reference sequence
(i.e. Reference gap, as illustrated in Figure 7). For
instance, if the gap between two anchors is above a
user-specified threshold, the gap cost is assumed to
be 1. As the anchors are sorted, the range of an-
chors with larger distance can trivially be ignored for
the score computation. The if condition in the inner
loop (line 9) applies another set of filters based on
the distances between the anchors with respect to the
query sequence (i.e. Query gap, as illustrated in Fig-
ure 7). The anchor being considered is ignored if the
gap is above a certain threshold or negative. After ev-
ery iteration of the inner loop, the max skip condition
(line 15) is evaluated. According to the heuristic, if we

Algorithm 1 Sequential chaining as used in minimap2
Input: L : {a1, a2, . . . , an} - List of anchors sorted according to
the reference positions
Output: S, P : Maximal chaining score for each anchor in L and
their predecessor indexes
1: function Maximal chaining(L)
2: start 1
3: for i 1 to n step: 1 do

4: max score ai.l
5: predecessor index 1
6: while Reference gap(ai, astart) is too large do

7: start start + 1
8: for j i - 1 to start step: -1 do

9: if Query gap(ai, aj) is too large or negative then

10: continue
11: sj S[j] + ai.l - (gap cost(i, j) + overlap(i, j))
12: if sj > max score then

13: max score sj
14: predecessor index j
15: if max skip threshold reached then break
16: S[i] max score
17: P[i] predecessor index

do not find a better score over the last max skip at-
tempts, then the inner loop terminates. In minimap2,
the default value for max skip is 25. The sole purpose
of this heuristic is to accelerate the chaining step po-
tentially at the cost of chaining accuracy. The heuristic
can be disabled by setting max skip to a large value
(say 1) to achieve better chaining accuracy. The ac-
tual conditional expressions and further implementa-
tion details can be found in minimap2 paper [7].

Our SIMD based DP chaining. As shown previ-
ously in Results section, chaining is one of the most
compute-intensive steps in the complete pipeline. De-
spite various heuristics used in the chaining step, the
majority of the time is consumed in the execution
of the inner loop. We accelerate the chaining step
by redesigning the inner loop to exploit SIMD par-
allelism. Typically, modern compilers provide support
for auto-vectorization using compilation flags or an-
notations which can identify opportunities to convert
sequential loops to their SIMD version. However, in
practice, a loop with dependencies and branching in-
structions makes auto-vectorization di�cult. We tried
auto-vectorizing the inner loop using the latest ver-
sions of gcc and icpc compilers and verified that none
of the modern compilers could auto-vectorize the loop.
Designing a SIMD-friendly chaining algorithm is non-
trivial because the inner loop contains multiple con-
ditional branches, such as Query gap and max skip,
and during the computation of max score. In our op-
timizations, we carefully resolved the branches and
inter-loop dependencies and adopted a hybrid (sequen-
tial+SIMD) approach to maximize the vectorization
gains. We ensured that the sequential and vectorized
versions produce identical chaining output.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 9 of 15

Algorithm 2 Proposed vectorized chaining
Input: L : {a1, a2, . . . , an} - List of anchors sorted according to the reference positions
Output: S, P : Maximal chaining score for each anchor in L and their predecessor indexes
1: function Maximal chaining(L)
2: start 1
3: for i 1 to n step: 1 do

4: max score[1:!] a[i:i].l
5: predecessor index[1:!] [1:1]
6: while Reference gap(ai, astart) is too large do

7: start start + 1
8: for j i - 1 to start step: - ! do

9: j’ j - ! + 1
10: m continue[1:!] evaluate(Query gap(a[i:i], a[j0:j]) is too large or negative)
11: s[j0:j] S[j’:j] + a[i:i].l - (gap cost([i:i], [j’:j]) + overlap([i:i], [j’:j]))
12: s[j0:j] apply(s[j0:j], m continue[1:!])
13: m score (s[j0:j] > max score[1:!])
14: max score[1:!] apply(s[j0:j], m score)
15: predecessor index[1:!] apply([j’:j], m score)

16: max index extract max index(max score[1:!])
17: S[i] max score[max index]
18: P[i] predecessor index[max index]

More specifically, we made the following improve-
ments to the chaining module

• Inner loop vectorization. Algorithm 2 shows our
vectorized algorithm for anchor chaining using 32-
bit number representation. We denote ! as a SIMD-
width. For instance, using AVX512 bit instructions
and 32-bit numbers, we can process ! = 512

32 = 16
elements simultaneously. The inner loop at line 8
implements a !-way vectorized version that com-
putes the maximal chaining scores. Vector instruc-
tions perform the same operation over multiple data
elements. In Algorithm 2, the notation A[i:j] repre-
sents a vector operation on a range of data elements
A[i] to A[j]. A[i:i] broadcasts the value of A[i] to
the vector register. Similarly, [i:j] and [i:i] loads and
broadcasts the constant values to the registers re-
spectively. Conditional branches (if conditions) are
vectorized using !-bit vector masks; if the branch is
taken, the respective bit in the vector mask is set to
1 (line 10). We vectorized gap cost and overlap eval-
uation, and compute the chaining scores for ! prede-
cessor anchors in one vectorized iteration. Once the
chaining score is computed, we apply the computed
mask m continue (line 12) such that the scores are
zeroed out when the respective bit is set in the mask.
Similar to the scalar version, the two vector regis-
ters, max score and predecessor index, track the
maximum scores across vector lanes. After every
loop iteration, the max score is compared against
the computed chaining scores and masked so that
the maximum score is guaranteed to be present in
the register. Finally, we extract the maximum score
and the predecessor index using a sequential pass
over max score. (line 16).

• Hybrid vectorized+sequential execution. In
an ideal scenario, loop vectorization delivers max-
imum benefit when there is no path divergence due
to conditional instructions. In the presence of path
divergences, vectorized implementation has to com-
pute all control paths and use appropriate masks to
obtain the desired outputs. For instance, we need
to compute the chaining scores for all vector lanes
even though some of the iterations would have con-
tinued without computing the chaining scores in
the sequential algorithm (Algorithm 1, line 10).
This results in wasted computation over the vec-
tor lanes and leads to sub-optimal performance. Us-
ing AVX512 vectorization, out of 16 vector lanes,
we typically found su�cient inner loop iterations
computing the score, thus, benefiting from the op-
timizations. However, in the case of shorter inner
loops (say, < 16 iterations), we observed that only a
few iterations in the sequential algorithm computed
the chaining score. In such a case, due to path di-
vergence, a single vector-iteration might incur more
instructions than the sequential executions of few
scalar iterations. We mitigated this issue by adopt-
ing a hybrid approach: mm2-fast falls back to the
sequential execution of the inner loop if there are
fewer than five iterations; else, it uses the vectorized
implementation.

• Disabling max skip heuristic. As mentioned ear-
lier, max skip condition in Algorithm 1 uses a
heuristic parameter max skip, which accelerates
chaining in minimap2 at the cost of chaining accu-
racy. Moreover, max skip condition also poses chal-
lenges to vectorization as it carries loop dependen-
cies. In our optimizations, we disabled this heuristic
by setting max skip to 1 and removed the condi-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 10 of 15

tion from our vectorized implementation. This ben-
efited us in two ways: first, we resolved the loop car-
rying dependency resulting in less complex SIMD
implementation and better speedup, and second, we
achieved better chaining accuracy. Note that the
performance improvement reported in the result sec-
tion compares the performance of our optimizations
with max skip = 1 against minimap2 with its
default setting max skip = 25. We achieve up to
3.1⇥ speedup in chaining over minimap2 with de-
fault heuristics max skip = 25, and up to 8.4⇥ as
compared to minimap2 with max skip = 1. Sup-
plementary Figure S2 shows the end-to-end perfor-
mance comparison of mm2-fast against minimap2
with max skip = 25 and max skip = 1.

SIMD acceleration for pairwise sequence alignment
Minimap2 computes DP-based global sequence align-
ment to extend through the gaps between adjacent
chained anchors. The presence of long gaps between
anchors results in slower DP-based alignment, which
can be accelerated using SIMD-based vectorization.
However, longer sequences for alignment demand more
bits to capture the alignment score; this leads to a
lower number of available vector lanes and hence lower
parallelism. Minimap2 adopts the Suzuki-Kasahara
(SK) formulation for DP-based alignment. SK formu-
lation bounds the number of bits required to capture
the score in a DP matrix to the scoring parameters.
In practice, these bounds ensure that 8-bits are suf-
ficient for maintaining score values. Therefore, with
128-bit vector processing available with SSE, 16-way
parallelism is available.
Minimap2 applies intra-task parallelism, exploiting

parallelism in a single DP matrix. All the DP matrix
cells along an anti-diagonal are independent of each
other. Thus, minimap2 applies vectorization with SSE
SIMD instructions along anti-diagonals to accelerate
the alignment. To do so, minimap2 switches from row-
column-based matrix coordinates to diagonal-anti-
diagonal-based coordinates. Additionally, to reduce
the computation burden, minimap2 restricts the DP
cell computations to a certain band around the main
anti-diagonal. Minimap2 uses a default band value of
500. Precise details about the alignment computation
are available in [7, 32].
SSE instructions provide only 16-way parallelism.

Using 512-bit vector processing (AVX512), the avail-
able parallellism increases 4-fold to 64-way. Moreover,
the default band value in minimap2 is large enough
to keep all the vector lanes of AVX-512 occupied. In
mm2-fast, we accelerated the DP-based alignment by
utilizing AVX-512 vectorization and used additional
logic to maintain the output identical to minimap2.

To support a wide range of processors, we also devel-
oped an AVX2 version.
Manymap software [10] also provides an accelerated

version of the alignment module of minimap2 by up-
grading the vectorization to AVX-512. Manymap also
applies optimizations to marginally reduce the instruc-
tions in the inner DP loop. However, its alignment
output di↵ers from minimap2. In minimap2, the actual
band of DP matrix that is computed could be greater
than or equal in size to the given band size; this is be-
cause actual anti-diagonal computed in minimap2 is
a multiple of SIMD width (8 for SSE). SIMD widths
change when we switch from SSE to AVX2/AVX512.
Consequently, the same DP matrix computations with
longer SIMD widths can result in computing a big-
ger band size. Therefore, to maintain the exact same
output, we introduced additional instructions in our
implementations to ensure the computation of the ex-
act same band as minimap2. Manymap does not guar-
antee the same (Supplementary Note 2). Due to this,
we skip comparing the performance of mm2-fast with
Manymap.
Ideally, moving from SSE to AVX-512 has a poten-

tial of 4⇥ improvement in the runtime. However, in
practice, we saw 1.8 � 2.2⇥ speedups due to the fol-
lowing factors: (a) smaller sequences lead to under-
utilization of vector lanes, (b) smaller anti-diagonals
near the two corners of DP-matrix lead to idle vector
lanes, (c) latency and throughput di↵erence between
SSE and AVX-512 vector instructions, and (d) use of
additional instructions in the AVX-512 version to en-
sure the exact same output as the SSE version. The
memory requirements and access pattern of the AVX2
and AVX512 versions in mm2-fast remain the same as
the SSE version in minimap2.

Funding

This work is supported in part by the National Supercomputing Mission
(NSM) India under DST/NSM /R&D HPC Applications.

Availability of data and materials

mm2-fast source code is available under the open source MIT license at
https://github.com/lh3/minimap2/tree/fast-contrib. Datasets used
for benchmarking are publicly available (Table 1).

Ethics approval and consent to participate

Not applicable.

Competing interests

SK, VM and SM are employees of Intel Corporation.

Authors’ contributions

SK led the software implementation of mm2-fast. All authors contributed
to design of algorithm, experiments and manuscript preparation. All authors
read and approved the final manuscript.

Author details

1Intel Labs, 560103 Bangalore, India. 2Department of Computational and
Data Sciences, Indian Institute of Science, 560012 Bangalore, India.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

https://github.com/lh3/minimap2/tree/fast-contrib
https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kalikar et al. Page 11 of 15

References

1. Chaisson, M.J., Sanders, A.D., Zhao, X., Malhotra, A., Porubsky, D.,
Rausch, T., Gardner, E.J., Rodriguez, O.L., Guo, L., Collins, R.L., et
al.: Multi-platform discovery of haplotype-resolved structural variation
in human genomes. Nature communications 10(1), 1–16 (2019)

2. Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera,
A., McPherson, A., Szcześniak, M.W., Ga↵ney, D.J., Elo, L.L., Zhang,
X., et al.: A survey of best practices for rna-seq data analysis. Genome
biology 17(1), 1–19 (2016)

3. Beyter, D., Ingimundardottir, H., Oddsson, A., Eggertsson, H.P.,
Bjornsson, E., Jonsson, H., Atlason, B.A., Kristmundsdottir, S.,
Mehringer, S., Hardarson, M.T., et al.: Long-read sequencing of 3,622
icelanders provides insight into the role of structural variants in human
diseases and other traits. Nature Genetics, 1–8 (2021)

4. Rhie, A., McCarthy, S.A., Fedrigo, O., Damas, J., Formenti, G., Koren,
S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J., et al.:
Towards complete and error-free genome assemblies of all vertebrate
species. Nature 592(7856), 737–746 (2021)

5. De Coster, W., Weissensteiner, M.H., Sedlazeck, F.J.: Towards
population-scale long-read sequencing. Nature Reviews Genetics, 1–16
(2021)

6. Technologies, O.N.: PromethION brochure. [Online; accessed
3-June-2021] (2021). https://nanoporetech.com/sites/default/
files/s3/literature/PromethION-brochure.pdf

7. Li, H.: Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34(18), 3094–3100 (2018)

8. Guo, L., Lau, J., Ruan, Z., Wei, P., Cong, J.: Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
FPGA and GPU. In: 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp.
127–135 (2019). IEEE

9. Zeni, A., Guidi, G., Ellis, M., Ding, N., Santambrogio, M.D., Hofmeyr,
S., Buluç, A., Oliker, L., Yelick, K.: Logan: High-performance
GPU-based x-drop long-read alignment. In: 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 462–471
(2020). IEEE

10. Feng, Z., Qiu, S., Wang, L., Luo, Q.: Accelerating long read alignment
on three processors. In: Proceedings of the 48th International
Conference on Parallel Processing, pp. 1–10 (2019)

11. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.:
Reducing storage requirements for biological sequence comparison.
Bioinformatics 20(18), 3363–3369 (2004)

12. Abouelhoda, M.I., Ohlebusch, E.: Chaining algorithms for multiple
genome comparison. Journal of Discrete Algorithms 3(2-4), 321–341
(2005)

13. Jain, C., Gibney, D., Thankachan, S.V.: Co-linear chaining with
overlaps and gap costs. bioRxiv (2021)

14. Ho, D., Kalikar, S., Misra, S., Ding, J., Md, V., Tatbul, N., Li, H.,
Kraska, T.: Lisa: Learned indexes for DNA sequence analysis. bioRxiv
(2020)

15. Schneider, V.A., Graves-Lindsay, T., Howe, K., Bouk, N., Chen, H.-C.,
Kitts, P.A., Murphy, T.D., Pruitt, K.D., Thibaud-Nissen, F., Albracht,
D., et al.: Evaluation of GRCh38 and de novo haploid genome
assemblies demonstrates the enduring quality of the reference
assembly. Genome research 27(5), 849–864 (2017)

16. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., et al.: The complete
sequence of a human genome. bioRxiv (2021).
doi:10.1101/2021.05.26.445798

17. Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li, H.:
Haplotype-resolved de novo assembly using phased assembly graphs
with hifiasm. Nature Methods 18(2), 170–175 (2021)

18. Payne, A., Holmes, N., Clarke, T., Munro, R., Debebe, B.J., Loose,
M.: Readfish enables targeted nanopore sequencing of gigabase-sized
genomes. Nature Biotechnology 39(4), 442–450 (2021)

19. Kovaka, S., Fan, Y., Ni, B., Timp, W., Schatz, M.C.: Targeted
nanopore sequencing by real-time mapping of raw electrical signal with
uncalled. Nature Biotechnology 39(4), 431–441 (2021)

20. Zhang, H., Li, H., Jain, C., Cheng, H., Fai Au, K., Li, H., Aluru, S.:
Real-time mapping of nanopore raw signals. Bioinformatics (in press)
(2021)

21. Jain, C., Rhie, A., Hansen, N., Koren, S., Phillippy, A.M.: A long read
mapping method for highly repetitive reference sequences. bioRxiv
(2020)

22. Sedlazeck, F.J., Rescheneder, P., Smolka, M., Fang, H., Nattestad,
M., Von Haeseler, A., Schatz, M.C.: Accurate detection of complex
structural variations using single-molecule sequencing. Nature methods
15(6), 461–468 (2018)

23. Ren, J., Chaisson, M.: lra: the long read aligner for sequences and
contigs. bioRxiv (2020)

24. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The Case for
Learned Index Structures. In: ACM International Conference on
Management of Data (SIGMOD), pp. 489–504 (2018)

25. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.:
FITing-Tree: A Data-aware Index Structure. In: Proceedings of the
2019 International Conference on Management of Data. SIGMOD ’19,
pp. 1189–1206. ACM, New York, NY, USA (2019).
doi:10.1145/3299869.3319860.
http://doi.acm.org/10.1145/3299869.3319860

26. Ferragina, P., Vinciguerra, G.: The PGM-index: a multicriteria,
compressed and learned approach to data indexing (2019).
1910.06169. http://arxiv.org/abs/1910.06169

27. Ding, J., Minhas, U.F., Zhang, H., Li, Y., Wang, C., Chandramouli,
B., Gehrke, J., Kossmann, D., Lomet, D.B.: ALEX: An Updatable
Adaptive Learned Index (2019). 1905.08898.
http://arxiv.org/abs/1905.08898

28. Wu, Y., Yu, J., Tian, Y., Sidle, R., Barber, R.: Designing Succinct
Secondary Indexing Mechanism by Exploiting Column Correlations. In:
Proceedings of the 2019 International Conference on Management of
Data. SIGMOD ’19, pp. 1223–1240. ACM, New York, NY, USA
(2019). doi:10.1145/3299869.3319861.
http://doi.acm.org/10.1145/3299869.3319861

29. Kirsche, M., Das, A., Schatz, M.C.: Sapling: accelerating su�x array
queries with learned data models. Bioinformatics 37(6), 744–749
(2021)

30. Marcus, R., Kipf, A., van Renen, A., Stoian, M., Misra, S., Kemper,
A., Neumann, T., Kraska, T.: Benchmarking Learned Indexes. In:
PVLDB, vol. 14, pp. 1–13 (2021)

31. Marcus, R., Zhang, E., Kraska, T.: Cdfshop: Exploring and optimizing
learned index structures. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’20, pp.
2789–2792. Association for Computing Machinery, New York, NY,
USA (2020). doi:10.1145/3318464.3384706.
https://doi.org/10.1145/3318464.3384706

32. Suzuki, H., Kasahara, M.: Introducing di↵erence recurrence relations
for faster semi-global alignment of long sequences. BMC
bioinformatics 19(1), 33–47 (2018)

Optimization Notice: Software and workloads used in

performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as

SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and

functions. Any change to any of those factors may cause the

results to vary. You should consult other information and

performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that

product when combined with other products. For more

information go to http://www.intel.com/performance. Intel,

Xeon, and Intel Xeon Phi are trademarks of Intel

Corporation in the U.S. and/or other countries.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.07.21.453294doi: bioRxiv preprint

http://dx.doi.org/10.1101/2021.05.26.445798
http://dx.doi.org/10.1145/3299869.3319860
http://arxiv.org/abs/1910.06169
http://arxiv.org/abs/1910.06169
http://arxiv.org/abs/1905.08898
http://arxiv.org/abs/1905.08898
http://dx.doi.org/10.1145/3299869.3319861
http://dx.doi.org/10.1145/3318464.3384706
https://doi.org/10.1101/2021.07.21.453294
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract

