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Abstract 7 

During foraging, animals decide how long to stay and harvest reward, and then abandon that site and travel 8 
with a certain speed to the next reward opportunity. One aspect of this behavior involves decision-making, 9 
while the other involves motor-control. A recent theory posits that control of decision-making and 10 
movements may be linked via a desire to maximize a single normative utility: the sum of all rewards 11 
acquired, minus all efforts expended, divided by time. If this is the case, then the history of rewards, and 12 
not just its immediate availability, should dictate how long one decides to stay and harvest reward, and how 13 
slowly one travels to the next opportunity. We tested this theory in a series of experiments in which humans 14 
used their hand to harvest tokens at a reward patch, and then used their arm to reach toward a subsequent 15 
opportunity. Following a history of poor rewards, people not only foraged for a longer period, but also 16 
moved slower to the next reward site. Thus, reward history had a consistent effect on both the decision-17 
making process regarding when to abandon a reward site, and the motor control process regarding how fast 18 
to move to the next opportunity. 19 
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Introduction 21 

Movements tend to be faster toward stimuli that promise a greater utility. For example, as the expectation 22 
of reward increases, peak speeds of both saccadic eye movements and reaching movements tend to increase 23 
(Haith et al., 2012; Rigoux & Guigon, 2012; Shadmehr et al., 2016; Summerside et al., 2018; Takikawa et 24 
al., 2002; Thura et al., 2014). Similarly, as the effort cost of acquiring reward increases, speed of walking 25 
and reaching movements tends to decline (Gordon et al., 1994; Ralston, 1958; Schweighofer et al., 2015; 26 
J. Wang et al., 2021). Why does the prospect of greater reward invigorate movements?  27 

One possibility is that by controlling movement vigor the brain is attempting to maximize an ecologically 28 
relevant utility: the reward that is expected at the successful conclusion of the act, minus the energetic 29 
expenditure required to perform that act, divided by time (Shadmehr et al., 2016). In this framework, faster 30 
movements are discouraged because they require greater energetic expenditure (Gordon et al., 1994; 31 
Ralston, 1958; Summerside et al., 2018). However, when there is reward at stake, faster movements save 32 
time, which reduces the discounted value of reward. When greater reward is at stake, the time that is saved 33 
by a faster movement may justify its energetic cost, and thus its vigor. 34 

The mathematical formulation of this utility, reward minus effort divided by time, is the same as the one 35 
used by ecologists who study decision-making of animals during foraging (Stephens & Krebs, 1986). In 36 
many of those studies, the objective is to understand why the animal decides to abandon a harvest site and 37 
move to another opportunity (Cowie, 1977; Richardson & Verbeek, 1987). Optimal foraging theory 38 
operates on the notion that duration of harvest depends not only on the reward that is locally available, but 39 
also on the history of the subject, i.e., the past actions and their consequences (Stephens & Krebs, 1986). 40 
For example, marginal value theorem, or MVT (Charnov, 1976), a method that finds foraging durations 41 
that maximize the global utility, predicts that if in the past the subject has enjoyed rich rewards, then it 42 
should abandon the current foraging site sooner, as compared to when the past has been one of scarcity. 43 
Indeed, animal studies have found a consistent effect of environment quality on behavioral parameters such 44 
harvesting duration and response latency (Cuthill et al., 1990; Niv et al., 2007; Perry et al., 2016; A. Y. 45 
Wang et al., 2013). 46 

While studying saccadic eye movements and gaze behavior in humans, we suggested a generalized version 47 
of MVT to account for control of movement vigor (Yoon et al., 2018). The essence of the generalized 48 
theorem is that actions, whether they be in the context of harvesting, or moving between sites, should be 49 
controlled by a single global utility: the sum total of rewards and efforts, divided by time (Figure 1a). The 50 
generalized theory predicts that in environments in which rewards are plentiful or require little effort, the 51 
subject should not only abandon the reward site sooner, but also move with greater vigor toward the next 52 
opportunity (Figure 1b). That is, the rewarding outcomes and effort expenditures of past actions should 53 
have a consistent effect on both decision-making, and movement control.  54 

While classical MVT has been empirically tested via examination of decision-making patterns (Constantino 55 
& Daw, 2015; Cowie, 1977; Hayden et al., 2011; Krebs et al., 1974; Le Heron et al., 2020), the generalized 56 
predictions regarding the effects of history on motor control have yet to be tested. Here, we designed two 57 
foraging experiments in which we varied the history of reward and effort. Subjects used their hand to harvest 58 
tokens at a reward patch, and then used their arm to reach to the next patch. In each experiment, subjects 59 
performed these reach-and-harvest trials in various conditions: in rich environments where rewards were 60 
plentiful (or low effort expenditure associated with reaches between patches), or in poor environments 61 
where rewards were scarce (or high effort expenditure). Critically, in both environments we placed probe 62 
trials in which we controlled the availability of the immediate reward and the efforts required for attaining 63 
that reward. Theory predicted that when comparing behaviors in probe trials, the history of past actions, as 64 
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reflected in the richness of the environment, should affect both reach vigor, and harvest duration. Indeed, 65 
following an experience of rich rewards, people not only reached with greater vigor in probe trials, they 66 
also abandoned those rewards sooner. 67 

 68 

 

 
Figure 1: (a, b) Generalized MVT predictions for control of movement vigor and harvest duration (a) Richer environment 69 
with history of high reward or low effort will elicit higher vigor. But richer environments will also elicit lower harvest 70 
duration. (b) After a history of low effort or high reward, the vigor of the current movement will increase as compared to 71 
a history of high effort and low reward. Similarly, after a history of high reward and low effort, harvest duration will 72 
decrease as compared to history of low reward and high effort. Note that while environmental richness is positively 73 
correlated with vigor, it is negatively correlated with harvest duration, despite immediate reward increasing both.  74 

Results 75 

In a foraging task (Experiment 1, Figure 2c), subjects held a robotic manipulandum and used their hand to 76 
apply force pulses that produced tokens (virtual berries) at reward patches (the berries were exchanged into 77 
a monetary bonus at the end of the experiment). There were three patch types, indicated by their color, with 78 
differing reward rates (low, medium, and high, Figure 2d). As they stayed within a patch and continued to 79 
harvest, the number of berries that we delivered with each pulse decayed (Figure 2c, third panel), thus 80 
encouraging them to leave. Their decision to leave was aided by the fact that as they harvested, the location 81 
and reward rate of the next patch was displayed, making it possible for them to leave the current patch and 82 
reach to the next patch when they wished to.  83 
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Figure 2: Experiment design. (a) Participants were seated in front of a computer monitor while grasping the handle of 84 
a robotic arm. The robot handle housed a sensor that measured grip force. (b) They used the robot to move the cursor 85 
and place it inside the target (“patch”) to earn reward (berries). In Experiment 1, we varied the amount of reward at 86 
each patch. (c) Once in the patch, harvesting would commence by waiting for 1 second (green light), and then producing 87 
a force pulse. Each subsequent grip pulse had to wait for 1 sec and was rewarded with an exponentially reduced 88 
number of berries. The number of berries collected was added to a running score, which was displayed on the screen. 89 
Subjects were free to stop harvesting and move to the next patch at any time. (d) The richness of each patch was cued 90 
by a specific color. (e) Example of a grip pulse resulting in berry harvest. (f) Different reward functions for the three 91 
patch types plotted wrt number of grips applied within the patch (left). Cumulative rewards for the three patch types as 92 
a function of grip number within patch (right). In Experiment 2, we varied the effort required to travel between patches. 93 
(g) A red ‘patch’ served as the cue, instructing the subject to move the cursor to collect reward. Once in the patch they 94 
increased grip force to a threshold (bar height) to commence harvesting. During harvesting, grip force had to be 95 
maintained above threshold (𝐹𝑔 =  30𝑁) to continue berry collection. Subjects could move out at any point to the next 96 
patch. (h) To modulate effort cost of travel between patches, we added a mass to the reaching movements, indicated 97 
by a circle that was proportionately sized to the mass and appeared over the cursor. (i) Example grip force profile; 98 
subjects had to hold force above (𝐹𝑔 =  30𝑁) to collect berries indicated by orange circles. (j) Protocol for both 99 
experiments. Each rectangle represents a contiguous block of trials with corresponding number of trials indicated. Note 100 
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that for experiment 1 each environment included probe trials and was conducted for a fixed amount of time (20 minutes), 101 
with the remaining time displayed in the upper right corner of the screen. 102 

The key variables were the length of time they decided to stay and harvest, and more importantly, the 103 
velocity with which they reached to the next reward patch. We hypothesized that these variables depended 104 
not only on the reward properties of the current patch, but also reward history. To control the reward history, 105 
the patches were organized so that the subjects initially experienced either a poor (e.g., most patches 106 
containing a small amount of reward, Figure 2j) or a rich environment. In addition, in both environments 107 
subjects also encountered probe trials in which the immediate reward rate was kept constant (medium). 108 
These probe patches allowed us to measure the effect of past reward rate while controlling for the immediate 109 
reward. Subjects were given a fixed amount of time (20 min) to complete each environment (Figure 2h) 110 
and were familiarized with the various patches before the main experiment.  111 

History of high reward led to faster movements, and earlier abandonment of the reward 112 

patch 113 

Subjects reached faster toward patches that promised a greater immediate reward, as shown for a 114 

representative subject in Figure 3a, and across subjects in Figure 3b (𝐹(1,1104) = 80.225, 𝑝 < 2 ∗ 10−16). 115 
However, when the promise of reward was equalized (probe trials), reach speed depended on the history of 116 
the subject: following a history of high reward trials, reach speed in probe trials was greater than following 117 
a history of poor reward trials [peak velocity in probe trials following a high reward environment as 118 

compared to the low reward environment, 𝐹(1,264) = 13.661, 𝑝 = 0.0002] (Figures 3b and 3c). Thus, the 119 
history of reward affected reach vigor: reach velocity was higher in probe trials that followed a sequence 120 
of high reward experiences.  121 

Once the hand entered a reward patch, the subjects produced a series of force pulses to collect berries (one 122 
pulse per set of berries). Figure 3d provides an example of the force pulses, and the number of berries 123 
collected following each pulse (red dots atop each pulse). The raster in Figure 3e provides an example of 124 
harvest behavior in the rich and poor environments, as well as in the probe trials (same subject as in Figure 125 
3a). As expected, the subject stayed longer in the high reward patch as compared to the low reward patch, 126 
a pattern that was consistent across subjects (harvest duration was longer in the high reward patch, Figure 127 

3g; 𝐹(1,1104) =  632.4, 𝑝 < 2 ∗ 10−16 and more berries were collected; 𝐹(1,1104) =  10838, 𝑝 < 2 ∗128 

10−16). However, the length of harvest in probe trials depended on the history of the subject; they 129 
abandoned the harvest location sooner if the past was one of high rewards. Indeed, after a history of high 130 

reward the subjects chose to stay for a shorter period in the probe patch (Figure 3h, 𝐹(1,264) =131 

 37.134, 𝑝 < 3.8 ∗ 10−9), and collected fewer berries (Figure 3i, 𝐹(1,264) =  63.077, 𝑝 < 5 ∗ 10−14), as 132 
compared to the probe patch that followed low rewards. In other words, given the same amount of 133 
immediate reward (i.e., probe trials), if the history was one of high reward the subjects tended to abandon 134 
the current patch earlier, thus leaving with fewer berries.  135 

As they harvested rewards, subjects could see the location of the next patch and whether it contained high, 136 
medium, or low rewards. This allowed us to examine whether the prospect of future rewards affected 137 
behavior at the current patch. We noticed a curious change in behavior in the trial just before the onset of 138 
the probe patch: during the final harvest in the high reward patch, subjects lingered longer than normal if 139 

the next patch was a probe trial (harvest duration, trial 19 vs. 20, 𝑡(13)  =  3.258, 𝑝 = 0.0062). In other 140 
words, just before moving to a relatively poor patch (probe trial), subjects stayed longer than usual in the 141 
high reward patch. This transition from high reward patches to a probe patch also produced a relatively 142 

slow reaching movement (as compared to reaches to probes that were preceded by other probes, 𝑡(13)  =143 

 −2.188, 𝑝 =  0.0475). Similarly, when the next patch contained a relatively greater amount of reward 144 
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than the current one, harvest duration was shorter than normal (final harvest in the low reward environment 145 

when the subsequent patch was probe, 𝑡(13) =  −3.53, 𝑝 = 0.0037). Thus, the harvest duration was longer 146 
than usual if the promise of future reward was lower than the current rate.  147 

In summary, immediate reward affected harvest duration and reach vigor: in the high reward environment 148 
people lingered longer at each patch (as compared to low reward), and then reached with greater vigor 149 
toward the next high reward patch. In addition, the history of reward also affected these variables: following 150 
a low reward history, people lingered longer at the probe site, and then reached with reduced velocity to 151 
their next opportunity. Thus, as theory had predicted, a history of high reward encouraged earlier 152 
abandonment of the current reward patch, and faster movements toward the next patch.  153 
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Figure 3: (a) Velocity profile averaged across trials belonging to each environment for a representative subject; probe 154 
trials are separated out for each environment. (b) Normalized peak velocity plotted with respect to reward in patch on 155 
the current trial; each point represents the average of the mean normalized peak velocity across all subjects. Subjects 156 
are faster in probe trials belonging to high reward environment (* p<0.05, *** p<0.001). (c) Mean peak velocity 157 
(normalized to subject average) within a block of 50 trials, averaged across subjects, plotted as a function of trial for 158 
the low (blue) and high (yellow) effort environments. Corresponding difference 𝛥𝑃𝑉 is plotted with respect to trial 159 
number within block right below. All error bars represent standard error of the mean. (d) A sample grip force profile for 160 
an example subject #14 on a randomly selected trial to indicate the temporal course when inside a patch. In this case, 161 
subject is harvesting from a low reward patch; initial patch reward is 10 and successively decreases with grip actions. 162 
(e) Raster plot showing berries harvested in 30 representative trials per environment including for Subject #14. Each 163 
row represents a trial. Annotated trials are probe trials with equivalent reward across environments. Each point 164 
represents a harvest with the thickness of the point represents the number of berries harvested. Time of departure from 165 
patch is indicated by the asterisk for corresponding trial. (f,g) Berries harvested (w) and harvest duration (normalized 166 
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to subject average; f) plotted as a function of patch initial reward 𝛼. Comparing metrics between the probe patches’ 167 
average between the two environments showed subjects left patches sooner after history of high reward. (h,i) Mean 168 
number of berries (g) and mean harvest duration, normalized to subject average (h) within a block of 50 trials, averaged 169 
across subjects, plotted as a function of trial for the low (blue) and high (yellow) effort environments. Corresponding 170 
difference is plotted with respect to trial number within block right below. All error bars represent standard error of the 171 
mean. 172 

A history of high effort expenditure encouraged slower reaching movements 173 

In experiment 2, we shifted our focus from history of reward to history of effort expenditure. We did this 174 
by simulating an added mass on the hand as the subjects reached between patches (via an acceleration-175 
dependent resistive force field). Like experiment 1, subjects foraged for discrete rewards by reaching 176 
towards them (Figure 2f). Unlike experiment 1, once at a patch they applied a constant grip force to obtain 177 
reward. As before, they were free to stop the harvest and leave for the next patch at any time (Figure 2f, 178 
third panel). They experienced three added mass conditions over the course of the experiment which were 179 
cued through the appearance of the cursor (Figures 2g). In addition, they foraged in two environments: a 180 
high effort environment (3.5 kg mass) and a low effort environment (0 kg mass). In each environment, there 181 
were intermittent probe trials (2 kg), which allowed us to compare behavior between environments when 182 
the immediate effort requirements were the same, but history of effort differed. 183 

As expected, subjects reached faster when carrying a small mass as compared to a large mass (effect of 184 
environment effort on peak velocity, as illustrated by data from a single subject in Figure 4a, and group 185 

data in Figure 4b [𝐹(1,1420) =  3828.4, 𝑝 < 2 ∗ 10−16]). More importantly, the history of effort affected 186 
their reaching movements: reach velocity was higher in probe trials when those trials were embedded in an 187 

environment in which effort costs were low (Figure 4b, [𝐹(1,1420) =  27.31, 𝑝 < 3.03 ∗ 10−7]). Thus, as 188 
expected the subjects reached slower if the mass on the probe trial was greater than the trials that 189 
immediately preceded. However, this reach speed was faster if the probe trial was embedded in a low effort 190 
environment as compared to a high effort environment. 191 

Interestingly, the effect of effort history on vigor was not uniform across all subjects (Figure 4d). 192 
Specifically, five of the 18 subjects presented a slight or strong increase in probe trial vigor in the high 193 
effort environment. One possible explanation for this is that, despite the available reward and reward rate 194 
being uniform in patches across both environments, subjects valued the reward in the high effort 195 
environment more by the virtue of having spent more effort to acquire it. This is addressed further in the 196 
Discussion section.  197 

Upon entering a patch, subjects increased their grip force to the threshold required for harvesting. This 198 
threshold remained constant despite the varying effort requirements (i.e., masses) of the environment. 199 
Interestingly, subjects altered the rate at which they increased their grip force (grip ramp-up phase in Figure 200 
5a) based on the effort history of the environment: in the probe trials that were placed in the high effort 201 
environment, the rate of increase in grip force tended to be slower.  202 

Two examples of harvesting trials are shown in Figure 5b. This subject increased their grip force faster in 203 
the context of the low effort environment. We quantified this behavior by measuring the rate of force 204 
increase as well as the duration of time it took to ramp force from 10 N to the threshold of 30 N. (Subjects 205 
were required to maintain their force below 10 N before they enter the patch thereby determining the lower 206 
threshold.) We found that on average, peak rate of force was higher in trials belonging to the low effort 207 
environment as opposed to the high effort environment [example subject Figure 5c; two-way repeated 208 

measures ANOVA, main effect of environment on peak force rate 𝐹(1,264) = 5.714, 𝑝 = 0.0175]. When 209 
we focused on probe trials, we found that peak force rate in the context of the low effort environment was 210 
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higher than in the context of the high effort environment [Figure 5d–e; two-way repeated measures 211 

ANOVA, effect of environment effort on probe trials, 𝐹(1,1382) =  17.442, 𝑝 <  0.001]. When 212 
considering the correlated metric of grip ramp-up duration we see an interaction between environment effort 213 
and trial type [two-way repeated measures ANOVA on all trials reveals a slightly significant interaction 214 

between environment effort and trial type, 𝐹(1,264) = 3.851, 𝑝 =  0.05076]. Focusing once again on just 215 
the probe trials we found a significant effect of environment effort on grip ramp-up duration [Figures 5f–216 

g; 𝐹(1,1382) =  8.909, 𝑝 = 0.00289]. From Figures 4d and 5e, we notice that there is a significant overlap 217 
among subjects who had a higher peak force rate in the high effort environment and those who moved faster 218 
in the high effort environment. Specifically, subjects 6, 7, 11 and 13 who have higher peak velocity in the 219 
high effort environment also grip faster in the high effort environment. This provides more evidence in 220 
support of the notion that these subjects view the high effort environment as better than the low effort 221 
environment. 222 

Following the ramp-up phase, subjects harvested berries. In contrast to the grip ramp-up phase, we found 223 

no consistent effect of environment effort (𝑝 =  0.690) on number of berries collected (Figure 5h), even 224 

when focusing on only the probe trials (𝑝 = 0.621). Finally, we focused on the behavior as the subjects 225 
ended the harvest period and reduced their grip force, termed giving-up phase (Figure 5a), or the duration 226 
that subjects waited in a patch gripping after collecting their last berry. Since the duration between 227 
consecutive berries increased with time spent in the patch, this metric was normalized to the time 228 
experienced waiting between the second-to-last and last berries. We found that this normalized giving-up 229 
time was modulated significantly by environment effort (Figure 5i [two-way repeated measures ANOVA, 230 

main effect of effort; 𝐹(1,264)  =  5.437, 𝑝 = 0.0205]). That is, in the high effort environment, the 231 
subjects waited longer before giving up. Importantly, we found no significant effect of environment 232 

[𝐹(1,1382) =  2.088, 𝑝 = 0.149]. 233 

In summary, for identical immediate effort and reward opportunities, movement vigor tended to be 234 
modulated by the subject’s history of experience. Following a history of high effort expenditure, people 235 
reached with reduced velocity in probe trials. Following a history of high effort, subjects did not 236 
significantly modulate the amount of reward that they harvested. However, they took longer to begin 237 
harvesting reward (grip ramp-up period) and waited longer before ending the harvest and moving on to the 238 
next patch (giving-up phase).  239 

 240 
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Figure 4: Vigor was influenced by history of effort. (a) Averaged velocity profiles for different mass conditions, 0kg 241 
(blue), 2kg (purple background) and 3.5 kg (yellow), for an exemplar subject 14. (b) Mean peak velocity (normalized to 242 
subject average) within a block of 50 trials, averaged across subjects, plotted as a function of trial for the low (blue) and 243 
high (yellow) effort environments. Corresponding difference 𝛥𝑃𝑉 is plotted with respect to trial number within block right 244 
below. All error bars represent standard error of the mean. (c) Peak velocity plotted as a function of added mass 245 
averaged across subjects. (d) Average difference in peak velocity between corresponding probe trials in low effort 246 
environment and high effort environment (𝛥𝑃𝑉𝑝𝑟𝑜𝑏𝑒 = 𝑃𝑉𝑙𝑜𝑤

𝑝𝑟𝑜𝑏𝑒
− 𝑃𝑉ℎ𝑖𝑔ℎ

𝑝𝑟𝑜𝑏𝑒
) for each subject; bars are arranged in 247 

descending order of 𝛥𝑃𝑉. Most subjects have a mean positive 𝛥𝑃𝑉 indicating that they move on average faster in the 248 
probe trials belonging to the low effort environment.  249 

 250 
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Figure 5: Harvest behavior is modulated by history of effort (a) A sample grip force profile for an example subject  14 251 
on a randomly selected trial to indicate the temporal decision phases when inside a patch. (b) Zooming in on the grip 252 
ramp up phase we compare the grip force profiles between two probe trials for subject 14, one from the low effort 253 
environment (blue) and the other from the high effort environment (orange). (c) Force rate profiles for subject # averaged 254 
across probe trials within the two environments; peak force rate in the probe trials belonging to the low effort 255 
environment was higher than that of the high effort environment.  (d) Peak force rate – the maximum rate of force 256 
generation during ramp-up phase– normalized to subject average, was lower in probe trials belonging to the high effort 257 
environment. (e) Most subjects had a positive 𝛥Peak force rate. (f) Grip Ramp-up Duration – which is computed as the 258 
duration from when the force is at 10N to when the force is at 30 N – increased in the probe trials belonging to the high 259 
effort environment as opposed to the low effort environment. (g) Mean difference in harvest reaction time in probe trials 260 
between environments.  As expected, 𝛥Harvest reaction time is negative, for most subjects. (h) Berry count modulation 261 
by environment was not statistically significant. (i) Giving-up time, normalized to the wait time between the last two 262 
berries, increased in the high effort environment. 263 

Discussion 264 

 265 
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During foraging, the decision-making and movements of an individual may be linked via a single normative 266 
utility: the sum of rewards acquired, minus efforts expended, divided by time (Shadmehr & Ahmed, 2020). 267 
A prediction of this theory is that the history of reward should affect decision-making during harvesting, 268 
and movements during travel. Indeed, we found that people harvested longer and moved slower following 269 
a history of low reward (or high effort), and harvested for a shorter duration and moved faster following a 270 
history of high reward (or low effort). History of effort had a similar effect on reach vigor: following a 271 
history of high effort expenditure, people reduced their reach velocity in probe trials. However, unlike the 272 
theoretical predictions, history of high effort did not encourage longer harvest durations. Rather, it slowed 273 
the force production patterns that initiated and ended the harvest.  274 

History of reward and effort influenced both the choice of how long to harvest, and the control of movement 275 
vigor to the next opportunity. There is a large body of work demonstrating that humans and other animals 276 
modulate their harvest duration in patches based on reward history in accordance with MVT (Constantino 277 
& Daw, 2015; Hills et al., 2012; Krebs et al., 1974; Le Heron et al., 2020; Wikenheiser et al., 2013; Wolfe, 278 
2017; Yoon et al., 2018). In contrast, the influence of reward history on movement vigor between patches 279 
is considerably less understood. Our observation that movement vigor is also modulate in accordance with 280 
MVT indicate that similar processes underlie the control of movement and decision making. 281 

In the context of options immediately available, recent work has revealed a link between movement vigor 282 
and preference. For instance, it has been shown that humans (Sackaloo et al., 2015; Summerside et al., 283 
2018) and other animals (Mosberger et al., 2016; Opris et al., 2011) are willing to be energetically 284 
inefficient by reaching faster, and even reacting sooner, towards increased reward. This invigoration has 285 
been reflected in saccades as well with faster velocities (Haith et al., 2012; Reppert et al., 2015) and shorter 286 
reaction times (Kawagoe et al., 1998; Takikawa et al., 2002) observed for higher reward at the end of the 287 
movement. Added effort also appears to slow down reaching and walking movements (Gordon et al., 1994; 288 
Ralston, 1958; Shadmehr et al., 2016). Moreover, when choosing between options immediately available, 289 
movement vigor reveals our underlying subjective valuation. People saccade faster to the option ultimately 290 
chosen(Korbisch et al., 2019; Reppert et al., 2015; Yoon et al., 2018). Our contribution in this work is to 291 
demonstrate that this connection between movement vigor and decision making is observed not only for 292 
immediate reward, but for the history of reward as well.  Specifically, we observe a consistent effect of 293 
local availability of reward as well as the history of reward on the control of vigor.  294 

In the field of motor control, the history of actions performed has also been shown to play a role in 295 
determining the kinematics of subsequent movements. In fact, research has shown that movement 296 
repetitions lead to an experience-dependent learning process whereby the brain learns to reduce variability 297 
of performance towards previously repeated targets (Diedrichsen et al., 2010; Verstynen & Sabes, 2011). 298 
This has been postulated to be a trial-by-trial learning process of the statistics of the previous actions with 299 
a bias-variance tradeoff strategy explaining selected action kinematics in relation to allowed preparation 300 
time. This is observed in bias in speed as well as reaction time of repeated movements (Hammerbeck et al., 301 
2014; Mawase et al., 2018). This use-dependent effect is however separable from another history dependent 302 
phenomenon observed whereby subjects use a cognitive, predictive strategy when deciding subsequent 303 
movements in the presence of uncertainty (Marinovic et al., 2017). But what about the effect of dissimilar 304 
actions and their outcomes on subsequent movement kinematics? The optimal foraging framework thus 305 
seeks to explain durations of different actions, by defining a unifying ecological utility that the actions and 306 
their durations modulate. Our findings demonstrate that both the local context of reward and effort as well 307 
as the history of reward and effort significantly affect vigor.   308 

Consistent with the predictions of the generalized MVT, people traveled more slowly following a history 309 
of high effort. These results are however at odds with those presented by Yoon and colleagues for saccade 310 
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vigor. They found that after history of high effort, imposed by high eccentricity of images, while gaze 311 
increased in accordance with the theorem, saccade velocity also increased. In other words, subjects made 312 
faster saccades in a poorer environment when moving across equivalent distances between images of 313 
identical eccentricity. This result was discussed by the authors as being more aligned with a framework in 314 
which effort expenditure elevated the subjective reward value in the environment. This elevation of the 315 
reward due to effort expenditure is referred to as justification of effort whereby the same reward higher is 316 
valued more if more effort was required to obtain it (Klein et al., 2005; Tricia, S et al., 2000). Though Yoon 317 
et al’s results contrast with ours, in our experiment 2, we found that some subjects moved faster in the high 318 
effort environment as opposed to the low effort environment in the probe trials. The justification of effort 319 
phenomenon could explain these inter-individual differences.  320 

In the context of modulated travel effort, we found that some aspects of harvest behavior were modulated 321 
by effort history (Figure 5). Specifically, we also find modulation in giving-up duration, a metric that has 322 
been used to define how long an animal remains in a patch without reward before leaving. In previous 323 
discrete reward foraging scenarios, an increase in giving-up duration has been seen to reflect the forager’s 324 
perception of environment quality or capture rate. For instance, birds have been known to have a longer 325 

giving-up time in poorer environments as opposed to poorer environments (Krebs et al., 1974). As in the 326 

literature, and per the prediction of MVT, we find that subjects take longer before giving-up in the high 327 
effort environment, aka, the worse environment with the lower opportunity cost. 328 

The neural correlates of reward history remain poorly understood. Dopamine levels in the nucleus 329 
accumbens correlate with reward rate, as well as shorter response latencies (Mohebi et al., 2019). However, 330 
the source of the increase remains elusive since in that same task, tonic firing rate of dopaminergic neurons 331 
do not track the history or reward or punishment (Cohen et al., 2015; Mohebi et al., 2019). A clue to this 332 
puzzle may lie in another neurotransmitter: serotonin. Tonic firing rates of serotonergic neurons can reflect 333 
history of reward, with other serotonin neurons encoding history of punishment (Cohen et al., 2015).  334 
Artificial activation of serotonin neurons leads to increased harvest durations in a foraging task (Lottem et 335 
al., 2018), as well as reduced movement vigor (Correia et al., 2017; Seo et al., 2019). Taken together, these 336 
results suggest that serotonin may play a role in moderating decision making and movement vigor during 337 
foraging via an encoding of reward history. 338 

Not all of our findings conformed with MVT predictions. Previous work has found that after longer travel 339 
delays, birds will stay longer and collect more food in subsequent patches with depleting rewards (Cuthill 340 
et al., 1990). This has been shown in humans as well, where individuals harvesting reward from virtual 341 
trees will collect more apples after a longer travel delay (Constantino & Daw, 2015). These imposed travel 342 
delays seek to reduce the average capture rate of the foraging environment and therefore led to longer stay 343 
times. However, in our study we see a lack of modulation of the absolute number of berries collected in 344 
response to changing environment quality due to change in travel effort. In our protocol, each berry is 345 
associated with a short high-pitched beep, providing a salient signal regarding the number of berries 346 
harvested. We believe that subjects settle on several berries that leads to a predictable auditory pattern, that 347 
in turn acts as a cue as to when to leave a patch. In other words, subjects learn to expect a certain number 348 
of berries irrespective of reward rate due to the auditory feedback, rather than deciding on a per-patch basis. 349 
There has been some conflicting evidence for (Mcnair, 1982) and against (Krebs et al., 1974) the 350 
phenomenon of predators expecting a set number of prey, or hunting by expectation as opposed to a strategy 351 
based on MVT. Nevertheless, in our protocol for experiment 2 we believe that the increased saliency 352 
associated with the number of berries primes subjects to collect a fixed number between environments. 353 
Notably, in experiment 1, where auditory feedback was not linked to number of berries, we observed a 354 
consistent effect of environment on berries harvested, in accordance with MVT predictions.  355 
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The MVT framework presents an implicit, circular solution (Stephens & Krebs, 1986) for the optimal 356 
durations it prescribes, which are dependent on the very quantity it tries to optimize. This leads to the 357 

assumption that the forager has complete knowledge of 𝐽, on which its corollaries especially rely. Therefore, 358 

the theorem is unable to account for transients where the agent needs to learn the quality of the environment 359 
as a parameter that can be updated (Mcnamara & Houston, 1985). In our data, we see that the environment’s 360 
influence of vigor appears to get washed out by the final block of the environment with the difference 361 
between the probe trials’ vigor vanishing to zero. Further the theorem does not allow for stochasticity in 362 
the environment, as it does not account for fluctuating beliefs of the forager regarding the quality (Oaten, 363 
1977). This has been critiqued in the ecology literature by several studies that have presented alternatives 364 
(Green, 1980; Mcnamara & Houston, 1985; Oaten, 1977; Pyke, 2019). Yet, despite the criticism, empirical 365 
studies show that humans and animals consistently behave according to the theorem’s predictions. There is 366 
now a push to understand the underpinnings of everyday decisions from an ethological standpoint (Hayden, 367 
2018; Mobbs et al., 2018) through more naturalistic experiment designs that better reflect decisions faced 368 
by individuals every day. The integration of motor control into the theory is therefore promising in its ability 369 
to not just explain motor characteristics, but also evaluation of rewards and costs by investigating 370 
corresponding motor decisions. 371 

In conclusion, for identical immediate reward and effort opportunities, harvest duration and movement 372 
vigor were modulated by the history of reward and effort. People harvested longer and moved slower 373 
following a history of low reward, and conversely, harvested for a shorter duration and moved faster 374 
following a history of high reward. In accordance with the maximization of common normative utility, 375 
history of reward and effort exerted a consistent effect on not only the choice of how long to stay in the 376 
current patch but how fast to move to the next one.  377 

  378 
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Materials and Methods: 379 

Theoretical Development: 380 

Here we describe the hypotheses of the generalized marginal value theorem (MVT) in detail. 381 

Mathematically, the marginal capture rate of a patch is represented by 𝑓𝑛(𝑡ℎ) (Eq. 1); 𝑟(𝑡ℎ) and 𝑢ℎ(𝑡ℎ) 382 
represent the reward obtained in the patch and corresponding costs incurred as a function of harvest 383 

duration, respectively. 𝑓𝑛(𝑡ℎ) is also called the harvest function and can be thought of as the net intake from 384 
a patch. Additionally, we represent the cost associated with moving to the patch, or movement expenditure, 385 

as 𝑢𝑚(𝑑, 𝑡𝑚
(𝑛)

). The average capture rate of the environment is consequently given by 𝐽 ̅(Eq. 2) as the net 386 

gain associated with a patch (harvest function minus movement expenditure to patch) divided by the sum 387 
of the total time moving to and harvesting from each patch, for all patches.  388 

𝑓𝑛(𝑡ℎ) = 𝑟(𝑡ℎ) − 𝑢ℎ(𝑡ℎ)  (1) 389 

𝐽 ̅ =  
∑𝑛 𝑓𝑛(𝑡ℎ

(𝑛)
)−𝑢𝑚(𝑑,𝑡𝑚

(𝑛)
)

∑𝑛 𝑡ℎ
(𝑛)

+𝑡𝑚
(𝑛)   (2) 390 

Differentiating 𝐽 ̅in Eq. 2 with respect to 𝑡ℎ and 𝑡𝑚 and equating to zero returns the optimal solutions. 𝑡ℎ
∗  is 391 

the duration at which the marginal capture rate of a patch equals 𝐽,̅ the average capture rate of the 392 

environment. Similarly, 𝑡𝑚
∗  is the movement duration for which the movement expenditure rate equals 𝐽 ̅in 393 

magnitude. These solutions for optimal harvest duration and movement vigor lead us to two predictions of 394 
the theorem: 395 

1. An increase in the effort needed to harvest (𝑢ℎ) in the patch, or the effort needed to move to the patch 396 

(𝑢𝑚), should produce an increase in harvest duration, and a decrease in movement speed.  397 

2. After a history of high effort, or in expectation of high effort, harvest duration should increase, and 398 
movement vigor should decrease.  399 

The normative MVT model used by Yoon et al (Yoon et al., 2018) naturally incorporates experience and 400 
subsequent behavior when describing vigor of movements as well as persistence to stay in patch. To test if 401 
these predictions hold for arm reaching, we designed a patch foraging task involving reaching movements. 402 
The effort of a reach was based on the effort cost model described by (Shadmehr et al., 2016) (Eq 3). In our 403 
experiment, we chose to modulate the effort of arm reaches by changing the mass required to be carried 404 

during the movement. 𝑚 was the mass carried during movement, 𝑑 was the distance travelled and 𝑡𝑚 was 405 
the duration. 406 

𝑢𝑚(𝑑, 𝑡𝑚) =  𝑎 𝑚𝑡𝑚 +  𝑏
𝑚𝑑2

𝑡𝑚
   (3) 407 

Further, desire to remain in a patch was fueled by point-based reward that depleted with time spent and was 408 
discounted by effort required while harvesting points in a patch. This harvest effort was realized through a 409 
force that the subject had to apply through production of grip forces to earn points in a patch. Grip force 410 

required in a patch was given by 𝐹𝑔; so, for harvest duration 𝑡ℎ, the effort associated with grip force in a 411 

patch was given by 𝑢ℎ(𝑡ℎ) (Eq. 4). 412 

𝑢ℎ(𝑡ℎ) = 𝐹𝑔 ∗ 𝑡ℎ    (4) 413 

To test the predictions of the theory, we designed a foraging protocol in which subjects collected rewards 414 
in two environments, one with high effort, and the other with low effort (Figure 2). Subjects reached 415 
between patches. Once in a patch, they produced a grip force to harvest reward. In one environment, most 416 
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trials had no added mass (Eq. 3; 𝑚 = 0), while in the second environment most trials had high added mass 417 

(𝑚 = 3.5 𝑘𝑔). In both environments, they experienced some trials with intermediate added mass (𝑚 =418 

 2𝑘𝑔). All patches required a constant grip force (𝐹𝑔 =  30𝑁).  419 

For our experiment design, we have the following predictions based on our hypotheses:  420 

H1. Subjects will move faster in the probe trials belonging to the better environment (high reward or 421 
low effort), as compared to the poorer environment.  422 

H2. Similarly, we expect that subjects will shorten their harvest duration in the better environment (high 423 
reward or low effort), as compared to the poorer environment. Specifically, we compare the 424 
equivalent probe trials between the two environments to isolate the effects of reward and effort 425 
history in the two experiments.  426 
 427 

Experiment Protocol and Design: 428 

Subjects: Thirty-four subjects (age= 25.5 ± 3.5 years, 15 female) participated in the study, fourteen in 429 
experiment 1 and twenty in experiment 2. All subjects were healthy with no recent injuries or known 430 
pathologies. Consent was obtained in accordance with the University of Colorado Institutional Review 431 
Board. Subjects were paid a base amount of $10 an hour, but their final compensation depended on their 432 
performance. Two subjects were unable to complete the experiment due to their selection of very long 433 
harvest duration in experiment 2 and therefore results for this session presented are from the 18 subjects 434 
who completed all the trials in the experiment.   435 

Apparatus and Data Acquisition: To test predictions of MVT in humans, a foraging task involving arm 436 
reaching movements was designed. Subjects were seated in a chair with full back support and made 437 
horizontal, planar reaches while grasping the handle of a robotic manipulandum (InMotion 2; Interactive 438 
Motion Technologies, Shoulder-elbow robot 2) as seen in Figure 2a. By moving the robot handle subjects 439 
controlled the movement of a cursor on the monitor placed at eye-level. The monitor displayed a game 440 
screen in which they were cued to move to different targets, causing them to make reaches in different 441 
directions in the horizontal plane. The end of the robot handle was attached with a grasp sensor that 442 
measured force with which subjects gripped the handle. Additionally, the robot could produce forces; here 443 
we leveraged this by having the robot produce acceleration-dependent resistive forces to simulate the effect 444 
of adding mass to the reach in the horizontal plane for experiment 2 (Eq. 5). Robot forces were inactive 445 
during experiment 1.  446 

[𝐹𝑥  𝐹𝑦 ] =  −1 ∗ [
𝑚 0
0 𝑚

] ∗ [𝑎𝑥  𝑎𝑦 ]   (5) 447 

Reach position, velocity, acceleration, and corresponding grip force of every trial was recorded by the robot 448 
at a frequency of 200 Hz. The force field produced by robot motors during a reach was also continuously 449 
updated, based on the current acceleration as recorded by the accelerometer, at a rate of 200 Hz. 450 

Experiment 1: This experiment emulated a patch foraging task in which subjects could move between 451 
patches by making reaching movements with their dominant arm (Figure 2a). On the screen in front of them 452 
the foraging task appeared; subjects were instructed to move their cursor into a circular patch of reward on 453 
the screen (Figure 2b). Once their cursor was in the patch, they could collect reward by making pulsed grip 454 
forces (Figure 2c). Subjects had to wait for the patch to turn green upon which they were required to hit a 455 
threshold force of 30 N and return their force back to under 10 N, at which point they received rewarding 456 
‘berries’. Subjects could wait for the patch to turn green to collect more reward or move on to the next at 457 
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any time. Their total earnings from a patch were added to a cumulative score counter at the top of the screen. 458 
An example grip force profile is seen in Figure 2e.  459 

Overall, subjects experienced three patch types with differing reward, each indicated by a different patch 460 
color (Figure 2d). Reward was dispensed per grip according to an exponential decay function, jittered by 461 

gaussian noise 𝑟(𝑛) ~ 𝑁(𝛽𝑛−1 𝛼, 1), where 𝛼 represents the maximum reward that can be obtained from a 462 

pulse, and  𝛽 represents the decay rate fixed at 0.8 for the entirety of this experiment. the first pulse always 463 

resulted in the maximum reward, 𝑟(1) = 𝛼 (Figure 2f).  464 

Before the main experiment, subjects were familiarized with the patch types with 30 trials, 10 for each 465 
reward value. Subjects were questioned about which patch was the most rewarding to ensure they had 466 
internalized the color-reward mapping. If they responded incorrectly, they were re-familiarized. No subject 467 
required more than 2 familiarization sessions; familiarization data were not included in any analyses 468 
presented.  469 

Experiment 2: In this experiment, the effort of travel was modulated by adding mass to the reaches between 470 
the patches. A brief familiarization session was conducted to acquaint subjects to the passive inertial forces 471 
of the robot arm as well as the acceleration-dependent force-field. Subjects were then required to collect 472 
berries in a task similar to experiment 1. The available patch was displayed by a red circle. Subjects moved 473 
the robot handle and placed a cursor inside the patch. Once inside the patch, they produced a grip force that 474 
was specified by an indicator next to the patch circle (Figure 2g). Harvesting began when the grip force 475 
reached the minimum required force. Berry harvesting was indicated by an animation: an orange circle 476 
quickly appearing and disappearing, accompanied by a high-pitched beep. Berries were harvested at a 477 
declining rate while the grip force was maintained above the minimum level. The total number of berries 478 

collected over a duration 𝑡ℎ was specified by the function 𝑟(𝑡ℎ)  = 𝛼 ( 1 −
1

1+𝛽 𝑡ℎ
 ). Essentially, the time 479 

between successive berries at any given instance was calculated from the instantaneous reward rate 480 
resulting in consecutive berries having longer durations between them as time spent in the patch increased. 481 

Here, 𝛼 represents the maximum reward and 𝛽 represents rate of decline in reward harvested. Subjects were 482 
instructed to hold their force at the required level and reduce it only when they intended to move out of the 483 
patch, i.e., they were discouraged from ‘resting’ inside the patch. They were told that they were free to 484 
leave the current patch at any point in time towards the cued position where a new patch would appear. 485 
Once they exited a patch, it disappeared, and a new replenished patch appeared in the new location (Figure 486 

2g). Patches always appeared at the same two positions thereby keeping the travel distance constant at 𝑑 =487 

 30 𝑐𝑚 across the entire experiment. Subjects (n=18) experienced the foraging task in two main blocks of 488 

trials: low mass and high mass environments. Travel effort was modulated by changing the added mass 𝑚 489 
to the reach period and harvest effort was represented by the amount of grip force that was to be maintained 490 
to ensure berry “consumption”.  491 

Subjects experienced three effort levels with three different values of added mass. This was cued to the 492 
subject by means of cursor appearance (Figure 2h). The protocol entailed foraging in two environments. 493 

The low effort environment entailed no added mass (𝑚 = 0 𝑘𝑔) for most trials. The high effort environment 494 

entailed large added mass (𝑚 = 3.5 𝑘𝑔). Both environments had probe trials in which the added mass was 495 

𝑚 = 2 𝑘𝑔. Each environment contained two hundred trials that was divided into four sub-blocks of fifty 496 
trials each, not including 30 trials in which subjects were familiarized with the parameters of the 497 
environment. Subjects were not informed of the total number of trials in each environment. Rather, they 498 
were told that the total session duration was about one hour and fifteen minutes, including instruction and 499 
consent procedures. Within each sub-block of fifty, the middle ten trials were designated as probe thereby 500 
leading to forty total probe trials in each environment. There was no discernable break between trials in the 501 
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two environments. For all trials in both environments, including probe trials, the minimum amount of grip 502 

force required to harvest berries within each patch was fixed (𝐹𝑔 ≥ 30𝑁).  503 

When travelling between the two patches, the amount of added mass was indicated by means of a modified 504 
cursor. Subjects were also instructed not to increase the grip force during travel between patches, to 505 
decouple harvest and movement efforts. If they chose to travel with increased grip force (> 10 N), the game 506 
paused, a message appeared on screen asking them to reduce their grip force. Subjects were also informed 507 
that every 10 berries collected would correspond to 1¢ in monetary bonus, to increase task engagement. 508 

In both experiments, environment order was counterbalanced across subjects. 509 

Behavioral metrics of movement and harvest: In experiment 1, our primary hypothesis concerns the 510 
modulation of movement vigor by changing the history of reward. Since movement is realized through 511 
reaches between patches, we compute the maximum velocity in the horizontal direction over the time course 512 
of the reach and use it to quantify the vigor of the movement. The horizontal velocity is chosen because the 513 
primary movement happens in that direction by virtue of the position of all the patches being along the 514 
horizontal axis. Therefore, vigor is quantified through peak velocity of reaching.  515 

For harvest behavior, we use two metrics. One is the absolute number of berries harvested per patch to 516 
denote harvest behavior in the patch. The next metric is the absolute duration of harvest within a patch since 517 
patch entry to patch exit in seconds. Therefore, harvest behavior is quantified by berries harvested as well 518 
as harvest duration.  519 

For experiment 2, our primary hypothesis here is concerned with how movement vigor is modulated by 520 
changing the history of effort. As in the previous experiment, the horizontal velocity is chosen because the 521 
primary movement happens in that direction by virtue of the position of all the patches being along the 522 
horizontal axis. 523 

We quantified behavior using four metrics: harvest reaction time, peak force rate, number of berries, and 524 
giving-up time. Rate of force was computed as the numerical derivative of force over the course of the trial 525 

which was then filtered through a low-pass Butterworth filter with a 10𝐻𝑧 cut-off frequency. Since this 526 
was a grip-and-hold task. The harvest reaction time was defined as the duration from when subjects increase 527 

grip force above 10 𝑁 until the point at which they reach the required threshold of 30 𝑁. Peak force rate 528 
was the maximum rate of force generation during the grip ramp-up period. Together, harvest reaction time 529 
and peak force rate determined the speed with which the subjects began harvest following arrival in the 530 
patch. The number of berries per patch was computed as the total number of berries in a patch that subjects 531 
collect. Finally, we computed giving-up time as the duration after the last berry was collected until they 532 
reduced the grip force below the minimum. Because berries were dispensed after increasingly long 533 
intervals, this quantity was normalized to the duration between the second to last and last berries collected.  534 

Statistical Analyses: Therefore, based on our design, each environment had two trial types— exemplar trials 535 
(representing the actual attributes of the environment) and probe trials (different from exemplar but 536 
equivalent across environments). MVT predicts an effect of immediate reward and effort, i.e., if reward 537 
increases, or effort decreases, it should equivalently affect vigor as well as harvest duration. This was tested 538 
by comparing exemplar trials across both environments. The critical test for MVT in this case comes from 539 
the comparison of probe trials between the two environments. We therefore combined all the trials across 540 
each environment and obtained average behavior across the block of fifty trials. This captures temporal 541 
behavior as well differences between environments. We performed a two-way repeated measures ANOVA 542 
on each trial type to obtain the effects of environment as well as the effect of trail number within block. 543 
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The two equations representing these ANOVAs for each trial type are presented (Equations 9 & 10). 𝑀𝑒𝑡 544 
represents the above metrics for movement vigor as well as harvest duration.  545 

𝑀𝑒𝑡𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟  ~ 𝐸𝑛𝑣 + 𝑡𝑟𝑖𝑎𝑙𝐼𝑛𝐵𝑙𝑜𝑐𝑘 + 𝐸𝑟𝑟𝑜𝑟(𝑆𝑢𝑏𝑗) #(9)   546 

𝑀𝑒𝑡𝑝𝑟𝑜𝑏𝑒  ~ 𝐸𝑛𝑣 + 𝑡𝑟𝑖𝑎𝑙𝐼𝑛𝐵𝑙𝑜𝑐𝑘 + 𝐸𝑟𝑟𝑜𝑟(𝑆𝑢𝑏𝑗)#(10)   547 

We also completed 6 post-hoc t-tests based on observing the data to test the effect of the transitioning 548 
between exemplar and probe trials for each metric. This helped us determine if the sudden changes in 549 
harvest duration and peak velocity before the transition compared to neighboring trials of the same trial 550 
type were statistically significant. For harvest duration we compared trials 29 and 30 and trials 30 and 31 551 
in the block average for each subject in the low reward environment. Correspondingly in the high reward 552 
environment we compared trials 19 and 20 as well as trials 20 and 21. For peak velocity in the low reward 553 
environment we compared trials 30 and 31 as well as trials 31 and 32. And for the high reward environment 554 
we compared trials 20 to 21 and trials 21 to 22 within the block averages for each subject.  555 

We use a statistical threshold of 𝛼 = 0.05 for all comparisons. P-values are reported exactly unless they 556 
are less than 0.001 in which they are reported as such. All the F-statistics, confidence intervals and p-values 557 
are reported in the results for each metric. 558 

 559 
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