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Abstract

Collective, coordinated cellular motions underpin key processes in all multicellular organisms, 
yet it has been difficult to express the ‘rules’ behind these motions in clear, interpretable forms. 
Here we apply deep attention networks to analyze several canonical living tissues systems and 
present the underlying collective migration rules for each tissue type using only cell migration 
trajectory data.  We use these networks to learn the behaviors of key tissue types with distinct 
collective behaviors—epithelial, endothelial, and metastatic breast cancer cells—and show how 
the results complement traditional biophysical approaches. In particular, we present attention 
maps indicating the relative influence of neighboring cells to the learned turning decisions of a 
focal cell. These attention networks reveal distinct patterns of influence and attention unique to 
each model tissue. Endothelial cells exhibit tightly focused attention on their immediate forward-
most neighbors, while cells in more expansile epithelial tissues are more broadly influenced by 
neighbors in a relatively large forward sector. Attention maps of ensembles of more 
mesenchymal, metastatic cells reveal completely symmetric attention patterns, indicating the 
lack of any particular coordination or direction of interest. Moreover, we show how attention 
networks are capable of detecting and learning how these rules changes based on biophysical 
context, such as location within the tissue and cellular crowding. That these results require only 
cellular trajectories and no modeling assumptions highlights the potential of attention networks 
for providing further biological insights into complex cellular systems.

Author Summary

Collective behaviors are crucial to the function of multicellular life, with large-scale, coordinated 
cell migration enabling processes spanning organ formation to coordinated skin healing. 
However, we lack effective tools to discover and cleanly express collective rules at the level of 
an individual cell. Here, we employ a carefully structured neural network to extract collective 
information directly from cell trajectory data. The network is trained on data from various 
systems, including well-studied cell types (HUVEC and MDCK cells) which display visually 
distinct forms of collective motion, and metastatic cancer cells (MDA-MB-231) which are highly 
uncoordinated. Using these trained networks, we can produce attention maps for each system, 
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which indicate how a cell within a tissue takes in information from its surrounding neighbors, as 
a function of weights assigned to those neighbors. Thus for a cell type in which cells tend to 
follow the path of the cell in front, the attention maps will display high weights for cells spatially 
forward of the focal cell. We present results in terms of additional metrics, such as accuracy 
plots and number of interacting cells, and encourage future development of improved metrics. 

Introduction

Coordinated, collective migration is a hallmark, and enabler, of multicellular life. Spanning local 
clusters of migrating cells1, large-scale supracellular migration across tissues2,3, wound healing, 
and even coordinated cancer invasion4,5, coordinated patterns of motion allow for complex 
behaviors to emerge. Understanding the collective behaviors that enable these processes can 
not only improve our fundamental biological knowledge, but can allow us to more effectively 
detect abnormalities and pathologies, and perhaps make better prognostic or diagnostic 
assessments6,7. To realize this potential, we need to first be able to define the underlying 
‘interaction rules’ that give rise to something like humans queuing in line, jammed penguins 
clusters shuffling on the ice8, and metastatic cancer cells disseminating through healthy tissue7. 
However, detecting and classifying these behaviors is not straightforward, as different fields rely 
on unique tools, analyses, and lexicons. Here, we explore the utility of translating deep attention 
networks, previously used to reveal rules of collective motion in tens of schooling fish9, to 
thousands of interacting and migrating cells of disparate origins with unique patterns of 
motion—blood vessel endothelial cell sheets; kidney epithelial cell sheets; and large ensembles 
of metastatic breast cancer cells (representative motion trajectories are shown in Figs. 1A-C, 
with movies in S1-3 Movies, respectively). Crucially, this technique requires only cell trajectory 
data rather than any assumptions of underlying models or dynamics.  

1
2 As collective behaviors play out at the ensemble level, approaches from statistical mechanics 
3 are used to great effect to identify patterns in collective cell motion. For instance, early 
4 applications of measures such as velocity correlations to assess order and directionality in bird 
5 flock dynamics10,11 have since been repurposed for collectively migrating cells12–16. 
6 Representative analyses are shown in Figs. 1D-E, such as ensemble speed, and mean squared 
7 displacement (MSD). Approaches like MSD analysis can allow biophysical classification of 
8 collective migration strategies. For instance: HUVECs exhibit highly directed, super-diffusive 
9 migration (Fig. 1E, green; S1 Movie); the MDCK epithelium exhibits short term directionality and 

10 long term, sub-diffusive caging (Fig. 1E, blue; S2 Movie); while metastatic MDA-MB-231 
11 ensembles are very much diffusive (Fig. 1E, red and linear; S3 Movie).  Likewise, others have 
12 used measures of self-diffusivity and internal deformations to describe the glass-like dynamics 
13 of such systems, quantifying the similarities between fluid-like behavior of cell sheets over long 
14 time scales and solid-like behavior at short time scales with supercooled fluids approaching a 
15 glass transition17. 
16
17 Further, numerous classical physical models have been developed in an attempt to describe 
18 collective cell migration, including lattice, phase-field, active network, particle, and continuum 
19 models18, with some scholars moving towards the utilization of reinforcement learning to 
20 construct agent-based models in recent years19–21. A hallmark of all of these approaches is that 
21 they are rooted in physical assumptions and first principles.  While these classical approaches 
22 are constrained by parameter complexity, enabling scientists to write mathematical descriptions 
23 of the system and obtain an intuitive grasp of the model components, they are often unable to 
24 effectively or efficiently capture high-dimensional interaction relationships.  
25
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26  
27
28 Fig 1 Cell trajectory data reveals collective rules. 
29 (A, B, C) Representative cell trajectories within living tissues, from human umbilical vein endothelial cells (HUVEC), 
30 Madin-Darby Canine Kidney cells (MDCK), and epithelial, metastatic human breast cancer cells (MDA-MB-231), 
31 respectively. All three cell lines exhibit visually distinct dynamics: the HUVECs tend to have strongly correlated and 
32 directed leader/follower behavior; while MDCKs exhibit more complex coordination patterns and lack the directedness 
33 of HUVECs (e.g. see 32); and the MDA-MB-231’s lack coordination with neighbors. Scale bars are 100 µm. See S1-3 
34 Movies. (D) Classical collective analysis techniques reveal some group characteristics, such as mean speed or (E) 
35 mean squared displacement (MSD) over time. MSD analysis shows highly uncoordinated motion of the MDA-MB-231 
36 cell line. HUVEC exhibited super-diffusive motion, and MDCK migrated in sub-diffusive mode corresponding to a 
37 caging effect of neighboring cells.33 However, MDA-MB-231 showed diffusive, Brownian like motion. (F) Deep 
38 attention networks trained on cell trajectory data can directly reveal new types of collective information, such as the 
39 “importance” of neighboring cells to forward motion of a focal cell. Here, the agents in front of the focal cell have 
40 higher weights, W (see Equation 1), with relative directions determined by agent trajectories. Cell position is 
41 representing using nuclei centroids and black lines indicate Voronoi cells (see Methods). 
42
43 Deep learning, in contrast to physics-based approaches, offers intriguing potential for the 
44 automated discovery of collective behaviors based solely on relatively simple biological input 
45 data, such as cell migration trajectories. This approach can reduce researcher bias and the 
46 need for formalized models and, when paired with interpretable data output and visualizations, 
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47 can express clear patterns of behavior in complex systems.  Thanks to recent advances in high-
48 throughput, high-content microscopy22,23 and image processing24–28, rich visual features can be 
49 extracted from massive, dynamic populations of cells, providing a wealth of the kind of raw data 
50 through which deep learning approaches excel at sifting. Unfortunately, while deep learning 
51 methods can be structured to capture high-dimensional functions, they are often difficult to 
52 interpret. To address this, recent efforts have employed a newer approach—deep attention 
53 networks29–31—to reveal collective rules in schools of zebrafish (Danio rerio). Critically, such 
54 attention networks can be structured such that system dynamics can be learned using a 
55 function which is parameter-rich while still requiring only a small number of inputs and outputs9. 
56 In this study, we apply deep attention networks to large cellular ensembles in an attempt to 
57 identify patterns of cellular attention and underlying collective rules. Specifically we ask the 
58 following question of the deep attention network: given a ‘focal’ cell in a group of cells of a given 
59 type, to which other cells does the focal cell pay the most attention when deciding how to turn—
60 who influences it the most (Fig. 1F)? 
61
62 It is this interpretability of deep attention networks which is so crucial to the identification and 
63 classification of collective rules. For any given focal cell, asocial data (𝛼, trajectory data from the 
64 focal agent) and social data from n nearest neighbors in the collective (𝜎𝑖, relative positions, 
65 velocities, accelerations of neighbors) are integrated by the deep attention network to predict 
66 the future motion of the focal cell—whether it will turn left/right, for example. Here, 
67 interpretability is gained because the network is structured in the form of an equation which 
68 combines a pairwise interaction function, 𝛱, with a standard weighting function, 𝑊, as follows: 

69 𝑧 =  
𝑛

𝑖=1
𝛱(𝛼, 𝜎𝑖)

𝑊(𝛼, 𝜎𝑖)
∑

𝑗 𝑊(𝛼, 𝜎𝑗)
,           (1)

70
71 where 𝑧 is a logit, a single value indicating a left or right turn of the focal agent after a fixed 
72 prediction timestep, and 𝑛 is the total number of nearest neighbors9. Since the pairwise 
73 interaction, 𝛱, and weight function, 𝑊, may vary according to the social and asocial variable 
74 inputs, various collective interaction rules may be recovered by observing how these functions 
75 and the output logit 𝑧 change as the inputs vary: see analyses of simulated and experimental 
76 swarm systems in 9. These analyses may be further supplemented or validated using classical 
77 techniques, such as assessment of mean speeds and MSD within a migrating collective (Fig 
78 1D-E). For cellular systems, we focused on attention maps, which represent the output of the 
79 weight function, 𝑊, for many nearest neighbors, thereby allowing us to actually determine for 
80 any given cell which neighbors are the most important (Fig 1F, S1). Combining these maps over 
81 many focal cells provides a sense of the ensemble migration rules. 
82
83  
84 Defining and constraining the problem: cellular model systems selection
85 To determine if deep attention networks reveal useful information from cellular systems, we 
86 selected three standard tissue models commonly used as gold standards in collective cell 
87 behavior studies. First, we considered sheets of cultured Human Umbilical Vein Endothelial 
88 Cells (HUVECs) whose hallmark is the development of strongly aligned ‘trains’ of cells migrating 
89 in a leader-follower fashion with weak lateral interactions. Next, we compare these to kidney 
90 epithelial sheets (MDCK cells)—one of the most well-studied living collective systems whose 
91 cells classically produce coordinated, swirling domains. Finally, as a negative control we attempt 
92 to extract the rules for metastatic breast cancer cells (MDA-MB-231) as metastatic cells behave 
93 more mesenchymally, or individualistically, and are known to lack key cell-cell interaction 
94 proteins34–36. Representative collective motion trajectories of these three cell types are shown in 
95 Figs. 1A-C, respectively. 
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96
97 To a human observer, these tracks are visually distinct, but relating the ensemble visual 
98 patterns to which neighbors are most important to a given focal cell is not simple.  Classical 
99 group-level analyses can be used to quantify and understand some of these patterns, 

100 exemplified in Figs. 1D-E. For instance, while all cell types exhibit similar mean speeds (Fig. 
101 1D), they have markedly different migratory dynamics, as seen in the raw trajectories and MSD 
102 (Fig. 1). Ensemble analyses are powerful and can, and should, be used to learn more about 
103 these systems, but ultimately they cannot directly answer the question we posed above about 
104 how a given focal cell allocates attention and which neighbors are most critical. To address this, 
105 we trained a deep attention network using cell trajectory data from long, time-lapse recordings. 
106 The trained network can then directly determine the number, location, and characteristics of the 
107 most important neighbors for a focal cell, as shown in Fig. 1F where a focal agent is shown with 
108 its 10 nearest neighbors. Here, the neighbors are colored according to the (normalized) 
109 aggregation weights (W) from a model trained on tissues of the same type (MDCK). Due to the 
110 structure of the network, the colors indicate the relatively higher influence of neighboring cells 
111 forward and to the sides of the focal cell for influencing migration behaviors (representative 
112 snapshots from our other model systems are shown in S1 Fig.). In this study, we focused on 
113 aggregating these snapshots across many focal agents- and their respective neighbors- to 
114 produce even more informative attention maps. 
115
116 Our approach here was to examine and compare attention maps for different cell types and 
117 analysis conditions in order to determine the feasibility of using deep attention networks for 
118 collective cell behavior insights, and to provide design guidelines for optimal parameters for this 
119 application. From the network perspective, we investigated prediction time intervals, image 
120 sampling frame rates, number of neighbors accounted for by the network structure, and blinding 
121 to certain input parameters; in each case using archetypal cell types for validation. Having 
122 validated the network, we then explored within a single model system how tissue age and where 
123 a cell is located within a tissue of a given shape affected neighbor interactions rules. When 
124 possible, we compare our findings from the network-produced attention regimes to results from 
125 classical analytical methods. Overall, our results demonstrate that deep attention networks offer 
126 a powerful, complementary approach to classical methods for analyzing cellular group dynamics 
127 that can reveal unique aspects of how specific cell types interact at the tissue level.
128
129 Results.

130 Demonstration of attention maps for canonical cell types. 
131  
132 To validate the deep attention networks on canonical models, we first compared network 
133 performance on HUVEC endothelial sheets and MDCK epithelial sheets. Representative 
134 fluorescence images of each cell type are shown in Fig. 2A highlighting VE- or E-cadherin at 
135 cell-cell junctions. This context is importance to understand that highly collective cells tend to be 
136 physically coupled to each other through mechano-sensitive junctional proteins37. To 
137 standardize all model systems and analyses and provide sufficient replicates, we grew tissues 
138 in microfabricated circular stencil arrays and seeded a sufficient number of cells to reach 
139 confluence before analysis. Specifically, we incubated cells within these stencils for ~16 hrs to 
140 ensure formation of confluent tissues with no gaps (all cells should have contiguous neighbors), 
141 and then removed the stencils to allow the tissues to grow out. This approach is well 
142 characterized for these cell types and collective cell behavior studies14,38 and generates tissues 
143 with distinct boundary and bulk regions. We then performed automated, phase-contrast time-
144 lapse imaging over 12-24 hrs. Nuclei were segmented using a convolutional neural network39 
145 (MDCK), or live nuclear imaging (HUVEC, MDA-MB-231), and then tracked to generate 
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146 trajectories for every cell over the course of the experiment, after which the data were ready for 
147 attention analysis. 
148
149 Raw trajectory data were processed to determine the social and asocial variables as input to the 
150 attention network, as well as output turning logits. Data were split into training, validation, and 
151 test sets, and all results provided are reflective of the test set (with the exception of training loss 
152 and accuracy plots in S2 Fig). Raw data, code, and documentation are provided at GitHub and 
153 Zenodo (see Methods). To best visually capture an attention map for a given tissue type, we 
154 integrated the individual attention snapshots (e.g. Fig. 1F) over 10,000 individual cells from 
155 across the different replicates and interpolated the attention weights in space (x,y position of 
156 neighboring cells of the focal cell) as a contour plot as shown in Figs. 2C-C’. For our initial 
157 analyses, the attention networks were structured to analyze only the 10 nearest neighbors of a 
158 given focal cell, trajectories were sampled every ten minutes, and the prediction interval was 20 
159 minutes. The importance of these parameters and related design considerations will be 
160 discussed in the following sections.  

161

162 Fig 2 Network attention across canonical cell types. 
163 (A) VE-cadherin cell-cell junctions are indicated in red, with cell nuclei indicated in blue. VE-cadherin fingers in HUVEC cells indicate the direction of 
164 coupling between leader and follower cells. Scale bar is 30 µm.
165 (B) E-cadherin cell-cell junctions are indicated in red, with cell nuclei indicated in blue. E-cadherin walls do not visibly indicate coordination as VE-
166 cadherin in HUVECs. Scale bar is 30 µm.
167 (C, C’) Representative attention weight contour plots are shown for HUVEC (top) and MDCK cells (bottom). For all conditions, normalized weight maps 
168 are shown. The HUVEC attention map highlights the tendency of HUVECs to “follow the leader”, with high attention weight values assigned to cells 
169 directly in front of the focal cell, spatially. By contrast, the MDCK map displays higher attention weights forward and to the sides. Central black circles 
170 indicate the radius of the closest neighbor location in the dataset. For all plots shown, networks were structured to encompass 10 neighbors, with 
171 trajectory timesteps of 10 minutes and forward prediction times of 20 minutes. 
172 (D, D’) Histograms showing the distribution of data points (neighbor cell locations) from which the attention maps in (C, C’) were generated. In (C, C’) 
173 and D, D’), thin red circular lines indicate the annulus in which the bulk of the data (5%-95%) lies by radius (see Methods). Network results are 
174 expected to be more reliable within this region. Histogram bins span 1 µm2.
175 (E, E’) Scatter plots showing locations of the closest neighbor to a focal agent across all focal cells, colored by normalized attention weight. 
176 (F, F’) Histograms showing the locations of only the neighbor with highest weight value for each individual focal cell. Histogram bins span 1 µm2.

177
178 Looking first at the attention maps for HUVECs and MDCKs immediately revealed clear 
179 differences in collective attention between the two cells. Starting with HUVECs, the network 
180 determined the most influential neighbors to be overwhelmingly directly ahead of a given focal 
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181 cell (Fig. 2C) with very little influence from either side or the rearward neighbors. An advantage 
182 to working with HUVECS is that there is a clear biological basis for such behavior—polarized 
183 fingers of VE-cadherin (visible in Fig. 2A) protrude from the leading edge and into the trailing 
184 edge of any given cell in a train. . Such fingers are not observed at lateral edges, resulting in the 
185 highly directed ‘trains’ of cell migration so characteristic of HUVECs40. Intriguingly, the lack of 
186 rearward attention captured in the map reveals information not immediately recoverable by 
187 classical methods, which have previously indicated only that velocity correlations exist between 
188 a focal agent and both its forward and rearward nearest neighbors, respectively40. Similarly, 
189 fluorescence imaging data alone was unable to reveal the relative influence of front versus rear 
190 fingers. By contrast, the network can decouple simple directionality correlations (e.g. cells are 
191 moving the same direction) from attention, revealing that the immediately forward cells 
192 specifically have far more influence on endothelial cells than lateral or rear cellular neighbors. 
193 By contrast, MDCK cells exhibited a far broader angle of influence (Fig. 2C’), with the most 
194 influential neighbors apparently lying within a ~160° sector around a given focal cell. This again 
195 agrees with biological context, given that epithelial cells tend to adhere strongly to neighbors on 
196 all sides (Fig. 2B) and move through arcing turns as large, correlated domains14,15,38 
197
198 Attention maps are interpolated over the population and could potentially be biased if cells were 
199 irregularly distributed spatially. To rule this out, we analyzed distributions of neighbor locations 
200 (Fig 2D-2D’) for the data used to calculate attention maps (Fig 2C-2C’) These plots indicate 
201 where the 10 nearest neighbors of any given focal cell were likeliest to be found, bearing in 
202 mind that all analyzed populations were confluent (the cells fully tiled the 2D space). 
203 Additionally, we indicate via thin red circular lines the annular region within which the bulk of the 
204 data points (5%-95%) lie as a function of radius (Figs. 2A-B’). The trained attention network 
205 weights are expected to be more reliable within this annular region than in external regions 
206 where data points were too sparse to ensure adequate modeling. In HUVECs, these neighbors 
207 appear to be evenly distributed within ~100 µm directly ahead of the focal cell. In MDCKs, 
208 however, the neighbor distribution showed a distinct gradient, with likelihood of neighbors 
209 peaking within an ~15 µm radius of the focal cell, and then dropping off by ~50 µm. However, in 
210 both cases neighbors are evenly angularly distributed about a given focal cell, meaning that the 
211 anisotropic attention maps are not due to irregular neighbor distributions, and must instead 
212 genuinely reflect spatial patterns of cellular attention.   
213
214
215 Attention networks offer the flexibility to investigate both population and individual cell details, so 
216 we next raised the following question: is the closest nearest-neighbor always the most 
217 important? We addressed this by comparing the attention weights of only the single closest 
218 nearest-neighbor of each focal cell to attention maps showing the locations of only the most 
219 highly influential neighbors. Figs. 2E-2E’ are scatter plots of only those neighbors which are the 
220 single closest neighbor by radial distance to the focal agent, with focal agents consistent with 
221 those shown in Figs. 2C-2C’. The scatter points are colored by normalized attention weight. 
222 Figs. 2F-2F’ are histograms indicating the location of only the single highest weighted neighbor 
223 to those same focal cells. Here, we found that while the nearest neighbors themselves were 
224 uniformly distributed around a given focal cell, the relative importance of a given neighbor 
225 depended on both proximity and orientation, rather than proximity alone, and this trend applied 
226 to both of our archetypal tissues. When considered together, the kinds of analyses shown in Fig. 
227 2 can provide a unique, rich view of the interaction network and decision making within tissues. 
228
229
230
231 Learned important neighbors and neighborhood size 
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232
233 Tissues such as the epithelia and endothelia serve a barrier and structural function, meaning 
234 they must maintain integrity. To accomplish this, cells tile together to form confluent layers with 
235 no empty space41,42. In such tissues, the dominant signaling appears to be largely mechanical, 
236 with traction strains coupled through the substrate and cell-cell tension coupled through cell-cell 
237 adhesion proteins such as the cadherins43,44. In such barrier tissues, a focal cell only directly 
238 communicates with those neighbors to whom it is physically adhering, while longer range force 
239 coupling requires that mechanical information be relayed from cell to cell. Hence, confluent 
240 tissues acquire distinct packing geometries, with a key metric being the number of physically 
241 contacting nearest neighbors45,46. This raises an interesting question from the perspective of an 
242 attention network: what is the relative influence of contiguous neighbors versus neighbors 
243 farther afield? 
244
245 We first investigated this using our MDCK epithelial model as significant biophysical data exist 
246 on cell-cell adhesion, packing structure, and force coupling.  Here, we used cell nuclei to tile a 
247 tessellation, from which we calculated the total number of physically contiguous neighbors for 
248 each focal cell (Methods). These data are compiled in Fig. 3A, showing that MDCKs typically 
249 possess 5-6 contiguous nearest neighbors. The deep attention networks, however, may be 
250 flexibly structured to take input information from arbitrarily large groups of neighboring cells in 
251 order to predict turning motions of the focal agent. Thus, the network may have direct 
252 information pertaining to cells which the true biological agent may not physically contact. It is 
253 essential to remember this key distinction as larger network structures are explored. For all 
254 analyses shown for MDCK cells in Fig. 3, the corresponding neighbor distribution, closest 
255 neighbor, and highest weighted neighbor maps are shown in S3 Fig. For the matching study 
256 with HUVEC endothelial cells, see S5 Fig.  
257

258

259 Fig 3 Local vs. long-range interactions in MDCK epithelia (bulk regime). 
260 (A) The number of nearest neighbors based on an analysis of 1165 cells using the ImageJ/FIJI47 BioVoxxel plugin48 
261 (see Methods). A peak can be observed at 6 nearest neighbors. 
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262 (B) Histograms of total interacting cells (blue) and “important” interacting cells (red), as determined by a function 
263 utilizing the network aggregation weights (W) to estimate the most influential neighbors to learned focal cell 
264 dynamics.
265 (C) A snapshot of MDCK cells with blue region indicating the extent of “large” turns (±20-160˚) according to the focal 
266 cell trajectory, as indicated by the pink arrow. Scale bar represents 20 µm.  
267 (D) Network accuracy plots as prediction time and number of input neighbors is varied. Solid lines reflect accuracy 
268 scores for all turning angles in the focal agent trajectory; dashed lines reflect only large turns (±20-160˚, see C). 
269 Accuracy increases with both number of neighbors encompassed by the network and prediction time. Cell trajectory 
270 timesteps were fixed at 10 minutes. 
271 (E, E’, E’’) Attention maps for networks encompassing 10 (E), 20 (E’), and 30 (E’’) neighbors. Plots shown here are 
272 analogous to Fig. 2C’, with cell trajectory timestep of 10 minutes. As the number of neighbors taken into consideration 
273 by the network increases, a wider spatial range of interactions may be considered for forward motion prediction.
274 See S5 Fig. for the matching study in HUVEC endothelial cells.  
275
276
277 By utilizing a function of the inverse of the typical weight, 𝑤𝑡, as in 9:

278 𝑁𝑡𝑜𝑡𝑎𝑙 =
1

𝑤𝑡
=  𝑒―∑

𝑖 𝑤𝑖log (𝑤𝑖),          (2)

279 the most important neighbors (as learned by the network) to the turning dynamics may be 
280 estimated. The number of total and “important” interacting agents are shown in the histogram in 
281 Fig. 3B, wherein a peak in the number of important interacting agents may be observed at 5 
282 neighbors, indicating the bulk of influence to the learned dynamics even when the network has 
283 access to information from ten neighbors in total. These data add context to the findings in Fig. 
284 2 indicating that a combination of proximity and location determines relative influence for a given 
285 neighbor. 
286
287 To assess the impact of providing trajectory information to the network from larger sets of 
288 nearest neighbors (structurally, more pairwise-interaction and aggregation subnetworks), we 
289 provide network accuracy results from networks spanning 5-50 neighbors in increments of 5 
290 (Fig. 3D, S4 Fig. for additional accuracy results) and representative attention plots from 
291 networks structured to account for 10, 20, and 30 nearest neighbors in total (Figs. 3E-E’’). 
292 Additionally, we consider different prediction time intervals to explore how attention network 
293 accuracy relates to predicting 20 minutes vs. 60 minutes into the future. In all cases, we 
294 distinguish accuracy results across all turning motions of the focal cell (“all turns”) from accuracy 
295 results restricted to turning motions ranging from ±20-160˚ (“large turns”) (see Fig. 3C). This 
296 compensates for edge cases where a cell may turn only very slightly off the forward axis. 
297 Overall, we notice three distinct trends relating to neighborhood size, turn magnitude, and 
298 temporal variables and discuss each aspect of Fig. 3D in turn here. 
299
300 With respect to prediction time steps, we observed a clear trend in both MDCK epithelia and 
301 HUVEC endothelia where the network accuracy improved with increasing time-steps, with data 
302 from either 20 min or 60 min forward predictions shown (red and blue lines in Fig. 3D; see 
303 attention maps in S6 Fig.). While modest (~5-7% for MDCK), we hypothesize that this trend 
304 reflects the relatively high persistence of confluent cells in epithelia and endothelia (S7D Fig.). 
305 More specifically, predicting ahead over shorter time steps (e.g. 20 minutes) is more susceptible 
306 to fluctuations in the cellular dynamics and noise in the tracking data, while predicting over 
307 longer timesteps (e.g. 60 minutes) should act to temporally filter out these fluctuations and 
308 better emphasize the directed nature of cell migration in these cell types. Additionally, cells will 
309 undergo smaller displacements over short time steps, likely resulting in more ambiguous cases 
310 at the logit boundary (0˚).
311
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312 To explore the importance of turning angles and the logit boundary, we compared accuracy data 
313 for ‘all turns’ versus that for ‘large turns’, as defined earlier and highlighted in Fig. 3D. This 
314 comparison clearly showed improved accuracy for larger versus smaller turns. Again, this is due 
315 to smaller turns being closer to the logit boundary (0˚) and more difficult to predict. This finding 
316 was borne out across all experiments presented here. Further, the concept of turn magnitude 
317 can clarify the relationship between cell type and accuracy as certain cell types favor much 
318 smaller turns than others. To emphasize this, we plotted a radial histogram of focal turn angles 
319 in S7 Fig., where it is clear that HUVEC endothelial cells favor smaller turning angles (higher 
320 persistence) than MDCK epithelial cells, with MSD plots for relevant cell types (Fig. 1E). This 
321 explains why the network is more accurate at predicting MDCK vs. HUVEC behaviors, as 
322 HUVEC motion will lie closer to the logit boundary. 
323 Overall, the number of neighbors assessed by the network was the most influential variable on 
324 network accuracy—as the network was structured to account for larger sets of nearest 
325 neighbors, the accuracy increased monotonically (Fig. 3D, S5D Fig.). This trend was also true 
326 across all epithelial and endothelial datasets we considered, with varying strength. For instance, 
327 MDCK attention maps were more strongly affected by neighborhood size than HUVEC maps 
328 were (Fig. 3D vs. S5D). To more clearly capture this, we compared attention maps for three 
329 different neighborhood sizes (10, 20, and 30 nearest neighbors; NN) in Figs. 3E-E” for MDCK 
330 cells. Increasing the neighborhood size from 10NN to 30NN resulted in a shift from a forward 
331 cone of influence to more of an axially symmetric lobular structure. This shift is further 
332 emphasized by the associated scatter plots of closest nearest neighbors and highest weighted 
333 neighbors (S3A-A’’, S3B-B’’, S3C-C’’ Figs., respectively). 
334
335
336
337 Context of network accuracy for collective cell migration
338
339 The link between network accuracy and neighborhood size reflects an important and counter-
340 intuitive design consideration since the cells we analyzed here, unlike fish, only have direct, 
341 physical awareness of their true contiguous nearest neighbors. Hence, while the accuracy 
342 increases with increasing number of nearest neighbors accounted for by the network, as more 
343 information can be obtained over a wider spatial range, an individual cell has a more limited 
344 biological sensing regime. Thus, an increase in accuracy with increasing neighborhood size 
345 may not reflect biological realities of the system, and may instead result from the network 
346 learning more longer-range interactions. Given this, it may be helpful to configure attention 
347 networks to match the desired biological questions or constraints rather than exclusively 
348 pursuing accuracy.  
349   
350 Typically, the objective is to obtain as high an accuracy result as possible for a given task for 
351 most deep learning problems. Here, by contrast, the objective is more nuanced: first, we are not 
352 interested in specifically using the predicted turning logit, but rather contrive the dynamics 
353 prediction task specifically in order to recover collective rules from the trained network weights 
354 in the form of interpretable attention maps. That is, the network only has to be “good enough” to 
355 learn the essential collective dynamics. Second, certain systems may be more challenging to 
356 learn, such as the HUVECs which tend towards small turning angles. 
357
358 To account for these two difficulties, we compare the standard network accuracies to accuracies 
359 derived from a network trained using shuffled trajectories: a difference in accuracy values 
360 indicates that the network captures collective phenomena. For MDCKs, the standard training 
361 accuracy was 64.3% for all turns, 70.1% for large turns, compared to the shuffled training 
362 accuracy which was 59.1% for all turns, 62.5% for large turns. For HUVECs, the standard 
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363 training accuracy was 58.0% for all turns, 58.5% for large turns, compared to the shuffled 
364 training accuracy which was 53.4% for all turns, 53.1% for large turns. While we consider this 
365 accuracy increase to indicate learned collective dynamics, we hope that our work will encourage 
366 the development of richer dynamic prediction tasks and metrics to this end. 
367
368 In addition to network structure modifications, we also assessed the importance of (1) sampling 
369 rate (time intervals between data points), and (2) the choice of input variables. To explore 
370 sampling rate effects, we compared our prior networks trained on data captured at 10 min/frame 
371 to new networks trained from scratch on data sub-sampled at 20 or 30 min/frame (S8-9 Figs. for 
372 MDCK and HUVECs, resp.) In these experiments, the accuracy increases as the time delay is 
373 increased, most likely due to the access of the network to longer total time intervals due to the 
374 use of the same number of historical time steps. Finally, we blind the network to focal tangential 
375 acceleration and neighbor accelerations (S10 Fig.), that is, we exclude these parameters as 
376 input to the network. The accuracy results are not significantly impacted by the exclusion of 
377 acceleration parameters. When we consider network performance in a complex system like an 
378 epithelium, we see that no single modification—temporal variables, neighborhood size, turn 
379 binning—accounts for more than a 10% improvement in performance at best, while all network 
380 conditions outperformed a random guess and generally presented similar overall trends, or 
381 rulesets. 
382
383
384 As a final note, we emphasize that it is crucial to consider context when comparing accuracy 
385 results. For data taken from the same cell types under the same experimental conditions, 
386 increased accuracy results can provide useful information about which input variables may 
387 strongly impact turning dynamics. However, accuracy comparisons may provide less insight 
388 across cell types, such as in the case of HUVEC endothelial cells which have narrower turn 
389 angle distributions than MDCK epithelial cells (see S7 Fig.), or differences in prediction task, 
390 such as short- vs. long-time prediction intervals, which can modify which neighbors are likely to 
391 influence focal agent dynamics. While we did perform parameter sweeps over key variables 
392 such as forward prediction time and number of neighbors considered, it was necessary to 
393 establish baseline conditions to present our findings. For all standard epithelial and endothelial 
394 experiments, unless otherwise stated, 10 total nearest neighbors were accounted for by the 
395 network (i.e. 10 pairwise-interaction subnetworks, 10 aggregation subnetworks), the time 
396 between trajectory points was 10 minutes, the prediction time interval was 20 minutes, and no 
397 parameter blinding was performed.  Further, we restricted our core analyses to these standards 
398 in order to best learn temporally local cell dynamic “decisions”-- with 20 minutes corresponding 
399 to the approximate time it takes these cells types to move approximately half a nuclear-length 
400 within a confluent ensemble based on our data (Fig. 1D) -- and additionally to sufficiently 
401 encompass spatially local neighboring cells, as a function of classical neighbor analyses as in 
402 Fig. 3A. 
403
404

405 Limiting cases: mesenchymal, metastatic cells lack coordinated collective rules

406
407 Our goal is to study collective behaviors in cells, so a natural question which arises is: how do 
408 these networks respond to cell types with apparently uncoordinated behavior, and is there an 
409 underlying behavioral mode? We explored this using metastatic breast cancer cells as a 
410 hallmark in many metastatic cancers is that cells undergo an epithelial-to-mesenchyme 
411 transition, effectively transitioning from more collective, epithelial cells to more individualistic 
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412 mesenchymal cells7. We explored this here using the MDA-MB-231 cell line: a well-studied, 
413 highly aggressive triple-negative breast cancer (TNBC) cell type, which exhibits spindle-shaped 
414 morphology, and lacks strong cell-cell adhesion49–51. In contrast to the highly collective MDCK 
415 and HUVEC lines, the uncoordinated MDA-MB-231s function more like a negative biological 
416 control. 
417
418 The attention plots and accuracy scores for the MDA-MB-231s are shown in Fig. 4. The 
419 attention contour plot in Fig. 4A highlights a radially symmetric influence regime around the focal 
420 agent, indicating that dynamics are more likely influenced by proximity alone (possibly a 
421 repulsion zone) than directed coordination. The histogram of neighbor locations (Fig. 4B) 
422 confirms that the data are relatively consistently distributed about the focal cell, while the scatter 
423 plot of the closest neighbor locations, colored by normalized attention weights (Fig. 4C) and 
424 histogram of highest weighted neighbors (Fig. 4D) further emphasize the circular influence 
425 region lacking any more specific spatial signature. Here, the prediction time interval was 20 
426 minutes, the time between trajectory points was 5 minutes, and 10 nearest neighbors in total 
427 were accounted for by the network structure. 
428
429

430

431 Fig 4 Breaking coordination: attention in metastatic cancer cell line MDA-MB-231. 
432 (A) Normalized attention weight contour plot, (B) neighbor location histogram, (B) closest neighbor scatter plot, as 
433 colored by normalized attention weights, and (D) histogram of highest weighted neighbors, with all plots analogous to 
434 those in Figures 2 and 3. Results shown for MDA-MD-231 cells with cell trajectory points taken every 5 minutes, and 
435 networks encompassing 10 neighbors with 20 minute prediction times. This cancer line functions as a control, as the 
436 cancer cells are highly uncoordinated, resulting in nearly equal attention weight applied to local neighbors in all 
437 directions. 
438 (E) Network accuracy plots as prediction time interval is varied, aggregated over networks accounting for 5-50 
439 neighbors in increments of 5. Solid lines reflect accuracy scores for all turning angles in the focal agent trajectory; 
440 dashed lines reflect only large turns (±20-160˚). Accuracy decreases with increasing prediction interval and varies 
441 little as a function of neighbors observed by the network. Cell trajectory timesteps were fixed at 5 minutes. 
442
443
444 As individual MDA-MB-231 cells lack cell-cell adhesion-mediated coordination, and exhibit low-
445 persistence trajectories (S7 Fig.), the ability of the network to predict future turning decreases 
446 with increasing prediction time interval (Fig. 4E). This is opposite the trend from more collective 
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447 and persistent cell types where accuracy increases with increasing prediction time interval and 
448 is likely a hallmark of poorly coordinated cells. Additionally, accounting for larger numbers of 
449 nearest neighbors does not obviously impact the network accuracy results. Again, since the 
450 agents are highly uncoordinated, the range of interacting cells does not affect predictive 
451 accuracy. 

452 Biophysical variations: tissue edge vs. bulk domains and age. 
453
454 Finally, we explore how collective cell migration rules vary across a large tissue and in different 
455 biophysical contexts. There is a growing appreciation in tissue biology that cells within a single 
456 tissue can exhibit different behaviors based on their locations within the tissue--supracellularity2. 
457 These differences can arise from local biological or biophysical properties, such as density-
458 mediated jamming and contact inhibition of locomotion and proliferation44,45.  Here, we explore 
459 these questions in two parts using our MDCK epithelial model. First, we examine the collective 
460 rules found in epithelial cells near either the outer boundary of a growing tissue or deep in the 
461 bulk of the tissue. Next, we look at how the rules change in response to maturation of the tissue 
462 and concomitant biophysical changes. Accuracy plots for the following data can be found in S11 
463 Figs. 
464
465 To characterize ‘edge vs. bulk’ dynamics, we defined analysis zones to demarcate cell 
466 trajectories in the bulk and edge regions, excluding those cell trajectories too close to the free 
467 boundaries to avoid biases caused by reduction in neighbors (see Methods). Independent deep 
468 attention networks were trained for each zone. The attention contour plot, closest neighbor 
469 location scatter plot, and highest weighted neighbor histogram from Fig. 2 are shown again in 
470 Figs. 5B-D, and represent the dynamics in the bulk region. Neighbor location histograms are 
471 shown in S12 Fig. Figs. 5B’-D’ are the same visualizations for data from the edge region of the 
472 tissue. Structurally, the key difference in these attention maps is the relatively much higher 
473 importance of lateral neighbors for cells at the expanding edges of a tissue. The neighbor 
474 location histogram plots (see S12 Fig.) confirm that this difference is not due to a lack of cells in 
475 front of the focal cell. Rather, we hypothesize that agents directly in front of the focal agent near 
476 the edge of the tissue tend to have less influence over the turning behavior because as edge 
477 cells expand outward, the forward agents are more likely to displace outward, leaving space for 
478 the focal agent to follow yet not substantially impacting turning decisions overall where lateral 
479 cell-cell adhesion likely mechanically influences cell behavior. In both cases, agents forward-
480 and-to-the-sides impact focal cell turning behaviors, with little impact from rear neighbors. 
481
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482

483 Fig 5 Biophysical modifications and attention. 
484 (A, A’) For these experiments, cell trajectory data is extracted from either the bulk region (A) or the edge region (A’) of 
485 the tissues. Scale bar represents 1 cm.
486 (A’’) Representative nuclei images of tissues before and after contact inhibition. Scale bars represent 200 µm. 
487 (B*, C*, D*) Attention map, closest neighbors scatter plot and histogram of highest weighted points, as before. 
488 (B, C, D) Network trained on MDCK cell trajectories taken from a circular ROI in the center of an expanding tissue, 
489 prior to contact inhibition. Plots are representative of the bulk region (see Methods). 
490 (B’, C’, D’) Network trained on MDCK cell trajectories taken from an annulus along the outer region of a circular 
491 expanding tissue, prior to contact inhibition. Plots are representative of the edge region of the tissue (see Methods). 
492 (B’’, C’’, D’’) Network trained on MDCK cells in the bulk region, after contact inhibition. Plots are representative of a 
493 jammed tissue (see Methods).
494
495 Having varied cell context across the tissue, we then varied cell context with respect to time and 
496 crowding. As an epithelium matures, it undergoes multiple rounds of cell division that drive the 
497 bulk density higher until it reaches a critical point where cell division is inhibited and migration 
498 slows due to jamming and contact inhibition of proliferation and migration signaling14,45, S4 
499 Movie. To study this here, we compared attention behaviors for cells in the bulk of a relatively 
500 ‘young’ tissue to those of a more mature tissue. The four attention plots associated with the 
501 post-contact-inhibition case are shown in Figs. 5B’’-D’’ for comparison to the first row of plots 
502 (Figs. 5B-D) which are representative of tissues prior to contact inhibition. These attention 
503 contour plots of mature, dense epithelia (Fig. 5B”) demonstrate a much shorter range zone of 
504 influence, reflecting the increased packing and reduced motility for cells in these tissues. The 
505 neighbor location histogram (Fig. 5C”, red lines) also confirms the denser packing of the tissue: 
506 more nearest neighbors proportionally lie within a thin annulus near the focal agent. Finally, 
507 beyond simply reducing the interaction length, focal cells in high density tissues uniformly 
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508 distribute their attention in all directions (Fig. D”), in stark contrast to the biased attention 
509 patterns observed in the earlier, more motile state of the tissue. 
510

511 Discussion
512
513 Basic rules of collective cell attention can be learned from trajectory data
514
515 We demonstrated that deep attention networks can learn core rules of collective cell behaviors 
516 given only cellular trajectory data, offering a complementary approach to traditional biophysical 
517 and statistical methods for analyzing collective cell behaviors. In blood vessel endothelial cells 
518 (HUVEC), where strong leader-follower dynamics are visually observable, the attention maps 
519 emphasized the overwhelming importance of cells directly in front of the focal cell, rather than 
520 lateral or rearward neighboring cells. Again, these results do not follow from either classical 
521 correlation analyses or biological morphology and protein localization data.40 In epithelial cells 
522 (MDCK), where cell-cell interactions are more complex and tend to result in large-scale 
523 correlated motion domains within the tissue, the influence region was much broader and 
524 encompassed neighboring cells forward and to the sides, with minimal influence from cells 
525 behind the focal agent. In more individual, metastatic breast cancer cells (MDA-MB-231), which 
526 are highly uncoordinated and function as a biological control, attention maps reflected a lack of 
527 influence in any particular direction in contrast to the collective HUVEC and MDCK cells, with 
528 influence confined to a small region in close proximity to the focal cell. Our visual attention map 
529 results, increased accuracy scores compared to networks trained on shuffled trajectories, and 
530 accuracy trends as a function of network modifications – such as increases in prediction time 
531 intervals - indicate that the deep attention networks are effectively recovering collective 
532 influence regions. 
533
534 Limitations of existing metrics and network design.
535
536 Recall that our approach draws on tools originally developed for analyzing schooling fish, and 
537 so we note that translation to complex, orders-of-magnitude larger populations of interacting 
538 cells is not perfect.  In particular, our work highlights the need for novel metrics and 
539 performance benchmarks to validate network success. We utilize the deep attention network 
540 structure to both capture rich dynamic relationships and expose meaningful attention weights for 
541 interpretation. Establishing more rigorous criteria to assess if meaningful collective behaviors 
542 are captured would be of great value towards transitioning similar techniques into standard 
543 practice, such as: (1) the development of a suite of biologically-grounded perceptual range 
544 targets for canonical cell types; (2) establishment of different learning goals beyond simple 
545 turning decisions; and (3) application of new network architectures and strategies such as 
546 reinforcement learning. 
547
548 Deep attention network accuracies may be augmented by providing information about the 
549 system which is inaccessible to the biological agent, such as dynamic information about cells 
550 beyond the focal cell’s physical sensing boundaries (Fig. 3D), or the use of long-term historical 
551 data (S8-9 Figs.). Moreover we are applying a tool originally developed for the analysis of 
552 independent, physically separated agents (e.g. fish) with wide, non-contact based perceptual 
553 fields (vision and pressure wave detection) to a 2D confluent monolayer in which cells are 
554 physically contacting one another. Thus, network inputs, network structure, and metrics of 
555 success must be carefully designed to ensure the learned dynamics are reflective of the 
556 biological system. 
557
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558
559 Concluding remarks
560
561 Here, we characterize the application of deep attention networks to the recovery of cell-cell 
562 influence within a collective setting. We apply the technique to data collected from well-studied 
563 epithelial cell lines with distinct collective behaviors and in distinct biophysical settings. We 
564 compare accuracy results as a function of different training, data sampling, and sensory range 
565 settings and explore influence regions exposed by derived attention maps. We highlight the 
566 need for improved network structures and performance metrics; however, we are optimistic 
567 about the potential for deep attention networks and related machine learning methods to reveal 
568 collective rules beyond the capabilities of classical group analysis methods. 
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569 Methods.

570 Ethics statement 

571 Our study involved standard mammalian cell type the use of which is approved via Princeton 
572 IBC committee, Registration #1125-18. MDCK-II wild-type and Ecad:RFP cells were a gift from 
573 the Nelson Laboratory at Stanford University. HUVEC cells expressing VE-cadherin were a gift 
574 from the Hayer Laboratory at McGill University. Wild-type HUVEC cells were purchased through 
575 Lonza. MDA-MB-231 human breast cancer cells were a gift from the Nelson Laboratory at 
576 Princeton University.   

577 Cell culture 

578 MDCK-II cells were cultured in low glucose DMEM supplemented with 10% Fetal Bovine Serum 
579 (Atlanta Biological) and penicillin/streptomycin as done previously14. HUVEC endothelial cells 
580 were cultured using the Lonza endothelial bullet kit with EGM2 media according to the kit 
581 instructions. MDA-MB-231 human breast cancer cells were cultured in DMEM/F12 (1:1) media52 
582 (Thermo Fisher Scientific, Life Technologies, Item #11330-032) supplemented with 10% 
583 Fetal Bovine Serum (Atlanta Biological) and penicillin/streptomycin. All cell types in culture were 
584 maintained at 37°C and 5% CO2 in humidified air.

585 Tissue preparation 

586 Tissue samples were grown in 3.5-cm glass-bottomed dishes coated with an appropriate ECM. 
587 To coat with ECM, we incubated dishes with 50 µg/mL in PBS of either collagen-IV (MDCK, 
588 MDA-MB-231; Sigma) or bovine fibronectin (HUVEC; Sigma) for 30 min 37°C before washing 3 
589 times with DI water and air drying the dishes. 

590 To pattern consistent circular tissues, ~3 µL of suspended cells were seeded into 9 mm2 silicone 
591 microwells within each dish as described in [44] which allowed confluent monolayers to form. 
592 MDCK-II cells were seeded at a density of 1.8x106 cells/mL; HUVEC cells were seeded at a 
593 density of 0.8x106 cells/mL; and MDA-MB-231 cells were seeded at a density of 3.0x106 
594 cells/mL. We added 4 µL of suspended cells in media to each microwell, allowed them to 
595 adhere in the incubator (30 min for MDCK, 1 hr for HUVECs, 2 hrs for MDA-MB-231s), added 
596 media and returned them to the incubator for 16 hrs prior to imaging. For contact inhibition 
597 samples, MDCK-II cells were seeded at a density of 4.2x106 cells/mL on 20mm2 silicone 
598 microwells. After 30 min. incubation, tissues were continuously over 48 hrs to capture both pre-
599 contact inhibition and post-contact inhibition state.

600 Fluorescent imaging

601 We used the live nuclear dye NucBlue (ThermoFisher; a Hoechst 33342 derivative) with a 30 
602 min incubation for nuclear labeling on standard MDCK, HUVEC, and MDA-MB-231 tissues and 
603 imaged with a DAPI filter set. For MDCK data collected for pre- and post-contact inhibition 
604 experiments, nuclear labels were reproduced using a convolutional neural network trained to 
605 reconstruct nuclei features from 4x phase contrast images of cells. Complete documentation 
606 including code and trained network weights for this tool may be referenced in 39. Media was 
607 swapped and silicone microwell stencil was removed prior to imaging. Cadherin imaging was 
608 performed using conventional epifluorescence microscopy on a Nikon Ti2 equipped with a YFP 
609 filter set (HUVEC VE-Cadherin) and an RFP filter set (MDCK E-cadherin).
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610 Image Acquisition

611 MDCK, HUVEC, and MDA-MB-231 data was collected on a Nikon Ti2 automated microscope 
612 equipped with either a  4X/0.15 phase contrast (HUVEC) objective or 10X/0.3 phase contrast 
613 objective (MDCK, MDA-MB-231), and a Qi2 sCMOS camera (Nikon Instruments, 14-bit). An 
614 automated XY stage, a DAPI filter set, and a white LED (Lumencor SOLA2) allowed for 
615 multipoint phase contrast and fluorescent imaging. MDCK and HUVEC data was collected at 10 
616 min/frame, while MDA-MB-231 were given 5 min/frame, with temporal resolution increased for 
617 the MDA-MB-231 cells to improve tracking quality. Contact inhibition data were collected at 20 
618 min/frame for 48 hours. The first 60 frames and last 60 frames are used as pre and post contact 
619 inhibition samples, respectively.

620 All imaging was performed at 37°C with 5% CO2 and humidity control. Exposures varied, but 
621 were tuned to balance histogram performance with phototoxic risk. Data with any visible sign of 
622 phototoxicity (blebbing, apoptosis, abnormal dynamics) were excluded entirely from training.  

623 Timelapse Pre-Processing and Tracking

624 Timelapse movies of individual expanding tissues were processed using ImageJ/FIJI47,53 prior to 
625 performing cell tracking via background subtraction and contrast enhancement. Tracking was 
626 performed using the TrackMate plugin54, with “bulk” vs. “edge” tissue regimes initially 
627 differentiated using a circular ROI concentric with the tissue with radial extent 80% of the tissue 
628 radius. Cell trajectories were generated and shortened tracks were excluded to account for 
629 boundary effects: for instance, cells from the bulk tissue regime migrating into the edge regime. 
630 Trajectories were normalized, by translation to the trajectory arena center and scaling, and 
631 smoothed as in [9], with cell velocities and accelerations determined using finite differences. The 
632 bulk spatial regimes were further reduced by 20% prior to training, while the edge spatial 
633 regimes were reduced by 10% of the maximal tissue growth prior to training, again to mitigate 
634 edge effects. When trajectories were subsampled, cell trajectory positions were sliced to use 
635 every nth value in time; when tissues at different growth stages were analyzed; full trajectory 
636 datasets were sliced to include data spanning the required time ranges. 

637 The protocol for determining nearest neighbors, velocities and accelerations, turning angles, 
638 and shuffled trajectories was identical to the protocol in [9]; however, the size of the training 
639 dataset was reduced in order to increase the size of the validation and test datasets 
640 (50%/30%/20% by timelapse splits). 

641 Network Training and Analysis 

642 The attention network structure, logit probabilities, loss function, and training hyperparameters 
643 were identical to those described in [9], here again implemented using Keras with a TensorFlow 
644 backend55,56, yet with a standard 1000 epochs per training cycle and early stopping. The 
645 structure of the deep attention network extends to include n pairwise-interaction subnetworks 
646 and n aggregation subnetworks, where n is the number of nearest neighbors accounted for by 
647 the network. The standard value of n is 10 unless otherwise specified. Sample training loss plots 
648 are shown in S1 Fig. Training was performed on a desktop using an NVIDIA GeForce GTX 
649 1070 Ti GPU or in a cluster environment with an NVIDIA Tesla P100 GPU. As in Francisco J. H. 
650 Heras et al., the attention network logit was used to determine a logit indicating whether the 
651 focal agent will turn left or right after a fixed time interval. The network input consisted of asocial 
652 information, specifically the speed, v, tangential acceleration, a∥ and normal acceleration, a⊥; 
653 and social information pertaining to a set number of nearest neighbors to the focal agent, 
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654 specifically relative position, xi and yi, velocity, vi,x and vi,y, and accelerations, ai,x and ai,y. We 
655 performed experiments “blinding” the model to the focal tangential acceleration and neighbor 
656 accelerations (both normal and tangential), such that these variables would not be included as 
657 input to the model, yet no significant effect was observed on accuracy (see S7 Fig).

658 All plots were generated using Python unless otherwise indicated. The representative cell 
659 trajectories in Fig. 1A-C were generated using the TrackMate plugin ImageJ. The mean speeds, 
660 MSD and persistence plots in Fig. 1D-E were generated using TrackMate trajectories, with 
661 persistence calculated as (displacement)/(traveling distance) and MSD caculated by MATLAB 
662 script(MSD analyzer). The cell position snapshot in Fig. 1F plots a single random focal cell, 
663 indicated by a central ellipse, and relative positions in space of its neighbors as a function of 
664 nuclei centroids, colored by normalized attention weight output by the network according to their 
665 trajectory data. Neighboring cell direction is indicated by elongated axis of the ellipse, and nuclei 
666 centroids were used to generate Voronoi cells.

667 Attention maps (e.g. Fig. 2A) were generated by selecting 10,000 random focal agents in the 
668 test set and interpolating the attention weights assigned to every neighbor of every focal agent 
669 to produce a contour plot. The radius of innermost black circle indicates the smallest radial 
670 distance from any focal agent to its closest neighbor. The thin red circles indicate the region in 
671 which the bulk of the neighboring points lie in space. The neighbor positions are converted into 
672 radial distance values to determine radii between which 5%-95% of the data falls; these radii are 
673 indicated via the thin red lines on both attention maps and neighbor distribution maps. The latter 
674 (e.g. Fig. 2B) were generated using the same 10,000 focal agents and their neighbors and 
675 binning their (x, y) coordinates to produce a 2D histogram. Closest neighbor location plots (e.g. 
676 Fig. 2C) were produced by utilizing the same 10,000 focal agents yet sorting their neighbors by 
677 radial distance to the focal agent; only those closest neighbors were plotted in space, and points 
678 were colored by normalized attention weight. Highest weighted neighbor histograms (e.g. Fig. 
679 2D) were generated using the same 10,000 focal cells, yet only binning the (x, y) coordinates for 
680 the neighbor with the highest weight for each focal cell. The focal turning angle radial histogram 
681 (S7 Fig.) was generated using the same 10,000 focal cell trajectories and binning angles by 10˚.

682 Neighbor analyses were performed using the ImageJ BioVoxxel toolbox48. First, cell boundary 
683 binary images were obtained by processing nuclear fluorescence data using the ‘Find Maxima’ 
684 routine in ImageJ with ‘segmented particle’ output. Next, we used BioVoxxel neighbor analysis 
685 with the ‘particle neighborhood’ approach and a neighborhood radius of 2 pixels.  Interacting 
686 neighbor plots (e.g. Fig. 3B) were produced as described previously9, with the important 
687 neighbors recovered as a function]\ of the inverse of the typical attention weight (Equation 2) as 
688 presented previously57. All accuracy results are reported on the complete test set. 

689 Code and Dataset Availability:

690 All code used for pre-processing data, training/validating/testing the model, and post-processing 
691 for plot and figure generation can be found on GitHub at: 

692 https://github.com/CohenLabPrinceton/Attention_Networks

693 Experimental data in the form of timelapse movies (TIFF files) and cell tracks (XML files) for 
694 HUVEC, MDCK (bulk and edge regions), and MDA-MB-231 cells may be found on Zenodo58 at: 

695 http://doi.org/10.5281/zenodo.4959169
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833 Supporting Information

834

835

836

837

838

839 S1 Figure Neighbor importance to learned turning dynamics, additional snapshots

840 Individual agents are plotted in space (x, y) and colored according to relative attention weight 
841 (W) as in Equation 1 for HUVECs (left) and MDA-MB-231 cells (right). Cell position is 
842 representing using nuclei centroids and black lines indicate Voronoi cells (see Methods).
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853
854

855 S2 Figure Representative loss functions from the attention network training process. 

856 Early stopping was enabled, so that if the validation loss did not decrease within a set number of 
857 epochs, the training process was terminated. Validation loss was noisier when training the 
858 network on MDA-MB-231 data, in which there is reduced cell-cell coordination. 
859
860
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864  

865 S3 Figure MDCK (bulk) neighbor distribution, closest neighbor, and highest weight maps. 

866 Plots shown are analogous to the neighbor distribution, closest neighbor, and highest weight 
867 neighbor maps are shown in Fig. 2D’-F’, yet corresponding to the 10, 20, and 30 neighbor 
868 networks with attention maps as in Fig. 3D-D’’. 
869
870

871

872 S4 Figure Complete MDCK bulk region network accuracy plot.

873 Network accuracy plots as prediction time and number of input neighbors is varied. Solid lines 
874 reflect accuracy scores for all turning angles in the focal agent trajectory; dashed lines reflect 
875 only large turns (±20-160˚). Accuracy increases with both number of neighbors encompassed 
876 by the network and prediction time. Cell trajectory timesteps were fixed at 10 minutes. 
877
878
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879

880
881
882 S5 Figure Local vs. long-range interactions in HUVECs.
883 (A) The number of nearest neighbors based on an analysis of 1115 cells using the ImageJ/FIJI47 
884 BioVoxxel plugin48 (see Methods). A peak can be observed at 3 nearest neighbors.
885 (B) Histograms of total interacting cells (blue) and “important” interacting cells (red), as 
886 determined by a function utilizing the network aggregation weights (W) to estimate the most 
887 influential neighbors.
888 (C) A snapshot of HUVEC cells with blue region indicating the extent of “large” turns (±20-160˚) 
889 according to the focal cell trajectory (indicated by the pink arrow). Scale bar represents 20 µm 
890 (D) Network accuracy plots as prediction time and number of input neighbors is varied. Solid 
891 lines reflect accuracy scores for all turning angles in the focal agent trajectory; dashed lines 
892 reflect only large turns (±20-160˚). Accuracy increases with both number of neighbors 
893 encompassed by the network and prediction time. Cell trajectory timesteps were fixed at 10 
894 minutes. 
895 (E, E’, E’’) Attention maps for networks encompassing 10 (left), 20 (middle), and 30 (right) 
896 neighbors. Plots shown here are analogous to plots shown in Figure 3, with cell trajectory 
897 timestep of 10 minutes. As the number of neighbors taken into consideration by the network 
898 increases, a wider spatial range of interactions may be considered for forward motion prediction. 
899
900
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907
908

909 S6 Figure MDCK (bulk) attention maps, 60-minute prediction time interval.

910 Representative attention weight contour plots are shown for MDCK cells with networks 
911 accounting for 10 neighbors in total (A) and 30 neighbors in total (30) with prediction time 
912 intervals of 60 minutes. For all conditions, normalized weight maps are shown and are 
913 analogous to the 20 minute prediction time interval attention maps shown in Fig. 3D and 3D’’. 
914
915
916

917
918

919 S7 Figure Focal cell turning angle distribution and persistence.

920 A radial histogram of turning angles from focal cell trajectories, shown for (A) HUVECs, (B) 
921 MDCK cells in the bulk region, and (C) MDCK cells in the edge region (from the same tissues; 
922 see Methods). HUVEC angles tend to fall closer to vertical (0˚). (D) persistence (“directedness” 
923 by orientation) over time. The persistence plot here highlights the tendency of the HUVECs in 
924 particular to proceed in a single direction. 

925

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.453371
http://creativecommons.org/licenses/by/4.0/


926

927 S8 Figure Network accuracy plots with trajectory subsampling: MDCK. 

928 Network accuracy is shown as a function of number of neighbors encompassed by the network 
929 and time delay between cell trajectory points. (A) displays accuracy for a prediction time of 40 
930 minutes, with 10 (blue) and 20 (green) minute time delays, resulting from subsampling of the 
931 initial trajectory results. (B) displays accuracy for a prediction time of 60 minutes, with 10 (blue), 
932 20 (green), and 30 (red) minute time delays. Solid lines reflect accuracy scores for all turning 
933 angles in the focal agent trajectory; dashed lines reflect only large turns (±20-160˚). Accuracy 
934 increases as time delay is increased; in this experiment, the same number of historical steps is 
935 utilized, so subsampled trajectories include data spanning longer total time intervals. 

936

937

938

939 S9 Figure Network accuracy plots with trajectory subsampling: HUVEC. 

940 Network accuracy is shown as a function of number of neighbors encompassed by the network 
941 and time delay between cell trajectory points. (A) displays accuracy for a prediction time of 40 
942 minutes, with 10 (blue) and 20 (green) minute time delays, resulting from subsampling of the 
943 initial trajectory results. Solid lines reflect accuracy scores for all turning angles in the focal 
944 agent trajectory; dashed lines reflect only large turns (±20-160˚). Accuracy increases as time 
945 delay is increased; in this experiment, the same number of historical steps is utilized, so 
946 subsampled trajectories include data spanning longer total time intervals. 

A B
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947

948 S10 Figure Network accuracy plots with input acceleration blinding. 

949 Network accuracy is shown as a function of number of neighbors encompassed by the network, 
950 prediction time, and input parameters to the network. Either the standard inputs are utilized 
951 (lighter colors, see Methods), or the model was blind to focal tangential acceleration and 
952 neighbor accelerations (darker colors; i.e., these parameters were excluded from model inputs). 
953 (A) displays accuracy for MDCK cells, (B) for HUVECs. Solid lines reflect accuracy scores for all 
954 turning angles in the focal agent trajectory; dashed lines reflect only large turns (±20-160˚). 
955 Accuracy is not substantially changed as a function of acceleration blinding.  

956

957

958

959 S11 Figure Accuracy results for MDCK cells, biophysical modifications

960 (A) Network accuracy plots as prediction time and number of input neighbors is varied for both 
961 bulk (darker colors) and edge (lighter colors) regions within a confluent MDCK tissue. Solid lines 
962 reflect accuracy scores for all turning angles in the focal agent trajectory; dashed lines reflect 
963 only large turns (±20-160˚). Accuracy results tended to be slightly higher in the bulk region. 

964 (B) Network accuracy plots as prediction time and number of input neighbors is varied for the 
965 same MDCK tissues prior to (lighter colors) and after (darker colors) contact inhibition. Accuracy 
966 results were higher prior to contact inhibition. 

967
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968
969 S12 Figure Neighbor distribution plots for MDCK biophysical variations. 
970
971 Histograms showing the distribution of data points (neighbor cell locations) from which the 
972 attention maps in Figs. 5B,B’,B’’ were generated.
973
974

975 S1, S2, S3 Movies HUVEC, MDCK, and MDA-MB-231 representative data. 

976 S1 Movie shows a phase-contrast timelapse of HUVEC cells, imaged at 4x magnification, with 
977 fluorescent stained nuclei overlaid. S2 Movie shows a phase-contrast timelapse of MDCK cells, 
978 imaged at 10x magnification, with fluorescent stained nuclei overlaid. S3 Movie shows a 
979 differential interference contast (DIC) timelapse of MDA-MB-231 cells, imaged at 10x 
980 magnification, with fluorescent stained nuclei overlaid. 

981

982 S4 Movie MDCK post-contact-inhibition representative data. 

983 S4 Movie shows MDCK tissue after contact inhibition, imaged at 4x magnification, with overlaid 
984 nuclei predictions produced using a neural network (see Methods). This movie is from the 
985 dataset as S2 Movie, but it shows the complete progression from an early confluent tissue to a 
986 late stage, mature tissue with full contact inhibition and jammed cells. 

987
988
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